51
|
Tan SH, Ngo ZH, Leavesley D, Liang K. Recent Advances in the Design of Three-Dimensional and Bioprinted Scaffolds for Full-Thickness Wound Healing. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:160-181. [PMID: 33446047 DOI: 10.1089/ten.teb.2020.0339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three-dimensional (3D) printed scaffolds have recently emerged as an innovative treatment option for patients with critical-sized skin wounds. Current approaches to managing life-threatening wounds include skin grafting and application of commercially sourced skin substitutes. However, these approaches are not without several challenges. Limited donor tissue and donor site morbidity remain a concern for tissue grafting, while engineered skin substitutes fail to fully recapitulate the complex native environment required for wound healing. The implementation of 3D printed dermal scaffolds offers a potential solution for these shortcomings. Spatial control over scaffold structure, the ability to incorporate multiple materials and bioactive ingredients, enables the creation of conditions specifically optimized for wound healing. Three-dimensional bioprinting, a subset of 3D printing, allows for the replacement of lost cell populations and secreted active compounds that contribute to tissue repair and recovery. The replacement of damaged and lost cells delivers beneficial effects directly, or synergistically, supporting injured tissue to recover its native state. Despite encouraging results, the promise of 3D printed scaffolds has yet to be realized. Further improvements to current material formulations and scaffold designs are required to achieve the goal of clinical adoption. Herein, we provide an overview of 3D printing techniques and discuss several strategies for healing of full-thickness wounds by using 3D printed acellular scaffolds or bioprinted cellular scaffolds, aimed at translating this technology to the clinical management of skin lesions. We identify the challenges associated with designing and optimizing printed tissue replacements, and discuss the future perspectives of this emerging option for managing patients who present with critical-sized life-threatening cutaneous wounds.
Collapse
Affiliation(s)
- Shi Hua Tan
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zong Heng Ngo
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - David Leavesley
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kun Liang
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
52
|
Oral Drug Delivery Systems Based on Ordered Mesoporous Silica Nanoparticles for Modulating the Release of Aprepitant. Int J Mol Sci 2021; 22:ijms22041896. [PMID: 33672949 PMCID: PMC7917702 DOI: 10.3390/ijms22041896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 01/06/2023] Open
Abstract
Two different types of ordered mesoporous nanoparticles, namely MCM-41 and MCM-48, with similar pore sizes but different pore connectivity, were loaded with aprepitant via a passive diffusion method. The percentage of the loaded active agent, along with the encapsulation efficiency, was evaluated using High-performance Liquid Chromatography (HPLC) analysis complemented by Thermogravimetric Analysis (TGA). The determination of the pore properties of the mesoporous particles before and after the drug loading revealed the presence of confined aprepitant in the pore structure of the particles, while Powder X-ray Diffractometry(pXRD), Differential Scanning Calorimetry (DSC), and FTIR experiments indicated that the drug is in an amorphous state. The release profiles of the drug from the two different mesoporous materials were studied in various release media and revealed an aprepitant release up to 45% when sink conditions are applied. The cytocompatibility of the silica nanoparticles was assessed in Caco-2 cell monolayers, in the presence and absence of the active agent, suggesting that they can be used as carriers of aprepitant without presenting any toxicity in vitro.
