51
|
Tefas LR, Toma I, Sesarman A, Banciu M, Jurj A, Berindan-Neagoe I, Rus L, Stiufiuc R, Tomuta I. Co-delivery of gemcitabine and salinomycin in PEGylated liposomes for enhanced anticancer efficacy against colorectal cancer. J Liposome Res 2022:1-17. [PMID: 36472146 DOI: 10.1080/08982104.2022.2153139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Colorectal cancer remains one of the major causes of morbidity and mortality in both developed and emerging countries. Cancer stem cells (CSCs) are a subpopulation of cells within the tumor mass harboring stem cell characteristics, considered responsible for tumor initiation, growth, relapse, and treatment failure. Lately, it has become clear that both CSCs and non-CSCs have to be eliminated for the successful eradication of cancer. Drug delivery systems have been extensively employed to enhance drug efficacy. In this study, salinomycin (SAL), a selective anti-CSC drug, and gemcitabine (GEM), a conventional anticancer drug, were co-loaded in liposomes and tested for optimal therapeutic efficacy. We employed the Design of Experiments approach to develop and optimize a liposomal delivery system for GEM and SAL. The antiproliferative effect of the liposomes was evaluated in SW-620 human colorectal cancer cells. The GEM and SAL-loaded liposomes exhibited adequate size, polydispersity, zeta potential, and drug content. The in vitro release study showed a sustained release of GEM and SAL from the liposomes over 72 h. Moreover, no sign of liposome aggregation was seen over 1 month and in a biological medium (FBS). The in vitro cytotoxic effects of the co-loaded liposomes were superior to that of single GEM either in free or liposomal form. The combination therapy using GEM and SAL co-loaded in liposomes could be a promising strategy for tackling colorectal cancer.
Collapse
Affiliation(s)
- Lucia Ruxandra Tefas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Ioana Toma
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Alina Sesarman
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources (3B), Faculty of Biology and Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources (3B), Faculty of Biology and Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Lucia Rus
- Department of Drug Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Rares Stiufiuc
- Department of Bionanoscopy, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400337 Cluj-Napoca, Romania
| | - Ioan Tomuta
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
52
|
Zhang R, Zhang H, Shi H, Zhang D, Zhang Z, Liu H. Strategic developments in the drug delivery of natural product dihydromyricetin: applications, prospects, and challenges. Drug Deliv 2022; 29:3052-3070. [PMID: 36146939 PMCID: PMC9518266 DOI: 10.1080/10717544.2022.2125601] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Dihydromyricetin (DHM) is an important natural flavonoid that has attracted much attention because of its various functions such as protecting the cardiovascular system and liver, treating cancer and neurodegenerative diseases, and anti-inflammation effect, etc. Despite its great development potential in pharmacy, DHM has some problems in pharmaceutical applications such as low solubility, permeability, and stability. To settle these issues, extensive research has been carried out on its physicochemical properties and dosage forms to produce all kinds of DHM preparations in the past ten years. In addition, the combined use of DHM with other drugs is a promising strategy to expand the application of DHM. However, although invention patents for DHM preparations have been issued in several countries, the current transformation of DHM research results into market products is insufficient. To date, there is still a lack of deep research into the pharmacokinetics, pharmacodynamics, toxicology, and action mechanism of DHM preparations. Besides, preparations for combined therapy of DHM with other drugs are scarcely reported, which necessitates the development of dosage forms for this application. Apart from medicine, the development of DHM in the food industry is also of great potential. Due to its multiple effects and excellent safety, DHM preparations can be developed for functional drinks and foods. Through this review, we hope to draw more attention to the development potential of DHM and the above challenges and provide valuable references for the research and development of other natural products with a similar structure-activity relationship to this drug.
Collapse
Affiliation(s)
- Ruirui Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Hao Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Houyin Shi
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| |
Collapse
|
53
|
Liu Y, Hu F, Wang S, Xu M, Yu Q, Wang L. Evaluating the integrity of polymersomes by FRET for optimization of the lyophilization parameters. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
54
|
Marchianò V, Matos M, Serrano E, Álvarez JR, Marcet I, Carmen Blanco-López M, Gutiérrez G. Lyophilised nanovesicles loaded with vitamin B12. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
55
|
Boafo GF, Magar KT, Ekpo MD, Qian W, Tan S, Chen C. The Role of Cryoprotective Agents in Liposome Stabilization and Preservation. Int J Mol Sci 2022; 23:ijms232012487. [PMID: 36293340 PMCID: PMC9603853 DOI: 10.3390/ijms232012487] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022] Open
Abstract
To improve liposomes’ usage as drug delivery vehicles, cryoprotectants can be utilized to prevent constituent leakage and liposome instability. Cryoprotective agents (CPAs) or cryoprotectants can protect liposomes from the mechanical stress of ice by vitrifying at a specific temperature, which forms a glassy matrix. The majority of studies on cryoprotectants demonstrate that as the concentration of the cryoprotectant is increased, the liposomal stability improves, resulting in decreased aggregation. The effectiveness of CPAs in maintaining liposome stability in the aqueous state essentially depends on a complex interaction between protectants and bilayer composition. Furthermore, different types of CPAs have distinct effective mechanisms of action; therefore, the combination of several cryoprotectants may be beneficial and novel attributed to the synergistic actions of the CPAs. In this review, we discuss the use of liposomes as drug delivery vehicles, phospholipid–CPA interactions, their thermotropic behavior during freezing, types of CPA and their mechanism for preventing leakage of drugs from liposomes.
Collapse
Affiliation(s)
- George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Kosheli Thapa Magar
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Wang Qian
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.T.); (C.C.)
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.T.); (C.C.)
| |
Collapse
|
56
|
Orientation of nanocarriers in subarachnoid space: A tweak in strategic transport for effective CNS delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
57
|
Shen L, Lv X, Yang X, Deng S, Liu L, Zhou J, Zhu Y, Ma H. Bufotenines-loaded liposome exerts anti-inflammatory, analgesic effects and reduce gastrointestinal toxicity through altering lipid and bufotenines metabolism. Biomed Pharmacother 2022; 153:113492. [DOI: 10.1016/j.biopha.2022.113492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022] Open
|
58
|
Freeze-drying: A Flourishing Strategy to Fabricate Stable Pharmaceutical and Biological Products. Int J Pharm 2022; 628:122233. [DOI: 10.1016/j.ijpharm.2022.122233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
|
59
|
Li W, Chountoulesi M, Antoniadi L, Angelis A, Lei J, Halabalaki M, Demetzos C, Mitakou S, Skaltsounis LA, Wang C. Development and physicochemical characterization of nanoliposomes with incorporated oleocanthal, oleacein, oleuropein and hydroxytyrosol. Food Chem 2022; 384:132470. [DOI: 10.1016/j.foodchem.2022.132470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/12/2022] [Accepted: 02/12/2022] [Indexed: 12/11/2022]
|
60
|
Lipid based nanocarriers: Production techniques, concepts, and commercialization aspect. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
61
|
Exploration of Microneedle-assisted Skin Delivery of Cyanocobalamin formulated in Ultraflexible Lipid Vesicles. Eur J Pharm Biopharm 2022; 177:184-198. [PMID: 35787430 DOI: 10.1016/j.ejpb.2022.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
Abstract
Vitamin B12 (cyanocobalamin) deficiency is a widespread condition because of its different aetiologies, like malabsorption syndrome or lifestyles as strict veganism that is increasing its incidence and prevalence in developed countries. It has important haematological consequences that require pharmacological treatment. Current therapy consists of oral or parenteral supplements of cyanocobalamin; however, the oral route is discarded for malabsorption syndrome patients and the parenteral route is not well accepted generally. Topical treatments have been suggested as an alternative, but the molecular weight and hydrophilicity of cyanocobalamin limits its diffusion through the skin. Lipid vesicles can allow the transdermal absorption of molecules >500 Da. The aim of this work was to use different ultraflexible lipid vesicles (transfersomes and ethosomes) to enhance cyanocobalamin transdermal delivery. Vesicles were characterized and lyophilised for long-term stability. The ability to deliver cyanocobalamin through the skin was assessed in vitro using full-thickness porcine skin in Franz diffusion cells. As expected, the best transdermal fluxes were provided by ultraflexible vesicles, in comparison to a drug solution. Moreover, the pre-treatment of the skin with a solid microneedle array boosts the amount of drug that could potentially reach the systemic circulation.
Collapse
|
62
|
AboulFotouh K, Xu H, Moon C, Williams RO, Cui Z. Development of (Inhalable) Dry Powder Formulations of AS01 B-Containing Vaccines Using Thin-Film Freeze-Drying. Int J Pharm 2022; 622:121825. [PMID: 35577037 DOI: 10.1016/j.ijpharm.2022.121825] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023]
Abstract
AS01B is a liposomal formulation of two immunostimulants namely 3-O-desacyl-4́-monophosphoryl lipid A (MPL) and QS-21. The liposomal formulation of AS01B reduces the endotoxicity of MPL and the lytic activity of QS-21. The AS01B-adjuvanted Shingrix vaccine is marketed in a two-vial presentation, with the liquid AS01B liposomes in one vial and the antigen as a dry powder in another vial. In the present study, we tested the feasibility of applying thin-film freeze-drying (TFFD) to engineer dry powders of the AS01B liposomal adjuvant alone or vaccines containing AS01B as an adjuvant. Initially, we showed that after the AS01B liposomal adjuvant was subjected to TFFD using sucrose as a stabilizer at 4% w/v, the particle size distribution of AS01B liposomes reconstituted from the dry powder was identical to the liquid adjuvant before drying. We then showed using ovalbumin (OVA) as a model antigen adjuvanted with AS01B (AS01B/OVA) that subjecting the AS01B/OVA vaccine to TFFD and subsequent reconstitution did not negatively affect the AS01B liposome particle size, nor the immunogenicity of the vaccine. Importantly, the thin-film freeze-dried AS01B/OVA vaccine, unlike its liquid counterpart, was not sensitive to repeated freezing-and-thawing. The developed AS01B/OVA dry powder also showed the desirable aerosol properties (i.e., fine particle fraction of 66.3 ± 4.9% and mass median aerodynamic diameter of 2.4 ± 0.1 µm) for potential pulmonary administration. Finally, the feasibility of using TFFD to prepare dry powders of AS01B-adjuvanted vaccines was further confirmed using AS01B-adjuvanted Fluzone Quadrivalent and Shingrix, which contains AS01B. It is concluded that the TFFD technology can enable the formulation of AS01B-adjuvanted vaccines as freezing-insensitive, inhalable dry powders in a single-vial presentation.
