51
|
Vishwas S, Kumar R, Khursheed R, Ramanunny AK, Kumar R, Awasthi A, Corrie L, Porwal O, Arshad MF, Alshammari MK, Alghitran AA, Qumayri AN, Alkhaldi SM, Alshammari AK, Chellappan DK, Gupta G, Collet T, Adams J, Dua K, Gulati M, Singh SK. Expanding Arsenal against Neurodegenerative Diseases Using Quercetin Based Nanoformulations: Breakthroughs and Bottlenecks. Curr Neuropharmacol 2023; 21:1558-1574. [PMID: 35950245 PMCID: PMC10472810 DOI: 10.2174/1570159x20666220810105421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Quercetin (Qu), a dietary flavonoid, is obtained from many fruits and vegetables such as coriander, broccoli, capers, asparagus, onion, figs, radish leaves, cranberry, walnuts, and citrus fruits. It has proven its role as a nutraceutical owing to numerous pharmacological effects against various diseases in preclinical studies. Despite these facts, Qu and its nanoparticles are less explored in clinical research as a nutraceutical. The present review covers various neuroprotective actions of Qu against various neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Huntington's, and Amyotrophic lateral sclerosis. A literature search was conducted to systematically review the various mechanistic pathways through which Qu elicits its neuroprotective actions and the challenges associated with raw Qu that compromise therapeutic efficacy. The nanoformulations developed to enhance Qu's therapeutic efficacy are also covered. Various ongoing/completed clinical trials related to Qu in treating various diseases, including NDs, are also tabulated. Despite these many successes, the exploration of research on Qu-loaded nanoformulations is limited mostly to preclinical studies, probably due to poor drug loading and stability of the formulation, time-consuming steps involved in the formulation, and their poor scale-up capacity. Hence, future efforts are required in this area to reach Qu nanoformulations to the clinical level.
Collapse
Affiliation(s)
- Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | | | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, 44001, KRG, Iraq
| | - Mohammed F. Arshad
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, New Delhi, 110044, India
| | | | - Abdulrahman A. Alghitran
- Department of Clinical Pharmacy, General Administration of Pharmaceutical Care, Ministry of Health, Riyadh 11176, Saudi Arabia
| | - Ashwaq N. Qumayri
- Department of Clinical Pharmacy, General Administration of Pharmaceutical Care, Ministry of Health, Riyadh 11176, Saudi Arabia
| | - Saif M. Alkhaldi
- Department of Pharmaceutical Care, King Khalid Hospital in Majmaah, Riyadh Region 76312, Saudi Arabia
| | | | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Trudi Collet
- Innovative Medicines Group, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
52
|
To Explore the Inhibitory Mechanism of Quercetin in Thyroid Papillary Carcinoma through Network Pharmacology and Experiments. DISEASE MARKERS 2022; 2022:9541080. [PMID: 36510497 PMCID: PMC9741536 DOI: 10.1155/2022/9541080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 12/07/2022]
Abstract
Quercetin, a flavonoid with anti-inflammatory and anticancer properties, is expected to be an innovative anticancer therapeutic agent for papillary thyroid carcinoma (PTC). However, the downstream signaling pathways that mediate quercetin-dependent anticancer properties remain to be deciphered. Herein, potential targets of quercetin were screened with several bioinformatic avenues including PharmMapper, Gene Expression Omnibus (GEO) database, protein-protein interaction (PPI) network, and molecular docking. Besides, western blot, CCK-8 transwell analysis of migration and invasion, flow cytometric analysis, and colony formation assays were performed to investigate the underlying mechanism. We found four core nodes (MMP9, JUN, SPP1, and HMOX1) by constructing a PPI network with 23 common targets. Through functional enrichment analysis, we confirmed that the above four target genes are enriched in the TNF, PI3K-AKT, and NF-κB signaling pathways, which are involved in the inflammatory microenvironment and inhibit the development and progression of tumors. Furthermore, molecular docking results demonstrated that quercetin shows strong binding efficiency with the proteins encoded by these 4 key proteins. Finally, quercetin displayed strong antitumor efficacy in PTC cell lines. In this research, we demonstrated the application of network pharmacology in evaluating the mechanisms of action and molecular targets of quercetin, which regulates a variety of proteins and signaling pathways in PTC. These data might explain the mechanism underlying the anticancer effects of quercetin in PTC.
Collapse
|
53
|
Yang H, Xu S, Tang L, Gong J, Fang H, Wei J, Su D. Targeting of non-apoptotic cancer cell death mechanisms by quercetin: Implications in cancer therapy. Front Pharmacol 2022; 13:1043056. [PMID: 36467088 PMCID: PMC9708708 DOI: 10.3389/fphar.2022.1043056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2023] Open
Abstract
The ultimate goal of cancer treatment is to kill cancer cells, based on the use of various therapeutic agents, such as chemotherapy, radiotherapy, or targeted therapy drugs. Most drugs exert their therapeutic effects on cancer by targeting apoptosis. However, alterations in apoptosis-related molecules and thus assisting cells to evade death, eventually lead to tumor cell resistance to therapeutic drugs. The increased incidence of non-apoptotic cell death modes such as induced autophagy, mitotic catastrophe, senescence, and necrosis is beneficial to overcoming multidrug resistance mediated by apoptosis resistance in tumor cells. Therefore, investigating the function and mechanism of drug-induced non-apoptotic cell death modes has positive implications for the development of new anti-cancer drugs and therapeutic strategies. Phytochemicals show strong potential as an alternative or complementary medicine for alleviating various types of cancer. Quercetin is a flavonoid compound widely found in the daily diet that demonstrates a significant role in inhibiting numerous human cancers. In addition to direct pro-tumor cell apoptosis, both in vivo and in vitro experiments have shown that quercetin exerts anti-tumor properties by triggering diverse non-apoptotic cell death modes. This review summarized the current status of research on the molecular mechanisms and targets through which quercetin-mediated non-apoptotic mode of cancer cell death, including autophagic cell death, senescence, mitotic catastrophe, ferroptosis, necroptosis, etc.
Collapse
Affiliation(s)
- Hao Yang
- Department of Pharmacy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Shan Xu
- Department of Pharmacy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Lidan Tang
- Department of Pharmacy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Jinhong Gong
- Department of Pharmacy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Hufeng Fang
- Department of Pharmacy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Jifu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dan Su
- Department of Pharmacy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
54
|
Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI. Flavonoid-based nanomedicines to target tumor microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
55
|
Hosseini SS, Ebrahimi SO, Haji Ghasem Kashani M, Reiisi S. Study of quercetin and fisetin synergistic effect on breast cancer and potentially involved signaling pathways. Cell Biol Int 2022; 47:98-109. [DOI: 10.1002/cbin.11942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Seyede Saba Hosseini
- Department of Cellular and Molecular Biology, School of Biology and Institute of Biological Sciences Damghan University Damghan Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences Shahrekord University Shahrekord Iran
| | - Maryam Haji Ghasem Kashani
- Department of Cellular and Molecular Biology, School of Biology and Institute of Biological Sciences Damghan University Damghan Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences Shahrekord University Shahrekord Iran
| |
Collapse
|
56
|
A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells. Int J Mol Sci 2022; 23:ijms231911746. [PMID: 36233051 PMCID: PMC9569933 DOI: 10.3390/ijms231911746] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) induce carcinogenesis by causing genetic mutations, activating oncogenes, and increasing oxidative stress, all of which affect cell proliferation, survival, and apoptosis. When compared to normal cells, cancer cells have higher levels of ROS, and they are responsible for the maintenance of the cancer phenotype; this unique feature in cancer cells may, therefore, be exploited for targeted therapy. Quercetin (QC), a plant-derived bioflavonoid, is known for its ROS scavenging properties and was recently discovered to have various antitumor properties in a variety of solid tumors. Adaptive stress responses may be induced by persistent ROS stress, allowing cancer cells to survive with high levels of ROS while maintaining cellular viability. However, large amounts of ROS make cancer cells extremely susceptible to quercetin, one of the most available dietary flavonoids. Because of the molecular and metabolic distinctions between malignant and normal cells, targeting ROS metabolism might help overcome medication resistance and achieve therapeutic selectivity while having little or no effect on normal cells. The powerful bioactivity and modulatory role of quercetin has prompted extensive research into the chemical, which has identified a number of pathways that potentially work together to prevent cancer, alongside, QC has a great number of evidences to use as a therapeutic agent in cancer stem cells. This current study has broadly demonstrated the function-mechanistic relationship of quercetin and how it regulates ROS generation to kill cancer and cancer stem cells. Here, we have revealed the regulation and production of ROS in normal cells and cancer cells with a certain signaling mechanism. We demonstrated the specific molecular mechanisms of quercetin including MAPK/ERK1/2, p53, JAK/STAT and TRAIL, AMPKα1/ASK1/p38, RAGE/PI3K/AKT/mTOR axis, HMGB1 and NF-κB, Nrf2-induced signaling pathways and certain cell cycle arrest in cancer cell death, and how they regulate the specific cancer signaling pathways as long-searched cancer therapeutics.
Collapse
|
57
|
Vrânceanu M, Galimberti D, Banc R, Dragoş O, Cozma-Petruţ A, Hegheş SC, Voştinaru O, Cuciureanu M, Stroia CM, Miere D, Filip L. The Anticancer Potential of Plant-Derived Nutraceuticals via the Modulation of Gene Expression. PLANTS 2022; 11:plants11192524. [PMID: 36235389 PMCID: PMC9571524 DOI: 10.3390/plants11192524] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
Current studies show that approximately one-third of all cancer-related deaths are linked to diet and several cancer forms are preventable with balanced nutrition, due to dietary compounds being able to reverse epigenetic abnormalities. An appropriate diet in cancer patients can lead to changes in gene expression and enhance the efficacy of therapy. It has been demonstrated that nutraceuticals can act as powerful antioxidants at the cellular level as well as anticarcinogenic agents. This review is focused on the best studies on worldwide-available plant-derived nutraceuticals: curcumin, resveratrol, sulforaphane, indole-3-carbinol, quercetin, astaxanthin, epigallocatechin-3-gallate, and lycopene. These compounds have an enhanced effect on epigenetic changes such as histone modification via HDAC (histone deacetylase), HAT (histone acetyltransferase) inhibition, DNMT (DNA methyltransferase) inhibition, and non-coding RNA expression. All of these nutraceuticals are reported to positively modulate the epigenome, reducing cancer incidence. Furthermore, the current review addresses the issue of the low bioavailability of nutraceuticals and how to overcome the drawbacks related to their oral administration. Understanding the mechanisms by which nutraceuticals influence gene expression will allow their incorporation into an “epigenetic diet” that could be further capitalized on in the therapy of cancer.