Collapse
|
53
|
Torre M, Giannitelli SM, Mauri E, Trombetta M, Rainer A. Additive manufacturing of biomaterials. Soft Robot 2021. [DOI: 10.1016/bs.ache.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
54
|
Mallakpour S, Sirous F, Hussain CM. Current achievements in 3D bioprinting technology of chitosan and its hybrids. NEW J CHEM 2021. [DOI: 10.1039/d1nj01497h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chitosan and its hybrids, as an appropriate bioink in 3D printing technology, for the fabrication of engineered constructions.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Fariba Sirous
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|
55
|
Corduas F, Mancuso E, Lamprou DA. Long-acting implantable devices for the prevention and personalised treatment of infectious, inflammatory and chronic diseases. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
56
|
Self-Assembled Disulfide Bond Bearing Paclitaxel-Camptothecin Prodrug Nanoparticle for Lung Cancer Therapy. Pharmaceutics 2020; 12:pharmaceutics12121169. [PMID: 33271864 PMCID: PMC7760941 DOI: 10.3390/pharmaceutics12121169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
Self-assembled prodrugs (SAPDs), which combine prodrug strategy and the merits of self-assembly, not only represent an appealing type of therapeutics, enabling the spontaneous organization of supramolecular nanocomposites with defined structures in aqueous environments, but also provide a new method to formulate existing drugs for more favorable outcomes. To increase drug loading and combination therapy, we covalently conjugated paclitaxel (PTX) and camptothecin (CPT) through a disulfide linker into a prodrug, designated PTX-S-S-CPT. The successful production of PTX-S-S-CPT prodrug was confirmed by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). This prodrug spontaneously undergoes precipitation in aqueous surroundings. Taking advantage of a flow-focusing microfluidics platform, the prodrug nanoparticles (NPs) have good monodispersity, with good reproducibility and high yield. The as-prepared prodrug NPs were characterized with dynamic light scattering (DLS) and transmission electron microscopy (TEM), demonstrating spherical morphology of around 200 nm in size. In the end, the self-assembled NPs were added to mouse embryonic fibroblast (MEF), mouse lung adenocarcinoma and Lewis lung carcinoma (LLC) cell lines, and human non-small cell lung cancer cell line A549 to evaluate cell viability and toxicity. Due to the redox response with a disulfide bond, the PTX-S-S-CPT prodrug NPs significantly inhibited cancer cell growth, but had no obvious toxicity to healthy cells. This prodrug strategy is promising for co-delivery of PTX and CPT for lung cancer treatment, with reduced side effects on healthy cells.
Collapse
|
57
|
Birla RK. Current State of the Art in Ventricle Tissue Engineering. Front Cardiovasc Med 2020; 7:591581. [PMID: 33240941 PMCID: PMC7669614 DOI: 10.3389/fcvm.2020.591581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/12/2020] [Indexed: 01/14/2023] Open
Abstract
The field of ventricle tissue engineering is focused on bioengineering highly functioning left ventricles that can be used as model systems for basic cardiology research and for cardiotoxicity testing. In this article, we review the current state of the art in the field of ventricle tissue engineering and discuss different strategies that have been used to bioengineer ventricles. Based on this body of literature, there are now common themes in the field that provide guidance for future directives, also presented in this article.
Collapse
|
58
|
Al-Dulimi Z, Wallis M, Tan DK, Maniruzzaman M, Nokhodchi A. 3D printing technology as innovative solutions for biomedical applications. Drug Discov Today 2020; 26:360-383. [PMID: 33212234 DOI: 10.1016/j.drudis.2020.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/13/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022]
Abstract
3D printing was once predicted to be the third industrial revolution. Today, the use of 3D printing is found across almost all industries. This article discusses the latest 3D printing applications in the biomedical industry.
Collapse
Affiliation(s)
- Zaisam Al-Dulimi
- Arundel Building, Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Melissa Wallis
- Arundel Building, Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Deck Khong Tan
- Arundel Building, Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, PHR 4.214A, 2409 University Avenue, Stop A1920, Austin, TX 78712, USA.
| | - Ali Nokhodchi
- Arundel Building, Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK.