Collapse
Affiliation(s)
- Khaled AboulFotouh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Haiyue Xu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
63
|
Gerhardt A, Voigt E, Archer M, Reed S, Larson E, Van Hoeven N, Kramer R, Fox C, Casper C. A flexible, thermostable nanostructured lipid carrier platform for RNA vaccine delivery. Mol Ther Methods Clin Dev 2022; 25:205-214. [PMID: 35308783 PMCID: PMC8924030 DOI: 10.1016/j.omtm.2022.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
Current RNA vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are limited by instability of both the RNA and the lipid nanoparticle delivery system, requiring storage at -20°C or -70°C and compromising universally accessible vaccine distribution. This study demonstrates the thermostability and adaptability of a nanostructured lipid carrier (NLC) delivery system for RNA vaccines that has the potential to address these concerns. Liquid NLC alone is stable at refrigerated temperatures for ≥1 year, enabling stockpiling and rapid deployment by point-of-care mixing with any vaccine RNA. Alternatively, NLC complexed with RNA may be readily lyophilized and stored at room temperature for ≥8 months or refrigerated temperature for ≥21 months while still retaining the ability to express protein in vivo. The thermostability of this NLC/RNA vaccine delivery platform could significantly improve distribution of current and future pandemic response vaccines, particularly in low-resource settings.
Collapse
Affiliation(s)
- Alana Gerhardt
- Product Development Group, Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Emily Voigt
- RNA Vaccines Group, Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Michelle Archer
- Product Development Group, Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Sierra Reed
- Product Development Group, Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Elise Larson
- Formulation Sciences Group, Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Neal Van Hoeven
- RNA Vaccines Group, Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Ryan Kramer
- Product Development Group, Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Christopher Fox
- Formulation Sciences Group, Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Corey Casper
- Product Development Group, Infectious Disease Research Institute, Seattle, WA 98102, USA
- RNA Vaccines Group, Infectious Disease Research Institute, Seattle, WA 98102, USA
- Formulation Sciences Group, Infectious Disease Research Institute, Seattle, WA 98102, USA
- Departments of Medicine and Global Health, University of Washington, Seattle, WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
64
|
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon 2022; 8:e09394. [PMID: 35600452 PMCID: PMC9118483 DOI: 10.1016/j.heliyon.2022.e09394] [Citation(s) in RCA: 439] [Impact Index Per Article: 146.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/19/2022] [Accepted: 05/06/2022] [Indexed: 12/18/2022] Open
Abstract
Liposomes are now considered the most commonly used nanocarriers for various potentially active hydrophobic and hydrophilic molecules due to their high biocompatibility, biodegradability, and low immunogenicity. Liposomes also proved to enhance drug solubility and controlled distribution, as well as their capacity for surface modifications for targeted, prolonged, and sustained release. Based on the composition, liposomes can be considered to have evolved from conventional, long-circulating, targeted, and immune-liposomes to stimuli-responsive and actively targeted liposomes. Many liposomal-based drug delivery systems are currently clinically approved to treat several diseases, such as cancer, fungal and viral infections; more liposomes have reached advanced phases in clinical trials. This review describes liposomes structure, composition, preparation methods, and clinical applications.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Dima Khater
- Department of Chemistry, Faculty of Arts and Science, Applied Science Private University, Amman, Jordan
| | - Usama Sayed
- Department of Biology, The University of Jordan, Amman, 11942, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan
| | - Abeer Al Bawab
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan.,Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
65
|
Khuntia A, Kumar R, Premjit Y, Mitra J. Release behavior of vitamin C nanoliposomes from starch–vitamin C active packaging films. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Anjali Khuntia
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Rahul Kumar
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Yashaswini Premjit
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Jayeeta Mitra
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| |
Collapse
|
66
|
Driscoll J, Yan IK, Patel T. Development of a Lyophilized Off-the-Shelf Mesenchymal Stem Cell-Derived Acellular Therapeutic. Pharmaceutics 2022; 14:pharmaceutics14040849. [PMID: 35456683 PMCID: PMC9030800 DOI: 10.3390/pharmaceutics14040849] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/12/2023] Open
Abstract
The therapeutic activities elicited by mesenchymal stem cells (MSC) are in part mediated through paracrine action by the release of extracellular vesicles (EV) and secreted proteins. Collectively, these MSC-derived factors, referred to as the secretome product (SP), are intrinsically therapeutic and represent an attractive alternative to cell-based therapies. Herein, we developed a lyopreservation protocol to extend the shelf-life of the MSC-SP without compromising the structural or functional integrity of the vesicular components. The SP isolated from normoxia- and anoxia-exposed MSC elicited protective effects in an in vitro model of oxidative injury and the bioactivity was retained in the lyophilized samples. Three separate formulations of MSC-SP were isolated by tangential flow filtration using sucrose, trehalose, and mannitol as lyoprotectant agents. The MSC-SPs were lyophilized using a manifold protocol and the structural and functional integrity were assessed. The trehalose formulation of SP exhibited the highest EV and protein recovery after manifold-based lyophilization. To facilitate development as a therapeutic, a shelf lyophilization protocol was developed which markedly enhanced the recovery of EV and proteins. In conclusion, lyophilization represents an efficient method to preserve the structural and functional integrity of the MSC-SP and can be used to develop an off-the-shelf therapeutic.
Collapse
Affiliation(s)
| | | | - Tushar Patel
- Correspondence: ; Tel.: +1-904-956-3257; Fax: +1-904-956-3359
| |
Collapse
|
67
|
Ahmadkelayeh S, Cheema SK, Hawboldt K. Evaluation of conventional solvent processes for lipid and astaxanthin extraction from shrimp processing by-products. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sara Ahmadkelayeh
- Department of Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Sukhinder Kaur Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kelly Hawboldt
- Department of Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
68
|
Matoori S, Mooney DJ. Development of a liposomal near-infrared fluorescence lactate assay for human blood. Biomaterials 2022; 283:121475. [DOI: 10.1016/j.biomaterials.2022.121475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
|
69
|
Di Matteo S, Di Meo C, Carpino G, Zoratto N, Cardinale V, Nevi L, Overi D, Costantini D, Pinto C, Montanari E, Marzioni M, Maroni L, Benedetti A, Viola M, Coviello T, Matricardi P, Gaudio E, Alvaro D. Therapeutic effects of dexamethasone-loaded hyaluronan nanogels in the experimental cholestasis. Drug Deliv Transl Res 2022; 12:1959-1973. [PMID: 35226290 PMCID: PMC9242918 DOI: 10.1007/s13346-022-01132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/27/2022]
Abstract
A major function of the intrahepatic biliary epithelium is bicarbonate excretion in bile. Recent reports indicate that budesonide, a corticosteroid with high receptor affinity and hepatic first pass clearance, increases the efficacy of ursodeoxycholic acid, a choleretic agent, in primary biliary cholangitis patients. We have previously reported that bile ducts isolated from rats treated with dexamethasone or budesonide showed an enhanced activity of the Na+/H+ exchanger isoform 1 (NHE1) and Cl-/HCO3- exchanger protein 2 (AE2) . Increasing the delivery of steroids to the liver may result in three beneficial effects: increase in the choleresis, treatment of the autoimmune or inflammatory liver injury and reduction of steroids' systemic harmful effects. In this study, the steroid dexamethasone was loaded into nanohydrogels (or nanogels, NHs), in order to investigate corticosteroid-induced increased activities of transport processes driving bicarbonate excretion in the biliary epithelium (NHE-1 isoform) and to evaluate the effects of dexamethasone-loaded NHs (NHs/dex) on liver injury induced by experimental cholestatis. Our results showed that NHs and NHs/dex do not reduce cell viability in vitro in human cholangiocyte cell lines. Primary and immortalized human cholangiocytes treated with NHs/dex show an increase in the functional marker expression of NHE1 cholangiocytes compared to control groups. A mouse model of cholangiopathy treated with NHs/dex shows a reduction in markers of hepatocellular injury compared to control groups (NHs, dex, or sham group). In conclusion, we believe that the NHs/dex formulation is a suitable candidate to be investigated in preclinical models of cholangiopathies.
Collapse
Affiliation(s)
- Sabina Di Matteo
- Department of Immunology, Bambino Gesù Childrens Hospital, IRCCS, Rome, Italy
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy.
| | - Guido Carpino
- Department of Movement, Division of Health Sciences, Human and Health Sciences, University of Rome "Foro Italico, Rome, Italy
| | - Nicole Zoratto
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Lorenzo Nevi
- Department of Biosciences, University of Milan, Milan, Italy
| | - Diletta Overi
- Department of Anatomical, Forensic, Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Costantini
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Pinto
- Department of Gastroenterology and Hepatology, Università Politecnica Delle Marche, Ancona, Italy
| | - Elita Montanari
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Marco Marzioni
- Department of Gastroenterology and Hepatology, Università Politecnica Delle Marche, Ancona, Italy
| | - Luca Maroni
- Department of Gastroenterology and Hepatology, Università Politecnica Delle Marche, Ancona, Italy
| | - Antonio Benedetti
- Department of Gastroenterology and Hepatology, Università Politecnica Delle Marche, Ancona, Italy
| | - Marco Viola
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Tommasina Coviello
- Department of Movement, Division of Health Sciences, Human and Health Sciences, University of Rome "Foro Italico, Rome, Italy
| | - Pietro Matricardi
- Department of Movement, Division of Health Sciences, Human and Health Sciences, University of Rome "Foro Italico, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Forensic, Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
70
|
Lombardo D, Kiselev MA. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics 2022; 14:pharmaceutics14030543. [PMID: 35335920 PMCID: PMC8955843 DOI: 10.3390/pharmaceutics14030543] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Liposomes are nano-sized spherical vesicles composed of an aqueous core surrounded by one (or more) phospholipid bilayer shells. Owing to their high biocompatibility, chemical composition variability, and ease of preparation, as well as their large variety of structural properties, liposomes have been employed in a large variety of nanomedicine and biomedical applications, including nanocarriers for drug delivery, in nutraceutical fields, for immunoassays, clinical diagnostics, tissue engineering, and theranostics formulations. Particularly important is the role of liposomes in drug-delivery applications, as they improve the performance of the encapsulated drugs, reducing side effects and toxicity by enhancing its in vitro- and in vivo-controlled delivery and activity. These applications stimulated a great effort for the scale-up of the formation processes in view of suitable industrial development. Despite the improvements of conventional approaches and the development of novel routes of liposome preparation, their intrinsic sensitivity to mechanical and chemical actions is responsible for some critical issues connected with a limited colloidal stability and reduced entrapment efficiency of cargo molecules. This article analyzes the main features of the formation and fabrication techniques of liposome nanocarriers, with a special focus on the structure, parameters, and the critical factors that influence the development of a suitable and stable formulation. Recent developments and new methods for liposome preparation are also discussed, with the objective of updating the reader and providing future directions for research and development.