Collapse
Affiliation(s)
- Maria Vrânceanu
- Department of Toxicology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Damiano Galimberti
- Italian Association of Anti-Ageing Physicians, Via Monte Cristallo, 1, 20159 Milan, Italy
| | - Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
- Correspondence: (R.B.); (O.D.); Tel.: +40-744-367-958 (R.B.); +40-733-040-917 (O.D.)
| | - Ovidiu Dragoş
- Department of Kinetotheraphy and Special Motricity, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
- Correspondence: (R.B.); (O.D.); Tel.: +40-744-367-958 (R.B.); +40-733-040-917 (O.D.)
| | - Anamaria Cozma-Petruţ
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Simona-Codruţa Hegheş
- Department of Drug Analysis, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Oliviu Voştinaru
- Department of Pharmacology, Physiology and Physiopathology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Magdalena Cuciureanu
- Department of Pharmacology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 16 Universităţii Street, 700115 Iași, Romania
| | - Carmina Mariana Stroia
- Department of Pharmacy, Oradea University, 1 Universităţii Street, 410087 Oradea, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
58
|
Rahman MM, Sarker MT, Alam Tumpa MA, Yamin M, Islam T, Park MN, Islam MR, Rauf A, Sharma R, Cavalu S, Kim B. Exploring the recent trends in perturbing the cellular signaling pathways in cancer by natural products. Front Pharmacol 2022; 13:950109. [PMID: 36160435 PMCID: PMC9498834 DOI: 10.3389/fphar.2022.950109] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is commonly thought to be the product of irregular cell division. According to the World Health Organization (WHO), cancer is the major cause of death globally. Nature offers an abundant supply of bioactive compounds with high therapeutic efficacy. Anticancer effects have been studied in a variety of phytochemicals found in nature. When Food and Drug Administration (FDA)-approved anticancer drugs are combined with natural compounds, the effectiveness improves. Several agents have already progressed to clinical trials based on these promising results of natural compounds against various cancer forms. Natural compounds prevent cancer cell proliferation, development, and metastasis by inducing cell cycle arrest, activating intrinsic and extrinsic apoptosis pathways, generating reactive oxygen species (ROS), and down-regulating activated signaling pathways. These natural chemicals are known to affect numerous important cellular signaling pathways, such as NF-B, MAPK, Wnt, Notch, Akt, p53, AR, ER, and many others, to cause cell death signals and induce apoptosis in pre-cancerous or cancer cells without harming normal cells. As a result, non-toxic "natural drugs" taken from nature's bounty could be effective for the prevention of tumor progression and/or therapy of human malignancies, either alone or in combination with conventional treatments. Natural compounds have also been shown in preclinical studies to improve the sensitivity of resistant cancers to currently available chemotherapy agents. To summarize, preclinical and clinical findings against cancer indicate that natural-sourced compounds have promising anticancer efficacy. The vital purpose of these studies is to target cellular signaling pathways in cancer by natural compounds.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Taslim Sarker
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mst. Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Yamin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Tamanna Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
59
|
Potential Pharmaceutical Applications of Quercetin in Cardiovascular Diseases. Pharmaceuticals (Basel) 2022; 15:ph15081019. [PMID: 36015169 PMCID: PMC9412669 DOI: 10.3390/ph15081019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/20/2022] Open
Abstract
Quercetin, as a member of flavonoids, has emerged as a potential therapeutic agent in cardiovascular diseases (CVDs) in recent decades. In this comprehensive literature review, our goal was a critical appraisal of the pathophysiological mechanisms of quercetin in relation to the classical cardiovascular risk factors (e.g., hyperlipidemia), atherosclerosis, etc. We also assessed experimental and clinical data about its potential application in CVDs. Experimental studies including both in vitro methods and in vivo animal models mainly outline the following effects of quercetin: (1) antihypertensive, (2) hypolipidemic, (3) hypoglycemic, (4) anti-atherosclerotic, and (5) cardioprotective (suppressed cardiotoxicity). From the clinical point of view, there are human studies and meta-analyses implicating its beneficial effects on glycemic and lipid parameters. In contrast, other human studies failed to demonstrate consistent favorable effects of quercetin on other cardiometabolic risk factors such as MS, obesity, and hypertension, underlying the need for further investigation. Analyzing the reason of this inconsistency, we identified significant drawbacks in the clinical trials’ design, while the absence of pharmacokinetic/pharmacodynamic tests prior to the studies attenuated the power of clinical results. Therefore, additional well-designed preclinical and clinical studies are required to examine the therapeutic mechanisms and clinical efficacy of quercetin in CVDs.
Collapse
|
60
|
Asgharian P, Tazekand AP, Hosseini K, Forouhandeh H, Ghasemnejad T, Ranjbar M, Hasan M, Kumar M, Beirami SM, Tarhriz V, Soofiyani SR, Kozhamzharova L, Sharifi-Rad J, Calina D, Cho WC. Potential mechanisms of quercetin in cancer prevention: focus on cellular and molecular targets. Cancer Cell Int 2022; 22:257. [PMID: 35971151 PMCID: PMC9380290 DOI: 10.1186/s12935-022-02677-w] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023] Open
Abstract
Over the past few years, the cancer-related disease has had a high mortality rate and incidence worldwide, despite clinical advances in cancer treatment. The drugs used for cancer therapy, have high side effects in addition to the high cost. Subsequently, to reduce these side effects, many studies have suggested the use of natural bioactive compounds. Among these, which have recently attracted the attention of many researchers, quercetin has such properties. Quercetin, a plant flavonoid found in fresh fruits, vegetables and citrus fruits, has anti-cancer properties by inhibiting tumor proliferation, invasion, and tumor metastasis. Several studies have demonstrated the anti-cancer mechanism of quercetin, and these mechanisms are controlled through several signalling pathways within the cancer cell. Pathways involved in this process include apoptotic, p53, NF-κB, MAPK, JAK/STAT, PI3K/AKT, and Wnt/β-catenin pathways. In addition to regulating these pathways, quercetin controls the activity of oncogenic and tumor suppressor ncRNAs. Therefore, in this comprehensive review, we summarized the regulation of these signalling pathways by quercetin. The modulatory role of quercetin in the expression of various miRNAs has also been discussed. Understanding the basic anti-cancer mechanisms of these herbal compounds can help prevent and manage many types of cancer.
Collapse
Affiliation(s)
- Parina Asgharian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazekand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Forouhandeh
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ranjbar
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR—Central Institute of Agricultural Engineering, Bhopal, 462038 India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai, 400019 India
| | - Sohrab Minaei Beirami
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Sina Educational, Research, and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| |
Collapse
|
61
|
Kang X, Chen L, Yang S, Gong Z, Hu H, Zhang X, Liang C, Xu Y. Zuogui Wan slowed senescence of bone marrow mesenchymal stem cells by suppressing Wnt/β-catenin signaling. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115323. [PMID: 35483559 DOI: 10.1016/j.jep.2022.115323] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine (TCM), Zuogui Wan (ZGW) is a classical prescription for senile disorders and delay aging. Modern studies show that ZGW promotes central nerve cell regeneration, prevents and cures osteoporosis, enhances the body's antioxidant capacity, regulates the body's immune function, and promotes mesenchymal stem cells (MSCs) proliferation. AIM OF THE STUDY It has been shown that MSCs aging is closely associated with organism's aging and age-related disorders. The study aimed to define the effects of ZGW on the aging bone marrow mesenchymal stem cells (BMSCs) and to identify the mechanisms of ZGW delaying BMSCs senescence. MATERIALS AND METHODS Network pharmacology analysis combined with GEO data mining, molecular docking and experimental validation were used to evaluate the mechanisms by which ZGW delays MSCs senescence (MSCS). LC-MS was used for quality control analysis of ZGW. RESULTS PPI network analysis revealed that EGF, TNF, JUN, MMPs, IL-6, MAPK8, and MYC are components of the core PPI network. GO and KEGG analyses revealed that oxidative stress, regulation of response to DNA damage stimuli, and Wnt signaling were significantly enriched. GEO database validation also indicated that Wnt signaling closely correlated with MSCs aging. Molecular docking analysis of the top-13 active components in the "ZGW-Targets-MSCS" network indicated that most components have strong affinity for key proteins in Wnt signaling, suggesting that modulation of Wnt signaling is an important mechanism of ZGW activity against MSCS. Further experimental validation found that ZGW indeed regulates Wnt signaling and suppresses the expression of age-related factors to enhance cell proliferation, ameliorate DNA damage, and reduce senescence-related secretory phenotype (SASP) secretion, thereby maintaining multidirectional differentiation of rat BMSCs. Similar results were obtained using the Wnt inhibitor, XAV-939. CONCLUSIONS Together, our data show that ZGW slows BMSCs aging by suppressing Wnt signaling.
Collapse
Affiliation(s)
- Xiangping Kang
- College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Long Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Shuchen Yang
- College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhangbin Gong
- College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Haiyan Hu
- College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xueli Zhang
- College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Chao Liang
- College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yanwu Xu
- College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
62
|
Zhao L, Zhao H, Zhao Y, Sui M, Liu J, Li P, Liu N, Zhang K. Role of Ginseng, Quercetin, and Tea in Enhancing Chemotherapeutic Efficacy of Colorectal Cancer. Front Med (Lausanne) 2022; 9:939424. [PMID: 35795631 PMCID: PMC9252166 DOI: 10.3389/fmed.2022.939424] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
As the most common gastrointestinal malignancy, colorectal cancer (CRC) remains a leading cause of cancer death worldwide. Although multimodal chemotherapy has effectively improved the prognosis of patients with CRC in recent years, severe chemotherapy-associated side effects and chemoresistance still greatly impair efficacy and limit its clinical application. In response to these challenges, an increasing number of traditional Chinese medicines have been used as synergistic agents for CRC administration. In particular, ginseng, quercetin, and tea, three common dietary supplements, have been shown to possess the potent capacity of enhancing the sensitivity of various chemotherapy drugs and reducing their side effects. Ginseng, also named “the king of herbs”, contains a great variety of anti-cancer compounds, among which ginsenosides are the most abundant and major research objects of various anti-tumor studies. Quercetin is a flavonoid and has been detected in multiple common foods, which possesses a wide range of pharmacological properties, especially with stronger anti-cancer and anti-inflammatory effects. As one of the most consumed beverages, tea has become particularly prevalent in both West and East in recent years. Tea and its major extracts, such as catechins and various constituents, were capable of significantly improving life quality and exerting anti-cancer effects both in vivo and in vitro. In this review, we mainly focused on the adjunctive effects of the three herbs and their constituents on the chemotherapy process of CRC.
