51
|
O'Brien Laramy MN, Luthra S, Brown MF, Bartlett DW. Delivering on the promise of protein degraders. Nat Rev Drug Discov 2023; 22:410-427. [PMID: 36810917 DOI: 10.1038/s41573-023-00652-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/23/2023]
Abstract
Over the past 3 years, the first bivalent protein degraders intentionally designed for targeted protein degradation (TPD) have advanced to clinical trials, with an initial focus on established targets. Most of these clinical candidates are designed for oral administration, and many discovery efforts appear to be similarly focused. As we look towards the future, we propose that an oral-centric discovery paradigm will overly constrain the chemical designs that are considered and limit the potential to drug novel targets. In this Perspective, we summarize the current state of the bivalent degrader modality and propose three categories of degrader designs, based on their likely route of administration and requirement for drug delivery technologies. We then describe a vision for how parenteral drug delivery, implemented early in research and supported by pharmacokinetic-pharmacodynamic modelling, can enable exploration of a broader drug design space, expand the scope of accessible targets and deliver on the promise of protein degraders as a therapeutic modality.
Collapse
Affiliation(s)
| | - Suman Luthra
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., Boston, MA, USA
| | - Matthew F Brown
- Discovery Sciences, Worldwide Research, Development, and Medical, Pfizer Inc., Groton, CT, USA
| | - Derek W Bartlett
- Pharmacokinetics, Dynamics, & Metabolism, Worldwide Research, Development, and Medical, Pfizer Inc., San Diego, CA, USA
| |
Collapse
|
52
|
Budiman A, Rusdin A, Aulifa DL. Current Techniques of Water Solubility Improvement for Antioxidant Compounds and Their Correlation with Its Activity: Molecular Pharmaceutics. Antioxidants (Basel) 2023; 12:378. [PMID: 36829937 PMCID: PMC9952677 DOI: 10.3390/antiox12020378] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The aqueous solubility of a drug is important in the oral formulation because the drug can be absorbed from intestinal sites after being dissolved in the gastrointestinal fluid, leading to its bioavailability. Almost 80% of active pharmaceutical ingredients are poorly water-soluble, including antioxidant compounds. This makes antioxidant activity inefficient in preventing disease, particularly for orally administered formulations. Although several investigations have been carried out to improve the solubility of antioxidant compounds, there is still limited research fully discussing the subject. Therefore, this study aimed to provide an overview and discussion of the issues related to the methods that have been used to improve the solubility and activity of antioxidant compounds. Articles were found using the keywords "antioxidant" and "water solubility improvement" in the Scopus, PubMed, and Google Scholar databases. The selected articles were published within the last five years to ensure all information was up-to-date with the same objectives. The most popular methods of the strategies employed were solid dispersion, co-amorphous, and nanoparticle drug delivery systems, which were used to enhance the solubility of antioxidant compounds. These investigations produced impressive results, with a detailed discussion of the mechanism of improvement in the solubility and antioxidant activity of the compounds developed. This review shows that the strategies used to increase the solubility of antioxidant compounds successfully improved their antioxidant activity with enhanced free radical scavenging abilities.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Agus Rusdin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Pharmacy, Poltekkes Kemenkes Bandung, Bandung 40161, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
53
|
Sentis MP, Aracil B, Lemahieu G, Bouzaid M, Brambilla G, Meunier G. Numerical prediction of long-term stability of liquid formulations determined by visual observation and static multiple light scattering. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
54
|
Rao MRP, Sonawane AS, Sapate SA, Mehta CH, Nayak U. Molecular modeling and in vitro studies to assess solubility enhancement of nevirapine by solid dispersion technique. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
55
|
Pisay M, Yarlagadda DL, Vullendula SKA, Bhat K, Kunnatur Balasundara K, Mutalik S. Effervescence-induced amorphous solid dispersions with improved drug solubility and dissolution. Pharm Dev Technol 2023; 28:176-189. [PMID: 36688412 DOI: 10.1080/10837450.2023.2172039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The current study aimed to investigate drug carrier miscibility in pharmaceutical solid dispersions (SD) and include the effervescent system, i.e. Effervescence-induced amorphous solid dispersions (ESD), to enhance the solubility of a poorly water-soluble Glibenclamide (GLB). Kollidon VA 64, PEG-3350, and Gelucire-50/13 were selected as the water-soluble carriers. The miscibility of the drug-carrier was predicted by molecular dynamics simulation, Hansen solubility parameters, Flory-Huggins theory, and Gibb's free energy. Solid dispersions were prepared by microwave, solvent evaporation, lyophilization, and Hot Melt Extrusion (HME) methods. The prepared solid dispersions were subjected to solubility, in-vitro dissolution, and other characterization studies. The in-silico and theoretical approach suggested that the selected polymers exhibited better miscibility with GLB. Solid-state characterizations like FTIR and 1H NMR proved the formation of intermolecular hydrogen bonding between the drug and carriers, which was comparatively higher in ESDs than SDs. DSC, PXRD, and microscopic examination of GLB and SDs confirmed the amorphization of GLB, which was higher in ESDs than SDs. Gibb's free energy concept suggested that the prepared solid dispersions will be stable at room temperature. Ex-vivo intestinal absorption study on optimized ESDs prepared with Kollidon VA64 using the HME technique exhibited a higher flux and permeability coefficient than the pure drug suggesting a better drug delivery. The drug-carrier miscibility was successfully studied in SDs of GLB. The addition of the effervescent agent further enhanced the solubility and dissolution of GLB. Additionally, this might exhibit a better bioavailability, confirmed by ex-vivo intestinal absorption study.
Collapse
Affiliation(s)
- Muralidhar Pisay
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Dani Lakshman Yarlagadda
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sai Krishna Anand Vullendula
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Krishnamurthy Bhat
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Koteshwara Kunnatur Balasundara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
56
|
Nyavanandi D, Narala S, Mandati P, Alzahrani A, Kolimi P, Almotairy A, Repka MA. Twin Screw Melt Granulation: Alternative Approach for Improving Solubility and Permeability of a Non-steroidal Anti-inflammatory Drug Ibuprofen. AAPS PharmSciTech 2023; 24:47. [PMID: 36703024 DOI: 10.1208/s12249-023-02512-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
The current research is focused on investigating the suitability of the twin screw melt granulation (TSMG) approach for improving the solubility of a non-steroidal anti-inflammatory (NSAIDs) drug (ibuprofen), by developing granules using lipid surfactants. The solubility of the drug within the solid lipid excipients (Gelucire® 48/16 and Gelucire® 50/13) was determined by differential scanning calorimetry (DSC). The formulations were developed for drug and lipid ratios of 1:1.5, 1:3, and 1:4.5 using Neusilin® US2 as a solid adsorbent carrier. The solid-state properties of the drug investigated using differential scanning calorimetry (DSC) have revealed the conversion of the drug to an amorphous form for 1:3 and 1:4.5 ratios of formulations confirmed by powder x-ray diffraction analysis (PXRD). Drug-excipient compatibility and formation of no interactions were characterized using Fourier transform infrared spectroscopy (FTIR). The granules with a 1:3 and 1:4.5 ratios of drug and lipid have improved drug dissolution and permeation, attributing to the formation of micellar emulsions. The stability of formulation with a 1:3 ratio of drug and lipid surfactant was preserved when stored in accelerated conditions. However, the formulation with a 1:4.5 ratio of drug and lipid failed to retain the amorphous state evidenced by the recrystallization of the drug. This shows the suitability of TSMG as a single-step continuous manufacturing process for developing melt granules to improve the solubility of poorly water-soluble drug substances.
Collapse
Affiliation(s)
- Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Ahmed Almotairy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA.,Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, AlMunawarah, Al Madinah, 30001, Saudi Arabia
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA. .,Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Jackson, MS, 38677, USA.
| |
Collapse
|
57
|
Nagar S, Radice C, Tuohy R, Stevens R, Bennyhoff D, Korzekwa K. The Rat Continuous Intestine Model Predicts the Impact of Particle Size and Transporters on the Oral Absorption of Glyburide. Mol Pharm 2023; 20:219-231. [PMID: 36541850 DOI: 10.1021/acs.molpharmaceut.2c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oral drug absorption is known to be impacted by the physicochemical properties of drugs, properties of oral formulations, and physiological characteristics of the intestine. The goal of the present study was to develop a mathematical model to predict the impact of particle size, feeding time, and intestinal transporter activity on oral absorption. A previously published rat continuous intestine absorption model was extended for solid drug absorption. The impact of active pharmaceutical ingredient particle size was evaluated with glyburide (GLY) as a model drug. Two particle size suspensions of glyburide were prepared with average particle sizes of 42.7 and 4.1 μm. Each suspension was dosed as a single oral gavage to male Sprague Dawley rats, and concentration-time (C-t) profiles of glyburide were measured with liquid chromatography coupled with tandem mass spectrometry. A continuous rat intestine absorption model was extended to include drug dissolution and was used to predict the absorption kinetics of GLY depending on particle size. Additional literature datasets of rat GLY formulations with particle sizes ranging from 0.25 to 4.0 μm were used for model predictions. The model predicted reasonably well the absorption profiles of GLY based on varying particle size and varying feeding time. The model predicted inhibition of intestinal uptake or efflux transporters depending on the datasets. The three datasets used formulations with different excipients, which may impact the transporter activity. Model simulations indicated that the model provides a facile framework to predict the impact of transporter inhibition on drug C-t profiles. Model simulations can also be conducted to evaluate the impact of an altered intestinal lumen environment. In conclusion, the rat continuous intestine absorption model may provide a useful tool to predict the impact of varying drug formulations on rat oral absorption profiles.