Collapse
Affiliation(s)
- Domenico Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy
- Correspondence: ; Tel.: +39-090-39762222
| | - Mikhail A. Kiselev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia;
- Department of Nuclear Physics, Dubna State University, 141980 Dubna, Moscow Region, Russia
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Moscow Region, Russia
| |
Collapse
|
71
|
Malik S, Kumar V, Liu CH, Shih KC, Krueger S, Nieh MP, Bahal R. Head on Comparison of Self- and Nano-assemblies of Gamma Peptide Nucleic Acid Amphiphiles. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2109552. [PMID: 35210986 PMCID: PMC8863176 DOI: 10.1002/adfm.202109552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 05/14/2023]
Abstract
Peptide nucleic acids (PNAs) are nucleic acid analogs with superior hybridization properties and enzymatic stability than deoxyribonucleic acid (DNA). In addition to gene targeting applications, PNAs have garnered significant attention as bio-polymer due to the Watson-Crick -based molecular recognition and flexibility of synthesis. Here, we engineered PNA amphiphiles using chemically modified gamma PNA (8 mer in length) containing hydrophilic diethylene glycol units at the gamma position and covalently conjugated lauric acid (C12) as a hydrophobic moiety. Gamma PNA (γPNA) amphiphiles self-assemble into spherical vesicles. Further, we formulate nano-assemblies using the amphiphilic γPNA as a polymer via ethanol injection-based protocols. We perform comprehensive head-on comparison of the physicochemical and cellular uptake properties of PNA derived self- and nano-assemblies. Small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) analysis reveal ellipsoidal morphology of γPNA nano-assemblies that results in superior cellular delivery compate to the spherical self-assembly. Next, we compare the functional activities of γPNA self-and nano-assemblies in lymphoma cells via multiple endpoints, including gene expression, cell viability, and apoptosis-based assays. Overall, we establish that γPNA amphiphile is a functionally active bio-polymer to formulate nano-assemblies for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Chung-Hao Liu
- Polymer Program, Institute of Material Sciences, University of Connecticut, 191 Auditorium Road, Storrs, CT, 06269, USA
| | - Kuo-Chih Shih
- Polymer Program, Institute of Material Sciences, University of Connecticut, 191 Auditorium Road, Storrs, CT, 06269, USA
| | - Susan Krueger
- National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Mu-Ping Nieh
- Polymer Program, Institute of Material Sciences, University of Connecticut, 191 Auditorium Road, Storrs, CT, 06269, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
72
|
Rani NNIM, Chen XY, Al-Zubaidi ZM, Azhari H, Khaitir TMN, Ng PY, Buang F, Tan GC, Wong YP, Said MM, Butt AM, Hamid AA, Amin MCIM. Surface-engineered liposomes for dual-drug delivery targeting strategy against methicillin-resistant Staphylococcus aureus (MRSA). Asian J Pharm Sci 2022; 17:102-119. [PMID: 35261647 PMCID: PMC8888183 DOI: 10.1016/j.ajps.2021.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/26/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022] Open
Abstract
This study focused on the encapsulation of vancomycin (VAN) into liposomes coated with a red blood cell membrane with a targeting ligand, daptomycin-polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, formed by conjugation of DAPT and N-hydroxysuccinimidyl-polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphoethanolamine. This formulation is capable of providing controlled and targeted drug delivery to the bacterial cytoplasm. We performed MALDI-TOF, NMR and FTIR analyses to confirm the conjugation of the targeting ligand via the formation of amide bonds. Approximately 45% of VAN could be loaded into the aqueous cores, whereas 90% DAPT was detected using UV-vis spectrophotometry. In comparison to free drugs, the formulations controlled the release of drugs for > 72 h. Additionally, as demonstrated using CLSM and flow cytometry, the resulting formulation was capable of evading detection by macrophage cells. In comparison to free drugs, red blood cell membrane-DAPT-VAN liposomes, DAPT liposomes, and VAN liposomes reduced the MIC and significantly increased bacterial permeability, resulting in > 80% bacterial death within 4 h. Cytotoxicity tests were performed in vitro and in vivo on mammalian cells, in addition to hemolytic activity tests in human erythrocytes, wherein drugs loaded into the liposomes and RBCDVL exhibited low toxicity. Thus, the findings of this study provide insight about a dual antibiotic targeting strategy that utilizes liposomes and red blood cell membranes to deliver targeted drugs against MRSA.
Collapse
Affiliation(s)
- Nur Najihah Izzati Mat Rani
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Faculty of Pharmacy and Health Sciences, University Kuala Lumpur Royal College of Medicine Perak No.3, Perak 30450, Malaysia
| | - Xiang Yi Chen
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Zahraa M. Al-Zubaidi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Hanisah Azhari
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Tzar Mohd Nizam Khaitir
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Pei Yuen Ng
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Fhataheya Buang
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Reading School of Pharmacy, University of Reading, Reading RG66AD, United Kingdom
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mazlina Mohd Said
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Adeel Masood Butt
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | | | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
73
|
Yang E, Yu H, Choi S, Park KM, Jung HS, Chang PS. Controlled rate slow freezing with lyoprotective agent to retain the integrity of lipid nanovesicles during lyophilization. Sci Rep 2021; 11:24354. [PMID: 34934167 PMCID: PMC8692592 DOI: 10.1038/s41598-021-03841-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/08/2021] [Indexed: 12/02/2022] Open
Abstract
We designed a novel lyophilization method using controlled rate slow freezing (CSF) with lyoprotective agent (LPA) to achieve intact lipid nanovesicles after lyophilization. During the freezing step, LPA prevented water supercooling, and the freezing rate was controlled by CSF. Regulating the freezing rate by various liquid media was a crucial determinant of membrane disruption, and isopropanol (freezing rate of 0.933 °C/min) was the optimal medium for the CSF system. Lyophilized lipid nanovesicle using both CSF and LPA retained 92.9% of the core material and had uniform size distributions (Z-average diameter = 133.4 nm, polydispersity index = 0.144), similar to intact vesicles (120.7 nm and 0.159, respectively), after rehydration. Only lyophilized lipid nanovesicle using both CSF and LPA showed no changes in membrane fluidity and polarity. This lyophilization method can be applied to improve storage stability of lipid nanocarriers encapsulating drugs while retaining their original activity.
Collapse
Affiliation(s)
- Eunhye Yang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunjong Yu
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul, 08826, Republic of Korea
| | - SungHak Choi
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Min Park
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Ho-Sup Jung
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
74
|
Rajagopal K, Arjunan P, Marepally S, Madhuri V. Controlled Differentiation of Mesenchymal Stem Cells into Hyaline Cartilage in miR-140-Activated Collagen Hydrogel. Cartilage 2021; 13:571S-581S. [PMID: 34581616 PMCID: PMC8804822 DOI: 10.1177/19476035211047627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Hypertrophic cartilage formation is a major setback in mesenchymal stem cells (MSCs)-mediated cartilage repair, and overcoming it requires optimization of differentiation. Here, we tested the miR-140 activated collagen hydrogel for the chondrogenic differentiation of MSCs and to produce hyaline cartilage. METHODS Bone marrow MSCs isolated from 3 patients were pretreated with miR-140 and then chondrogenic differentiated. The 3-dimensional (3D) transfection potential of 5 different transfection reagents (Polyethylenimine, Lipofectamine, TransIT-X2, Amide:Cholesterol-based liposomes [AmC] and AmC pegylated with Tocofersolan [AmCTOC]) was compared and the reagent that showed higher green fluorescent protein (GFP) expression was selected. Finally, the collagen hydrogel was activated using miR-140-transfection complex and sustained delivered to MSCs during chondrogenic differentiation. After differentiation, the outcome was assessed by reverse transcription-polymerase chain reaction (RT-PCR), histology, immunohistochemistry, and compared with scrambled miRNA treated control. RESULTS Pretreatment of MSCs with miR-140 significantly increased the expression of cartilage-specific genes (COL2A1, SOX9, and ACAN) with reduced hypertrophic chondrocyte (COL10A1) marker expression and better safranin-O staining than the control. The AmCTOC liposome showed a significant increase in 3D transfection of GFP expressing plasmid than the others. Furthermore, the knockdown of GAPDH using siRNA in HEK cells and expression of GFP mRNA in human bone marrow MSCs confirmed the 3D-transfection efficiency of AmCTOC. The sustained delivery of miR-140 using activated matrix formed a hyaline cartilage-like tissue with minimal COL10A1 expression in RT-PCR and immunohistochemistry. CONCLUSION Our results demonstrated the therapeutic potential of miR-140-activated hydrogel for MSCs-based cartilage tissue engineering, which could also be used for endogenous stem cells-mediated cartilage repair.