Collapse
Affiliation(s)
- Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongyu Zhao
- Gastroenterology and Center of Digestive Endoscopy, The Second Hospital of Jilin University, Changchun, China
| | - Yongqing Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Mingxiu Sui
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jinping Liu
- Research Center of Natural Drugs, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Pingya Li
- Research Center of Natural Drugs, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Ning Liu
- Department of Central Laboratory, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Ning Liu
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
- Kai Zhang
| |
Collapse
|
63
|
Anti-Cancer Effects of Dietary Polyphenols via ROS-Mediated Pathway with Their Modulation of MicroRNAs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123816. [PMID: 35744941 PMCID: PMC9227902 DOI: 10.3390/molecules27123816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/23/2022]
Abstract
Consumption of coffee, tea, wine, curry, and soybeans has been linked to a lower risk of cancer in epidemiological studies. Several cell-based and animal studies have shown that dietary polyphenols like chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin and resveratrol play a major role in these anticancer effects. Several mechanisms have been proposed to explain the anticancer effects of polyphenols. Depending on the cellular microenvironment, these polyphenols can exert double-faced actions as either an antioxidant or a prooxidant, and one of the representative anticancer mechanisms is a reactive oxygen species (ROS)-mediated mechanism. These polyphenols can also influence microRNA (miR) expression. In general, they can modulate the expression/activity of the constituent molecules in ROS-mediated anticancer pathways by increasing the expression of tumor-suppressive miRs and decreasing the expression of oncogenic miRs. Thus, miR modulation may enhance the anticancer effects of polyphenols through the ROS-mediated pathways in an additive or synergistic manner. More precise human clinical studies on the effects of dietary polyphenols on miR expression will provide convincing evidence of the preventive roles of dietary polyphenols in cancer and other diseases.
Collapse
|
64
|
In Silico Analysis of Plant Flavonoids as Potential Inhibitors of Newcastle Disease Virus V Protein. Processes (Basel) 2022. [DOI: 10.3390/pr10050935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Newcastle disease is a viral infection causing serious economic losses to the global poultry industry. The V protein of Newcastle disease virus (NDV) is a pathogenicity determinant having various functions such as the suppression of apoptosis and replication of the NDV. This study was designed to assess the resistance potential of plant flavonoids against the V protein of Newcastle disease virus. Sequence analysis was performed using EXPASY and ProtParam tools. To build the three-dimensional structure of V protein, a homology-modeling method was used. Plant flavonoids with formerly reported therapeutic benefits were collected from different databases to build a library for virtual screening. Docking analysis was performed using the modeled structure of V protein on MOE software. Interaction analysis was also performed by MOE to explain the results of docking. Sequence analysis and physicochemical properties showed that V protein is negatively charged, acidic in nature, and relatively unstable. The 3D structure of the V protein showed eight β-pleated sheets, three helices, and ten coiled regions. Based on docking score, ten flavonoids were selected as potential inhibitors of V protein. Furthermore, a common configuration was obtained among these ten flavonoids. The interaction analysis also identified the atoms involved in every interaction of flavonoid and V protein. Molecular dynamics (MD) simulation confirmed the stability of two compounds, quercetin-7-O-[α-L-rhamnopyranosyl(1→6)-β-D-galactopyranoside] and luteolin 7-O-neohesperidoside, at 100 ns with V protein. The identified compounds through molecular docking and MD simulation could have potential as NDV-V protein inhibitor after further validation. This study could be useful for the designing of anti-NDV drugs.
Collapse
|
65
|
SENESCENCE-MEDIATED ANTI-CANCER EFFECTS OF QUERCETI. Nutr Res 2022; 104:82-90. [DOI: 10.1016/j.nutres.2022.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023]
|
66
|
Tewari D, Priya A, Bishayee A, Bishayee A. Targeting transforming growth factor-β signalling for cancer prevention and intervention: Recent advances in developing small molecules of natural origin. Clin Transl Med 2022; 12:e795. [PMID: 35384373 PMCID: PMC8982327 DOI: 10.1002/ctm2.795] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cancer is the world's second leading cause of death, but a significant advancement in cancer treatment has been achieved within the last few decades. However, major adverse effects and drug resistance associated with standard chemotherapy have led towards targeted treatment options. OBJECTIVES Transforming growth factor-β (TGF-β) signaling plays a key role in cell proliferation, differentiation, morphogenesis, regeneration, and tissue homeostasis. The prime objective of this review is to decipher the role of TGF-β in oncogenesis and to evaluate the potential of various natural and synthetic agents to target this dysregulated pathway to confer cancer preventive and anticancer therapeutic effects. METHODS Various authentic and scholarly databases were explored to search and obtain primary literature for this study. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria was followed for the review. RESULTS Here we provide a comprehensive and critical review of recent advances on our understanding of the effect of various bioactive natural molecules on the TGF-β signaling pathway to evaluate their full potential for cancer prevention and therapy. CONCLUSION Based on emerging evidence as presented in this work, TGF-β-targeting bioactive compounds from natural sources can serve as potential therapeutic agents for prevention and treatment of various human malignancies.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of PharmacognosySchool of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Anu Priya
- Department of PharmacologySchool of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | | | - Anupam Bishayee
- College of Osteopathic MedicineLake Erie College of Osteopathic MedicineBradentonFloridaUSA
| |
Collapse
|
67
|
Das R, Mehta DK, Dhanawat M. Medicinal Plants in Cancer Treatment: Contribution of Nuclear Factor-Kappa B (NF-kB) Inhibitors. Mini Rev Med Chem 2022; 22:1938-1962. [PMID: 35260052 DOI: 10.2174/1389557522666220307170126] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 01/17/2023]
Abstract
Nuclear factor-kappa B (NF-κB) is one of the principal inducible proteins that is a predominant transcription factor known to control the gene expression in mammals and plays a pivotal role in regulating cell signalling in the body under certain physiological and pathological conditions. In cancer cells, such as colon, breast, pancreatic, ovarian, melanoma, and lymphoma, the NF-κB pathway has been reported to be active. In cellular proliferation, promoting angiogenesis, invasion, metastasis of tumour cells and blocking apoptosis, the constitutive activity of NF-κB signalling has been reported. Therefore, immense attention has been given to developing drugs targeting NF-κB signalling pathways to treat many types of tumours. They are a desirable therapeutic target for drugs, and many studies concentrated on recognizing compounds. They may be able to reverse or standstill the growth and spread of tumours that selectively interfere with this pathway. Recently, numerous substances derived from plants have been evaluated as possible inhibitors of the NF-κB pathway. These include various compounds, such as flavonoids, lignans, diterpenes, sesquiterpenes, polyphenols, etc. A study supported by folk medicine demonstrated that plant-derived compounds could suppress NF-κB signalling. Taking this into account, the present review revealed the anticancer potential of naturally occurring compounds which have been verified both by inhibiting the NF-κB signalling and suppressing growth and spread of cancer and highlighting their mechanism of NF-κB inhibition.
Collapse
Affiliation(s)
- Rina Das
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Dinesh Kumar Mehta
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Meenakshi Dhanawat
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| |
Collapse
|
68
|
Huang CF, Liu SH, Ho TJ, Lee KI, Fang KM, Lo WC, Liu JM, Wu CC, Su CC. Quercetin induces tongue squamous cell carcinoma cell apoptosis via the JNK activation-regulated ERK/GSK-3α/β-mediated mitochondria-dependent apoptotic signaling pathway. Oncol Lett 2022; 23:78. [PMID: 35111247 PMCID: PMC8771640 DOI: 10.3892/ol.2022.13198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022] Open
Abstract
Tongue squamous cell carcinoma (SCC) is a most common type of oral cancer. Due to its highly invasive nature and poor survival rate, the development of effective pharmacological therapeutic agents is urgently required. Quercetin (3,3',4',5,7-pentahydroxyflavone) is a polyphenolic flavonoid found in plants and is an active component of Chinese herbal medicine. The present study investigated the pharmacological effects and possible mechanisms of quercetin on apoptosis of the tongue SCC-derived SAS cell line. Following treatment with quercetin, cell viability was assessed via the MTT assay. Apoptotic and necrotic cells, mitochondrial transmembrane potential and caspase-3/7 activity were analyzed via flow cytometric analyses. A caspase-3 activity assay kit was used to detect the expression of caspase-3 activity. Western blot analysis was performed to examine the expression levels of proteins associated with the MAPKs, AMPKα, GSK3-α/β and caspase-related signaling pathways. The results revealed that quercetin induced morphological alterations and decreased the viability of SAS cells. Quercetin also increased apoptosis-related Annexin V-FITC fluorescence and caspase-3 activity, and induced mitochondria-dependent apoptotic signals, including a decrease in mitochondrial transmembrane potential and Bcl-2 protein expression, and an increase in cytosolic cytochrome c, Bax, Bak, cleaved caspase-3, cleaved caspase-7 and cleaved poly (ADP-ribose) polymerase protein expression. Furthermore, quercetin significantly increased the protein expression levels of phosphorylated (p)-ERK, p-JNK1/2 and p-GSK3-α/β, but not p-p38 or p-AMPKα in SAS cells. Pretreatment with the pharmacological JNK inhibitor SP600125 effectively reduced the quercetin-induced apoptosis-related signals, as well as p-ERK1/2 and p-GSK3-α/β protein expression. Both ERK1/2 and GSK3-α/β inhibitors, PD98059 and LiCl, respectively, could significantly prevent the quercetin-induced phosphorylation of ERK1/2 and GSK3-α/β, but not JNK activation. Taken together, these results suggested that quercetin may induce tongue SCC cell apoptosis via the JNK-activation-regulated ERK1/2 and GSK3-α/β-mediated mitochondria-dependent apoptotic signaling pathway.