| |
Collapse
|
59
|
Rojczyk E, Klama-Baryła A, Łabuś W, Wilemska-Kucharzewska K, Kucharzewski M. Historical and modern research on propolis and its application in wound healing and other fields of medicine and contributions by Polish studies. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113159. [PMID: 32736052 DOI: 10.1016/j.jep.2020.113159] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The history of medical application of propolis (also known as bee glue) dates back to the times of ancient Greeks, Romans, Persians and Egyptians. Honey and other bee products, including propolis, occupy an important place in Polish folk medicine. Scientific research on propolis in Poland began in the early 1960s in Zabrze and continues until now. AIM OF THE REVIEW The aim of this review is to provide an overview of information on Polish research on propolis and its medical application with particular emphasis on studies concerning wound healing. Consequently, our goal is also to shed a new light on therapeutic potential of Polish propolis in order to support future research in the field. MATERIALS AND METHODS A systematic review of scientific literature on propolis and its medical application was performed by using the literature databases (PubMed, Web of Science, Google Scholar). We paid special attention to papers describing the effect of propolis on skin wound healing as well as to Polish contribution to research on propolis. RESULTS Professor Stan Scheller was the first Polish scientist dealing with propolis and its medical potential. His legacy was continued by several research teams that studied the topic in various aspects. They analyzed propolis composition, its antioxidant, anti-inflammatory, antimicrobial, antiapoptotic and anticancer properties as well as its application in dentistry and wound treatment. Burn wound healing physiology after propolis administration was thoroughly studied on pig model, whereas research on patients proved the efficacy of propolis in chronic venous leg ulcer treatment. CONCLUSION Polish scientists have made a significant contribution to the research on propolis, its biological properties and influence on wound healing. Propolis ointments can effectively accelerate the healing process and improve healing physiology, so they can be recommended as a promising topical medication for wound treatment in the future clinical and preclinical trials.
Collapse
Affiliation(s)
- Ewa Rojczyk
- Department of Descriptive and Topographic Anatomy, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808, Zabrze, Poland.
| | - Agnieszka Klama-Baryła
- The Burn Centre of Stanisław Sakiel, 2 Jana Pawła II Street, 41-100, Siemianowice Śląskie, Poland.
| | - Wojciech Łabuś
- The Burn Centre of Stanisław Sakiel, 2 Jana Pawła II Street, 41-100, Siemianowice Śląskie, Poland.
| | - Katarzyna Wilemska-Kucharzewska
- Department of Internal Medicine, School of Public Health in Bytom, Medical University of Silesia, 7 Żeromskiego Street, 41-902, Bytom, Poland.
| | - Marek Kucharzewski
- Department of Descriptive and Topographic Anatomy, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808, Zabrze, Poland; The Burn Centre of Stanisław Sakiel, 2 Jana Pawła II Street, 41-100, Siemianowice Śląskie, Poland.
| |
Collapse
|
60
|
Perez-Valle A, Del Amo C, Andia I. Overview of Current Advances in Extrusion Bioprinting for Skin Applications. Int J Mol Sci 2020; 21:E6679. [PMID: 32932676 PMCID: PMC7555324 DOI: 10.3390/ijms21186679] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Bioprinting technologies, which have the ability to combine various human cell phenotypes, signaling proteins, extracellular matrix components, and other scaffold-like biomaterials, are currently being exploited for the fabrication of human skin in regenerative medicine. We performed a systematic review to appraise the latest advances in 3D bioprinting for skin applications, describing the main cell phenotypes, signaling proteins, and bioinks used in extrusion platforms. To understand the current limitations of this technology for skin bioprinting, we briefly address the relevant aspects of skin biology. This field is in the early stage of development, and reported research on extrusion bioprinting for skin applications has shown moderate progress. We have identified two major trends. First, the biomimetic approach uses cell-laden natural polymers, including fibrinogen, decellularized extracellular matrix, and collagen. Second, the material engineering line of research, which is focused on the optimization of printable biomaterials that expedite the manufacturing process, mainly involves chemically functionalized polymers and reinforcement strategies through molecular blending and postprinting interventions, i.e., ionic, covalent, or light entanglement, to enhance the mechanical properties of the construct and facilitate layer-by-layer deposition. Skin constructs manufactured using the biomimetic approach have reached a higher level of complexity in biological terms, including up to five different cell phenotypes and mirroring the epidermis, dermis and hypodermis. The confluence of the two perspectives, representing interdisciplinary inputs, is required for further advancement toward the future translation of extrusion bioprinting and to meet the urgent clinical demand for skin equivalents.