Collapse
Affiliation(s)
- Karthikeyan Rajagopal
- Department of Paediatric
Orthopaedics, Centre for Stem Cell Research, Christian Medical College,
Vellore, Tamil Nadu, India,Department of Paed ortho and
Centre for stem cell research are two different departments in Christian
medical college, Vellore
| | - Porkizhi Arjunan
- Laboratory of Nanobioscience and
Nanobiotechnology, Centre for Stem Cell Research, Christian Medical College,
Vellore, Tamil Nadu, India
| | - Srujan Marepally
- Laboratory of Nanobioscience and
Nanobiotechnology, Centre for Stem Cell Research, Christian Medical College,
Vellore, Tamil Nadu, India
| | - Vrisha Madhuri
- Department of Paediatric
Orthopaedics, Centre for Stem Cell Research, Christian Medical College,
Vellore, Tamil Nadu, India,Department of Paed ortho and
Centre for stem cell research are two different departments in Christian
medical college, Vellore,Vrisha Madhuri, Department of
Paediatric Orthopaedics, Christian Medical College, First floor, Paul
Brand Building, Vellore, Tamil Nadu 632004, India.
| |
Collapse
|
75
|
Luo WC, O'Reilly Beringhs A, Kim R, Zhang W, Patel SM, Bogner RH, Lu X. Impact of formulation on the quality and stability of freeze-dried nanoparticles. Eur J Pharm Biopharm 2021; 169:256-267. [PMID: 34732383 DOI: 10.1016/j.ejpb.2021.10.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022]
Abstract
Freeze-drying is an effective approach to improve the long-term stability of nanomedicines. Lyoprotectants are generally considered as requisite excipients to ensure that the quality of nanoparticles is maintained throughout the freeze-drying process. However, depending on the type of nanoparticles, the needs for lyoprotectants or the challenges they face during freeze-drying may be different. In this study, we compared and identified the impact of freeze-drying on key characteristics of three types of nanoparticles: solid lipid nanoparticles (SLNs), polymeric nanoparticles (PNs), and liposomes. Sucrose, trehalose, and mannitol were added to nanoparticle suspensions before freeze-drying. The same conservative freeze-drying conditions with controlled ice nucleation at -8 °C were employed for all formulations. The collapse temperatures of nanoparticle formulations were found to be the same as those of the lyoprotectant added, except PN formulation. Likely the poly(vinyl alcohol) (PVA) in the formulation induced a higher collapse temperature and retardation of drying of PNs. Freeze-drying of both SLNs and liposomes without lyoprotectants increased particle size and polydispersity, which was resolved by adding amorphous disaccharides. Regardless of the addition of lyoprotectants, freeze-drying did not alter the size of PNs possibly due to the protection from PVA. However, lyoprotectants were still necessary to shorten the reconstitution time and reduce the residual moisture. In conclusion, different types of nanoparticles face distinct challenges for freeze-drying, and lyoprotectants differentially affect various stability and quality attributes of freeze-dried nanoparticles.
Collapse
Affiliation(s)
- Wei-Chung Luo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - André O'Reilly Beringhs
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Rachel Kim
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - William Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Sajal M Patel
- Dosage Form Design & Development, Biopharmaceutical Development, AstraZeneca, 1 Medimmune Way, Gaithersburg, MD 20878, USA
| | - Robin H Bogner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
76
|
Costa C, Nobre B, Matos AS, Silva AS, Casimiro T, Corvo ML, Aguiar-Ricardo A. Inhalable hydrophilic molecule-loaded liposomal dry powder formulations using supercritical CO2 – assisted spray-drying. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
77
|
Vallerinteavide Mavelli G, Sadeghi S, Vaidya SS, Kong SN, Drum CL. Nanoencapsulation as a General Solution for Lyophilization of Labile Substrates. Pharmaceutics 2021; 13:1790. [PMID: 34834205 PMCID: PMC8622885 DOI: 10.3390/pharmaceutics13111790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Protein macromolecules occur naturally at the nanoscale. The use of a dedicated nanoparticle as a lyophilization excipient, however, has not been reported. Because biopolymeric and lipid nanoparticles often denature protein macromolecules and commonly lack the structural rigidity to survive the freeze-drying process, we hypothesized that surrounding an individual protein substrate with a nanoscale, thermostable exoshell (tES) would prevent aggregation and protect the substrate from denaturation during freezing, sublimation, and storage. We systematically investigated the properties of tES, including secondary structure and its homogeneity, throughout the process of lyophilization and found that tES have a near 100% recovery following aqueous reconstitution. We then tested the hypothesis that tES could encapsulate a model substrate, horseradish peroxidase (HRP), using charge complementation and pH-mediated controlled assembly. HRP were encapsulated within the 8 nm internal tES aqueous cavity using a simplified loading procedure. Time-course experiments demonstrated that unprotected HRP loses 95% of activity after 1 month of lyophilized storage. After encapsulation within tES nanoparticles, 70% of HRP activity was recovered, representing a 14-fold improvement and this effect was reproducible across a range of storage temperatures. To our knowledge, these results represent the first reported use of nanoparticle encapsulation to stabilize a functional macromolecule during lyophilization. Thermostable nanoencapsulation may be a useful method for the long-term storage of labile proteins.
Collapse
Affiliation(s)
- Girish Vallerinteavide Mavelli
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
| | - Samira Sadeghi
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*Star), Singapore 138672, Singapore
| | - Siddhesh Sujit Vaidya
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
| | - Shik Nie Kong
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
| | - Chester Lee Drum
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
| |
Collapse
|
78
|
Tasnim T, Adkins MD, Lim T, Feng H, Magda JJ, Shea JE, Agarwal J, Furse CM, Zhang H. Thermally tunable hydrogel crosslinking mediated by temperature sensitive liposome. Biomed Mater 2021; 16. [PMID: 34492645 DOI: 10.1088/1748-605x/ac246c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/07/2021] [Indexed: 11/12/2022]
Abstract
Hydrogel crosslinking by external stimuli is a versatile strategy to control and modulate hydrogel properties. Besides photonic energy, thermal energy is one of the most accessible external stimuli and widely applicable for many biomedical applications. However, conventional thermal crosslinking systems require a relatively high temperature (over 100 °C) to initiate covalent bond formation. To our knowledge, there has not been a thermally tunable hydrogel crosslinking system suitable for biological applications. This work demonstrates a unique approach to utilize temperature sensitive liposomes to control and modulate hydrogel crosslinking over mild temperature range (below 50 °C). Temperature sensitive liposomes were used to control the release of chemical crosslinkers by moderate temperature changes. The thermally controlled crosslinker release resulted in tunable mechanical and transport properties of the hydrogel. No significant inflammable response observed in the histology results ensured the biocompatibility of the liposome-mediated crosslinkable hydrogel. This work opens new opportunities to implement thermal energy system for control and modulate hydrogel properties.
Collapse
Affiliation(s)
- Tasmia Tasnim
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Michael D Adkins
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Taehwan Lim
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Haidong Feng
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Jules J Magda
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Jill E Shea
- Department of Surgery, The University of Utah, Salt Lake City, UT, United States of America
| | - Jayant Agarwal
- Department of Surgery, The University of Utah, Salt Lake City, UT, United States of America
| | - Cynthia M Furse
- Department of Electrical and Computer Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Huanan Zhang
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
79
|
Li J, Zhang K, Wu D, Ren L, Chu X, Qin C, Han X, Hang T, Xu Y, Yang L, Yin L. Liposomal remdesivir inhalation solution for targeted lung delivery as a novel therapeutic approach for COVID-19. Asian J Pharm Sci 2021; 16:772-783. [PMID: 34703490 PMCID: PMC8529908 DOI: 10.1016/j.ajps.2021.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Strong infectivity enables coronavirus disease 2019 (COVID-19) to rage throughout the world. Moreover, the lack of drugs with definite therapeutic effects further aggravates the spread of the pandemic. Remdesivir is one of the most promising anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. However, the limited clinical effects make its therapeutic effect controversial, which may result from the poor accumulation and activation of remdesivir in the lung. Therefore, we developed lyophilized remdesivir liposomes (Rdv-lips) which can be reconstituted as liposomal aerosol for pulmonary delivery to improve the in vivo behavior of existing remdesivir cyclodextrin conclusion compound (Rdv-cyc) injections. Liposome encapsulation endowed remdesivir with much higher solubility and better biocompatibility. The in vitro liposomal aerosol characterization demonstrated that Rdv-lips possessed a mass median aerodynamic diameter of 4.118 µm and fine particle fraction (<5 µm) higher than 50%, indicating good pulmonary delivery properties. Compared to the Rdv-cyc intravenous injection group, the Rdv-lips inhalation group displayed a nearly 100-fold increase in the remdesivir-active metabolite nucleotide triphosphate (NTP) concentration and better NTP accumulation in the lung than the Rdv-cyc inhalation group. A faster transition from remdesivir to NTP of Rdv-lips (inhalation) could also be observed due to better cell uptake. Compared to other preparations, the superiority of Rdv-lips was further evidenced by the results of an in vivo safety study, with little possibility of inducing inflammation. In conclusion, Rdv-lips for pulmonary delivery will be a potent formulation to improve the in vivo behavior of remdesivir and exert better therapeutic effects in COVID-19 treatment.
