51
|
Antibody-engineered red blood cell interface for high-performance capture and release of circulating tumor cells. Bioact Mater 2021; 11:32-40. [PMID: 34938910 DOI: 10.1016/j.bioactmat.2021.09.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs), as important liquid biopsy target, can provide valuable information for cancer progress monitoring and individualized treatment. However, current isolation platforms incapable of balancing capture efficiency, specificity, cell viability, and gentle release have restricted the clinical applications of CTCs. Herein, inspired by the structure and functional merits of natural membrane interfaces, we established an antibody-engineered red blood cell (RBC-Ab) affinity interface on microfluidic chip for high-performance isolation and release of CTCs. The lateral fluidity, pliability, and anti-adhesion property of the RBC microfluidic interface enabled efficient CTCs capture (96.5%), high CTCs viability (96.1%), and high CTCs purity (average 4.2-log depletion of leukocytes). More importantly, selective lysis of RBCs by simply changing the salt concentration was utilized to destroy the affinity interface for efficient and gentle release of CTCs without nucleic acid contamination. Using this chip, CTCs were successfully detected in colon cancer samples with 90% sensitivity and 100% specificity (20 patients and 10 healthy individuals). After the release process, KRAS gene mutations of CTCs were identified from all the 5 cancer samples, which was consistent with the results of tissue biopsy. We expect this RBC interface strategy will inspire further biomimetic interface construction for rare cell analysis.
Collapse
|
52
|
Resealed erythrocytes: Towards a novel approach for anticancer therapy. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
53
|
Glassman PM, Hood ED, Ferguson LT, Zhao Z, Siegel DL, Mitragotri S, Brenner JS, Muzykantov VR. Red blood cells: The metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers. Adv Drug Deliv Rev 2021; 178:113992. [PMID: 34597748 PMCID: PMC8556370 DOI: 10.1016/j.addr.2021.113992] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Drug delivery research pursues many types of carriers including proteins and other macromolecules, natural and synthetic polymeric structures, nanocarriers of diverse compositions and cells. In particular, liposomes and lipid nanoparticles represent arguably the most advanced and popular human-made nanocarriers, already in multiple clinical applications. On the other hand, red blood cells (RBCs) represent attractive natural carriers for the vascular route, featuring at least two distinct compartments for loading pharmacological cargoes, namely inner space enclosed by the plasma membrane and the outer surface of this membrane. Historically, studies of liposomal drug delivery systems (DDS) astronomically outnumbered and surpassed the RBC-based DDS. Nevertheless, these two types of carriers have different profile of advantages and disadvantages. Recent studies showed that RBC-based drug carriers indeed may feature unique pharmacokinetic and biodistribution characteristics favorably changing benefit/risk ratio of some cargo agents. Furthermore, RBC carriage cardinally alters behavior and effect of nanocarriers in the bloodstream, so called RBC hitchhiking (RBC-HH). This article represents an attempt for the comparative analysis of liposomal vs RBC drug delivery, culminating with design of hybrid DDSs enabling mutual collaborative advantages such as RBC-HH and camouflaging nanoparticles by RBC membrane. Finally, we discuss the key current challenges faced by these and other RBC-based DDSs including the issue of potential unintended and adverse effect and contingency measures to ameliorate this and other concerns.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Elizabeth D Hood
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Laura T Ferguson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Don L Siegel
- Department of Pathology & Laboratory Medicine, Division of Transfusion Medicine & Therapeutic Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02138, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
54
|
Ang MJY, Chan SY, Goh YY, Luo Z, Lau JW, Liu X. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Adv Drug Deliv Rev 2021; 178:113907. [PMID: 34371084 DOI: 10.1016/j.addr.2021.113907] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Cancer involves a collection of diseases with a common trait - dysregulation in cell proliferation. At present, traditional therapeutic strategies against cancer have limitations in tackling various tumors in clinical settings. These include chemotherapeutic resistance and the inability to overcome intrinsic physiological barriers to drug delivery. Nanomaterials have presented promising strategies for tumor treatment in recent years. Nanotheranostics combine therapeutic and bioimaging functionalities at the single nanoparticle level and have experienced tremendous growth over the past few years. This review highlights recent developments of advanced nanomaterials and nanotheranostics in three main directions: stimulus-responsive nanomaterials, nanocarriers targeting the tumor microenvironment, and emerging nanomaterials that integrate with phototherapies and immunotherapies. We also discuss the cytotoxicity and outlook of next-generation nanomaterials towards clinical implementation.