Collapse
Affiliation(s)
- Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
- Department of Nursing, College of Medical and Health Science, Asia University, Taichung 413, Taiwan, R.O.C
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan, R.O.C
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan, R.O.C
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan, R.O.C
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan, R.O.C
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan, R.O.C
| | - Wu-Chia Lo
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan, R.O.C
| | - Jui-Ming Liu
- Department of Urology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan, R.O.C
| | - Chin-Ching Wu
- Department of Public Health, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| |
Collapse
|
69
|
Ghanbari-Movahed M, Mondal A, Farzaei MH, Bishayee A. Quercetin- and rutin-based nano-formulations for cancer treatment: A systematic review of improved efficacy and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 97:153909. [PMID: 35092896 DOI: 10.1016/j.phymed.2021.153909] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Natural products, with incredible chemical diversity, have been widely studied for their antitumor potential. Quercetin (QU) and quercetin glycoside (rutin), both polyphenolic flavonoids, stick out amongst the natural products, through various studies. Rutin (RU) and its aglycone (QU) have various biological properties that include antioxidant, anti-inflammatory, and anticarcinogenic activities. However, several side effects have restricted the efficacy of these polyphenolic flavonoids, which makes it necessary to use new strategies involving low and pharmacological doses of QU and RU, either alone or in combination with other anticancer drugs. PURPOSE The aim of this study is to present a comprehensive and critical evaluation of the anticancer ability of different nano-formulations of RU and QU for improved treatment of various malignancies. METHODS Studies were recognized via systematic searches of ScienceDirect, PubMed, and Scopus databases. Eligibility checks were conducted based upon predefined selection criteria. Ninety articles were included in this study. RESULTS There was conclusive evidence for the association between anticancer activity and treatment with RU or QU. Furthermore, studies indicated that nano-formulations of RU and QU have greater anticancer activities in comparison to either agent alone, which leads to increased efficiency for treating cancer. CONCLUSION The results of this systematic review demonstrate the anticancer activities of nano-formulations of RU and QU and their molecular mechanisms through preclinical studies. This paper also attempts to contribute to further research by addressing the current limitations/challenges and proposing additional studies to realize the full potential of RU- and QU-based formulations for cancer treatment.
Collapse
Affiliation(s)
- Maryam Ghanbari-Movahed
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran; Department of Biology, Faculty of Science, University of Guilan, Rasht 4193833697, Iran
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, Bengal College of Pharmaceutical Technology, Dubrajpur 731 123, India
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, United States.
| |
Collapse
|
70
|
Wan H, Wang Y, Pan Q, Chen X, Chen S, Li X, Yao W. Quercetin attenuates the proliferation, inflammation, and oxidative stress of high glucose-induced human mesangial cells by regulating the miR-485-5p/YAP1 pathway. Int J Immunopathol Pharmacol 2022; 36:20587384211066440. [PMID: 35129398 PMCID: PMC8832592 DOI: 10.1177/20587384211066440] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Diabetic nephropathy (DN) is a kidney damage caused by diabetes and the main cause of end-stage renal disease. However, the current treatment of DN has many limitations. Quercetin is a bioflavonoid compound with therapeutic benefits in metabolic diseases. This study aims to determine the therapeutic potentials and underlying mechanism of quercetin on DN. Methods We collected blood samples from DN patients and healthy controls and treated human mesangial cells (HMCs) with high glucose (HG) to establish an in vitro model of DN. Then we assessed the expression difference of miR-485-5p as well as YAP1 in serum of DN patients and healthy controls and between HG-induced HMCs and control cells. qRT-PCR and western blot were performed to assess miR-485-5p and YAP1 expression levels; CCK-8 and ELISAs were used to examine cell proliferation, inflammation, and oxidative stress. Dual luciferase reporter assay was implemented to detect the binding of miR-485-5p and YAP1 mRNA sequence. Results Quercetin suppressed proliferation, inflammation, and oxidative stress of HMCs induced by HG. As for mechanism, miR-485-5p directly bound to YAP1 and inhibited YAP1 expression. The downregulation of miR-485-5p and upregulation of YAP1 were also observed in the serum of DN patients. Quercetin modulated miR-485-5p/YAP1 axis to regulate HG-induced inflammation and oxidative stress. Conclusion: Quercetin inhibits the proliferation, inflammation, and oxidative stress of HMCs induced by HG through miR-485-5p/YAP1 axis, which might provide a novel treatment strategy for DN.
Collapse
Affiliation(s)
- Huan Wan
- Department of Radiotherapy Center, the Fifth Hospital of Wuhan, Wuhan, Hubei
| | - Yaping Wang
- Department of Endocrinology, the Fifth Hospital of Wuhan, Wuhan, Hubei
| | - Qingyun Pan
- Department of Endocrinology, the Fifth Hospital of Wuhan, Wuhan, Hubei
| | - Xia Chen
- Department ofTraditional Chinese Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai
| | - Sijun Chen
- Department of Nephrology, Yangpu Hospital, Tongji University School of Medicine, Shanghai
| | - Xiaohui Li
- Department of Paediatrics, the Fifth Hospital of Wuhan, Wuhan, Hubei
| | - Weiguo Yao
- Department of Nephrology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai
| |
Collapse
|
71
|
A Preliminary Study of the Effect of Quercetin on Cytotoxicity, Apoptosis, and Stress Responses in Glioblastoma Cell Lines. Int J Mol Sci 2022; 23:ijms23031345. [PMID: 35163269 PMCID: PMC8836052 DOI: 10.3390/ijms23031345] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
A growing body of evidence indicates that dietary polyphenols show protective effects against various cancers. However, little is known yet about their activity in brain tumors. Here we investigated the interaction of dietary flavonoid quercetin (QCT) with the human glioblastoma A172 and LBC3 cell lines. We demonstrated that QCT evoked cytotoxic effect in both tested cell lines. Microscopic observations, Annexin V-FITC/PI staining, and elevated expression and activity of caspase 3/7 showed that QCT caused predominantly apoptotic death of A172 cells. Further analyses confirmed enhanced ROS generation, deregulated expression of SOD1 and SOD2, depletion of ATP levels, and an overexpression of CHOP, suggesting the activation of oxidative stress and ER stress upon QCT exposure. Finally, elevated expression and activity of caspase 9, indicative of a mitochondrial pathway of apoptosis, was detected. Conversely, in LBC3 cells the pro-apoptotic effect was observed only after 24 h incubation with QCT, and a shift towards necrotic cell death was observed after 48 h of treatment. Altogether, our data indicate that exposure to QCT evoked cell death via activation of intrinsic pathway of apoptosis in A172 cells. These findings suggest that QCT is worth further investigation as a potential pharmacological agent in therapy of brain tumors.
Collapse
|
72
|
Ullah MF, Ahmad A, Bhat SH, Abuduhier FM, Mustafa SK, Usmani S. Diet-derived small molecules (nutraceuticals) inhibit cellular proliferation by interfering with key oncogenic pathways: an overview of experimental evidence in cancer chemoprevention. Biol Futur 2022; 73:55-69. [PMID: 35040098 DOI: 10.1007/s42977-022-00110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Discouraging statistics of cancer disease has projected an increase in the global cancer burden from 19.3 to 28.4 million incidences annually within the next two decades. Currently, there has been a revival of interest in nutraceuticals with evidence of pharmacological properties against human diseases including cancer. Diet is an integral part of lifestyle, and it has been proposed that an estimated one-third of human cancers can be prevented through appropriate lifestyle modification including dietary habits; hence, it is considered significant to explore the pharmacological benefits of these agents, which are easily accessible and have higher safety index. Accordingly, an impressive embodiment of evidence supports the concept that the dietary factors are critical modulators to prevent, retard, block, or reverse carcinogenesis. Such an action reflects the ability of these molecules to interfere with multitude of pathways to subdue and neutralize several oncogenic factors and thereby keep a restraint on neoplastic transformations. This review provides a series of experimental evidence based on the current literature to highlight the translational potential of nutraceuticals for the prevention of the disease through consumption of enriched diets and its efficacious management by means of novel interventions. Specifically, this review provides the current understanding of the chemopreventive pharmacology of nutraceuticals such as cucurbitacins, morin, fisetin, curcumin, luteolin and garcinol toward their potential as anticancer agents.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia.
| | - Aamir Ahmad
- University of Alabama at Birmingham, Birmingham, AL, USA
- Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Showket H Bhat
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology and Molecular Diagnostics, Center for Vocational Studies, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Faisel M Abuduhier
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
73
|
Sekar P, Ravitchandirane R, Khanam S, Muniraj N, Cassinadane AV. Novel molecules as the emerging trends in cancer treatment: an update. Med Oncol 2022; 39:20. [PMID: 34982273 DOI: 10.1007/s12032-021-01615-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022]
Abstract
As per World Health Organization cancer remains as a leading killer disease causing nearly 10 million deaths in 2020. Since the burden of cancer increases worldwide, warranting an urgent search for anti-cancer compounds from natural sources. Secondary metabolites from plants, marine organisms exhibit a novel chemical and structural diversity holding a great promise as therapeutics in cancer treatment. These natural metabolites target only the cancer cells and the normal healthy cells are left unharmed. In the emerging trends of cancer treatment, the natural bioactive compounds have long become a part of cancer chemotherapy. In this review, we have tried to compile about eight bioactive compounds from plant origin viz. combretastatin, ginsenoside, lycopene, quercetin, resveratrol, silymarin, sulforaphane and withaferin A, four marine-derived compounds viz. bryostatins, dolastatins, eribulin, plitidepsin and three microorganisms viz. Clostridium, Mycobacterium bovis and Streptococcus pyogenes with their well-established anticancer potential, mechanism of action and clinical establishments are presented.
Collapse
Affiliation(s)
- Priyanka Sekar
- Sri Venkateshwaraa Medical College Hospital and Research Centre, Pondicherry, 605102, India
| | | | - Sofia Khanam
- Calcutta Institute of Pharmaceutical Technology and Allied Health Sciences, Howrah, WB, 711316, India
| | - Nethaji Muniraj
- Centre for Cancer Immunology Research, Children's National Hospital, Children's National Research Institute, 111 Michigan Ave NW, Washington, D.C, 20010, USA.
| | | |
Collapse
|
74
|
Tezerji S, Nazari Robati F, Abdolazimi H, Fallah A, Talaei B. Quercetin's effects on colon cancer cells apoptosis and proliferation in a rat model of disease. Clin Nutr ESPEN 2022; 48:441-445. [DOI: 10.1016/j.clnesp.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
|
75
|
Alizadeh SR, Ebrahimzadeh MA. O-Glycoside quercetin derivatives: Biological activities, mechanisms of action, and structure-activity relationship for drug design, a review. Phytother Res 2021; 36:778-807. [PMID: 34964515 DOI: 10.1002/ptr.7352] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Quercetin as a valuable natural flavonoid has shown extensive biological activities, including anticancer, antioxidant, antibacterial, antiinflammatory, anti-Alzheimer, antifungal, antiviral, antithalassemia, iron chelation, antiobesity, antidiabetic, antihypertension, and antiphospholipase A2 (PLA2) activities, by the modulation of various targets and signaling pathways that have attracted much attention. However, the low solubility and poor bioavailability of quercetin have limited its applications; therefore, the researchers have tried to design and synthesize many new derivatives of quercetin through different strategies to modify quercetin restrictions and improve its biological activities. This review categorized the O-glycoside derivatives of Quercetin into two main classes, 3-O-glycoside and other O-glycoside derivatives. Also, it studied biological activities, structure-activity relationship (SAR), and the action mechanism of O-glycoside quercetin derivatives. Overall, we summarized past and present research for discovering new potent lead compounds.