Collapse
Affiliation(s)
- Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania19140, United States
| | - Casey Radice
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania19140, United States
| | - Robert Tuohy
- Pace Analytical Life Sciences LLC, Norristown, Pennsylvania19401, United States
| | - Raymond Stevens
- Particle Solutions LLC, West Chester, Pennsylvania19382, United States
| | - Dale Bennyhoff
- Particle Solutions LLC, West Chester, Pennsylvania19382, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania19140, United States
| |
Collapse
|
58
|
Co-carrier-based solid dispersion of celecoxib improves dissolution rate and oral bioavailability in rats. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
59
|
Fabrication and characterization of orodispersible films loaded with solid dispersion to enhance Rosuvastatin calcium bioavailability. Saudi Pharm J 2023; 31:135-146. [PMID: 36685296 PMCID: PMC9845125 DOI: 10.1016/j.jsps.2022.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The present study was aimed to formulate and evaluate fast dissolving oral film of Rosuvastatin calcium to improve its bioavailability in comparison to typical solid oral dosage forms. The drug was formulated as solid dispersion with hydrophilic polymers and assessed for different constraints such as drug content, saturated solubility, and drug-polymer interaction. Best formula was selected and prepared in the form of orodispersible film. The films were developed by solvent casting method and examined for weight variations, drug content, folding endurance, pH, swelling profile, disintegration time, and in vitro dissolution. Further pharmacokinetic study was also performed on rabbit and compared with that of the marketed oral formulation. The drug and the polymers were found to be compatible with each other by FTIR study. Maximum solubility was found at drug polymer ratio of 1:4 and that was 54.53 ± 2.05 µg/mL. The disintegration time of the developed film was observed to be 10 ± 2.01 s, while release of the Rosuvastatin from the film was found to be 99.06 ± 0.40 in 10 min. Stability study shown that developed film was stable for three months. Further pharmacokinetic study revealed that developed orodispersible film had enhance oral bioavailability as compared to marketed product (Crestor® tablets). Conclusively, the study backs the development of a viable ODF of Rosuvastatin with better bioavailability.
Collapse
|
60
|
Superporous hydrogels based on blends of chitosan and polyvinyl alcohol as a carrier for enhanced gastric delivery of resveratrol. Saudi Pharm J 2023; 31:335-347. [PMID: 37026050 PMCID: PMC10071363 DOI: 10.1016/j.jsps.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Resveratrol exhibits a number of pharmacological properties, notably antioxidant, anti-inflammatory and anti-cancer activities which are beneficial for the treatment of gastric diseases. However, the poor aqueous solubility and rapid metabolism are the important limitations in clinical uses. Superporous hydrogels (SPHs) based on chitosan/PVA blends were developed as a carrier for resveratrol solid dispersion (Res_SD) to increase the solubility and achieve sustained drug release in the stomach. The SPHs were prepared by gas forming method using glyoxal and sodium bicarbonate as cross-linking agent and gas generator, respectively. The solid dispersions of resveratrol with PVP-K30 were prepared by solvent evaporation and incorporated into the superporous hydrogels. All formulations showed rapid absorption of simulated gastric fluid and reached the equilibrium swollen state within a few minutes. The water absorption ratio and mechanical strength of SPHs were predominantly affected by the chitosan content, with maximum values at 1400 % and 375 g/cm2, respectively. The Res_SD-loaded SPHs exhibited good floating properties and SEM micrographs revealed a highly interconnected pores structure with size around 150 μm. Resveratrol was efficiently entrapped within the SPHs at levels between 64 and 90 % w/w and efficient drug release was sustained over 12 h dependent on the concentration of chitosan and PVA. The Res_SD-loaded SPHs exhibited slightly less cytotoxic efffect towards AGS cells than pure resveratrol. Furthermore, the formulation showed similar anti-inflammatory activity against RAW 264.7 cells compared with indomethacin.
Collapse
|
61
|
Shukla E, Kara DD, Katikala T, Rathnanand M. Self-nanoemulsifying drug delivery systems (SNEDDS) of anti-cancer drugs: a multifaceted nanoplatform for the enhancement of oral bioavailability. Drug Dev Ind Pharm 2023; 49:1-16. [PMID: 36803270 DOI: 10.1080/03639045.2023.2182124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
OBJECTIVE A significant problem faced by the health care industry today is that though there are numerous drugs available to tackle diseases like cancer, their intrinsic properties make it difficult to be delivered to patients in a feasible manner. One of the key players that have helped researchers overcome poor solubility and permeability of drugs is Nanotechnology, this article further iterates on the same. SIGNIFICANCE Nanotechnology is used as an umbrella term in pharmaceutics and describes under it multiple technologies. Upcoming nanotechnology is a Self Nanoemulsifying System which is considered to be a futuristic delivery system both due to its scientific simplicity and relative ease of patient delivery. METHODS Self-Nano Emulsifying Drug Delivery Systems (SNEDDS) are homogenous lipidic concoctions containing the drug solubilized in the oil phase and surfactants. The choice of components depends on the physicochemical properties of the drugs, the solubilization capability of oils and the physiological fate of the drug. The article contains further details of various methodologies that have been adopted by scientists to formulate and optimize such systems in order to make anticancer drugs orally deliverable. RESULTS The results that have been generated by scientists across the globe have been summarized in the article and all of the data supports the claim that SNEDDS significantly enhance the solubility and bioavailability of hydrophobic anticancer drugs. CONCLUSIONS This article mainly provides the application of SNEDDS in cancer therapy and concludes to provide a step for the oral administration of several BCS class II and IV anticancer drugs.
Collapse
Affiliation(s)
- Eesha Shukla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Divya Dhatri Kara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Tanvi Katikala
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
62
|
Le HV, Le Cerf D. Colloidal Polyelectrolyte Complexes from Hyaluronic Acid: Preparation and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204283. [PMID: 36260830 DOI: 10.1002/smll.202204283] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Hyaluronic acid (HA) is a naturally occurring polysaccharide which has been extensively exploited in biomedical fields owing to its outstanding biocompatibility. Self-assembly of HA and polycations through electrostatic interactions can generate colloidal polyelectrolyte complexes (PECs), which can offer a wide range of applications while being relatively simple to prepare with rapid and "green" processes. The advantages of colloidal HA-based PECs stem from the combined benefits of nanomedicine, green chemistry, and the inherent properties of HA, namely high biocompatibility, biodegradability, and biological targeting capability. Accordingly, colloidal PECs from HA have received increasing attention in the recent years as high-performance materials for biomedical applications. Considering their potential, this review is aimed to provide a comprehensive understanding of colloidal PECs from HA in complex with polycations, from the most fundamental aspects of the preparation process to their various biomedical applications, notably as nanocarriers for delivering small molecule drugs, nucleic acids, peptides, proteins, and bioimaging agents or the construction of multifunctional platforms.
Collapse
Affiliation(s)
- Huu Van Le
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, Rouen, 76000, France
| | - Didier Le Cerf
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, Rouen, 76000, France
| |
Collapse
|
63
|
Development, Characterization and In Vitro Antimicrobial Evaluation of Novel Flavonoids Entrapped Micellar Topical Formulations of Neomycin Sulfate. J Pharm Sci 2022; 111:3287-3296. [PMID: 35977592 DOI: 10.1016/j.xphs.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 01/05/2023]
Abstract
Flavonoids are the secondary metabolites widely used in pharmaceutical industries due to their several health benefits. Quercetin and rutin, well known flavonoids possesses various pharmacological properties but the constraints of poor aqueous solubility and impermeability across cell membranes restricts their use in formulation development. Moreover, the rising problem of antimicrobial resistance has also caused a serious threat to human life, thus demanding the urgent need of developing more effective antimicrobial formulations. In view of this, the present research work is focused on utilizing the most feasible flavonoid-surfactant concentrations obtained from the already reported physico-chemical analysis in developing an improved neomycin topical formulation through drug combinatorial approach. The formulations were subjected for assessment of physical parameters such as determination of pH, viscosity and spreadability. The drug release profile of the formulations was studied through different mathematical models. After evaluation of all the parameters, two best formulations (NQ-T2 [HE] and NR-T1 [HE]) were selected for antimicrobial evaluation studies against different bacterial and fungal clinical isolates. Among the two formulations, NQ-T2 [HE] showed excellent antibacterial activity against the bacterial strains while NR-T1 [HE] also exhibited promising results when compared with the standard formulations. Overall, this study represents a possible solution to enhance the antimicrobial efficacy of neomycin formulations by combining them with flavonoids through micelles assisted drug combination approach.
Collapse
|
64
|
Gaber DA, Alnwiser MA, Alotaibi NL, Almutairi RA, Alsaeed SS, Abdoun SA, Alsubaiyel AM. Design and optimization of ganciclovir solid dispersion for improving its bioavailability. Drug Deliv 2022; 29:1836-1847. [PMID: 35674640 DOI: 10.1080/10717544.2022.2083723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Development of new approaches for oral delivery of an existing antiviral drug aimed to enhance its permeability and hence bioavailability. Ganciclovir (GC) is an antiviral drug that belongs to class III in biopharmaceutical classification. The encapsulation of poorly absorbed drugs within nanosized particles offers several characteristics to drug due to their acquired surface properties. In the following study, the solvent evaporation technique was used to incorporate GC, within elegant nanosize particles using cyclodextrin and shellac polymers for enhancing its permeability and release pattern. Formulation variables were optimized using 23 full factorial design. The prepared formulations were assessed for yield, particle size, content, and micromeritics behavior. The optimized formula (F6) was identified through differential scanning calorimetry and Fourier transform infrared. In vitro release and stability were also assessed. Pharmacokinetic parameters of optimized nano GC solid dispersion particles (NGCSD-F6) were finally evaluated. The optimized formula (F6) showed a mean particle size of 288.5 ± 20.7 nm, a zeta potential of about 23.87 ± 2.27, and drug content 95.77 ± 2.1%. The in vitro drug release pattern of F6 showed an initial burst release followed by a sustained release over the next 12 h. The optimized formula showed accepted stability upon storage at room and refrigerator temperatures for 6 months with good flowing properties (Carr's index = 18.28 ± 0.44). In vivo pharmacokinetic study in rabbits revealed 2.2 fold increases in the bioavailability of GC compared with commercial convention tablets. The study affords evidence for the success of the solid dispersion technique under specified conditions in improvement of bioavailability of GC.