Collapse
Affiliation(s)
- Melgious Jin Yan Ang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Siew Yin Chan
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research, Singapore 138634, Singapore
| | - Yi-Yiing Goh
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jun Wei Lau
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
55
|
Biointeraction of Erythrocyte Ghost Membranes with Gold Nanoparticles Fluorescents. MATERIALS 2021; 14:ma14216390. [PMID: 34771916 PMCID: PMC8585292 DOI: 10.3390/ma14216390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
The application of new technologies for treatments against different diseases is increasingly innovative and effective. In the case of nanomedicine, the combination of nanoparticles with biological membranes consists of a “camouflage” technique, which improves biological interaction and minimizes the secondary effects caused by these remedies. In this work, gold nanoparticles synthesized by chemical reduction (Turkevich ≈13 nm) were conjugated with fluorescein isothiocyanate to amplify their optical properties. Fluorescent nanoparticles were deposited onto the surface of hemoglobin-free erythrocytes. Ghost erythrocytes were obtained from red blood cells by density gradient separation in a hypotonic medium and characterized with fluorescence, optical, and electron microscopy; the average size of erythrocyte ghosts was 9 µm. Results show that the functional groups of sodium citrate (COO-) and fluorophore (-N=C=S) adhere by electrostatic attraction to the surface of the hemoglobin-free erythrocyte membrane, forming the membrane–particle–fluorophore. These interactions can contribute to imaging applications, by increasing the sensitivity of measurement caused by surface plasmon resonance and fluorescence, in the context of biological membranes.
Collapse
|
56
|
Li Y, Raza F, Liu Y, Wei Y, Rong R, Zheng M, Yuan W, Su J, Qiu M, Li Y, Raza F, Liu Y, Wei Y, Rong R, Zheng M, Yuan W, Su J, Qiu M. Clinical progress and advanced research of red blood cells based drug delivery system. Biomaterials 2021; 279:121202. [PMID: 34749072 DOI: 10.1016/j.biomaterials.2021.121202] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Red blood cells (RBCs) are biocompatible carriers that can be employed to deliver different bioactive substances. In the past few decades, many strategies have been developed to encapsulate or attach drugs to RBCs. Osmotic-based encapsulation methods have been industrialized recently, and some encapsulated RBC formulations have reached the clinical stage for treating tumors and neurological diseases. Inspired by the intrinsic properties of intact RBCs, some advanced delivery strategies have also been proposed. These delivery systems combine RBCs with other novel systems to further exploit and expand the application of RBCs. This review summarizes the clinical progress of drugs encapsulated into intact RBCs, focusing on the loading and clinical trials. It also introduces the latest advanced research based on developing prospects and limitations of intact RBCs drug delivery system (DDS), hoping to provide a reference for related research fields and further application potential of intact RBCs based drug delivery system.
Collapse
Affiliation(s)
- Yichen Li
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Faisal Raza
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Yuhao Liu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Yiqi Wei
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Ruonan Rong
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Mengyuan Zheng
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Weien Yuan
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Jing Su
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China.
| | - Mingfeng Qiu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China.
| | - Y Li
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - F Raza
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Y Liu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Y Wei
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - R Rong
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - M Zheng
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - W Yuan
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - J Su
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - M Qiu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
57
|
Enzyme Therapy: Current Challenges and Future Perspectives. Int J Mol Sci 2021; 22:ijms22179181. [PMID: 34502086 PMCID: PMC8431097 DOI: 10.3390/ijms22179181] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, enzymes have risen as promising therapeutic tools for different pathologies, from metabolic deficiencies, such as fibrosis conditions, ocular pathologies or joint problems, to cancer or cardiovascular diseases. Treatments based on the catalytic activity of enzymes are able to convert a wide range of target molecules to restore the correct physiological metabolism. These treatments present several advantages compared to established therapeutic approaches thanks to their affinity and specificity properties. However, enzymes present some challenges, such as short in vivo half-life, lack of targeted action and, in particular, patient immune system reaction against the enzyme. For this reason, it is important to monitor serum immune response during treatment. This can be achieved by conventional techniques (ELISA) but also by new promising tools such as microarrays. These assays have gained popularity due to their high-throughput analysis capacity, their simplicity, and their potential to monitor the immune response of patients during enzyme therapies. In this growing field, research is still ongoing to solve current health problems such as COVID-19. Currently, promising therapeutic alternatives using the angiotensin-converting enzyme 2 (ACE2) are being studied to treat COVID-19.