Collapse
Affiliation(s)
- Seyedeh Roya Alizadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
76
|
Rezaei-Tazangi F, Roghani-Shahraki H, Khorsand Ghaffari M, Abolhasani Zadeh F, Boostan A, ArefNezhad R, Motedayyen H. The Therapeutic Potential of Common Herbal and Nano-Based Herbal Formulations against Ovarian Cancer: New Insight into the Current Evidence. Pharmaceuticals (Basel) 2021; 14:1315. [PMID: 34959716 PMCID: PMC8705681 DOI: 10.3390/ph14121315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer (OCa) is characterized as one of the common reasons for cancer-associated death in women globally. This gynecological disorder is chiefly named the "silent killer" due to lacking an association between disease manifestations in the early stages and OCa. Because of the disease recurrence and resistance to common therapies, discovering an effective therapeutic way against the disease is a challenge. According to documents, some popular herbal formulations, such as curcumin, quercetin, and resveratrol, can serve as an anti-cancer agent through different mechanisms. However, these herbal products may be accompanied by some pharmacological limitations, such as poor bioavailability, instability, and weak water solubility. On the contrary, using nano-based material, e.g., nanoparticles (NPs), micelles, liposomes, can significantly solve these limitations. Therefore, in the present study, we will summarize the anti-cancer aspects of these herbal and-nano-based herbal formulations with a focus on their mechanisms against OCa.
Collapse
Affiliation(s)
- Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa 7345149573, Iran;
| | | | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran;
| | - Firoozeh Abolhasani Zadeh
- Department of Surgery, Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Aynaz Boostan
- Department of Obstetrics & Gynecology, Saveh Chamran Hospital, Saveh 3919676651, Iran;
| | - Reza ArefNezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan 8715973474, Iran
| |
Collapse
|
77
|
Dyshlyuk LS, Dmitrieva AI, Drozdova MY, Milentyeva IS, Prosekov AY. Relevance of bioassay of biologically active substances (BAS) with geroprotective properties in the model of the nematode Caenorhabditis elegans in experiments in vivo. Curr Aging Sci 2021; 15:121-134. [PMID: 34856917 DOI: 10.2174/1874609814666211202144911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/25/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022]
Abstract
Aging is a process global in nature. The age of living organisms contributes to the appearance of chronic diseases, which not only reduce the quality of life, but also significantly damage it. Modern medicines can successfully fight multiple diseases and prolong life. At the same time, medications have a large number of side effects. New research indicates that bioactive phytochemicals have great potential for treating even the most severe diseases and can become an alternative to medicines. Despite many studies in this area, the effects of many plant ingredients on living organisms are poorly understood. Analysis of the mechanisms through which herbal preparations influence the aging process helps to select the right active substances, determine the optimal doses to obtain the maximum positive effect. It is preferable to check the effectiveness of plant extracts and biologically active components with geroprotective properties in vivo. For these purposes, live model systems such as Rattus rattus, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans are used. These models help to comprehensively study the impact of the developed new drugs on the aging process. The model organism C. elegans is gaining increasing popularity in these studies because of its many advantages. This review article discusses the advantages of the nematode C. elegans as a model organism for studying the processes associated with aging. The influence of various BAS and plant extracts on the increase in the life span of the nematode, on the increase in its stress resistance and on other markers of aging is also considered. The review showed that the nematode C. elegans has a number of advantages over other organisms and is a promising model system for studying the geroprotective properties of BAS.
Collapse
Affiliation(s)
- Lyubov S Dyshlyuk
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Anastasiya I Dmitrieva
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Margarita Yu Drozdova
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Irina S Milentyeva
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Alexander Yu Prosekov
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| |
Collapse
|
78
|
Quercetin as a supplement improving endurance exercise capacity – review. Sci Sports 2021. [DOI: 10.1016/j.scispo.2021.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
79
|
Mooney EC, Holden SE, Xia XJ, Li Y, Jiang M, Banson CN, Zhu B, Sahingur SE. Quercetin Preserves Oral Cavity Health by Mitigating Inflammation and Microbial Dysbiosis. Front Immunol 2021; 12:774273. [PMID: 34899728 PMCID: PMC8663773 DOI: 10.3389/fimmu.2021.774273] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
Failure to attenuate inflammation coupled with consequent microbiota changes drives the development of bone-destructive periodontitis. Quercetin, a plant-derived polyphenolic flavonoid, has been linked with health benefits in both humans and animals. Using a systematic approach, we investigated the effect of orally delivered Quercetin on host inflammatory response, oral microbial composition and periodontal disease phenotype. In vivo, quercetin supplementation diminished gingival cytokine expression, inflammatory cell infiltrate and alveolar bone loss. Microbiome analyses revealed a healthier oral microbial composition in Quercetin-treated versus vehicle-treated group characterized by reduction in the number of pathogenic species including Enterococcus, Neisseria and Pseudomonas and increase in the number of non-pathogenic Streptococcus sp. and bacterial diversity. In vitro, Quercetin diminished inflammatory cytokine production through modulating NF-κB:A20 axis in human macrophages following challenge with oral bacteria and TLR agonists. Collectively, our findings reveal that Quercetin supplement instigates a balanced periodontal tissue homeostasis through limiting inflammation and fostering an oral cavity microenvironment conducive of symbiotic microbiota associated with health. This proof of concept study provides key evidence for translational studies to improve overall health.
Collapse
Affiliation(s)
- Erin C. Mooney
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Sara E. Holden
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Xia-Juan Xia
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yajie Li
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Min Jiang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Camille N. Banson
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bin Zhu
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Sinem Esra Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
80
|
Luo H, Liang Y, Zhang H, Liu Y, Xiao Q, Huang S. Comparison on binding interactions of quercetin and its metal complexes with calf thymus DNA by spectroscopic techniques and viscosity measurement. J Mol Recognit 2021; 34:e2933. [PMID: 34432328 DOI: 10.1002/jmr.2933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/08/2022]
Abstract
Quercetin (Qu) and its metal complexes have received great attention during the last years, due to their good antioxidant, antibacterial, and anticancer activities. In this contribution, binding interactions of Qu and Qu-metal complexes with calf thymus DNA (ctDNA) were investigated and compared systematically by using spectroscopic techniques and viscosity measurement. UV-vis absorption spectra of ctDNA-compound systems showed obvious hypochromic effect. Relative viscosity and melting temperature of ctDNA increased after the addition of Qu and Qu-metal complexes, and the change tendency is Qu-Cr(III) > Qu-Mn(II) > Qu-Zn(II) > Qu-Cu(II) > Qu. Fluorescence competition experiments show that hydrogen bonds and van der Waals interaction play an important role in the intercalative binding of Qu and Qu-metal complexes with ctDNA. Qu and Qu-metal complexes could unwind the right-handed B-form helicity of ctDNA and further affect its base pair stacking. Space steric hindrance might be responsible for the differences in the intercalative binding between ctDNA and different Qu-metal complexes. These results provide new information for the molecular understanding of binding interactions of Qu-metal complexes with DNA and the strategy for research of structural influences.
Collapse
Affiliation(s)
- Huajian Luo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Yu Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Huiying Zhang
- College of Chemistry and Biological Engineering, Hechi University, Hechi, China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China.,State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| |
Collapse
|
81
|
Tobeiha M, Rajabi A, Raisi A, Mohajeri M, Yazdi SM, Davoodvandi A, Aslanbeigi F, Vaziri M, Hamblin MR, Mirzaei H. Potential of natural products in osteosarcoma treatment: Focus on molecular mechanisms. Biomed Pharmacother 2021; 144:112257. [PMID: 34688081 DOI: 10.1016/j.biopha.2021.112257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is the most frequent type of bone cancer found in children and adolescents, and commonly arises in the metaphyseal region of tubular long bones. Standard therapeutic approaches, such as surgery, chemotherapy, and radiation therapy, are used in the management of osteosarcoma. In recent years, the mortality rate of osteosarcoma has decreased due to advances in treatment methods. Today, the scientific community is investigating the use of different naturally derived active principles against various types of cancer. Natural bioactive compounds can function against cancer cells in two ways. Firstly they can act as classical cytotoxic compounds by non-specifically affecting macromolecules, such as DNA, enzymes, and microtubules, which are also expressed in normal proliferating cells, but to a greater extent by cancer cells. Secondly, they can act against oncogenic signal transduction pathways, many of which are activated in cancer cells. Some bioactive plant-derived agents are gaining increasing attention because of their anti-cancer properties. Moreover, some naturally-derived compounds can significantly promote the effectiveness of standard chemotherapy drugs, and in certain cases are able to ameliorate drug-induced adverse effects caused by chemotherapy. In the present review we summarize the effects of various naturally-occurring bioactive compounds against osteosarcoma.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahshad Mohajeri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Aslanbeigi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - MohamadSadegh Vaziri
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
82
|
Misra SK, Pathak K. Naturally occurring heterocyclic anticancer compounds. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Naturally occurring heterocyclic scaffolds are key ingredients for the development of various therapeutics employed for biomedical applications. Heterocyclic pharmacophores are widely disseminated and have been befallen in almost all categories of drugs for the alleviation of myriad ailments including diabetes, neurodegenerative, psychiatric, microbial infections, disastrous cancers etc. Countless fused heterocyclic anticancerous templates are reported to display antimetabolite, antioxidant, antiproliferative, cytostatic etc. pharmacological actions via targeting different signaling pathways (cell cycle, PI-3kinase/Akt, p53, caspase extrinsic pathway etc.), overexpressive receptors (EGRF, HER2, EGF, VEGF etc.) and physiological enzymes (topoisomerase I and II, cyclin dependent kinase etc.). A compiled description on various natural sources (plants, microbes, marine) containing anticancer agents comprising heterocyclic ring specified with presence of nitrogen (vincristine, vinblastine, indole-3-carbinol, meridianins, piperine, lamellarins etc.), oxygen (paclitaxel, halichondrin B, quercetin, myricetin, kaempferol etc.) and sulphur atoms (brugine, fucoidan, carrageenan etc.) are displayed here along with their molecular level cytotoxic action and therapeutic applications.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- University Institute of Pharmacy, Chhatrapati Shahu Ji Maharaj University , Kanpur , 208026 , India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences , Saifai , Etawah , 206130 , Uttar Pradesh , India
| |
Collapse
|
83
|
Mohammed HA, Sulaiman GM, Anwar SS, Tawfeeq AT, Khan RA, Mohammed SAA, Al-Omar MS, Alsharidah M, Rugaie OA, Al-Amiery AA. Quercetin against MCF7 and CAL51 breast cancer cell lines: apoptosis, gene expression and cytotoxicity of nano-quercetin. Nanomedicine (Lond) 2021; 16:1937-1961. [PMID: 34431317 DOI: 10.2217/nnm-2021-0070] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aims: To evaluate the anti breast-cancer activity, biocompatibility and toxicity of poly(d,l)-lactic-co-glycolic acid (PLGA)-encapsulated quercetin nanoparticles (Q-PLGA-NPs). Materials & methods: Quercetin was nano-encapsulated by an emulsion-diffusion process, and the nanoparticles were fully characterized through Fourier transform infrared spectroscopy, x-ray diffractions, FESEM and zeta-sizer analysis. Activity against CAL51 and MCF7 cell lines were assessed by DNA fragmentation assays, fluorescence microscopy, and acridine-orange, and propidium-iodide double-stainings. Biocompatibility towards red blood cells and toxicity towards mice were also explored. Results: The Q-PLGA-NPs exhibited apoptotic activity against the cell lines. The murine in vivo studies showed no significant alterations in the liver and kidney's functional biomarkers, and no apparent abnormalities, or tissue damages were observed in the histological images of the liver, spleen, lungs, heart and kidneys. Conclusion: The study established the preliminary in vitro efficacy and in vivo safety of Q-PLGA-NPs as a potential anti-breast cancer formulation.