Collapse
Affiliation(s)
- Dalia A Gaber
- Department of Pharmaceutics, College of Pharmacy, AL-Qassim University, Qassim, KSA.,Department of Quality Control & Quality Assurance, Holding Company for Biological Products and Vaccines, Cairo, Egypt
| | | | | | | | | | - Siham A Abdoun
- Department of Pharmaceutics, College of Pharmacy, AL-Qassim University, Qassim, KSA
| | - Amal M Alsubaiyel
- Department of Pharmaceutics, College of Pharmacy, AL-Qassim University, Qassim, KSA
| |
Collapse
|
65
|
Synergistic effects of curcumin and gamma-oryzanol solid dispersions ameliorate muscle atrophy by upregulating Nrf2 and IGF1/Insulin-Akt-mTOR activities in middle-aged rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
66
|
Junqueira LA, Tabriz AG, Rousseau F, Raposo NRB, Brandão MAF, Douroumis D. Development of printable inks for 3D printing of personalized dosage forms: Coupling of fused deposition modelling and jet dispensing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
67
|
Formulation Characterization and Pharmacokinetic Evaluation of Amorphous Solid Dispersions of Dasatinib. Pharmaceutics 2022; 14:pharmaceutics14112450. [PMID: 36432641 PMCID: PMC9698804 DOI: 10.3390/pharmaceutics14112450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to improve the physicochemical properties and oral bioavailability of dasatinib (DST) by the amorphous solid dispersion (ASD) approach using cellulose acetate butyrate (CAB) as a carrier. Various formulations of ASD (DST:CAB 1:1 to 1:5) were prepared by the solvent evaporation method. ASDs were characterized for physicochemical attributes, stability and pharmacokinetics. Scanning electron microscopy, Fourier transformed infrared, X-ray powder diffraction, and differential scanning calorimetry confirmed the transformation of the crystalline drug into amorphous phase. ASD formation resulted in a 3.7−4.9 fold increase in dissolution compared to DST or physical mixture. The ASDs formulation exhibited relative stability against transformation from the unstable amorphous phase to a stable crystalline phase that was indicated by spectral and X-ray powder diffraction data, and insignificant (p > 0.05) decrease in dissolution. Tmax, Cmax and AUC0-∞ of ASD were 4.3-fold faster and 2.0 and 1.5 fold higher than the corresponding physical mixture. In conclusion, the ASD of DST significantly improved dissolution and oral bioavailability which may be translated into a reduction in dose and adverse events.
Collapse
|
68
|
Kamal G, Abdullah S, Basingab F, Bani-Jaber A, Hamdan I. Curcumin-betaine solid dispersion for enhancing curcumin dissolution and potentiating pharmacological synergism in gastric cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
69
|
Oral drug delivery strategies for development of poorly water soluble drugs in paediatric patient population. Adv Drug Deliv Rev 2022; 190:114507. [PMID: 36049580 DOI: 10.1016/j.addr.2022.114507] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/14/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
Selecting the appropriate formulation and solubility-enabling technology for poorly water soluble drugs is an essential element in the development of formulations for paediatric patients. Different methodologies and structured strategies are available to select a suitable approach and guide formulation scientists for development of adult formulations. However, there is paucity of available literature for selection of technology and overcoming the challenges in paediatric formulation development. The need for flexible dosing, and the limited knowledge of the safety of many formulation excipients in paediatric subjects, impose significant constraints and in some instances require adaptation of the approaches taken to formulating these drugs for the adult population. Selection of the best drug delivery system for paediatrics requires an efficient, systematic approach that considers a drug's physical and chemical properties and the targeted patient population's requirements. This review is a step towards development of a strategy for the design of solubility enhancing paediatric formulations of highly insoluble drugs. The aim of this review is to provide an overview of different approaches and strategies to consider in order to assist development of paediatric formulation for poorly water-soluble drugs with the provision of examples of some marketed products. In addition, it provides recommendations to overcome the range of challenges posed by these strategies and adaptations of the adult approach/product presentation required to enable paediatric drug development and administration.
Collapse
|
70
|
Swain SS, Hussain T. Combined Bioinformatics and Combinatorial Chemistry Tools to Locate Drug-Able Anti-TB Phytochemicals: A Cost-Effective Platform for Natural Product-Based Drug Discovery. Chem Biodivers 2022; 19:e202200267. [PMID: 36307750 DOI: 10.1002/cbdv.202200267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
Based on extensive experimental studies, a huge number of phytochemicals showed potential activity against tuberculosis (TB) at a lower minimum inhibitory concentration (MIC) and fewer toxicity profiles. However, these promising drugs have not been able to convert from 'lead' to 'mainstream' due to inadequate drug-ability profiles. Thus, early drug-prospective analyses are required at the primary stage to accelerate natural-product-based drug discovery with limited resources and time. In the present study, we have selected seventy-three potential anti-TB phytochemicals (MIC value ≤10 μg/mL) and assessed the drug-ability profiles using bioinformatics and combinatorial chemistry tools, systematically. Primarily, the molecular docking study was done against two putative drug targets, catalase-peroxidase enzyme (katG) and RNA polymerase subunit-β (rpoB) of Mycobacterium tuberculosis (Mtb) using AutoDock 4.2 software. Further, assessed the drug-ability score from Molsoft, toxicity profiles from ProTox, pharmacokinetics from SwisADME, hierarchical cluster analysis (HCA) by ChemMine tools and frontier molecular orbitals (FMOs) with Avogadro and structural activity relationships (SAR) analysis with ChemDraw 18.0 software. Above analyses indicated that, lower MIC exhibited anti-TB phytochemicals, abietane, 12-demethylmulticaulin exhibited poor docking and drug-ability scores, while tiliacorinine, 2-nortiliacorinine showed higher binding energy and drug-ability profiles. Overall, tiliacorinine, 2-nortiliacorinine, 7α-acetoxy-6β-hydroxyroyleanone (AHR), (2S)-naringenin and isovachhalcone were found as the most active and drug-able anti-TB candidates from 73 candidates. Phytochemicals are always a vital source of mainstream drugs, but the MIC value of a phytochemical is not sufficient for it to be promoted. An ideal drug-ability profile is therefore essential for achieving clinical success, where advanced bioinformatics tools help to assess and analyse that profile. Additionally, several natural pharmacophores found in existing anti-TB drugs in SAR analyses also provide crucial information for developing potential anti-TB drug. As a conclusion, combined bioinformatics and combinatorial chemistry are the most effective strategies to locate potent-cum-drug-able candidates in the current drug-development module.
Collapse
Affiliation(s)
- Shasank S Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Center, Bhubaneswar, 751023, Odisha, India
| | - Tahziba Hussain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Center, Bhubaneswar, 751023, Odisha, India
| |
Collapse
|
71
|
Current Trends on Solid Dispersions: Past, Present, and Future. Adv Pharmacol Pharm Sci 2022; 2022:5916013. [PMID: 36317015 PMCID: PMC9617737 DOI: 10.1155/2022/5916013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022] Open
Abstract
Solid dispersions have achieved significant interest as an effective means of enhancing the dissolution rate and thus the bioavailability of a range of weakly water-soluble drugs. Solid dispersions of weakly water-soluble drugs with water-soluble carriers have lowered the frequency of these problems and improved dissolution. Solid dispersion is a solubilization technology emphasizing mainly on, drug-polymer two-component systems in which drug dispersion and its stabilization is the key to formulation development. Therefore, this technology is recognized as an exceptionally useful means of improving the dissolution properties of poorly water-soluble drugs and in the latest years, a big deal of understanding has been accumulated about solid dispersion, however, their commercial application is limited. In this review article, emphasis is placed on solubility, BCS classification, and carriers. Moreover, this article presents the diverse preparation techniques for solid dispersion and gathers some of the recent technological transfers. The different types of solid dispersions based on the carrier used and molecular arrangement were underlined. Additionally, it summarizes the mechanisms, the methods of preparing solid dispersions, and the marketed drugs that are available using solid dispersion approaches.
Collapse
|
72
|
Pisay M, Bhaskar KV, Mehta CH, Nayak UY, Koteshwara KB, Mutalik S. Drug-Carrier Miscibility in Solid Dispersions of Glibenclamide and a Novel Approach to Enhance Its Solubility Using an Effervescent Agent. AAPS PharmSciTech 2022; 23:284. [PMID: 36253571 DOI: 10.1208/s12249-022-02437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
The present research aims to investigate the miscibility, physical stability, solubility, and dissolution rate of a poorly water-soluble glibenclamide (GLB) in solid dispersions (SDs) with hydrophilic carriers like PEG-1500 and PEG-50 hydrogenated palm glycerides (Acconon). Mathematical theories such as Hansen solubility parameters, Flory Huggins theory, Gibbs free energy, and the in silico molecular dynamics simulation study approaches were used to predict the drug-carrier miscibility. To increase the solubility further, the effervescence technique was introduced to the conventional solid dispersions to prepare effervescent solid dispersions (ESD). Solid dispersions (SDs) were prepared by microwave, solvent evaporation, lyophilization, and hot melt extrusion (HME) techniques and tested for different characterization parameters. The theoretical and in silico parameters suggested that GLB would show good miscibility with the selected carriers under certain conditions. Intermolecular hydrogen bonding between the drug and carrier(s) was confirmed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. Solid-state characterizations like powder X-ray diffraction, differential scanning calorimetry, and microscopy confirm the amorphous nature of SDs. The addition of the effervescent agent improved the amorphous nature, due to which the solubility and drug release rate was increased. In vitro and ex vivo intestinal absorption studies showed improved flux and permeability than the pure drug, suggesting an enhanced drug delivery. The GLB solubility, dissolution, and stability were greatly enhanced by the SD and ESD technology.