Collapse
|
58
|
Yu C, An M, Li M, Manke C, Liu H. Structure-Dependent Stability of Lipid-Based Polymer Amphiphiles Inserted on Erythrocytes. MEMBRANES 2021; 11:membranes11080572. [PMID: 34436335 PMCID: PMC8402226 DOI: 10.3390/membranes11080572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/15/2022]
Abstract
Cell-based therapies have the potential to transform the treatment of many diseases. One of the key challenges relating to cell therapies is to modify the cell surface with molecules to modulate cell functions such as targeting, adhesion, migration, and cell–cell interactions, or to deliver drug cargos. Noncovalent insertion of lipid-based amphiphilic molecules on the cell surface is a rapid and nontoxic approach for modifying cells with a variety of bioactive molecules without affecting the cellular functions and viability. A wide variety of lipid amphiphiles, including proteins/peptides, carbohydrates, oligonucleotides, drugs, and synthetic polymers have been designed to spontaneously anchor on the plasma membranes. These molecules typically contain a functional component, a spacer, and a long chain diacyl lipid. Though these molecular constructs appeared to be stably tethered on cell surfaces both in vitro and in vivo under static situations, their stability under mechanical stress (e.g., in the blood flow) remains unclear. Using diacyl lipid-polyethylene glycol (lipo-PEG) conjugates as model amphiphiles, here we report the effect of molecular structures on the amphiphile stability on cell surface under mechanical stress. We analyzed the retention kinetics of lipo-PEGs on erythrocytes in vitro and in vivo and found that under mechanical stress, both the molecular structures of lipid and the PEG spacer have a profound effect on the membrane retention of membrane-anchored amphiphiles. Our findings highlight the importance of molecular design on the dynamic stability of membrane-anchored amphiphiles.
Collapse
Affiliation(s)
- Chunsong Yu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA; (C.Y.); (M.A.); (M.L.); (C.M.)
| | - Myunggi An
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA; (C.Y.); (M.A.); (M.L.); (C.M.)
| | - Meng Li
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA; (C.Y.); (M.A.); (M.L.); (C.M.)
| | - Charles Manke
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA; (C.Y.); (M.A.); (M.L.); (C.M.)
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA; (C.Y.); (M.A.); (M.L.); (C.M.)
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
59
|
Harmand TJ, Pishesha N, Rehm FBH, Ma W, Pinney WB, Xie YJ, Ploegh HL. Asparaginyl Ligase-Catalyzed One-Step Cell Surface Modification of Red Blood Cells. ACS Chem Biol 2021; 16:1201-1207. [PMID: 34129316 DOI: 10.1021/acschembio.1c00216] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Red blood cells (RBCs) can serve as vascular carriers for drugs, proteins, peptides, and nanoparticles. Human RBCs remain in the circulation for ∼120 days, are biocompatible, and are immunologically largely inert. RBCs are cleared by the reticuloendothelial system and can induce immune tolerance to foreign components attached to the RBC surface. RBC conjugates have been pursued in clinical trials to treat cancers and autoimmune diseases and to correct genetic disorders. Still, most methods used to modify RBCs require multiple steps, are resource-intensive and time-consuming, and increase the risk of inflicting damage to the RBCs. Here, we describe direct conjugation of peptides and proteins onto the surface of RBCs in a single step, catalyzed by a highly efficient, recombinant asparaginyl ligase under mild, physiological conditions. In mice, the modified RBCs remain intact in the circulation, display a normal circulatory half-life, and retain their immune tolerance-inducing properties, as shown for protection against an accelerated model for type 1 diabetes. We conjugated different nanobodies to RBCs with retention of their binding properties, and these modified RBCs can target cancer cells in vitro. This approach provides an appealing alternative to current methods of RBC engineering. It provides ready access to more complex RBC constructs and highlights the general utility of asparaginyl ligases for the modification of native cell surfaces.