Collapse
Affiliation(s)
- Jingjing Li
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Kai Zhang
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Di Wu
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Lianjie Ren
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyu Chu
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Qin
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaopeng Han
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Taijun Hang
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yungen Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
- Corresponding author.
| | - Lifang Yin
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China
- Corresponding author.
| |
Collapse
|
80
|
Zhai B, Wu Q, Wang W, Zhang M, Han X, Li Q, Chen P, Chen X, Huang X, Li G, Zhang Q, Zhang R, Xiang Y, Liu S, Duan T, Lou J, Xie T, Sui X. Preparation, characterization, pharmacokinetics and anticancer effects of PEGylated β-elemene liposomes. Cancer Biol Med 2021; 17:60-75. [PMID: 32296587 PMCID: PMC7142831 DOI: 10.20892/j.issn.2095-3941.2019.0156] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022] Open
Abstract
Objective: This study aimed to develop a new polyethylene glycol (PEG)ylated β-elemene liposome (PEG-Lipo-β-E) and evaluate its characterization, pharmacokinetics, antitumor effects and safety in vitro and in vivo. Methods: The liposomes were prepared by ethanol injection and high-pressure micro-jet homogenization. Characterization of the liposomes was conducted, and drug content, entrapment efficiency (EE), in vitro release and stability were studied by ultra-fast liquid chromatography (UFLC) and a liquid surface method. Blood was drawn from rats to establish the pharmacokinetic parameters. The anticancer effect was evaluated in a KU-19-19 bladder cancer xenograft model. Histological analyses were performed to evaluate safety. Results: The PEG-Lipo-β-E showed good stability and was characterized as 83.31 ± 0.181 nm in size, 0.279 ± 0.004 in polydispersity index (PDI), −21.4 ± 1.06 mV in zeta potential, 6.65 ± 0.02 in pH, 5.024 ± 0.107 mg/mL in β-elemene (β-E) content, and 95.53 ± 1.712% in average EE. The Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) indicated the formation of PEG-Lipo-β-E. Compared to elemene injection, PEG-Lipo-β-E demonstrated a 1.75-fold decrease in clearance, a 1.62-fold increase in half-life, and a 1.76-fold increase in area under the concentration-time curves (AUCs) from 0 hour to 1.5 hours (P < 0.05). PEG-Lipo-β-E also showed an enhanced anticancer effect in vivo. Histological analyses showed that there was no evidence of toxicity to the heart, kidney, liver, lung or spleen. Conclusions: The present study demonstrates PEG-Lipo-β-E as a new formulation with ease of preparation, high EE, good stability, improved bioavailability and antitumor effects.
Collapse
Affiliation(s)
- Bingtao Zhai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 310018, China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 519020, China.,Key Laboratory of Elemene Class Anticancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 519020, China
| | - Wengang Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 310018, China.,Key Laboratory of Elemene Class Anticancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, China
| | - Mingming Zhang
- Department of Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 310018, China.,Key Laboratory of Elemene Class Anticancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, China
| | - Xuemeng Han
- Department of Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 310018, China.,Key Laboratory of Elemene Class Anticancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, China
| | - Qiujie Li
- Department of Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 310018, China.,Key Laboratory of Elemene Class Anticancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, China
| | - Peng Chen
- Department of Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 310018, China.,Key Laboratory of Elemene Class Anticancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, China
| | - Xiaying Chen
- Department of Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 310018, China.,Key Laboratory of Elemene Class Anticancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, China
| | - Xingxing Huang
- Department of Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 310018, China
| | - Guohua Li
- Department of Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 310018, China.,Key Laboratory of Elemene Class Anticancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, China
| | - Qin Zhang
- Department of Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 310018, China.,Key Laboratory of Elemene Class Anticancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, China
| | - Ruonan Zhang
- Department of Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 310018, China.,Key Laboratory of Elemene Class Anticancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, China
| | - Yu Xiang
- Department of Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 310018, China.,Key Laboratory of Elemene Class Anticancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, China
| | - Shuiping Liu
- Department of Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 310018, China.,Key Laboratory of Elemene Class Anticancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, China
| | - Ting Duan
- Department of Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 310018, China.,Key Laboratory of Elemene Class Anticancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, China
| | - Jianshu Lou
- Department of Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 310018, China.,Key Laboratory of Elemene Class Anticancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, China
| | - Tian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 310018, China.,Key Laboratory of Elemene Class Anticancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, China
| | - Xinbing Sui
- Department of Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 310018, China.,Key Laboratory of Elemene Class Anticancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, China
| |
Collapse
|
81
|
Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front Bioeng Biotechnol 2021; 9:705886. [PMID: 34568298 PMCID: PMC8459376 DOI: 10.3389/fbioe.2021.705886] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Liposomes are essentially a subtype of nanoparticles comprising a hydrophobic tail and a hydrophilic head constituting a phospholipid membrane. The spherical or multilayered spherical structures of liposomes are highly rich in lipid contents with numerous criteria for their classification, including structural features, structural parameters, and size, synthesis methods, preparation, and drug loading. Despite various liposomal applications, such as drug, vaccine/gene delivery, biosensors fabrication, diagnosis, and food products applications, their use encounters many limitations due to physico-chemical instability as their stability is vigorously affected by the constituting ingredients wherein cholesterol performs a vital role in the stability of the liposomal membrane. It has well established that cholesterol exerts its impact by controlling fluidity, permeability, membrane strength, elasticity and stiffness, transition temperature (Tm), drug retention, phospholipid packing, and plasma stability. Although the undetermined optimum amount of cholesterol for preparing a stable and controlled release vehicle has been the downside, but researchers are still focused on cholesterol as a promising material for the stability of liposomes necessitating explanation for the stability promotion of liposomes. Herein, the prior art pertaining to the liposomal appliances, especially for drug delivery in cancer therapy, and their stability emphasizing the roles of cholesterol.
Collapse
Affiliation(s)
- Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
- Cipto Mangunkusumo Hospital, The National Referral Hospital, Central Jakarta, Indonesia
- Master’s Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology, and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| |
Collapse
|
82
|
Rouco H, Diaz-Rodriguez P, Guillin A, Remuñán-López C, Landin M. A Traffic Light System to Maximize Carbohydrate Cryoprotectants' Effectivity in Nanostructured Lipid Carriers' Lyophilization. Pharmaceutics 2021; 13:pharmaceutics13091330. [PMID: 34575406 PMCID: PMC8470209 DOI: 10.3390/pharmaceutics13091330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022] Open
Abstract
Lyophilization is often employed to transform nanoparticle suspensions to stable solid forms. This work proposed Neurofuzzy Logic (NFL) to better understand the lyophilization process of Nanostructured Lipid Carriers’ (NLCs) dispersions and the carbohydrate cryoprotectants’ (CPs) performance in these processes. NLCs were produced by hot homogenization, frozen at different speeds, and lyophilized using several CPs at variable concentrations. NLCs were characterized, and results were expressed as increase in particle size (Δ size), polydispersity (Δ PdI), and zeta potential (Δ ZP) of lyophilized powders (LP) regarding initial dispersions. CPs were classified according to their molecular weights (MW), and the osmolarities (Π) of CPs solutions were also determined. Databases obtained were finally modelled through FormRules® (Intelligensys Ltd., Kirkwall, Scotland, UK), an NFL software. NFL models revealed that CPs’ MW determines the optimal freezing conditions and CPs’ proportions. The knowledge generated allowed the establishment of a traffic light system intended to successfully select and apply sugars for nanoparticles lyophilization.
Collapse
Affiliation(s)
- Helena Rouco
- R+D Pharma Group (GI-1645), Strategic Grouping in Materials (AEMAT), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Campus Vida, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (H.R.); (A.G.)
| | - Patricia Diaz-Rodriguez
- R+D Pharma Group (GI-1645), Strategic Grouping in Materials (AEMAT), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Campus Vida, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (H.R.); (A.G.)
- Drug Delivery Systems Group, Department of Chemical Engineering and Pharmaceutical Technology, Campus de Anchieta, School of Sciences, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
- Correspondence: (P.D.-R.); (M.L.)
| | - Alba Guillin
- R+D Pharma Group (GI-1645), Strategic Grouping in Materials (AEMAT), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Campus Vida, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (H.R.); (A.G.)
| | - Carmen Remuñán-López
- NanoBiofar Group (GI-1643), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Campus Vida, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Mariana Landin
- R+D Pharma Group (GI-1645), Strategic Grouping in Materials (AEMAT), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Campus Vida, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (H.R.); (A.G.)
- Correspondence: (P.D.-R.); (M.L.)
| |
Collapse
|
83
|
Tang M, Hattori Y. Effect of using amino acids in the freeze-drying of siRNA lipoplexes on gene knockdown in cells after reverse transfection. Biomed Rep 2021; 15:72. [PMID: 34405044 DOI: 10.3892/br.2021.1448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/25/2021] [Indexed: 11/06/2022] Open
Abstract
Recently, small interfering RNA (siRNA)/cationic liposome complexes (siRNA lipoplexes) have become a crucial research tool for studying gene function. Easy and reliable siRNA transfection with a large set of siRNAs is required for the successful screening of gene function. Reverse (Rev)-transfection with freeze-dried siRNA lipoplexes is validated for siRNA transfection with a large set of siRNAs in a multi-well plate. In our previous study, it was shown that Rev-transfection with siRNA lipoplexes freeze-dried in disaccharides or trisaccharides resulted in long-term stability with a high level of gene-knockdown activity. In the present study, the effects of amino acids used as cryoprotectants in the freeze-drying of siRNA lipoplexes on gene knockdown via Rev-transfection were assessed. A total of 15 types of amino acids were used to prepare freeze-dried siRNA lipoplexes, and it was found that the freeze-drying of siRNA lipoplexes with amino acid concentrations >100 mM strongly suppressed targeted gene expression regardless of the amino acid type; however, some amino acids strongly upregulated or downregulated gene expression in the cells transfected with negative control siRNA. Amongst the amino acids tested, the presence of asparagine showed specific gene-knockdown activity, forming large cakes after freeze-drying and retaining a favorable siRNA lipoplex size after rehydration. These findings provide valuable information regarding amino acids as cryoprotectants for Rev-transfection using freeze-dried siRNA lipoplexes for the efficient delivery of siRNA into cells.