Collapse
Affiliation(s)
- Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371, Egypt
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad,10066, Iraq
| | - Sahar S Anwar
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad,10066, Iraq
| | - Amer T Tawfeeq
- Department of Molecular Biology, Iraqi Center for Cancer and Medical Genetics Research, Mustansiriyah University, PO Box 14022, Baghdad, Iraq
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Salman A A Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Mohsen S Al-Omar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia.,Medicinal Chemistry and Pharmacognosy Department, Faculty of Pharmacy, JUST, Irbid, 22110, Jordan
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Qassim, 51452, Kingdom of Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, PO Box 991, Qassim, 51911, Saudi Arabia
| | - Ahmed A Al-Amiery
- Unit of Applied Sciences Research, Department of Applied Science, University of Technology, Baghdad,10066, Iraq.,Department of Chemical and Process Engineering, University of Kebangsaan Malaysia (UKM), Bangi, Selangor, 43000, Malaysia
| |
Collapse
|
84
|
Quercetin Alleviates the Accumulation of Superoxide in Sodium Iodate-Induced Retinal Autophagy by Regulating Mitochondrial Reactive Oxygen Species Homeostasis through Enhanced Deacetyl-SOD2 via the Nrf2-PGC-1α-Sirt1 Pathway. Antioxidants (Basel) 2021; 10:antiox10071125. [PMID: 34356358 PMCID: PMC8301007 DOI: 10.3390/antiox10071125] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/18/2023] Open
Abstract
Oxidative damage of retinal pigment epithelium (RPE) cells plays an important role in the pathogenesis of blindness-related diseases, such as age-related macular degeneration (AMD). Quercetin, a bioactive flavonoid compound, has been shown to have a protective effect against oxidative stress-induced cell apoptosis and inflammation in RPE cells; however, the detailed mechanism underlying this protective effect is unclear. Therefore, the aim of this study was to investigate the regulatory mechanism of quercetin in a sodium iodate (NaIO3)-induced retinal damage. The clinical features of the mice, the production of oxidative stress, and the activity of autophagy and mitochondrial biogenesis were examined. In the mouse model, NaIO3 treatment caused changes in the retinal structure and reduced pupil constriction, and quercetin treatment reversed the oxidative stress-related pathology by decreasing the level of superoxide dismutase 2 (SOD2) while enhancing the serum levels of catalase and glutathione. The increased level of reactive oxygen species in the NaIO3-treated ARPE19 cells was improved by treatment with quercetin, accompanied by a reduction in autophagy and mitochondrial biogenesis. Our findings indicated that the effects of quercetin on regulating the generation of mtROS were dependent on increased levels of deacetyl-SOD2 through the Nrf2-PGC-1α-Sirt1 signaling pathway. These results demonstrated that quercetin may have potential therapeutic efficacy for the treatment of AMD through the regulation of mtROS homeostasis.
Collapse
|
85
|
The effects of the esterified Quercetin with omega3 and omega6 fatty acids on viability, nanomechanical properties, and BAX/BCL-2 gene expression in MCF-7 cells. Mol Biol Rep 2021; 48:5161-5169. [PMID: 34254227 DOI: 10.1007/s11033-021-06516-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Quercetin is one of the major flavonoids and it appears to have cytotoxic effects on various cancer cells through regulating the apoptosis pathway genes such as BAX and BCL2. Combination of Quercetin (Q) with other compounds can increase its effectiveness. In the present study, the effects of the Quercetin and its esterified derivatives on viability, nanomechanical properties of cells, and BAX/BCL-2 gene expression were investigated. Using the MTT and flow cytometry assays, the cytotoxic potential, apoptosis, and necrosis were investigated. The AFM assay was performed to find the nanomechanical properties of cells as the elastic modulus value and cellular adhesion forces. The BAX/BCL2 gene expression was investigated through the Real-Time PCR. The results showed that the esterification of Quercetin with linoleic acid (Q-LA) and α-linolenic acid (Q-ALA) increased the cytotoxic potential of Q. The elastic modulus value and cellular adhesion forces were increased using the esterified derivatives and the highest ratio of BAX/BCL2 gene expression was observed in Q-LA. Esterified Quercetin derivatives have a higher cytotoxic effect than the un-esterified form in a dose-dependent manner. Esterified derivatives caused the nanomechanical changes and pores formation on the cytoplasmic membrane. One of the internal apoptosis pathway regulation mechanisms of these compounds is increasing the BAX/BCL2 gene expression ratio.
Collapse
|
86
|
Algandaby MM. Quercetin attenuates cisplatin-induced ovarian toxicity in rats: Emphasis on anti-oxidant, anti-inflammatory and anti-apoptotic activities. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
87
|
Wang B, Chen L, Xie J, Tang J, Hong C, Fang K, Jin C, Huang C, Xu T, Yang L. Coating Polyelectrolyte Multilayers Loaded with Quercetin on Titanium Surfaces by Layer-By-Layer Assembly Technique to Improve Surface Osteogenesis Under Osteoporotic Condition. J Biomed Nanotechnol 2021; 17:1392-1403. [PMID: 34446142 DOI: 10.1166/jbn.2021.3115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Titanium (Ti) and its alloy implants are widely used in the field of orthopedics, and osteoporosis is an important reason for implantation failure. This study aimed to establish a quercetin (QTN) controlled release system on the surface of titanium implants and to study its effects on osteogenesis and osseointegration on the surface of implants. Polyethylenimine (PEI) was first immobilized on a titanium substrate as the base layer, and then, hyaluronic acid/chitosan-quercetin (HA/CS-QTN) multilayer films were assembled on the PEI layer by a self-assembly technique. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and contact angle measurements were used to characterize and analyze the samples. The release characteristics of QTN were studied by release assays. The osteogenic ability of the samples was evaluated by experiments on an osteoporosis rat model and MC3T3-E1 cells. The FTIR, SEM, and contact angle measurements all showed that the PEI substrate layer and HA/CS-QTN multilayer film were successfully immobilized on the titanium matrix. The drug release test showed the successful establishment of a QTN controlled release system. The in vitro results showed that osteoblasts exhibited higher adhesion, proliferation and differentiation ability on the coated titanium matrix than on the pure titanium surface. In addition, the in vivo results showed that the HA/CS-QTN coating significantly increased the new bone mass around the implant. By depositing a PEI matrix layer and HA/CS-QTN multilayer films on titanium implants, a controlled release system of QTN was established, which improved implant surface osseointegration under osteoporotic conditions. This study proposes a new implant therapy strategy for patients with osteoporosis.
Collapse
Affiliation(s)
- Bingzhang Wang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Liang Chen
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Jun Xie
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Jiahao Tang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Chenxuan Hong
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Kanhao Fang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Chen Jin
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Chengbin Huang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Tianhao Xu
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Lei Yang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| |
Collapse
|
88
|
Transit and Metabolic Pathways of Quercetin in Tubular Cells: Involvement of Its Antioxidant Properties in the Kidney. Antioxidants (Basel) 2021; 10:antiox10060909. [PMID: 34205156 PMCID: PMC8228652 DOI: 10.3390/antiox10060909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022] Open
Abstract
Quercetin is a flavonoid with antioxidant, antiviral, antimicrobial, and anti-inflammatory properties. Therefore, it has been postulated as a molecule with great therapeutic potential. The renoprotective capacity of quercetin against various toxins that produce oxidative stress, in both in vivo and in vitro models, has been shown. However, it is not clear whether quercetin itself or any of its metabolites are responsible for the protective effects on the kidney. Although the pharmacokinetics of quercetin have been widely studied and the complexity of its transit throughout the body is well known, the metabolic processes that occur in the kidney are less known. Because of that, the objective of this review was to delve into the molecular and cellular events triggered by quercetin and/or its metabolites in the tubular cells, which could explain some of the protective properties of this flavonoid against oxidative stress produced by toxin administration. Thus, the following are analyzed: (1) the transit of quercetin to the kidney; (2) the uptake mechanisms of quercetin and its metabolites from plasma to the tubular cells; (3) the metabolic processes triggered in those cells, which affect the accumulation of metabolites in the intracellular space; and (4) the efflux mechanisms of these compounds and their subsequent elimination through urine. Finally, it is discussed whether those processes that are mediated in the tubular cells and that give rise to different metabolites are related to the antioxidant and renoprotective properties observed after the administration of quercetin.