Collapse
Affiliation(s)
- Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| | - Fabian B H Rehm
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weiyi Ma
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| | - William B Pinney
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| | - Yushu J Xie
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| |
Collapse
|
60
|
Bruscoli S, Febo M, Riccardi C, Migliorati G. Glucocorticoid Therapy in Inflammatory Bowel Disease: Mechanisms and Clinical Practice. Front Immunol 2021; 12:691480. [PMID: 34149734 PMCID: PMC8209469 DOI: 10.3389/fimmu.2021.691480] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) comprises ulcerative colitis (UC) and Crohn's disease (CD). IBD etiopathology is multifactorial and involves alteration of immune cells and chronic activation of the inflammatory cascade against yet unknown environmental factors that trigger the disease. IBD therapy aims at improving the quality of life and reducing the risk of disease-related complications to avoid the need for surgery. There is no specific cure for IBDs, and the focus of therapy is supportive measures and use of anti-inflammatory and immunosuppressive drugs. Glucocorticoids (GCs) are powerful anti-inflammatory and immunomodulatory agents used to treat many acute and chronic inflammatory diseases. GCs remain basic treatment for moderate-to-severe IBD, but their use is limited by several important adverse drug effects. Topical administration of a second-generation of GCs, such as budesonide and beclomethasone dipropionate (BDP), represents a valid alternative to use of older, systemic GCs. Administration of second-generation GCs shows promisingly high topical activity and less systemic toxicity, but maintenance therapy with these new GCs in IBD patients is associated with multiple adverse effects. In this review, we make a comparative analysis of the efficacy of first-generation and second-generation GCs in IBD treatment. Unraveling GC biology at the molecular level to uncouple their clinical benefits from detrimental effects is important. One approach is to consider new GC mediators, such as glucocorticoid-induced leucine zipper, which may have similar anti-inflammatory properties, but avoids the side effects of GCs. This in-depth analysis can help to improve the development and the clinical outcomes of GC therapies in IBD.
Collapse
Affiliation(s)
- Stefano Bruscoli
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
61
|
Della Pelle G, Kostevšek N. Nucleic Acid Delivery with Red-Blood-Cell-Based Carriers. Int J Mol Sci 2021; 22:5264. [PMID: 34067699 PMCID: PMC8156122 DOI: 10.3390/ijms22105264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy has the potential to become a staple of 21st-century medicine. However, to overcome the limitations of existing gene-delivery therapies, that is, poor stability and inefficient and delivery and accumulation of nucleic acids (NAs), safe drug-delivery systems (DDSs) allowing the prolonged circulation and expression of the administered genes in vivo are needed. In this review article, the development of DDSs over the past 70 years is briefly described. Since synthetic DDSs can be recognized and eliminated as foreign substances by the immune system, new approaches must be found. Using the body's own cells as DDSs is a unique and exciting strategy and can be used in a completely new way to overcome the critical limitations of existing drug-delivery approaches. Among the different circulatory cells, red blood cells (RBCs) are the most abundant and thus can be isolated in sufficiently large quantities to decrease the complexity and cost of the treatment compared to other cell-based carriers. Therefore, in the second part, this article describes 70 years of research on the development of RBCs as DDSs, covering the most important RBC properties and loading methods. In the third part, it focuses on RBCs as the NA delivery system with advantages and drawbacks discussed to decide whether they are suitable for NA delivery in vivo.
Collapse
Affiliation(s)
- Giulia Della Pelle
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| |
Collapse
|
62
|
Hanley T, Vankayala R, Lee CH, Tang JC, Burns JM, Anvari B. Phototheranostics Using Erythrocyte-Based Particles. Biomolecules 2021; 11:729. [PMID: 34068081 PMCID: PMC8152750 DOI: 10.3390/biom11050729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
There has been a recent increase in the development of delivery systems based on red blood cells (RBCs) for light-mediated imaging and therapeutic applications. These constructs are able to take advantage of the immune evasion properties of the RBC, while the addition of an optical cargo allows the particles to be activated by light for a number of promising applications. Here, we review some of the common fabrication methods to engineer these constructs. We also present some of the current light-based applications with potential for clinical translation, and offer some insight into future directions in this exciting field.