Collapse
Affiliation(s)
- Min Tang
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Yoshiyuki Hattori
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| |
Collapse
|
84
|
Pires IS, Hammond PT, Irvine DJ. Engineering Strategies for Immunomodulatory Cytokine Therapies - Challenges and Clinical Progress. ADVANCED THERAPEUTICS 2021; 4:2100035. [PMID: 34734110 PMCID: PMC8562465 DOI: 10.1002/adtp.202100035] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Cytokines are immunoregulatory proteins involved in many pathological states with promising potential as therapeutic agents. A diverse array of cytokines have been studied in preclinical disease models since the 1950s, some of which became successful biopharmaceutical products with the advancement of recombinant protein technology in the 1980s. However, following these early approvals, clinical translation of these natural immune signaling molecules has been limited due to their pleiotropic action in many cell types, and the fact that they have evolved to act primarily locally in tissues. These characteristics, combined with poor pharmacokinetics, have hindered the delivery of cytokines via systemic administration routes due to dose-limiting toxicities. However, given their clinical potential and recent clinical successes in cancer immunotherapy, cytokines continue to be extensively pursued in preclinical and clinical studies, and a range of molecular and formulation engineering strategies are being applied to reduce treatment toxicity while maintaining or enhancing therapeutic efficacy. This review provides a brief background on the characteristics of cytokines and their history as clinical therapeutics, followed by a deeper discussion on the engineering strategies developed for cytokine therapies with a focus on the translational relevance of these approaches.
Collapse
Affiliation(s)
- Ivan S Pires
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
85
|
de Jesús Valle MJ, Alves A, Coutinho P, Prata Ribeiro M, Maderuelo C, Sánchez Navarro A. Lyoprotective Effects of Mannitol and Lactose Compared to Sucrose and Trehalose: Sildenafil Citrate Liposomes as a Case Study. Pharmaceutics 2021; 13:pharmaceutics13081164. [PMID: 34452127 PMCID: PMC8400243 DOI: 10.3390/pharmaceutics13081164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
The lyoprotective effects of mannitol and lactose have been evaluated in the production of sildenafil citrate liposomes. Liposomes were prepared by mixing the components under ultrasonic agitation, followed by a transmembrane pH gradient for remote drug loading. Mannitol and lactose, as compared to sucrose and trehalose, were used as the stabilizing agents, and different freeze-drying cycles were assayed. The remaining moisture and the thermal characteristics of the lyophilized samples were analyzed. Size, entrapment efficiency, biocompatibility, and cell internalization of original and rehydrated liposomes were compared. The type of additive did not affect the biocompatibility or cell internalization, but did influence other liposome attributes, including the thermal characteristics and the remaining moisture of the lyophilized samples. A cut-off of 5% (w/w) remaining moisture was an indicator of primary drying completion-information useful for scaling up and transfer from laboratory to large-scale production. Lactose increased the glass transition temperature to over 70 °C, producing lyoprotective effects similar to those obtained with sucrose. Based on these results, formulations containing liposomes lyophilized with lactose meet the FDA's requirements and can be used as a biocompatible and biodegradable vehicle for the pulmonary delivery of therapeutic doses of sildenafil citrate.
Collapse
Affiliation(s)
- María José de Jesús Valle
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (M.J.d.J.V.); (C.M.)
- Institute of Biomedical Research of the University of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Andreía Alves
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal; (A.A.); (P.C.); (M.P.R.)
| | - Paula Coutinho
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal; (A.A.); (P.C.); (M.P.R.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Maximiano Prata Ribeiro
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal; (A.A.); (P.C.); (M.P.R.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Cristina Maderuelo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (M.J.d.J.V.); (C.M.)
| | - Amparo Sánchez Navarro
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (M.J.d.J.V.); (C.M.)
- Institute of Biomedical Research of the University of Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-677584152
| |
Collapse
|
86
|
Mocchi M, Bari E, Marrubini G, Bonda AF, Perteghella S, Tartara F, Cofano F, Perna GD, Giovannelli L, Mandracchia D, Sorlini M, Garbossa D, Torre ML, Segale L. Freeze-Dried Mesenchymal Stem Cell-Secretome Pharmaceuticalization: Optimization of Formulation and Manufacturing Process Robustness. Pharmaceutics 2021; 13:pharmaceutics13081129. [PMID: 34452088 PMCID: PMC8401234 DOI: 10.3390/pharmaceutics13081129] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/08/2023] Open
Abstract
Producing mesenchymal stem cell (MSC)-secretome for dose escalation studies and clinical practice requires scalable and good manufacturing practice (GMP)-compliant production procedures and formulation into a standardized medicinal product. Starting from a method that combines ultrafiltration and freeze-drying to transform MSC-secretome into a pharmaceutical product, the lyosecretome, this work aims to: (i) optimize the lyosecretome formulation; (ii) investigate sources of variability that can affect the robustness of the manufacturing process; (iii) modify the ultrafiltration step to obtain a more standardized final product. Design of experiments and principal component analysis of the data were used to study the influence of batch production, lyophilization, mannitol (M)/sucrose (S) binary mixture, selected as cryoprotectant excipients, and the total amount of excipients on the extracellular vesicles (EV) particle size, the protein and lipid content and the in vitro anti-elastase. The different excipients ratios did not affect residual moisture or EV particle size; simultaneously, proteins and lipids were better preserved in the freeze-dried product using the maximum total concentration of excipients (1.5% w/v) with a M:S ratio of about 60% w/w. The anti-elastase activity was instead better preserved using 0.5% w/w of M as excipient. The secretome batch showed to be the primary source of variability; therefore, the manufacturing process has been modified and then validated: the final product is now concentrated to reach a specific protein (and lipid) concentration instead of cell equivalent concentration. The new standardization approach led to a final product with more reproducible quali-quantitative composition and higher biological activity.
Collapse
Affiliation(s)
- Michela Mocchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.M.); (E.B.); (G.M.); (S.P.)
| | - Elia Bari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.M.); (E.B.); (G.M.); (S.P.)
| | - Giorgio Marrubini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.M.); (E.B.); (G.M.); (S.P.)
| | - Andrea Foglio Bonda
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, I-28100 Novara, Italy; (A.F.B.); (L.G.); (L.S.)
- APTsol S.r.l., Largo Guido Donegani 2/3, I-28100 Novara, Italy
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.M.); (E.B.); (G.M.); (S.P.)
- PharmaExceed S.r.l., Piazza Castello 19, I-27100 Pavia, Italy;
| | - Fulvio Tartara
- Fondazione IRCCS Istituto Neurologico Nazionale Mondino, Via Mondino 2, I-27100 Pavia, Italy;
| | - Fabio Cofano
- Neuroscience Department “Rita Levi Montalcini” Via Cherasco 15, I-10126 Torino, Italy; (F.C.); (G.d.P.); (D.G.)
- Vertebral Surgery Unit, Humanitas Gradenigo, Corso Regina Margherita 8, I-10153 Turin, Italy
| | - Giuseppe di Perna
- Neuroscience Department “Rita Levi Montalcini” Via Cherasco 15, I-10126 Torino, Italy; (F.C.); (G.d.P.); (D.G.)
| | - Lorella Giovannelli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, I-28100 Novara, Italy; (A.F.B.); (L.G.); (L.S.)
| | - Delia Mandracchia
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy;
| | - Marzio Sorlini
- PharmaExceed S.r.l., Piazza Castello 19, I-27100 Pavia, Italy;
- SUPSI-Department of Innovative Technologies, Lugano University Centre, Campus Est, Via la Santa 1, CH-6962 Viganello, Switzerland
| | - Diego Garbossa
- Neuroscience Department “Rita Levi Montalcini” Via Cherasco 15, I-10126 Torino, Italy; (F.C.); (G.d.P.); (D.G.)
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.M.); (E.B.); (G.M.); (S.P.)
- PharmaExceed S.r.l., Piazza Castello 19, I-27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-987779
| | - Lorena Segale
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, I-28100 Novara, Italy; (A.F.B.); (L.G.); (L.S.)
- APTsol S.r.l., Largo Guido Donegani 2/3, I-28100 Novara, Italy
| |
Collapse
|
87
|
Craciunescu O, Icriverzi M, Florian PE, Roseanu A, Trif M. Mechanisms and Pharmaceutical Action of Lipid Nanoformulation of Natural Bioactive Compounds as Efficient Delivery Systems in the Therapy of Osteoarthritis. Pharmaceutics 2021; 13:1108. [PMID: 34452068 PMCID: PMC8399940 DOI: 10.3390/pharmaceutics13081108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease. An objective of the nanomedicine and drug delivery systems field is to design suitable pharmaceutical nanocarriers with controllable properties for drug delivery and site-specific targeting, in order to achieve greater efficacy and minimal toxicity, compared to the conventional drugs. The aim of this review is to present recent data on natural bioactive compounds with anti-inflammatory properties and efficacy in the treatment of OA, their formulation in lipid nanostructured carriers, mainly liposomes, as controlled release systems and the possibility to be intra-articularly (IA) administered. The literature regarding glycosaminoglycans, proteins, polyphenols and their ability to modify the cell response and mechanisms of action in different models of inflammation are reviewed. The advantages and limits of using lipid nanoformulations as drug delivery systems in OA treatment and the suitable route of administration are also discussed. Liposomes containing glycosaminoglycans presented good biocompatibility, lack of immune system activation, targeted delivery of bioactive compounds to the site of action, protection and efficiency of the encapsulated material, and prolonged duration of action, being highly recommended as controlled delivery systems in OA therapy through IA administration. Lipid nanoformulations of polyphenols were tested both in vivo and in vitro models that mimic OA conditions after IA or other routes of administration, recommending their clinical application.
Collapse
Affiliation(s)
- Oana Craciunescu
- National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Madalina Icriverzi
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Paula Ecaterina Florian
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Anca Roseanu
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Mihaela Trif
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| |
Collapse
|
88
|
Post-Processing Techniques for the Improvement of Liposome Stability. Pharmaceutics 2021; 13:pharmaceutics13071023. [PMID: 34371715 PMCID: PMC8309137 DOI: 10.3390/pharmaceutics13071023] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Liposomes have been utilized as a drug delivery system to increase the bioavailability of drugs and to control the rate of drug release at the target site of action. However, the occurrence of self-aggregation, coalescence, flocculation and the precipitation of aqueous liposomes during formulation or storage can cause degradation of the vesicle structure, leading to the decomposition of liposomes. To increase the stability of liposomes, post-processing techniques have been applied as an additional process to liposomes after formulation to remove water and generate dry liposome particles with a higher stability and greater accessibility for drug administration in comparison with aqueous liposomes. This review covers the effect of these techniques including freeze drying, spray drying and spray freeze drying on the stability, physicochemical properties and drug encapsulation efficiency of dry liposomes. The parameters affecting the properties of liposomes during the drying process are also highlighted in this review. In addition, the impact of using a protective agent to overcome such limitations of each process is thoroughly discussed through various studies.