Collapse
|
89
|
Current Perspective on the Natural Compounds and Drug Delivery Techniques in Glioblastoma Multiforme. Cancers (Basel) 2021; 13:cancers13112765. [PMID: 34199460 PMCID: PMC8199612 DOI: 10.3390/cancers13112765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is one of the belligerent neoplasia that metastasize to other brain regions and invade nearby healthy tissues. However, the treatments available are associated with some limitations, such as high variations in solid tumors and deregulation of multiple cellular pathways. The heterogeneity of the GBM tumor and its aggressive infiltration into the nearby tissues makes it difficult to treat. Hence, the development of multimodality therapy that can be more effective, novel, with fewer side effects, improving the prognosis for GBM is highly desired. This review evaluated the use of natural phytoconstituents as an alternative for the development of a new therapeutic strategy. The key aspects of GBM and the potential of drug delivery techniques were also assessed, for tumor site delivery with limited side-effects. These efforts will help to provide better therapeutic options to combat GBM in future. Abstract Glioblastoma multiforme (GBM) is one of the debilitating brain tumors, being associated with extremely poor prognosis and short median patient survival. GBM is associated with complex pathogenesis with alterations in various cellular signaling events, that participate in cell proliferation and survival. The impairment in cellular redox pathways leads to tumorigenesis. The current standard pharmacological regimen available for glioblastomas, such as radiotherapy and surgical resection following treatment with chemotherapeutic drug temozolomide, remains fatal, due to drug resistance, metastasis and tumor recurrence. Thus, the demand for an effective therapeutic strategy for GBM remains elusive. Hopefully, novel products from natural compounds are suggested as possible solutions. They protect glial cells by reducing oxidative stress and neuroinflammation, inhibiting proliferation, inducing apoptosis, inhibiting pro-oncogene events and intensifying the potent anti-tumor therapies. Targeting aberrant cellular pathways in the amelioration of GBM could promote the development of new therapeutic options that improve patient quality of life and extend survival. Consequently, our review emphasizes several natural compounds in GBM treatment. We also assessed the potential of drug delivery techniques such as nanoparticles, Gliadel wafers and drug delivery using cellular carriers which could lead to a novel path for the obliteration of GBM.
Collapse
|
90
|
Özsoy S, Becer E, Kabadayı H, Vatansever HS, Yücecan S. Quercetin-Mediated Apoptosis and Cellular Senescence in Human Colon Cancer. Anticancer Agents Med Chem 2021; 20:1387-1396. [PMID: 32268873 DOI: 10.2174/1871520620666200408082026] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Quercetin is a flavonol from the flavonoid group of polyphenols, which positively affects human health due to its anti-cancer, anti-inflammatory, anti-microbial and cardioprotective effects. The effects of phenolic compounds, including quercetin, on programmed cell death and cellular senescence, have been the subject of research in recent years. OBJECTIVE In this study, we aimed to investigate the effects of quercetin on cell viability, apoptosis and cellular senescence in primary (Colo-320) and metastatic (Colo-741) colon adenocarcinoma cell lines. METHODS Cytotoxicity was analyzed via MTT assay in Colo-320 and Colo-741 cell lines. After quercetin treatment, cell ularsenescence and apoptosis were evaluated by TUNEL staining, X-Gal staining and indirect peroxidase technique for immunocytochemical analysis of related proteins such as Bax, Bcl-2, caspase-3, Hsp27, Lamin B1, p16, cyclin B1. RESULTS The effective dose for inhibition of cell growth in both cell lines was determined to be 25μg/ml quercetin for 48 hours. Increased Baximmunoreactivityfollowingquercetin treatment was significant in both Colo-320 and Colo-741 cell lines, but decreased Bcl-2 immunoreactivitywas significant only in theColo-320 primary cell line. In addition, after quercetin administration, the number of TUNEL positive cells and, immunoreactivities for p16, Lamin B1 and cyclin B1 in both Colo-320 and Colo-741 cells increased. CONCLUSION Our results suggest that quercetin may only induce apoptosis in primary colon cancer cells. Furthermore, quercetin also triggered senescence in colon cancer cells, but some cells remained alive, suggesting that colon cancer cells might have escaped from senescence.
Collapse
Affiliation(s)
- Serpil Özsoy
- Department of Nutritionand Dietetics, Faculty of Health Sciences, Near East University, Nicosia, Cyprus
| | - Eda Becer
- DESAM Institute, Near East University, Nicosia, Cyprus
| | - Hilal Kabadayı
- Department of Histologyand Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | | | - Sevinç Yücecan
- Department of Nutritionand Dietetics, Faculty of Health Sciences, Near East University, Nicosia, Cyprus
| |
Collapse
|
91
|
Al-Omar MS, Jabir M, Karsh E, Kadhim R, Sulaiman GM, Taqi ZJ, Khashan KS, Mohammed HA, Khan RA, Mohammed SAA. Gold Nanoparticles and Graphene Oxide Flakes Enhance Cancer Cells' Phagocytosis through Granzyme-Perforin-Dependent Biomechanism. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1382. [PMID: 34073808 PMCID: PMC8225074 DOI: 10.3390/nano11061382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022]
Abstract
The study aimed to investigate the roles of gold nanoparticles (GNPs) and graphene oxide flakes (GOFs) as phagocytosis enhancers against cancer cells. The nanomaterials were characterized through SEM and UV-VIS absorptions. The GNPs and GOFs increased the macrophages' phagocytosis ability in engulfing, thereby annihilating the cancer cells in both in vitro and in vivo conditions. The GNPs and GOFs augmented serine protease class apoptotic protein, granzyme, passing through the aquaporin class protein, perforin, with mediated delivery through the cell membrane site for the programmed, calibrated, and conditioned cancer cells killing. Additionally, protease inhibitor 3,4-dichloroisocoumarin (DCI) significantly reduced granzyme and perforin activities of macrophages. The results demonstrated that the GOFs and GNPs increased the activation of phagocytic cells as a promising strategy for controlling cancer cells by augmenting the cell mortality through the granzyme-perforin-dependent mechanism.
Collapse
Affiliation(s)
- Mohsen S. Al-Omar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (M.S.A.-O.); (H.A.M.)
- Medicinal Chemistry and Pharmacognosy Department, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Majid Jabir
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq; (E.K.); (R.K.); (Z.J.T.); (K.S.K.)
| | - Esraa Karsh
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq; (E.K.); (R.K.); (Z.J.T.); (K.S.K.)
| | - Rua Kadhim
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq; (E.K.); (R.K.); (Z.J.T.); (K.S.K.)
| | - Ghassan M. Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq; (E.K.); (R.K.); (Z.J.T.); (K.S.K.)
| | - Zainab J. Taqi
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq; (E.K.); (R.K.); (Z.J.T.); (K.S.K.)
| | - Khawla S. Khashan
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq; (E.K.); (R.K.); (Z.J.T.); (K.S.K.)
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (M.S.A.-O.); (H.A.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (M.S.A.-O.); (H.A.M.)
| | - Salman A. A. Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
92
|
Wu Q, Hu Y. Systematic Evaluation of the Mechanisms of Mulberry Leaf (Morus alba Linne) Acting on Diabetes Based on Network Pharmacology and Molecular Docking. Comb Chem High Throughput Screen 2021; 24:668-682. [PMID: 32928080 DOI: 10.2174/1386207323666200914103719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes mellitus is one of the most common endocrine metabolic disorder- related diseases. The application of herbal medicine to control glucose levels and improve insulin action might be a useful approach in the treatment of diabetes. Mulberry leaves (ML) have been reported to exert important activities of anti-diabetic. OBJECTIVE In this work, we aimed to explore the multi-targets and multi-pathways regulatory molecular mechanism of Mulberry leaves (ML, Morus alba Linne) acting on diabetes. METHODS Identification of active compounds of Mulberry leaves using Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was carried out. Bioactive components were screened by FAF-Drugs4 website (Free ADME-Tox Filtering Tool). The targets of bioactive components were predicted from SwissTargetPrediction website, and the diabetes related targets were screened from GeneCards database. The common targets of ML and diabetes were used for Gene Ontology (GO) and pathway enrichment analysis. The visualization networks were constructed by Cytoscape 3.7.1 software. The biological networks were constructed to analyze the mechanisms as follows: (1) compound-target network; (2) common target-compound network; (3) common targets protein interaction network; (4) compound-diabetes protein-protein interactions (ppi) network; (5) target-pathway network; and (6) compound-target-pathway network. At last, the prediction results of network pharmacology were verified by molecular docking method. RESULTS 17 active components were obtained by TCMSP database and FAF-Drugs4 website. 51 potential targets (11 common targets and 40 associated indirect targets) were obtained and used to build the PPI network by the String database. Furthermore, the potential targets were used for GO and pathway enrichment analysis. Eight key active compounds (quercetin, Iristectorigenin A, 4- Prenylresveratrol, Moracin H, Moracin C, Isoramanone, Moracin E and Moracin D) and 8 key targets (AKT1, IGF1R, EIF2AK3, PPARG, AGTR1, PPARA, PTPN1 and PIK3R1) were obtained to play major roles in Mulberry leaf acting on diabetes. And the signal pathways involved in the mechanisms mainly include AMPK signaling pathway, PI3K-Akt signaling pathway, mTOR signaling pathway, insulin signaling pathway and insulin resistance. The molecular docking results show that the 8 key active compounds have good affinity with the key target of AKT1, and the 5 key targets (IGF1R, EIF2AK3, PPARG, PPARA and PTPN1) have better affinity than AKT1 with the key compound of quercetin. CONCLUSION Based on network pharmacology and molecular docking, this study provided an important systematic and visualized basis for further understanding of the synergy mechanism of ML acting on diabetes.