Collapse
Affiliation(s)
- Muralidhar Pisay
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576106, India
| | - K Vijaya Bhaskar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576106, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576106, India
| | - Kunnatur Balasundara Koteshwara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576106, India.
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576106, India.
| |
Collapse
|
73
|
Nano-Dry-Melting: A Novel Technology for Manufacturing of Pharmaceutical Amorphous Solid Dispersions. Pharmaceutics 2022; 14:pharmaceutics14102145. [PMID: 36297580 PMCID: PMC9608596 DOI: 10.3390/pharmaceutics14102145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Amorphous solid dispersions (ASD) are one of the most prominent formulation approaches to overcome bioavailability issues that are often presented by new poorly soluble drug candidates. State-of-the art manufacturing techniques include hot melt extrusion and solvent-based methods like spray drying. The high thermal and mechanical shear stress during hot melt extrusion, or the use of an organic solvent during solvent-based methods, are examples of clear drawbacks for those methods, limiting their applicability for certain systems. In this work a novel process technology is introduced, called Nano-Dry-Melting (NDM), which can provide an alternative option for ASD manufacturing. NDM consists of a comminution step in which the drug is ground to nanosize and a drying step provides a complete amorphization of the system at temperatures below the melting point. Two drug–polymer systems were prepared using NDM with a wet media mill and a spray dryer and analyzed regarding their degree of crystallinity using XRD analysis. Feasibility studies were performed with indomethacin and PVP. Furthermore, a “proof-of-concept” study was conducted with niclosamide. The experiments successfully led to amorphous samples at temperatures of about 50 K below the melting point within seconds of heat exposition. With this novel, solvent-free and therefore “green” production technology it is feasible to manufacture ASDs even with those drug candidates that cannot be processed by conventional process technologies.
Collapse
|
74
|
Merritt JC, Richbart SD, Moles EG, Cox AJ, Brown KC, Miles SL, Finch PT, Hess JA, Tirona MT, Valentovic MA, Dasgupta P. Anti-cancer activity of sustained release capsaicin formulations. Pharmacol Ther 2022; 238:108177. [PMID: 35351463 PMCID: PMC9510151 DOI: 10.1016/j.pharmthera.2022.108177] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Capsaicin (trans-8-methyl-N-vanillyl-6-noneamide) is a hydrophobic, lipophilic vanilloid phytochemical abundantly found in chili peppers and pepper extracts. Several convergent studies show that capsaicin displays robust cancer activity, suppressing the growth, angiogenesis and metastasis of several human cancers. Despite its potent cancer-suppressing activity, the clinical applications of capsaicin as a viable anti-cancer drug have remained problematic due to its poor bioavailability and aqueous solubility properties. In addition, the administration of capsaicin is associated with adverse side effects like gastrointestinal cramps, stomach pain, nausea and diarrhea and vomiting. All these hurdles may be circumvented by encapsulation of capsaicin in sustained release drug delivery systems. Most of the capsaicin-based the sustained release drugs have been tested for their pain-relieving activity. Only a few of these formulations have been investigated as anti-cancer agents. The present review describes the physicochemical properties, bioavailability, and anti-cancer activity of capsaicin-sustained release agents. The asset of such continuous release capsaicin formulations is that they display better solubility, stability, bioavailability, and growth-suppressive activity than the free drug. The encapsulation of capsaicin in sustained release carriers minimizes the adverse side effects of capsaicin. In summary, these capsaicin-based sustained release drug delivery systems have the potential to function as novel chemotherapies, unique diagnostic imaging probes and innovative chemosensitization agents in human cancers.
Collapse
Affiliation(s)
- Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Emily G Moles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Ashley J Cox
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Paul T Finch
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Joshua A Hess
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Maria T Tirona
- Department of Hematology-Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Monica A Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States.
| |
Collapse
|
75
|
Sabouri S, Shayanfar A. Effects of Surfactant and Polymer on Thermodynamic Solubility and Solution Stability of Carbamazepine–Cinnamic Acid Cocrystal. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
76
|
Development of a multiparticulate drug delivery system for in situ amorphisation. Eur J Pharm Biopharm 2022; 180:170-180. [PMID: 36191869 DOI: 10.1016/j.ejpb.2022.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 11/23/2022]
Abstract
In the current study, the concept of multiparticulate drug delivery systems (MDDS) was applied to tablets intended for the amorphisation of supersaturated granular ASDs in situ, i.e. amorphisation by microwave irradiation within the final dosage form. The MDDS concept was hypothesised to ensure geometric and structural stability of the dosage form and to improve the in vitro disintegration and dissolution characteristics. Granules were prepared in two sizes (small and large) containing the crystalline drug celecoxib (CCX) and polyvinylpyrrolidone/vinyl acetate copolymer (PVP/VA) at a 50 % w/w drug load as well as sodium dihydrogen phosphate monohydrate as the microwave absorbing excipient. The granules were subsequently embedded in an extra-granular tablet phase composed of either the filler microcrystalline cellulose (MCC) or mannitol (MAN), as well as the disintegrant crospovidone and the lubricant magnesium stearate. The tensile strength and disintegration time were investigated prior to and after 10 min of microwave irradiation (800 and 1000 W) and the formed ASDs were characterised by X-ray powder diffraction and modulated differential scanning calorimetry. Additionally, the internal structure was elucidated by X-ray micro-Computed Tomography (XµCT) and, finally, the dissolution performance of selected tablets was investigated. The MDDS tablets displayed no geometrical changes after microwave irradiation, however, the tensile strength and disintegration time increased. Complete amorphisation of CCX was achieved only for the MCC-based tablets at a power input of 1000 W, while MAN-based tablets displayed partial amorphisation independent of power input. The complete amorphisation of CCX was associated with the fusion of individual ASD granules within the tablets, which impacted the subsequent disintegration and dissolution performance. For these tablets, supersaturation was only observed after 60 min. On the other hand, the partially amorphised MDDS tablets displayed complete disintegration during the dissolution experiments, resulting in a fast onset of supersaturation within 5 min and an approx. 3.5-fold degree of supersaturation within the experimental timeframe (3 h). Overall, the MDDS concept was shown to potentially be a feasible dosage form for in situ amorphisation, however, there is still room for improvement to obtain a fully amorphous and disintegrating system.
Collapse
|
77
|
Enhanced bioavailability and hepatoprotective effect of silymarin by preparing silymarin-loaded solid dispersion formulation using freeze-drying method. Arch Pharm Res 2022; 45:743-760. [PMID: 36178580 DOI: 10.1007/s12272-022-01407-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
This study aimed to develop a solid dispersion formulation of silymarin (Silymarin-SD) using freeze-drying method to enhance its oral bioavailability (BA) by inhibiting the intestinal first-pass effect and increasing its solubility and permeability. Silymarin-SD formulation (i.e., silymarin:tween 80:hydroxypropyl cellulose (HPC) = 1:1:3 (w/w/w) significantly increased silymarin permeability in the duodenum, jejunum, and ileum by decreasing the efflux ratio of silymarin and by inhibiting silymarin-glucuronidation activity, in which tween 80 played a crucial role. As a result, orally administered Silymarin-SD formulation increased plasma silymarin concentrations and decreased silymarin-glucuronide in rats compared with silymarin alone and silymmarin:D-α-tocopherol polyethylene glycol 1000 succinate (1:1, w/w) formulation. In addition to modulating intestinal first-pass effect, Silymarin-SD formulation showed a significantly higher cumulative dissolution for 120 min compared with that of silymarin from the physical mixture (PM) of the same composition as Silymarin-SD and silymarin alone; the relative BA of silymarin-SD increased to 215% and 589% compared with silymarin-PM and silymarin alone, respectively. This could be attributed to the amorphous status of the Silymarin-SD formulation without chemical interaction with excipients, such as tween 80 and HPC. Moreover, the hepatoprotective effect of Silymarin-SD in acetaminophen-induced acute hepatotoxicity, as estimated from the alanine aminotransferase and aspartate aminotransferase values, was superior to that of silymarin. In conclusion, the increase in the dissolution rate and intestinal permeability of silymarin, and the inhibition of silymarin-glucuronidation by the Silymarin-SD formulation, prepared using tween 80 and HPC, increased its plasma concentration and resulted in a superior hepatoprotective effect compared to silymarin.