Collapse
Affiliation(s)
- Taylor Hanley
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (T.H.); (R.V.); (J.C.T.); (J.M.B.)
| | - Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (T.H.); (R.V.); (J.C.T.); (J.M.B.)
- Radoptics, Limited Liability Company, 1002 Health Sciences Road, East, Suite P214, Irvine, CA 92612, USA
| | - Chi-Hua Lee
- Department of Biochemistry, University of California, Riverside, CA 92521, USA;
| | - Jack C. Tang
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (T.H.); (R.V.); (J.C.T.); (J.M.B.)
| | - Joshua M. Burns
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (T.H.); (R.V.); (J.C.T.); (J.M.B.)
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (T.H.); (R.V.); (J.C.T.); (J.M.B.)
| |
Collapse
|
63
|
Carvalho PM, Makowski M, Domingues MM, Martins IC, Santos NC. Lipid membrane-based therapeutics and diagnostics. Arch Biochem Biophys 2021; 704:108858. [PMID: 33798534 DOI: 10.1016/j.abb.2021.108858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022]
Abstract
Success rates in drug discovery are extremely low, and the imbalance between new drugs entering clinical research and their approval is steadily widening. Among the causes of the failure of new therapeutic agents are the lack of safety and insufficient efficacy. On the other hand, timely disease diagnosis may enable an early management of the disease, generally leading to better and less costly outcomes. Several strategies have been explored to overcome the barriers for drug development and facilitate diagnosis. Using lipid membranes as platforms for drug delivery or as biosensors are promising strategies, due to their biocompatibility and unique physicochemical properties. We examine some of the lipid membrane-based strategies for drug delivery and diagnostics, including their advantages and shortcomings. Regarding synthetic lipid membrane-based strategies for drug delivery, liposomes are the archetypic example of a successful approach, already with a long period of well-succeeded clinical application. The use of lipid membrane-based structures from biological sources as drug carriers, currently under clinical evaluation, is also discussed. These biomimetic strategies can enhance the in vivo lifetime of drug and delivery system by avoiding fast clearance, consequently increasing their therapeutic window. The strategies under development using lipid membranes for diagnostic purposes are also reviewed.
Collapse
Affiliation(s)
- Patrícia M Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Marcin Makowski
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.
| |
Collapse
|
64
|
Novel engineering: Biomimicking erythrocyte as a revolutionary platform for drugs and vaccines delivery. Eur J Pharmacol 2021; 900:174009. [PMID: 33722591 DOI: 10.1016/j.ejphar.2021.174009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
Abstract
Over the years, extensive studies on erythrocytes, also known as red blood cells (RBCs), as a mechanism for drug delivery, have been explored mainly because the cell itself is the most abundant and has astonishing properties such as a long life span of 100-120 days, low immunogenicity, good biocompatibility, and flexibility. There are various types of RBC-based systems for drug delivery, including those that are genetically engineered, non-genetically engineered RBCs, as well as employing erythrocyte as nanocarriers for drug loading. Although promising, these systems are still in an early development stage. In this review, we aimed to highlight the development of biomimicking RBC-based drug and vaccine delivery systems, as well as the loading methods with illustrative examples. Drug-erythrocyte associations will also be discussed and highlighted in this review. We have highlighted the possibility of exploiting erythrocytes for the sustained delivery of drugs and vaccines, encapsulation of these biological agents within the erythrocyte or coupling to the surface of carrier erythrocytes, and provided insights on genetically- and non-genetically engineered erythrocytes-based strategies. Erythrocytes have been known as effective cellular carriers for therapeutic moieties for several years. Herein, we outline various loading methods that can be used to reap the benefits of these natural carriers. It has been shown that drugs and vaccines can be delivered via erythrocytes but it is important to select appropriate methods for increasing the drug encapsulated or conjugated on the surface of the erythrocyte membrane. The outlined examples will guide the selection of the most effective method as well as the impact of using erythrocytes as delivery systems for drugs and vaccines.