Collapse
Affiliation(s)
- Qiguo Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yeqing Hu
- Department of Pharmacy, Anqing Medical College, Anqing 246052, China
| |
Collapse
|
93
|
Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: A novel strategy for cancer prevention and therapy. Pharmacol Ther 2021; 227:107876. [PMID: 33930452 DOI: 10.1016/j.pharmthera.2021.107876] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Emerging scientific evidence indicates that inflammation is a critical component of tumor promotion and progression. Most cancers originate from sites of chronic irritation, infections and inflammation, underscoring that the tumor microenvironment is largely orchestrated by inflammatory cells and pro-inflammatory molecules. These inflammatory components are intimately involved in neoplastic processes which foster proliferation, survival, invasion, and migration, making inflammation the primary target for cancer prevention and treatment. The influence of inflammation and the immune system on the progression and development of cancer has recently gained immense interest. The Wnt/β-catenin signaling pathway, an evolutionarily conserved signaling strategy, has a critical role in regulating tissue development. It has been implicated as a major player in cancer development and progression with its regulatory role on inflammatory cascades. Many naturally-occurring and small synthetic molecules endowed with inherent anti-inflammatory properties inhibit this aberrant signaling pathway, making them a promising class of compounds in the fight against inflammatory cancers. This article analyzes available scientific evidence and suggests a crosslink between Wnt/β-catenin signaling and inflammatory pathways in inflammatory cancers, especially breast, gastrointestinal, endometrial, and ovarian cancer. We also highlight emerging experimental findings that numerous anti-inflammatory synthetic and natural compounds target the crosslink between Wnt/β-catenin pathway and inflammatory cascades to achieve cancer prevention and intervention. Current challenges, limitations, and future directions of research are also discussed.
Collapse
|
94
|
Akter R, Afrose A, Rahman MR, Chowdhury R, Nirzhor SSR, Khan RI, Kabir MT. A Comprehensive Analysis into the Therapeutic Application of Natural Products as SIRT6 Modulators in Alzheimer's Disease, Aging, Cancer, Inflammation, and Diabetes. Int J Mol Sci 2021; 22:4180. [PMID: 33920726 PMCID: PMC8073883 DOI: 10.3390/ijms22084180] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Natural products have long been used as drugs to treat a wide array of human diseases. The lead compounds discovered from natural sources are used as novel templates for developing more potent and safer drugs. Natural products produce biological activity by binding with biological macromolecules, since natural products complement the protein-binding sites and natural product-protein interactions are already optimized in nature. Sirtuin 6 (SIRT6) is an NAD+ dependent histone deacetylase enzyme and a unique Sirtuin family member. It plays a crucial role in different molecular pathways linked to DNA repair, tumorigenesis, glycolysis, gluconeogenesis, neurodegeneration, cardiac hypertrophic responses, etc. Thus, it has emerged as an exciting target of several diseases such as cancer, neurodegenerative diseases, aging, diabetes, metabolic disorder, and heart disease. Recent studies have shown that natural compounds can act as modulators of SIRT6. In the current review, a list of natural products, their sources, and their mechanisms of SIRT6 activity modulation has been compiled. The potential application of these naturally occurring SIRT6 modulators in the amelioration of major human diseases such as Alzheimer's disease, aging, diabetes, inflammation, and cancer has also been delineated. Natural products such as isoquercetin, luteolin, and cyanidin act as SIRT6 activators, whereas vitexin, catechin, scutellarin, fucoidan, etc. work as SIRT6 inhibitors. It is noteworthy to mention that quercetin acts as both SIRT6 activator and inhibitor depending on its concentration used. Although none of them were found as highly selective and potent modulators of SIRT6, they could serve as the starting point for developing selective and highly potent scaffolds for SIRT6.
Collapse
Affiliation(s)
- Raushanara Akter
- Department of Pharmacy, Brac University, Dhaka 1212, Bangladesh; (A.A.); (R.C.); (M.T.K.)
| | - Afrina Afrose
- Department of Pharmacy, Brac University, Dhaka 1212, Bangladesh; (A.A.); (R.C.); (M.T.K.)
| | - Md. Rashidur Rahman
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Rakhi Chowdhury
- Department of Pharmacy, Brac University, Dhaka 1212, Bangladesh; (A.A.); (R.C.); (M.T.K.)
| | - Saif Shahriar Rahman Nirzhor
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Rubayat Islam Khan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Md. Tanvir Kabir
- Department of Pharmacy, Brac University, Dhaka 1212, Bangladesh; (A.A.); (R.C.); (M.T.K.)
| |
Collapse
|
95
|
The Effects of Quercetin on the Gene Expression of Arginine Metabolism Key Enzymes in Human Embryonic Kidney 293 Cells. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Arginine metabolism is an important factor involved in tumorigenesis, progression, and survival of tumor cells. Besides, other metabolites produced in the arginine metabolism process, such as polyamines, nitric oxide, argininosuccinate, and agmatine, play key roles in different stages of tumor development. On the other hand, herbal metabolites are widely used to treat cancer. One of these herbal flavonoids is quercetin. Methods: In this study, according to MTT assay data, two concentrations of quercetin flavonoid were selected (57.5 and 115 µM) to treat human embryonic kidney 293 (HEK293) cells. Then RNA was extracted from the cells and used as a template for cDNA synthesis. Using real-time PCR, the expression of key enzymes involved in arginine metabolism was evaluated, including arginase 2 (Arg2), ornithine carbamoyl transferase (OTC), agmatinase (AGMAT), arginase 1 (Arg1), nitric oxide synthase 1 (nNOS), arginine decarboxylase (ADC), ornithine decarboxylase 1 (ODC), ornithine carbamoyl transferase (OCT), spermidine synthase (SRM), spermine synthase (SMS), argininosuccinate synthase 1 (ASS1), and argininosuccinate lyase (ASL). The Student t-test was used to analyze the data considering a P value of < 0.05 as the significance level. Results: Our results indicated significant changes in the expression of arginine metabolism enzymes after quercetin exposure, confirming a role for quercetin plant flavonoid in regulating arginine metabolism in HEK293 cells. Conclusions: Quercetin could alter the gene expression of the key enzymes involved in arginine metabolism. This was the first study investigating the effects of quercetin on arginine metabolism in HEK293 cells.
Collapse
|
96
|
Accumulation pattern of catechins and flavonol glycosides in different varieties and cultivars of tea plant in China. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103772] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
97
|
Lee Y, Lee J, Lim C. Anticancer activity of flavonoids accompanied by redox state modulation and the potential for a chemotherapeutic strategy. Food Sci Biotechnol 2021; 30:321-340. [PMID: 33868744 PMCID: PMC8017064 DOI: 10.1007/s10068-021-00899-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Since researchers began studying the mechanism of flavonoids' anticancer activity, little attention has been focused on the modulation of redox state in cells as a potential chemotherapeutic strategy. However, recent studies have begun identifying that the anticancer effect of flavonoids occurs both in their antioxidative activity which scavenges ROS and their prooxidative activity which generates ROS. Against this backdrop, this study attempts to achieve a comprehensive analysis of the individual and separate study findings regarding flavonoids' modulation of redox state in cancer cells. It focuses on the mechanism behind the anticancer effect, and mostly on the modulation of redox potential by flavonoids such as quercetin, hesperetin, apigenin, genistein, epigallocatechin-3-gallate (EGCG), luteolin and kaempferol in both in vitro and animal models. In addition, the clinical applications of and bioavailability of flavonoids were reviewed to help build a treatment strategy based on flavonoids' prooxidative potential.
Collapse
Affiliation(s)
- Yongkyu Lee
- Foood and Nutrition, College of Science and Engineering, Dongseo University, Jurae-ro 47, Sasang-Gu, Busan, 47011 Korea
| | - Jehyung Lee
- Department of Medicine, College of Medicine, Dong-A University, Daesingongwon-ro 32, Seo-Gu, Busan, 49201 Korea
| | - Changbaek Lim
- Central Research & Development Center, Daewoo Pharmaceutical Co, LTD. 153, Dadae-ro, Saha-gu, Busan, 49393 Korea
| |
Collapse
|
98
|
Chelliah SS, Paul EAL, Kamarudin MNA, Parhar I. Challenges and Perspectives of Standard Therapy and Drug Development in High-Grade Gliomas. Molecules 2021; 26:1169. [PMID: 33671796 PMCID: PMC7927069 DOI: 10.3390/molecules26041169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Despite their low incidence rate globally, high-grade gliomas (HGG) remain a fatal primary brain tumor. The recommended therapy often is incapable of resecting the tumor entirely and exclusively targeting the tumor leads to tumor recurrence and dismal prognosis. Additionally, many HGG patients are not well suited for standard therapy and instead, subjected to a palliative approach. HGG tumors are highly infiltrative and the complex tumor microenvironment as well as high tumor heterogeneity often poses the main challenges towards the standard treatment. Therefore, a one-fit-approach may not be suitable for HGG management. Thus, a multimodal approach of standard therapy with immunotherapy, nanomedicine, repurposing of older drugs, use of phytochemicals, and precision medicine may be more advantageous than a single treatment model. This multimodal approach considers the environmental and genetic factors which could affect the patient's response to therapy, thus improving their outcome. This review discusses the current views and advances in potential HGG therapeutic approaches and, aims to bridge the existing knowledge gap that will assist in overcoming challenges in HGG.
Collapse
Affiliation(s)
- Shalini Sundramurthi Chelliah
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Ervin Ashley Lourdes Paul
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Ishwar Parhar
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| |
Collapse
|
99
|
Savant S, Srinivasan S, Kruthiventi AK. Potential Nutraceuticals for COVID-19. NUTRITION AND DIETARY SUPPLEMENTS 2021. [DOI: 10.2147/nds.s294231] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
100
|
Krstić L, González-García MJ, Diebold Y. Ocular Delivery of Polyphenols: Meeting the Unmet Needs. Molecules 2021; 26:molecules26020370. [PMID: 33445725 PMCID: PMC7828190 DOI: 10.3390/molecules26020370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Nature has become one of the main sources of exploration for researchers that search for new potential molecules to be used in therapy. Polyphenols are emerging as a class of compounds that have attracted the attention of pharmaceutical and biomedical scientists. Thanks to their structural peculiarities, polyphenolic compounds are characterized as good scavengers of free radical species. This, among other medicinal effects, permits them to interfere with different molecular pathways that are involved in the inflammatory process. Unfortunately, many compounds of this class possess low solubility in aqueous solvents and low stability. Ocular pathologies are spread worldwide. It is estimated that every individual at least once in their lifetime experiences some kind of eye disorder. Oxidative stress or inflammatory processes are the basic etiological mechanisms of many ocular pathologies. A variety of polyphenolic compounds have been proved to be efficient in suppressing some of the indicators of these pathologies in in vitro and in vivo models. Further application of polyphenolic compounds in ocular therapy lacks an adequate formulation approach. Therefore, more emphasis should be put in advanced delivery strategies that will overcome the limits of the delivery site as well as the ones related to the polyphenols in use. This review analyzes different drug delivery strategies that are employed for the formulation of polyphenolic compounds when used to treat ocular pathologies related to oxidative stress and inflammation.
Collapse
Affiliation(s)
- Luna Krstić
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
| | - María J. González-García
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yolanda Diebold
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-883423274
| |
Collapse
|