Collapse
|
78
|
Emam MF, El-Ashmawy AA, Mursi NM, Emara LH. Optimization of Meloxicam Solid Dispersion Formulations for Dissolution Enhancement and Storage Stability Using 3 3 Full Factorial Design Based on Response Surface Methodology. AAPS PharmSciTech 2022; 23:248. [PMID: 36056201 DOI: 10.1208/s12249-022-02394-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
This study aimed to formulate and optimize solid-dispersion of meloxicam (MX) employing response-surface-methodology (RSM). RSM allowed identification of the main effects and interactions between studied factors on MX dissolution and acceleration of the optimization process. 33 full factorial design with 27 different formulations was proposed. Effects of drug loading percentage (A), carriers' ratio (B), method of preparation (C), and their interactions on percent MX dissolved after 10 and 30 min (Q10min & Q30min) from fresh and stored samples were studied in distilled water. The considered levels were 2.5%, 5.0%, and 7.5% (factor A), three ratios of Soluplus®/Poloxamer-407 (factor B). Physical mixture (PM), fusion method (FM), and hot-melt-extrusion (HME) were considered factor (C). Stability studies were carried out for 3 months under stress conditions. The proposed optimization design was validated by 3-extra checkpoints formulations. The optimized formulation was selected via numerical optimization and investigated by DSC, XRD, PLM, and in vitro dissolution study. Results showed that HME technique gave the highest MX dissolution rate compared to other techniques (FM & PM). At constant level of factor (C), the amount of MX dissolved increased by decreasing MX loading and increasing Soluplus in carriers' ratio. Actual responses of the optimized formulation were in close consistency with predicted data. Amorphous form of MX in the optimized formulation was proved by DSC, XRD, and PLM. Selected factors and their levels of the optimization design were significantly valuable for demonstrating and adapting the expected formulation characteristics for rapid dissolution of MX (Q10min= 89.09%) from fresh and stored samples.
Collapse
Affiliation(s)
- Maha F Emam
- Industrial Pharmacy Laboratory, Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (Affiliation ID: 10014618), 33 EL Bohouth St. (former EL Tahrir St.), Dokki, P.O.12622, Giza, Egypt.
| | - Ahmed A El-Ashmawy
- Industrial Pharmacy Laboratory, Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (Affiliation ID: 10014618), 33 EL Bohouth St. (former EL Tahrir St.), Dokki, P.O.12622, Giza, Egypt
| | - Nadia M Mursi
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Laila H Emara
- Industrial Pharmacy Laboratory, Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (Affiliation ID: 10014618), 33 EL Bohouth St. (former EL Tahrir St.), Dokki, P.O.12622, Giza, Egypt
| |
Collapse
|
79
|
Supercritical CO2 Assisted Electrospray to Produce Poly(lactic-co-glycolic Acid) Nanoparticles. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6050066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work proposes an improvement of the traditional electrospraying process, in which supercritical carbon dioxide (SC-CO2) is used to produce poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The experiments were performed at different PLGA concentrations (1, 3 and 5% w/w), applied voltages (10 and 30 kV) and operating pressures (80, 120 and 140 bar). It was found that working at 140 bar and 30 kV, spherical nanoparticles, with mean diameters of 101 ± 13 nm and 151 ± 45 nm, were obtained, when solutions at 1% w/w and 3% w/w PLGA were electrosprayed, respectively. Increasing PLGA concentration up to 5% w/w, a mixture of fibers and particles was observed, indicating the transition to the electrospinning regime.
Collapse
|
80
|
Holm TP, Knopp MM, Berthelsen R, Löbmann K. Supersaturated amorphous solid dispersions of celecoxib prepared by in situ microwave irradiation. Int J Pharm 2022; 626:122115. [PMID: 35985526 DOI: 10.1016/j.ijpharm.2022.122115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022]
Abstract
This study investigated the ability of in situ amorphization using microwave irradiation in order to prepare highly supersaturated ASDs, i.e. ASDs with drug loads higher than the saturation solubility in the polymer at ambient temperature. For this purpose, compacts containing the crystalline drug celecoxib (CCX) and polyvinylpyrrolidone (PVP), polyvinylpyrrolidone-vinyl acetate copolymer (PVP/VA), or polyvinyl acetate (PVAc), were prepared at drug loads between 30-90 % w/w. Sodium dihydrogen phosphate (NaH2PO4) monohydrate was included in all compacts, as a source of water, to facilitate the dielectric heating of the compacts upon dehydration during microwave irradiation. After processing, the samples were analysed towards their solid state using X-ray powder diffraction (XRPD) and modulated differential scanning calorimetry (mDSC). Complete amorphisation of CCX was achieved across all the investigated polymers and with a maximal drug load of 90, 80, and 50 % w/w in PVP, PVP/VA, and PVAc, respectively. These drug loads corresponded to a 2.3-, 2.4-, and 10.0-fold supersaturation in the investigated polymers at ambient temperature. However, dissolution experiments with the in situ prepared ASDs in fasted state simulated intestinal fluid (FaSSIF), showed a lower initial drug release (0-2 hours) compared to equivalent physical mixtures of crystalline CCX and polymers or crystalline CCX alone. The lower drug release rate was explained by the fusion of individual drug and polymer particles during microwave irradiation and, subsequently, a lack of disintegration of the monolithic ASDs. Nevertheless, supersaturation of CCX in FaSSIF was achieved with the in situ amorphised ASDs with PVP and PVP/VA, albeit only after 3-24 h. Overall, the present study confirmed that it is feasible to prepare supersaturated ASDs in situ. However, in the current experimental setup, the monolithic nature of the resulting ASDs is considered a limiting factor in the practical applicability of this preparation method, due to limited disintegration and the associated negative effect on the drug release.
Collapse
Affiliation(s)
- Tobias Palle Holm
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Ragna Berthelsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Korbinian Löbmann
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
81
|
Liu Y, Xu Z, Qiao M, Cai H, Zhu Z. Metal-based nano-delivery platform for treating bone disease and regeneration. Front Chem 2022; 10:955993. [PMID: 36017162 PMCID: PMC9395639 DOI: 10.3389/fchem.2022.955993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Owing to their excellent characteristics, such as large specific surface area, favorable biosafety, and versatile application, nanomaterials have attracted significant attention in biomedical applications. Among them, metal-based nanomaterials containing various metal elements exhibit significant bone tissue regeneration potential, unique antibacterial properties, and advanced drug delivery functions, thus becoming crucial development platforms for bone tissue engineering and drug therapy for orthopedic diseases. Herein, metal-based drug-loaded nanomaterial platforms are classified and introduced, and the achievable drug-loading methods are comprehensively generalized. Furthermore, their applications in bone tissue engineering, osteoarthritis, orthopedic implant infection, bone tumor, and joint lubrication are reviewed in detail. Finally, the merits and demerits of the current metal-based drug-loaded nanomaterial platforms are critically discussed, and the challenges faced to realize their future applications are summarized.
Collapse
Affiliation(s)
| | | | | | - He Cai
- *Correspondence: He Cai, ; Zhou Zhu,
| | - Zhou Zhu
- *Correspondence: He Cai, ; Zhou Zhu,
| |
Collapse
|
82
|
Proximate, Elemental, and Functional Properties of Novel Solid Dispersions of Moringa oleifera Leaf Powder. Molecules 2022; 27:molecules27154935. [PMID: 35956885 PMCID: PMC9370398 DOI: 10.3390/molecules27154935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Moringa oleifera leaf powder (MOLP) is a rich source of antioxidants, protein, minerals, vitamins, and various phytochemicals and has been used to combat malnutrition in many countries. However, despite its many benefits, MOLP has low a solubility in water, necessitating the development of ways to address this issue. To improve the solubility of MOLP, solid-dispersed Moringa oleifera leaf powders (SDMOLPs) have been developed through freeze-drying, melting, microwave irradiation, and solvent evaporation methods using polyethylene glycols (PEG4000 and PEG6000) (1:1) as hydrophilic carriers. The solid dispersions were evaluated for their proximate composition using standard analytical procedures. Elemental composition was characterized using scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). Water absorption capacity (WAC) and water-solubility were further evaluated as functional properties. Proximate composition revealed that MOLP and SDMOLPs were rich in protein, energy, carbohydrate, ash, and fat contents. MOLP solid dispersions are a major source of minerals (Ca, Mg, Cu, and Zn), and can be used to alleviate many mineral deficiencies. All solid dispersions had significantly higher (p < 0.05) solubilities (ranging from 54 to 64%) and WAC (ranging from 468.86 to 686.37%), relative to that of pure MOLP. The increased solubility of SDMOLPs may be attributed to the hydrogen bonds and intermolecular interactions between MOLP and the hydrophilic carriers. The results indicate that the solid dispersion technique can be successfully employed to improve the solubility of MOLP. And the solid-dispersed MOLPs with enhanced functional properties may be useful as functional ingredients in foods and beverages, dietary supplements, or nutraceutical formulations.
Collapse
|
83
|
Oxidative Degradation in Pharmaceuticals: Mechanism and Stabilization of a Spray-Dried Amorphous Drug- A Case Study. J Pharm Biomed Anal 2022; 220:114962. [DOI: 10.1016/j.jpba.2022.114962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/16/2022] [Accepted: 07/23/2022] [Indexed: 11/21/2022]
|
84
|
Nano- and Crystal Engineering Approaches in the Development of Therapeutic Agents for Neoplastic Diseases. CRYSTALS 2022. [DOI: 10.3390/cryst12070926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is a leading cause of death worldwide. It is a global quandary that requires the administration of many different active pharmaceutical ingredients (APIs) with different characteristics. As is the case with many APIs, cancer treatments exhibit poor aqueous solubility which can lead to low drug absorption, increased doses, and subsequently poor bioavailability and the occurrence of more adverse events. Several strategies have been envisaged to overcome this drawback, specifically for the treatment of neoplastic diseases. These include crystal engineering, in which new crystal structures are formed to improve drug physicochemical properties, and/or nanoengineering in which the reduction in particle size of the pristine crystal results in much improved physicochemical properties. Co-crystals, which are supramolecular complexes that comprise of an API and a co-crystal former (CCF) held together by non-covalent interactions in crystal lattice, have been developed to improve the performance of some anti-cancer drugs. Similarly, nanosizing through the formation of nanocrystals and, in some cases, the use of both crystal and nanoengineering to obtain nano co-crystals (NCC) have been used to increase the solubility as well as overall performance of many anticancer drugs. The formulation process of both micron and sub-micron crystalline formulations for the treatment of cancers makes use of relatively simple techniques and minimal amounts of excipients aside from stabilizers and co-formers. The flexibility of these crystalline formulations with regards to routes of administration and ability to target neoplastic tissue makes them ideal strategies for effectiveness of cancer treatments. In this review, we describe the use of crystalline formulations for the treatment of various neoplastic diseases. In addition, this review attempts to highlight the gaps in the current translation of these potential treatments into authorized medicines for use in clinical practice.