Collapse
Affiliation(s)
| | | | - Isabel Andia
- Regenerative Therapies, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza Cruces 12, 48903 Barakaldo, Spain; (A.P.-V.); (C.D.A.)
| |
Collapse
|
61
|
Santos PBDRED, Ávila DDS, Ramos LDP, Yu AR, Santos CEDR, Berretta AA, Camargo SEA, Oliveira JRD, Oliveira LDD. Effects of Brazilian green propolis extract on planktonic cells and biofilms of multidrug-resistant strains of Klebsiella pneumoniae and Pseudomonas aeruginosa. BIOFOULING 2020; 36:834-845. [PMID: 32954805 DOI: 10.1080/08927014.2020.1823972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Propolis could represent an alternative therapeutic agent for targeting multidrug-resistant bacteria due to its antimicrobial potential. The effect of Brazilian green propolis (BGP) aqueous extract (AqExt) was evaluated on eight multidrug-resistant clinical strains of Klebsiella pneumoniae and Pseudomonas aeruginosa, as well as on one reference strain for each bacterial species. The minimum bactericidal concentration (MBC) was determined and optimal concentrations were further evaluated in comparison with 0.12% chlorhexidine. The natural extract was chemically characterized by HPLC-DAD analysis. The MBC values ranged between 3.12 and 27.5 mg ml-1. Analysis of bacterial metabolic activity after treatment for 5 min with BGP-AqExt revealed a strong antimicrobial potential, similar to chlorhexidine. The extract comprised several active compounds including quercetin, gallic acid, caffeic and p-coumaric acid, drupani, galangin, and artepillin C. Altogether, the findings suggest that BGP-AqExt is fast and effective against multidrug-resistant strains of K. pneumoniae and P. aeruginosa in planktonic cultures and biofilms.
Collapse
Affiliation(s)
- Pâmela Beatriz do Rosário Estevam Dos Santos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
- Health Sciences Institute, Universidade Paulista (UNIP), São José dos Campos, SP, Brazil
| | - Damara da Silva Ávila
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
| | - Lucas de Paula Ramos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
| | - Amanda Romagnoli Yu
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
| | - Carlos Eduardo da Rocha Santos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
- Policlin Institute for Teaching and Research, São José dos Campos, SP, Brazil
| | | | | | | | - Luciane Dias de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
| |
Collapse
|
62
|
Andriotis EG, Monou PK, Louka A, Papaefstathiou E, Eleftheriadis GK, Fatouros DG. Development of food grade 3D printable ink based on pectin containing cannabidiol/cyclodextrin inclusion complexes. Drug Dev Ind Pharm 2020; 46:1569-1577. [DOI: 10.1080/03639045.2020.1791168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Eleftherios G. Andriotis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paraskevi-Kyriaki Monou
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aristi Louka
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Papaefstathiou
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios K. Eleftheriadis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios G. Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
63
|
Karavasili C, Tsongas K, Andreadis II, Andriotis EG, Papachristou ET, Papi RM, Tzetzis D, Fatouros DG. Physico-mechanical and finite element analysis evaluation of 3D printable alginate-methylcellulose inks for wound healing applications. Carbohydr Polym 2020; 247:116666. [PMID: 32829794 DOI: 10.1016/j.carbpol.2020.116666] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 01/08/2023]
Abstract
The present study reports on the comprehensive physico-mechanical evaluation of 3D printable alginate-methylcellulose hydrogels with bioactive components (Manuka honey, aloe vera gel, eucalyptus essential oil) using a combined experimental-numerical approach. The 3D printable carbohydrate inks demonstrated good swelling properties under moist conditions and adequate antimicrobial and antibiofilm efficacy against both Gram positive and negative bacteria. The effect of the bioactive compounds on the viscosity and mechanical properties of the 3D printable hydrogels was assessed with rheological, nanoindentation and shear test measurements. All hydrogel compositions showed good biocompatibility on human dermal fibroblasts, stimulating cell growth as confirmed by an in vitro wound healing assay. Finite element analysis simulation was employed to further advance the calculation accuracy of the nanoindentation tests, concluding that combination of an experimental and a numerical technique may constitute a useful method to characterize the mechanical behavior of composite hydrogel films for use in wound healing applications.