Collapse
|
65
|
Javed S, Alshehri S, Shoaib A, Ahsan W, Sultan MH, Alqahtani SS, Kazi M, Shakeel F. Chronicles of Nanoerythrosomes: An Erythrocyte-Based Biomimetic Smart Drug Delivery System as a Therapeutic and Diagnostic Tool in Cancer Therapy. Pharmaceutics 2021; 13:368. [PMID: 33802156 PMCID: PMC7998655 DOI: 10.3390/pharmaceutics13030368] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Recently, drug delivery using natural biological carriers has emerged as one of the most widely investigated topics of research. Erythrocytes, or red blood cells, can act as potential carriers for a wide variety of drugs, including anticancer, antibacterial, antiviral, and anti-inflammatory, along with various proteins, peptides, enzymes, and other macromolecules. The red blood cell-based nanocarrier systems, also called nanoerythrosomes, are nanovesicles poised with extraordinary features such as long blood circulation times, the ability to escape immune system, the ability to release the drug gradually, the protection of drugs from various endogenous factors, targeted and specified delivery of drugs, as well as possessing both therapeutic and diagnostic applications in various fields of biomedical sciences. Their journey over the last two decades is escalating with fast pace, ranging from in vivo to preclinical and clinical studies by encapsulating a number of drugs into these carriers. Being biomimetic nanoparticles, they have enhanced the stability profile of drugs and their excellent site-specific targeting ability makes them potential carrier systems in the diagnosis and therapy of wide variety of tumors including gliomas, lung cancers, breast cancers, colon cancers, gastric cancers, and other solid tumors. This review focuses on the most recent advancements in the field of nanoerythrosomes, as an excellent and promising nanoplatform for the novel drug delivery of various drugs particularly antineoplastic drugs along with their potential as a promising diagnostic tool for the identification of different tumors.
Collapse
Affiliation(s)
- Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (S.J.); (M.H.S.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (M.K.)
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (A.S.); (S.S.A.)
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Muhammad Hadi Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (S.J.); (M.H.S.)
| | - Saad Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (A.S.); (S.S.A.)
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (M.K.)
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (M.K.)
| |
Collapse
|
66
|
Abstract
Nano-delivery systems represent one of the most studied fields, thanks to the associated improvement in the treatment of human diseases. The functionality of nanostructures is a crucial point, which the effectiveness of nanodrugs depends on. A hybrid approach strategy using synthetic nanoparticles (NPs) and erythrocytes offers an optimal blend of natural and synthetic materials. This, in turn, allows medical practitioners to exploit the combined advantages of erythrocytes and NPs. Erythrocyte-based drug delivery systems have been investigated for their biocompatibility, as well as the long circulation time allowed by specific surface receptors that inhibit immune clearance. In this review, we will discuss several methods—whole erythrocytes as drug carriers, red blood cell membrane-camouflaged nanoparticles and nano-erythrosomes (NERs)—while paying attention to their application and specific preparation methods. The ability to target cells makes erythrocytes excellent drug delivery systems. They can carry a wide range of therapeutic molecules while also acting as bioreactors; thus, they have many applications in therapy and in the diagnosis of many diseases.
Collapse
|
67
|
Darrah K, Deiters A. Targeted Drug Delivery through Optical Control of Cell Lysis. ACS CENTRAL SCIENCE 2021; 7:11-13. [PMID: 33532563 PMCID: PMC7844846 DOI: 10.1021/acscentsci.0c01562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Kristie Darrah
- Department of Chemistry, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
68
|
Colino CI, Lanao JM, Gutierrez-Millan C. Recent advances in functionalized nanomaterials for the diagnosis and treatment of bacterial infections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111843. [PMID: 33579480 DOI: 10.1016/j.msec.2020.111843] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023]
Abstract
The growing problem of resistant infections due to antibiotic misuse is a worldwide concern that poses a grave threat to healthcare systems. Thus, it is necessary to discover new strategies to combat infectious diseases. In this review, we provide a selective overview of recent advances in the use of nanocomposites as alternatives to antibiotics in antimicrobial treatments. Metals and metal oxide nanoparticles (NPs) have been associated with inorganic and organic supports to improve their antibacterial activity and stability as well as other properties. For successful antibiotic treatment, it is critical to achieve a high drug concentration at the infection site. In recent years, the development of stimuli-responsive systems has allowed the vectorization of antibiotics to the site of infection. These nanomaterials can be triggered by various mechanisms (such as changes in pH, light, magnetic fields, and the presence of bacterial enzymes); additionally, they can improve antibacterial efficacy and reduce side effects and microbial resistance. To this end, various types of modified polymers, lipids, and inorganic components (such as metals, silica, and graphene) have been developed. Applications of these nanocomposites in diverse fields ranging from food packaging, environment, and biomedical antimicrobial treatments to diagnosis and theranosis are discussed.