Collapse
|
89
|
Barth CW, Shah VM, Wang LG, Antaris AL, Klaassen A, Sorger J, Rao DA, Kerr DA, Henderson ER, Alani AW, Gibbs SL. Clinically translatable formulation strategies for systemic administration of nerve-specific probes. ADVANCED THERAPEUTICS 2021; 4:2100002. [PMID: 34423111 PMCID: PMC8372234 DOI: 10.1002/adtp.202100002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nerves are extremely difficult to identify and are often accidently damaged during surgery, leaving patients with lasting pain and numbness. Herein, a novel near-infrared (NIR) nerve-specific fluorophore, LGW01-08, was utilized for enhanced nerve identification using fluorescence guided surgery (FGS), formulated using clinical translatable strategies. Formulated LGW01-08 was examined for toxicology, pharmacokinetics (PK), and pharmacodynamics (PD) parameters in preparation for future clinical translation. Optimal LGW01-08 imaging doses were identified in each formulation resulting in a 10x difference between the toxicity to imaging dose window. Laparoscopic swine surgery completed using the da Vinci surgical robot (Intuitive Surgical) demonstrated the efficacy of formulated LGW01-08 for enhanced nerve identification. NIR fluorescence imaging enabled clear identification of nerves buried beneath ~3 mm of tissue that were unidentifiable by white light imaging. These studies provide a strong basis for future clinical translation of NIR nerve-specific fluorophores for utility during FGS to improve patient outcomes.
Collapse
Affiliation(s)
- Connor W. Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Vidhi M. Shah
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, Portland, OR, 97201
| | - Lei G. Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | | | | | | | - Deepa A. Rao
- School of Pharmacy, Pacific University, Hillsboro, OR 97123
| | - Darcy A. Kerr
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756.,Geisel School of Mdicine at Dartmouth College, Hanover, NH 03755
| | - Eric R. Henderson
- Department of Orthopaedics, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Adam W.G. Alani
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201.,Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, Portland, OR, 97201
| | - Summer L. Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201.,Corresponding Author: Summer L. Gibbs, Ph.D., Oregon Health & Science University, Collaborative Life Sciences Building, 2730 S Moody Ave, Mail Code: CL3SG, Portland, OR 97201, , Phone: 503-494-8940
| |
Collapse
|
90
|
Merivaara A, Zini J, Koivunotko E, Valkonen S, Korhonen O, Fernandes FM, Yliperttula M. Preservation of biomaterials and cells by freeze-drying: Change of paradigm. J Control Release 2021; 336:480-498. [PMID: 34214597 DOI: 10.1016/j.jconrel.2021.06.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/14/2022]
Abstract
Freeze-drying is the most widespread method to preserve protein drugs and vaccines in a dry form facilitating their storage and transportation without the laborious and expensive cold chain. Extending this method for the preservation of natural biomaterials and cells in a dry form would provide similar benefits, but most results in the domain are still below expectations. In this review, rather than consider freeze-drying as a traditional black box we "break it" through a detailed process thinking approach. We discuss freeze-drying from process thinking aspects, introduce the chemical, physical, and mechanical environments important in this process, and present advanced biophotonic process analytical technology. In the end, we review the state of the art in the freeze-drying of the biomaterials, extracellular vesicles, and cells. We suggest that the rational design of the experiment and implementation of advanced biophotonic tools are required to successfully preserve the natural biomaterials and cells by freeze-drying. We discuss this change of paradigm with existing literature and elaborate on our perspective based on our new unpublished results.
Collapse
Affiliation(s)
- Arto Merivaara
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| | - Jacopo Zini
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Elle Koivunotko
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Sami Valkonen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Ossi Korhonen
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Faculté de Sciences, Sorbonne Université, UMR7574, 75005 Paris, France
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
91
|
Jash A, Ubeyitogullari A, Rizvi SSH. Liposomes for oral delivery of protein and peptide-based therapeutics: challenges, formulation strategies, and advances. J Mater Chem B 2021; 9:4773-4792. [PMID: 34027542 DOI: 10.1039/d1tb00126d] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Throughout the past decade, there has been a rapid growth in the development of protein/peptide-based therapeutics. These therapeutics have found widespread applications in the treatment of cancer, infectious diseases, and other metabolic disorders owing to their several desirable attributes, such as reduced toxicity, diverse biological activities, high specificity, and potency. Most protein/peptide-based drugs are still administered parenterally, and there is an unprecedented demand in the pharmaceutical industry to develop oral delivery routes to increase patient acceptability and convenience. Recent advancements in nanomedicine discoveries have led to the development of several nano and micro-particle-based oral delivery platforms for protein/peptide-based therapeutics and among these, liposomes have emerged as a prominent candidate. Liposomes are spherical vesicles composed of one or more phospholipid bilayers enclosing a core aqueous phase. Their unique amphiphilic nature enables encapsulation of a diverse range of bioactives/drugs including both hydrophobic and hydrophilic compounds for delivery. Against this backdrop, this review provides an overview of the current approaches and challenges associated with the routes and methods of oral administration of protein/peptide-based therapeutics by using liposomes as a potential vehicle. First, the conventional and innovative liposome formation approaches have been discussed along with their applications. Next, the challenges associated with current approaches for oral delivery of protein and peptide-derived therapeutics have been thoroughly addressed. Lastly, we have critically reviewed the potential of liposomes utilization as vehicles for oral delivery of proteins emphasizing the current status and future directions in this area.
Collapse
Affiliation(s)
- Apratim Jash
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | | | | |
Collapse
|
92
|
Khatib I, Ke WR, Cipolla D, Chan HK. Storage stability of inhalable, controlled-release powder formulations of ciprofloxacin nanocrystal-containing liposomes. Int J Pharm 2021; 605:120809. [PMID: 34144139 DOI: 10.1016/j.ijpharm.2021.120809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Novel inhalable and controlled release powder formulations of ciprofloxacin nanocrystals inside liposomes (CNL) were recently developed. In the present study, the storage stability of CNL powders consisting of lyoprotectant (i.e. sucrose or lactose), lipids, ciprofloxacin (CIP), and magnesium stearate or isoleucine was investigated. These powders were produced by spray drying, collected in a dry box at <15% relative humidity (RH), then stored at room temperature and either 4 or 20 %RH. Liposomal integrity, CIP encapsulation efficiency (EE), in vitro drug release (IVR), aerosol performance, and solid-state properties were examined over six months. Sucrose CNL powder exhibited consistent liposomal integrity, aerosol performance, and controlled release of CIP over six months of storage at 4 %RH. However, storage of the powder at 20 %RH for the same period caused sucrose crystallization and consequently a significant drop in EE and aerosol performance (p-values < 0.05), along with the IVR of CIP becoming similar to that of the non-crystalline CIP liposomal dispersions (f2 > 50). Lactose CNL maintained superior aerosol performance over the six months irrespective of the storage RH. However, liposomal instability occurred at both RHs within the first month of storage with a significant drop in EE and an increase in liposome size (p-values < 0.05). Moreover, the IVR assay of CIP from lactose CNL showed a less controlled release and a substantial difference (f2 < 50) from its initial value after six months regardless of the storage RHs. In conclusion, dry powder inhalers of CNL were physiochemically stable in sucrose lyoprotectant when stored below 4 %RH at room temperature for six months.
Collapse
Affiliation(s)
- Isra Khatib
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Wei-Ren Ke
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | | | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
93
|
Equine Mesenchymal Stem/Stromal Cells Freeze-Dried Secretome (Lyosecretome) for the Treatment of Musculoskeletal Diseases: Production Process Validation and Batch Release Test for Clinical Use. Pharmaceuticals (Basel) 2021; 14:ph14060553. [PMID: 34200627 PMCID: PMC8226765 DOI: 10.3390/ph14060553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
In the last decades, it has been demonstrated that the regenerative therapeutic efficacy of mesenchymal stromal cells is primarily due to the secretion of soluble factors and extracellular vesicles, collectively known as secretome. In this context, our work described the preparation and characterization of a freeze-dried secretome (Lyosecretome) from adipose tissue-derived mesenchymal stromal cells for the therapy of equine musculoskeletal disorder. An intraarticular injectable pharmaceutical powder has been formulated, and the technological process has been validated in an authorized facility for veterinary clinical-use medicinal production. Critical parameters for quality control and batch release have been identified regarding (i) physicochemical properties; (ii) extracellular vesicle morphology, size distribution, and surface biomarker; (iii) protein and lipid content; (iv) requirements for injectable pharmaceutical dosage forms such as sterility, bacterial endotoxin, and Mycoplasma; and (v) in vitro potency tests, as anti-elastase activity and proliferative activity on musculoskeletal cell lines (tenocytes and chondrocytes) and mesenchymal stromal cells. Finally, proteins putatively responsible for the biological effects have been identified by Lyosecretome proteomic investigation: IL10RA, MXRA5, RARRES2, and ANXA1 modulate the inflammatory process RARRES2, NOD1, SERPINE1, and SERPINB9 with antibacterial activity. The work provides a proof-of-concept for the manufacturing of clinical-grade equine freeze-dried secretome, and prototypes are now available for safety and efficacy clinical trials in the treatment of equine musculoskeletal diseases
Collapse
|
94
|
Ahmad MI, Kumar P, Singh S, Kumar N. Method Development and Characterization of Liposomal Formulation of Isotretinoin. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i2.1915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study aims to develop a liposomal drug delivery system of isotretinoin, an acne drug-using spray drying, as a cost-effective and time-effective technique. The liposomal formulation was prepared by using spray drying; three different strategies were adopted: suspension spray drying (SSD), thin-film hydration and spray drying (TFHSD), and emulsion spray drying (ESD). Isotretinoin was 99% bound with lipid, so lipids hydrogenated soy phosphatidylcholine (HSPC), distearoyl phosphatidylglycerol (DSPG), and cholesterol were selected for the formulation development. The HSPC, DSPG, cholesterol, and isotretinoin were taken in the ratio 4 : 1 : 0.16 : 3.1 mmol. In vitro drug release studies, microscopy, drug content, and related substance characterizations were done to formulate each strategy of spray drying prepared dry liposomes of isotretinoin. Results were compared with the USP monograph of isotretinoin. It was revealed that isotretinoin's liposomal formulation using ESD was having drug release according to the USP limits. Drug content was also according to the USP requirement; no free drug crystals were found in microscopy, multivesicular vesicles were found in shape, a particle size of up 60 µ was found. The ESD technique was a successful, time-effective, and cost-effective technique for preparing a liposomal drug delivery system for isotretinoin.