Collapse
Affiliation(s)
- Christina Karavasili
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece.
| | - Konstantinos Tsongas
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 14km Thessaloniki - N. Moudania, Thermi GR-57001, Greece
| | - Ioannis I Andreadis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Eleftherios G Andriotis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Eleni T Papachristou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Rigini M Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 14km Thessaloniki - N. Moudania, Thermi GR-57001, Greece
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| |
Collapse
|
64
|
Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting. Polymers (Basel) 2020; 12:polym12061237. [PMID: 32485901 PMCID: PMC7362214 DOI: 10.3390/polym12061237] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
The skin plays an important role in protecting the human body, and wound healing must be set in motion immediately following injury or trauma to restore the normal structure and function of skin. The extracellular matrix component of the skin mainly consists of collagen, glycosaminoglycan (GAG), elastin and hyaluronic acid (HA). Recently, natural collagen, polysaccharide and their derivatives such as collagen, gelatin, alginate, chitosan and pectin have been selected as the matrix materials of bioink to construct a functional artificial skin due to their biocompatible and biodegradable properties by 3D bioprinting, which is a revolutionary technology with the potential to transform both research and medical therapeutics. In this review, we outline the current skin bioprinting technologies and the bioink components for skin bioprinting. We also summarize the bioink products practiced in research recently and current challenges to guide future research to develop in a promising direction. While there are challenges regarding currently available skin bioprinting, addressing these issues will facilitate the rapid advancement of 3D skin bioprinting and its ability to mimic the native anatomy and physiology of skin and surrounding tissues in the future.
Collapse
|
65
|
Mathew E, Pitzanti G, Larrañeta E, Lamprou DA. 3D Printing of Pharmaceuticals and Drug Delivery Devices. Pharmaceutics 2020; 12:pharmaceutics12030266. [PMID: 32183435 PMCID: PMC7150971 DOI: 10.3390/pharmaceutics12030266] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022] Open
Abstract
The process of 3D printing (3DP) was patented in 1986; however, the research in the field of 3DP did not become popular until the last decade. There has been an increasing research into the areas of 3DP for medical applications for fabricating prosthetics, bioprinting and pharmaceutics. This novel method allows the manufacture of dosage forms on demand, with modifications in the geometry and size resulting in changes to the release and dosage behaviour of the product. 3DP will allow wider adoption of personalised medicine due to the diversity and simplicity to change the design and dosage of the products, allowing the devices to be designed specific to the individual with the ability to alternate the drugs added to the product. Personalisation also has the potential to decrease the common side effects associated with generic dosage forms. This Special Issue Editorial outlines the current innovative research surrounding the topic of 3DP, focusing on bioprinting and various types of 3DP on applications for drug delivery as well advantages and future directions in this field of research.
Collapse
Affiliation(s)
- Essyrose Mathew
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.M.); (G.P.); (E.L.)
| | - Giulia Pitzanti
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.M.); (G.P.); (E.L.)
- Department of Life and Environmental Sciences (Unit of Drug Sciences), University of Cagliari, 09124 Cagliari, Italy
| | - Eneko Larrañeta
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.M.); (G.P.); (E.L.)
| | - Dimitrios A. Lamprou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.M.); (G.P.); (E.L.)
- Correspondence: ; Tel.: +44-(0)28-9097-2617
| |
Collapse
|