Collapse
|
85
|
Školáková T, Smržová D, Pekárek T, Lhotka M, Školáková A, Klimša V, Kadeřábková A, Zámostný P. Investigation of tadalafil molecular arrangement in solid dispersions using inverse gas chromatography and Raman mapping. Int J Pharm 2022; 623:121955. [PMID: 35753537 DOI: 10.1016/j.ijpharm.2022.121955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the molecular structures of tadalafil solid dispersions prepared by different techniques and further to relate them to surface free energy information indicating the final amorphousness of the product. Thus, we tried to complement the existing knowledge of solid dispersion formation. Poorly water-soluble tadalafil was combined with different polymers, i.e. Kollidon® 12 PF, Kollidon® VA 64 and Soluplus®, to form model systems. To assess the extent of drug-polymer miscibility, we studied model solid dispersion surface energy using inverse gas chromatography and phase micro-structure using confocal Raman microscopy. The selection of the preparation method was found to play a crucial role in the molecular arrangement of the incorporated drug and the polymer in resulting solid dispersion. Our results showed that a lower surface free energy indicated the formation of a more homogeneous solid dispersion. Conversely, a higher surface free energy corresponded to the heterogeneous systems containing tadalafil amorphous clusters that were captured by Raman mapping. Thus, we successfully introduced a novel evaluation approach of the drug molecular arrangement in solid dispersions that is especially useful for examining the miscibility of the components when the conventional characterizing techniques are inconclusive or yield variable results.
Collapse
Affiliation(s)
- Tereza Školáková
- Department of Organic Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Dominika Smržová
- Department of Organic Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Tomáš Pekárek
- Zentiva, k.s., U Kabelovny 130, 102 37 Prague 10, Czech Republic
| | - Miloslav Lhotka
- Department of Inorganic Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Andrea Školáková
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vojtěch Klimša
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Alena Kadeřábková
- Department of Polymers, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Petr Zámostný
- Department of Organic Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
86
|
Mohana M, Vijayalakshmi S. Development and characterization of solid dispersion-based orodispersible tablets of cilnidipine. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00259-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cilnidipine, a calcium channel blocker, is the first-line drug for hypertension and belongs to Biopharmaceutics Classification System II. To mitigate its extensive first-pass metabolism and improve patient compliance, the present study was performed to develop and characterize solid dispersion-based orodispersible tablets.
Results
The phase solubility study with polyvinyl pyrrolidone 15% has shown a 140-fold increase in solubility. X-ray diffraction and differential scanning calorimetry studies emphasized the conversion of solid dispersion from crystalline to amorphous state. Solid dispersion 3 resulted in 142-fold improvement in solubility, 96% of drug content, and percentage drug release was 71.9% at 60 min. F11 containing crospovidone (10 mg) and sodium starch glycolate (16 mg) in combination at higher concentration as super-disintegrants showed the least disintegration time of 26.6 s. In vitro dissolution results are subjected to statistical analysis and found that the formulation (F11) has shown an increased dissolution rate (88.62% at 10 min), compared to the marketed formulation (83% at 60 min).
Conclusions
Solid dispersion prepared by a solvent evaporation method using PVP as a carrier can be utilized for enhancing the solubility of cilnidipine. The incorporation of super-disintegrants in combination improves the dissolution rate of orodispersible tablets. Further, the study can be substantiated by performing stability and in vivo studies in the future.
Graphical Abstract
Collapse
|
87
|
Ahmad MZ, Ahmad J, Alasmary MY, Akhter S, Aslam M, Pathak K, Jamil P, Abdullah M. Nanoemulgel as an approach to improve the biopharmaceutical performance of lipophilic drugs: Contemporary research and application. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
88
|
Patel K, Shah S, Patel J. Solid dispersion technology as a formulation strategy for the fabrication of modified release dosage forms: A comprehensive review. Daru 2022; 30:165-189. [PMID: 35437630 PMCID: PMC9114203 DOI: 10.1007/s40199-022-00440-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Solubility limited bioavailability is one of the crucial parameters that affect the formulation development of the new chemical entities. Thus the major constraint in the pharmaceutical product development is the suitable solubility enhancement technique for Active Pharmaceutical Ingredient. Solid dispersion (SD) is an established and preferred method for improving the solubility which ultimately may be helpful to enhance bioavailability. For long period of time Amorphous solid dispersion (ASD) have been preferred for improving solubility, but since last two decades, ASD approach have been combined with different modified release approaches to improvise the stability and site specificity of SD to grasp a hold over the specific advantages associated with such dosage forms. It is an established fact now that the SD technique not only improves solubility limited bioavailability, but it may be combined with other approaches to modify the drug release profile from the formulation as per the requirement based on the apt selection of SD carriers and suitable technology. This review covers the comprehensive overview of all such formulations where SD technology is used to serve dual purpose rather than only the sole purpose of solubility enhancement. The SD approach has been successfully implemented for some of the poorly soluble herbal drugs and still there is a vast scope of advancement in that area. The current review will provide a broad outcome in the area of SD technology for modified release formulations along with the description of current status and future prospective of SD. The SD formed by dispersing drug within the conventional carrier to form ASD increases solubility, dissolution rate and bioavailability; whereas fourth generation hydrophobic carriers provide added advantage of controlled release (CR) or sustained release (SR) profile along with enhanced stability of SD. On the other frontier, pH dependant carriers enable the SD to achieve site specificity or delayed release (DR) profile.
Collapse
Affiliation(s)
- Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India.
- Gujarat Technological University, Ahmedabad, 382424, India.
| | - Shreeraj Shah
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India
| | - Jaymin Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India
| |
Collapse
|
89
|
Kyeremateng SO, Voges K, Dohrn S, Sobich E, Lander U, Weber S, Gessner D, Evans RC, Degenhardt M. A Hot-Melt Extrusion Risk Assessment Classification System for Amorphous Solid Dispersion Formulation Development. Pharmaceutics 2022; 14:pharmaceutics14051044. [PMID: 35631630 PMCID: PMC9147278 DOI: 10.3390/pharmaceutics14051044] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
Several literature publications have described the potential application of active pharmaceutical ingredient (API)–polymer phase diagrams to identify appropriate temperature ranges for processing amorphous solid dispersion (ASD) formulations via the hot-melt extrusion (HME) technique. However, systematic investigations and reliable applications of the phase diagram as a risk assessment tool for HME are non-existent. Accordingly, within AbbVie, an HME risk classification system (HCS) based on API–polymer phase diagrams has been developed as a material-sparing tool for the early risk assessment of especially high melting temperature APIs, which are typically considered unsuitable for HME. The essence of the HCS is to provide an API risk categorization framework for the development of ASDs via the HME process. The proposed classification system is based on the recognition that the manufacture of crystal-free ASD using the HME process fundamentally depends on the ability of the melt temperature to reach the API’s thermodynamic solubility temperature or above. Furthermore, we explored the API–polymer phase diagram as a simple tool for process design space selection pertaining to API or polymer thermal degradation regions and glass transition temperature-related dissolution kinetics limitations. Application of the HCS was demonstrated via HME experiments with two high melting temperature APIs, sulfamerazine and telmisartan, with the polymers Copovidone and Soluplus. Analysis of the resulting ASDs in terms of the residual crystallinity and degradation showed excellent agreement with the preassigned HCS class. Within AbbVie, the HCS concept has been successfully applied to more than 60 different APIs over the last 8 years as a robust validated risk assessment and quality-by-design (QbD) tool for the development of HME ASDs.
Collapse
|
90
|
Alwossabi AM, Elamin ES, Ahmed EM, Abdelrahman M. Solubility enhancement of some poorly soluble drugs by solid dispersion using Ziziphus spina-christi gum polymer. Saudi Pharm J 2022; 30:711-725. [PMID: 35812143 PMCID: PMC9257872 DOI: 10.1016/j.jsps.2022.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022] Open
Abstract
A high percentage of marketed drugs suffer from poor water solubility and require an appropriate technique to increase their solubility. This study aims to compare physically modified and unmodified gum polymers extracted from Ziziphus spina-christi fruits as solid dispersion carriers for some drugs. Taguchi Orthogonal Design (L9) was chosen for the screening and optimization of the solid dispersions. The design has four factors: type of drug, type of polymer, type of solid dispersion process, and drug to polymer ratio. Each factor was varied in three stages and the total number of runs was 9 in triplicate. The polymer was physically modified by heating (M1ZG) or freeze-drying (M2ZG). The drugs were selected according to the biopharmaceutical classification system, namely loratadine and glimepiride (class II) and furosemide (class IV). Drugs were dispersed in the polymer in three different ratios 1: 1, 1: 2, and 1: 3. Solid dispersions were made by co-grinding, solvent evaporation, and kneading methods. Modified and unmodified polymers were characterized in terms of their organoleptic properties, solubility, powder flowability, density, viscosity, swelling index, and water retention capacity. Solid dispersions were characterized in terms of percentage practical yield, solubility improvement, and drug compatibility. The results showed that the organoleptic properties of polymers were not changed by the gum modification. The swelling index of the polymer was doubled in M1ZG. The viscosity and water retention capacity of the polymer was increased in both modified polymers. All solid dispersions showed a high practical percentage yield of more than 93%, the higher values being more associated with loratadine and furosemide than with glimepiride. The improvement in solubility was observed in all solid dispersions prepared, the values varying with the pH of the medium and the method of modification. The FTIR results indicated that there was no chemical interaction between these drugs and the polymer used. Analysis of the results according to the Taguchi orthogonal design indicated 51 folds aqueous solubility enhancement for loratadine using M2ZG polymer at a ratio of 1: 3 of Drug: polymer. This study showed the possibility of improving the solubility of other poorly soluble drugs.