Collapse
|
95
|
Jia L, Jiang Q, He Z, Wang Y. Characterization techniques: The stepping stone to liposome lyophilized product development. Int J Pharm 2021; 601:120519. [PMID: 33775728 DOI: 10.1016/j.ijpharm.2021.120519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/14/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
The primary drying is the longest step of the freeze-drying process and becomes one of the focuses for lyophilization cycle development inevitably, which is often approaching through a "trial and error" course and requires a labor-intensive and time-consuming endeavor. Nevertheless, drawing support from characterization techniques to understand the physic-chemical properties changing of the sample during lyophilization and their correlation with process conditions comprehensively, the freeze-drying development and optimization will get more from less. To get the optimal lyophilization cycle in the least time, the instrumental methods assisting primary drying design are summarized. The techniques used for estimating the collapse temperature of products are reviewed at first, aiming to provide a reference on the primary drying temperature setting to guarantee product quality. The instrumental methods for primary drying end prediction are also discussed to get optimal freeze-drying protocol with higher productivity. This review highlights the practicality of the above techniques through expounding basic principles, typical measurement conditions, merits and drawbacks, interpretation of results and practical applications, etc. At last, the techniques used for residual moisture detection of lyophilized products and size determination after liposome rehydration are briefly introduced.
Collapse
Affiliation(s)
- Lirui Jia
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
96
|
Guillot AJ, Jornet-Mollá E, Landsberg N, Milián-Guimerá C, Montesinos MC, Garrigues TM, Melero A. Cyanocobalamin Ultraflexible Lipid Vesicles: Characterization and In Vitro Evaluation of Drug-Skin Depth Profiles. Pharmaceutics 2021; 13:pharmaceutics13030418. [PMID: 33804652 PMCID: PMC8003749 DOI: 10.3390/pharmaceutics13030418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Atopic dermatitis (AD) and psoriasis are the most common chronic inflammatory skin disorders, which importantly affect the quality of life of patients who suffer them. Among other causes, nitric oxide has been reported as part of the triggering factors in the pathogenesis of both conditions. Cyanocobalamin (vitamin B12) has shown efficacy as a nitric oxide scavenger and some clinical trials have given positive outcomes in its use for treating skin pathologies. Passive skin diffusion is possible only for drugs with low molecular weights and intermediate lipophilicity. Unfortunately, the molecular weight and hydrophilicity of vitamin B12 do not predict its effective diffusion through the skin. The aim of this work was to design new lipid vesicles to encapsulate the vitamin B12 to enhance its skin penetration. Nine prototypes of vesicles were generated and characterized in terms of size, polydispersity, surface charge, drug encapsulation, flexibility, and stability with positive results. Additionally, their ability to release the drug content in a controlled manner was demonstrated. Finally, we found that these lipid vesicle formulations facilitated the penetration of cyanocobalamin to the deeper layers of the skin. The present work shows a promising system to effectively administer vitamin B12 topically, which could be of interest in the treatment of skin diseases such as AD and psoriasis.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
| | - Enrique Jornet-Mollá
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
| | - Natalia Landsberg
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
| | - Carmen Milián-Guimerá
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
| | - M. Carmen Montesinos
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
- Center of Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia and University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
- Correspondence: (M.C.M.); (T.M.G.)
| | - Teresa M. Garrigues
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
- Correspondence: (M.C.M.); (T.M.G.)
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
| |
Collapse
|
97
|
Kurmi BD, Paliwal SR. Development and Optimization of TPGS based Stealth Liposome of Doxorubicin Using Box-Behnken Design: Characterization, Hemocompatibility and Cytotoxicity Evaluation in Breast Cancer Cells. J Liposome Res 2021; 32:129-145. [PMID: 33724151 DOI: 10.1080/08982104.2021.1903034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The present work reports the development of doxorubicin (DOX) encapsulated α-Tocopherol polyethylene glycol 1000 succinate (TPGS) coated liposomal system (DOX-LIPO-TPGS) by quality by design (QbD) approach and evaluated for its anticancer and hemocompatibility potential. The screening and optimization of formulation variables were performed by the systematic design of experiments (DoE), using Taguchi and Box-Behnken Design (BBD) for their desired quality attributes. The QbD optimized DOX-LIPO (DOX encapsulated uncoated liposome) and DOX-LIPO-TPGS formulation showed nano-metric vesicle size (98.2 ± 3.1 &117.6 ± 3.5 nm) with favorable development parameters, i.e. PDI (0.262 ± 0.008 & 0.123 ± 0.005); ZP (-38.7 ± 0.5 &-36.4 ± 0.7 mV) and % EE (66.8 ± 3.3 & 73.5 ± 3.5%) respectively. The release kinetics parameters suggested, sustained release behavior of developed liposomal formulations (83.6 ± 2.8 & 69.8 ± 2.2% releases in 72 h respectively). Cytotoxicity (MTT assay) on the MCF-7 breast cancer cell line and Hemolysis assay on RBCs stipulates comparatively higher anticancer potential and better hemocompatibility of DOX-LIPO-TPGS with respect to DOX-LIPO and the plain DOX solution. The study concluded that the QbD based three levels by three factors BBD optimization could be utilized for obtaining liposomal formulations with desired quality attributes. TPGS could be set out as a vital additive to improve the various quality parameters including stealthing character, stability, kinetic release, cytotoxicity, and hemocompatibility of liposomal formulations. This may serve as a focal paradigm for using TPGS coated liposomes as anticancer drug delivery vehicle in normal and MDR carcinoma.
Collapse
Affiliation(s)
- Balak Das Kurmi
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur-495009, India
| | - Shivani Rai Paliwal
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur-495009, India
| |
Collapse
|
98
|
Sarabu S, Kallakunta VR, Butreddy A, Janga KY, Ajjarapu S, Bandari S, Zhang F, Murthy SN, Repka MA. A One-Step Twin-Screw Melt Granulation with Gelucire 48/16 and Surface Adsorbent to Improve the Solubility of Poorly Soluble Drugs: Effect of Formulation Variables on Dissolution and Stability. AAPS PharmSciTech 2021; 22:79. [PMID: 33606113 DOI: 10.1208/s12249-021-01945-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/26/2021] [Indexed: 11/30/2022] Open
Abstract
Fenofibrate is an effective lipid-lowering drug; however, its poor solubility and high log p (5.2) result in insufficient absorption from the gastrointestinal tract, leading to poor bioavailability. In this study, a one-step continuous twin-screw melt granulation process was investigated to improve the solubility and dissolution of fenofibrate using Gelucire® 48/16 and Neusilin® US2 as the solubilizer and surface adsorbent, respectively. The formulations (granules) were prepared at different ratios of fenofibrate, Gelucire® 48/16, and Neusilin® US2 based on phase-solubility studies and characterized using dissolution, differential scanning calorimetry, powder X-ray diffraction, and scanning electron microscopy analyses and studies on flow properties. In the phase-solubility studies, a linear relation was observed between Gelucire® 48/16 concentration and the amount of fenofibrate dissolved. In contrast, the dissolution rate of the prepared formulations was independent of the fenofibrate: Gelucire® 48/16 ratio and dependent on the Neusilin® US2 levels in the formulation. Increasing Neusilin® US2 levels decreased the rate of dissolution of the granules but improved the stability of the tablets under storage at accelerated stability conditions. Interestingly, higher Gelucire® 48/16 levels in the granules resulted in tablets with a hard matrix, which slowed disintegration and dissolution. All formulations exhibited improved dissolution compared to pure fenofibrate.
Collapse
|
99
|
Almalki M, Lai EP, Ko R, Li C. Facile preparation of liposome-encapsulated Zn–DTPA from soy lecithin for decorporation of radioactive actinides. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diethylenetriaminepentaacetic acid (DTPA) is an attractive decorporation agent that can enhance the excretion of radioactive actinides such as plutonium, americium, and curium after a radiological incident. However, DTPA is excreted in a short period of time after administration. Several formulations have been developed to improve DTPA pharmacokinetics properties. In this project, liposomes were prepared facilely from soy lecithin as a nanocarrier for pulmonary delivery of Zn–DTPA. Lipid hydration, reverse phase evaporation, and mechanical sonication were three methods evaluated for the preparation of liposome-encapsulated Zn-DTPA (lipo-Zn-DTPA). Mechanical sonication was the method of choice due to simple apparatus and facile preparation. Lipo-Zn–DTPA exhibited a hydrodynamic diameter of 178 ± 2 nm and a spherical shape. The loading capacity and encapsulation efficiency of Zn–DTPA were 41 ± 5 mg/g and 10% ± 1%, respectively. Lyophilization of lipo-Zn–DTPA for extended storage did not affect the amount of encapsulated drug or damage the structure of liposomes. An in vivo cytotoxicity test confirmed no serious adverse effect of Zn–DTPA encapsulated lecithin liposomes in rats.
Collapse
Affiliation(s)
- Manal Almalki
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Edward P.C. Lai
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Raymond Ko
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada
| | - Chunsheng Li
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada
| |
Collapse
|
100
|
Design and manufacturing of monodisperse and malleable phytantriol-based cubosomes for drug delivery applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|