Collapse
|
91
|
Studies on Preformulation and Formulation of JIN-001 Liquisolid Tablet with Enhanced Solubility. Pharmaceuticals (Basel) 2022; 15:ph15040412. [PMID: 35455409 PMCID: PMC9030333 DOI: 10.3390/ph15040412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
This study aimed to develop a heat shock protein 90 (Hsp90) inhibitor liquisolid tablet with improved solubility to overcome low bioavailability issues. As an active pharmaceutical ingredient (API), JIN-001, a novel Hsp90 inhibitor, was reported to have substantial in vitro antiproliferative and in vivo antitumor activity; however, JIN-001 was a crystalline solid with very low solubility in an aqueous solution, and therefore, Capryol 90, which has excellent solubilization ability, was selected as an optimal liquid vehicle based on solubility studies. JIN-001 liquisolid (JLS) powder was successfully prepared by dissolving JIN-001 in Capryol 90 and mixing colloidal silicon dioxide (CSD) used as an oil adsorption agent. The prepared JLS was confirmed to be amorphous. Based on the result of the solubility test of JLS, compared to JIN-001, the solubility of the former was significantly improved in all solvents regardless of pH. JLS tablets were prepared through wet granulation using JIN-001 and stable excipients based on the compatibility test. The developed JLS tablet significantly increased the drug release rate in all tested solutions; however, the liquisolid method had no significant effect on bioavailability in the pharmacokinetics study in beagle dogs. In conclusion, the liquisolid system influenced the solubility and dissolution rate of JIN-001.
Collapse
|
92
|
Hatziagapiou K, Bethanis K, Koniari E, Christoforides E, Nikola O, Andreou A, Mantzou A, Chrousos GP, Kanaka-Gantenbein C, Lambrou GI. Biophysical Studies and In Vitro Effects of Tumor Cell Lines of Cannabidiol and Its Cyclodextrin Inclusion Complexes. Pharmaceutics 2022; 14:pharmaceutics14040706. [PMID: 35456540 PMCID: PMC9027293 DOI: 10.3390/pharmaceutics14040706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023] Open
Abstract
Phytocannabinoids possess anticancer properties, as established in vitro and in vivo. However, they are characterized by high lipophilicity. To improve the properties of cannabidiol (CBD), such as solubility, stability, and bioavailability, CBD inclusion complexes with cyclodextrins (CDs) might be employed, offering targeted, faster, and prolonged CBD release. The aim of the present study is to investigate the in vitro effects of CBD and its inclusion complexes in randomly methylated β-CD (RM-β-CD) and 2-hyroxypropyl-β-CD (HP-β-CD). The enhanced solubility of CBD upon complexation with CDs was examined by phase solubility study, and the structure of the inclusion complexes of CBD in 2,6-di-O-methyl-β-CD (DM-β-CD) and 2,3,6-tri-O-methyl-β-CD (TM-β-CD) was determined by X-ray crystallography. The structural investigation was complemented by molecular dynamics simulations. The cytotoxicity of CBD and its complexes with RM-β-CD and HP-β-CD was tested on two cell lines, the A172 glioblastoma and TE671 rhabdomyosarcoma cell lines. Methylated β-CDs exhibited the best inclusion ability for CBD. A dose-dependent effect of CBD on both cancer cell lines and improved efficacy of the CBD–CDs complexes were verified. Thus, cannabinoids may be considered in future clinical trials beyond their palliative use as possible inhibitors of cancer growth.
Collapse
Affiliation(s)
- Kyriaki Hatziagapiou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece; (K.H.); (O.N.); (A.M.); (C.K.-G.)
- Division of Endocrinology, First Department of Pediatrics, Metabolism, and Diabetes, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
- Physiotherapy Department, Faculty of Health and Care Sciences, State University of West Attica, Agiou Spiridonos 28, 12243 Athens, Greece
| | - Kostas Bethanis
- Physics Laboratory, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
- Correspondence: (K.B.); (G.I.L.)
| | - Eleni Koniari
- UNESCO Chair on Adolescent Health Care, “Aghia Sophia” Children’s Hospital, University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece; (E.K.); (G.P.C.)
| | - Elias Christoforides
- Physics Laboratory, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Olti Nikola
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece; (K.H.); (O.N.); (A.M.); (C.K.-G.)
| | - Athena Andreou
- Genetics Laboratory, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Aimilia Mantzou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece; (K.H.); (O.N.); (A.M.); (C.K.-G.)
- Division of Endocrinology, First Department of Pediatrics, Metabolism, and Diabetes, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| | - George P. Chrousos
- UNESCO Chair on Adolescent Health Care, “Aghia Sophia” Children’s Hospital, University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece; (E.K.); (G.P.C.)
| | - Christina Kanaka-Gantenbein
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece; (K.H.); (O.N.); (A.M.); (C.K.-G.)
- Division of Endocrinology, First Department of Pediatrics, Metabolism, and Diabetes, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece; (K.H.); (O.N.); (A.M.); (C.K.-G.)
- Correspondence: (K.B.); (G.I.L.)
| |
Collapse
|
93
|
Solid Dispersion Formulations by FDM 3D Printing-A Review. Pharmaceutics 2022; 14:pharmaceutics14040690. [PMID: 35456524 PMCID: PMC9032529 DOI: 10.3390/pharmaceutics14040690] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/06/2023] Open
Abstract
Additive manufacturing (AM) is revolutionizing the way medicines are designed, manufactured, and utilized. Perhaps, AM appears to be ideal for the fit-for-purpose manufacturing of medicines in contrast to the several disadvantages associated with the conventional fit-for-all mass production that accounts for less than 50% of pharmacotherapeutic treatment/management of diseases especially among children and elderly patients, as well as patients with special needs. In this review, we discuss the current trends in the application of additive manufacturing to prepare personalized dosage forms on-demand focusing the attention on the relevance of coupling solid dispersion with FDM 3D printing. Combining the two technologies could offer many advantages such as to improve the solubility, dissolution, and oral bioavailability of poorly soluble drugs in tandem with the concept of precision medicine and personalized dosing and to address the dilemma of commercial availability of FDM filaments loaded with Class II and/or Class IV drugs. However, thermal treatment especially for heat-sensitive drugs, regulatory, and ethical obligations in terms of quality control and quality assurance remain points of concern. Hence, a concerted effort is needed between the scientific community, the pharmaceutical industries, the regulatory agencies, the clinicians and clinical pharmacists, and the end-users to address these concerns.
Collapse
|
94
|
Gupta A, Paudwal G, Dolkar R, Lewis S, Gupta PN. Recent advances in the surfactant and controlled release polymer-based solid dispersion. Curr Pharm Des 2022; 28:1643-1659. [PMID: 35209818 DOI: 10.2174/1381612828666220223095417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022]
Abstract
The oral route is the most preferred delivery route for drug administration due to its advantages such as lower cost, improved patient compliance, no need for trained personnel and the drug reactions are generally less severe. The major problem with new molecules in the drug discovery pipeline is poor solubility and dissolution rate that ultimately results in low oral bioavailability. Numerous techniques are available for solubility and bioavailability (BA) enhancement, but out of all, solid dispersion (SD) is proven to be the most feasible due to the least issues in manufacturing, processing, storage, and transportation. In the past few years, SD had been extensively applied to reinforce the common issues of insoluble drugs. Currently, many hydrophobic and hydrophilic polymers are used to prepare either immediate release or controlled release SDs. Therefore, the biological behavior of the SDs is contingent upon the use of appropriate polymeric carriers and methods of preparation. The exploration of novel carriers and methodologies in SD technology leads to improved BA and therapeutic effectiveness. Moreover, the clinical applicability of SD-based formulations has been increased with the discovery of novel polymeric carriers. In this review, emphasis is laid down on the present status of recent generations of SDs (i.e., surfactant and controlled release polymer-based SD) and their application in modifying the physical properties of the drug and modulation of pharmacological response in different ailments.
Collapse
Affiliation(s)
- Aman Gupta
- PK-PD Tox & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180002, India
- Manipal College of Pharmaceutical Sciences, MAHE, Manipal-576104, India
| | - Gourav Paudwal
- PK-PD Tox & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rigzin Dolkar
- PK-PD Tox & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shaila Lewis
- Manipal College of Pharmaceutical Sciences, MAHE, Manipal-576104, India
| | - Prem N Gupta
- PK-PD Tox & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
95
|
Lamichhane S, Seo JE, Keum T, Noh G, Bashyal S, Cho SW, Lee EH, Lee S. Enhancing solubility and bioavailability of coenzyme Q 10: formulation of solid dispersions using Soluplus ® as a carrier. Arch Pharm Res 2022; 45:29-37. [PMID: 35128573 DOI: 10.1007/s12272-022-01368-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Improving the aqueous solubility of poorly soluble compounds have been a major issue in the pharmaceutical industry. In the present study, binary amorphous solid dispersions (SDs) of Coenzyme Q10 (CoQ10), a biopharmaceutics classification system (BCS) II compound and Soluplus® were prepared to enhance the solubility and pharmacokinetic properties compared to crystalline CoQ10. SDs were prepared with different ratios of CoQ10 and Soluplus® (1:3, 1:5, and 1:7) using spray drying technology, and the physicochemical properties of the SDs were evaluated. X-ray powder diffraction, differential scanning calorimetry, and scanning electron microscopy suggested the conversion of the crystalline form of CoQ10 to a binary amorphous system in the SDs. Fourier transform infrared spectroscopy revealed no potential interactions between CoQ10 and Soluplus®. The solubility of the optimal SD formulation (SD 1:7) was approximately 9000-fold higher than that of crystalline CoQ10, and the increment was Soluplus® concentration dependent. As a result, optimized SD 1:7 also showed significantly enhanced dissolution rate where maximum drug release was observed within 30 min in two different dissolution media. Moreover, in contrast to crystalline CoQ10, CoQ10 SDs showed improved pharmacokinetic parameters. Thus, the SD 1:7 formulation is expected to improve biopharmaceutical properties and therapeutic efficacy of CoQ10.
Collapse
Affiliation(s)
- Shrawani Lamichhane
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
- Center for Forensic Pharmaceutical Sciences, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Jo-Eun Seo
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Taekwang Keum
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
- Center for Forensic Pharmaceutical Sciences, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Gyubin Noh
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
- Center for Forensic Pharmaceutical Sciences, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Santosh Bashyal
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
- Center for Forensic Pharmaceutical Sciences, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Seong-Wan Cho
- Department of Pharmaceutics & Biotechnology, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Eun-Hee Lee
- Department of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea.
- Center for Forensic Pharmaceutical Sciences, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea.
| |
Collapse
|
96
|
Xia T, Yang Y, Li L, Tan Y, Chen Y, Wang S, Ye L, Bao X, Yang J. Pharmacokinetics and tissue distribution of Trans-ferulic acid-4-β-glucoside in rats by UPLC-MS/MS. Biomed Chromatogr 2022; 36:e5327. [PMID: 34994004 DOI: 10.1002/bmc.5327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/07/2022]
Abstract
Trans-ferulic acid-4-β-glucoside (FAG) is a monomer extracted from Radix Aconiti Lateralis Preparata, which is a potential candidate for the prevention and treatment of the cold injury. To determine the concentration FAG in rats, it is essential to develop an ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) method. The chromatographic separation was achieved by ACQUITY UPLC BEH C18 column(2.1×50mm, 1.7μm). A Xevo triple quadrupole tandem mass spectrometer was used to quantitative determination of FAG in the negative ion mode. The standard calibration curve was linear over the concentration range of 0.1-100 μg/mL and 0.0626-31.28 μg/g for rat plasma and liver tissue homogenates samples, separately. The inter-and intra-batch precision (RSD%) of the assay was ≤ 8.29% and accuracy (RE%) ranged from -7.41 to 10.99%. The matrix effect was between 92.99 and 102.39%. The oral absolute bioavailability of FAG was obtained as 1.80%. The results of tissue distribution suggested that FAG spread rarely in liver and brown adipose, which was not propitious to exert its ability to treat cold injury. In general, the above studies were significant to provide necessary information for further study.
Collapse
Affiliation(s)
- Tongchao Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University
| | - Yuqi Yang
- College of Life Science, Sichuan University
| | - Le Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University
| | - Yuting Tan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University
| | - Yuan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University
| | - Shengyan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University
| | - Liming Ye
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University
| | - Xu Bao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University
| | - Junyi Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University
| |
Collapse
|
97
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:761-768. [DOI: 10.1093/jpp/rgab179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/20/2021] [Indexed: 11/12/2022]
|
98
|
Tran P, Park JS. Application of supercritical fluid technology for solid dispersion to enhance solubility and bioavailability of poorly water-soluble drugs. Int J Pharm 2021; 610:121247. [PMID: 34740762 DOI: 10.1016/j.ijpharm.2021.121247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022]
Abstract
Many new chemical entities (NCEs) have been discovered with the development of the pharmaceutical industry. However, the main disadvantage of these drugs is their low aqueous solubility, which results in poor bioavailability, posing a challenge for pharmaceutical scientists in the field of drug development. Solid dispersion (SD) technology is one of the most successful techniques used to resolve these problems. SD has been widely used to improve the solubility and bioavailability of poorly water-soluble drugs using several methods such as melting, supercritical fluid (SCF), solvent evaporation, spray drying, hot-melt extrusion, and freeze-drying. Among them, SCF with carbon dioxide (CO2) has recently attracted great attention owing to its enhanced dissolution and bioavailability with non-toxic, economical, non-polluting, and high-efficiency properties. Compared with the conventional methods using organic solvents in the preparation of the formulation (solvent evaporation method), SCF used CO2 to replace the organic solvent with high pressure to avoid the limitation of solvent residues. The solubility of a substance in CO2 plays an important role in the success of the formulation. In the present review, the various processes involved in SCF technology, application of SCF to prepare SD, and future perspectives of SCF are described.
Collapse
Affiliation(s)
- Phuong Tran
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jeong-Sook Park
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
99
|
Singh D, Kaur P, Attri S, Singh S, Sharma P, Mohana P, Kaur K, Kaur H, Singh G, Rashid F, Singh D, Kumar A, Rajput A, Bedi N, Singh B, Buttar HS, Arora S. Recent Advances in the Local Drug Delivery Systems for Improvement of Anticancer Therapy. Curr Drug Deliv 2021; 19:560 - 586. [PMID: 34906056 DOI: 10.2174/1567201818666211214112710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022]
Abstract
The conventional anticancer chemotherapies not only cause serious toxic effects, but also produce resistance in tumor cells exposed to long-term therapy. Usually, the killing of metastasized cancer cells requires long-term therapy with higher drug doses, because the cancer cells develop resistance due to the induction of poly-glycoproteins (P-gps) that act as a transmembrane efflux pump to transport drugs out of the cells. During the last few decades, scientists have been exploring new anticancer drug delivery systems such as microencapsulation, hydrogels, and nanotubes to improve bioavailability, reduce drug-dose requirement, decrease multiple drug resistance, and to save normal cells as non-specific targets. Hopefully, the development of novel drug delivery vehicles (nanotubes, liposomes, supramolecules, hydrogels, and micelles) will assist to deliver drug molecules at the specific target site and reduce the undesirable side effects of anticancer therapies in humans. Nanoparticles and lipid formulations are also designed to deliver small drug payload at the desired tumor cell sites for their anticancer actions. This review will focus on the recent advances in the drug delivery systems, and their application in treating different cancer types in humans.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Pallavi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Gurdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga. India
| | - Avinash Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario. Canada
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| |
Collapse
|
100
|
Monteiro LM, Löbenberg R, Barbosa EJ, de Araujo GLB, Sato PK, Kanashiro E, de Araujo Eliodoro RH, Rocha M, de Freitas VLT, Fotaki N, Bou-Chacra NA. Oral administration of buparvaquone nanostructured lipid carrier enables in vivo activity against Leishmania infantum. Eur J Pharm Sci 2021; 169:106097. [PMID: 34910988 DOI: 10.1016/j.ejps.2021.106097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023]
Abstract
Leishmaniasis, a neglected tropical disease, is prevalent in 98 countries with the occurrence of 1.3 million new cases annually. The conventional therapy for visceral leishmaniasis requires hospitalization due to the severe adverse effects of the drugs, which are administered parenterally. Buparvaquone (BPQ) showed in vitro activity against leishmania parasites; nevertheless, it has failed in vivo tests due to its low aqueous solubility. Though, lipid nanoparticles can overcome this holdback. In this study we tested the hypothesis whether BPQ-NLC shows in vivo activity against L. infantum. Two optimized formulations were prepared (V1: 173.9 ± 1.6 nm, 0.5 mg of BPQ/mL; V2: 232.4 ± 1.6 nm, 1.3 mg of BPQ/mL), both showed increased solubility up to 73.00-fold, and dissolution up to 83.29%, while for the free drug it was only 2.89%. Cytotoxicity test showed their biocompatibility (CC50 >554.4 µM). Besides, the V1 dose of 0.3 mg/kg/day for 10 days reduced the parasite burden in 83.4% ±18.2% (p <0.05) in the liver. BPQ-NLC showed similar leishmanicidal activity compared to miltefosine. Therefore, BPQ-NLC is a promising addition to the limited therapeutic arsenal suitable for leishmaniasis oral administration treatment.
Collapse
Affiliation(s)
- Lis Marie Monteiro
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av, 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 8613 - 114St NW, T6G 2H7, Edmonton, AB, Canada
| | - Eduardo José Barbosa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av, 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| | - Gabriel Lima Barros de Araujo
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av, 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Paula Keiko Sato
- Laboratory of Medical Investigation in Immunology (LIM48), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, IMT2, térreo, 05403-000, São Paulo, SP, Brazil
| | - Edite Kanashiro
- Laboratory of Medical Investigation in Immunology (LIM48), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, IMT2, térreo, 05403-000, São Paulo, SP, Brazil; Seroepidemiology, Cellular, and Molecular Immunology Laboratory - Institute of Tropical Medicine, University of São Paulo, Dr. Enéas de Carvalho Aguiar, 470 - Jardim América, São Paulo, SP, 05403-000, Brazil
| | - Raissa H de Araujo Eliodoro
- Laboratory of Medical Investigation in Immunology (LIM48), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, IMT2, térreo, 05403-000, São Paulo, SP, Brazil
| | - Mussya Rocha
- Laboratory of Medical Investigation in Immunology (LIM48), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, IMT2, térreo, 05403-000, São Paulo, SP, Brazil
| | - Vera Lúcia Teixeira de Freitas
- Laboratory of Medical Investigation in Immunology (LIM48), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, IMT2, térreo, 05403-000, São Paulo, SP, Brazil
| | - Nikoletta Fotaki
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Nádia Araci Bou-Chacra
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av, 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|