Collapse
Affiliation(s)
- Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain.
| | - Carmen Gutierrez-Millan
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain
| |
Collapse
|
69
|
Theoretical Analysis of the Built-in Metabolic Pathway Effect on the Metabolism of Erythrocyte-Bioreactors That Neutralize Ammonium. Metabolites 2021; 11:metabo11010036. [PMID: 33419113 PMCID: PMC7825432 DOI: 10.3390/metabo11010036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022] Open
Abstract
The limitations of the efficiency of ammonium-neutralizing erythrocyte-bioreactors based on glutamate dehydrogenase and alanine aminotransferase reactions were analyzed using a mathematical model. At low pyruvate concentrations in the external medium (below about 0.3 mM), the main limiting factor is the rate of pyruvate influx into the erythrocyte from the outside, and at higher concentrations, it is the disappearance of a steady state in glycolysis if the rate of ammonium processing is higher than the critical value (about 12 mM/h). This rate corresponds to different values of glutamate dehydrogenase activity at different concentrations of pyruvate in plasma. Oxidation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) by glutamate dehydrogenase decreases the fraction of NADPH in the constant pool of nicotinamide adenine dinucleotide phosphates (NADP + NADPH). This, in turn, activates the pentose phosphate pathway, where NADP reduces to NADPH. Due to the increase in flux through the pentose phosphate pathway, stabilization of the ATP concentration becomes impossible; its value increases until almost the entire pool of adenylates transforms into the ATP form. As the pool of adenylates is constant, the ADP concentration decreases dramatically. This slows the pyruvate kinase reaction, leading to the disappearance of the steady state in glycolysis.
Collapse
|
70
|
Lanao JM, Gutiérrez-Millán C, Colino CI. Cell-Based Drug Delivery Platforms. Pharmaceutics 2020; 13:pharmaceutics13010002. [PMID: 33374912 PMCID: PMC7821918 DOI: 10.3390/pharmaceutics13010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- José M. Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain; (J.M.L.); (C.I.C.)
- The Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Carmen Gutiérrez-Millán
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain; (J.M.L.); (C.I.C.)
- The Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence:
| | - Clara I. Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain; (J.M.L.); (C.I.C.)
- The Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
71
|
Podsiedlik M, Markowicz-Piasecka M, Sikora J. Erythrocytes as model cells for biocompatibility assessment, cytotoxicity screening of xenobiotics and drug delivery. Chem Biol Interact 2020; 332:109305. [PMID: 33130048 DOI: 10.1016/j.cbi.2020.109305] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Erythrocytes (RBCs) represent the main cell component in circulation and recently have become a topic of intensive scientific interest. The relevance of erythrocytes as a model for cytotoxicity screening of xenobiotics is under the spotlight of this review. Erythrocytes constitute a fundamental cellular model to study potential interactions with blood components of manifold novel polymer or biomaterials. Morphological changes, subsequent disruption of RBC membrane integrity, and hemolysis could be used to determine the cytotoxicity of various compounds. Erythrocytes undergo a programmed death (eryptosis) which could serve as a good model for evaluating certain mechanisms which correspond to apoptosis taking place in nucleated cells. Importantly, erythrocytes can be successfully used as a valuable cellular model in examination of oxidative stress generated by certain diseases or multiple xenobiotics since red cells are subjected to permanent oxidative stress. Additionally, the antioxidant capacity of erythrocytes, and the activity of anti-oxidative enzymes could reflect reactive oxygen species (ROS) generating properties of various substances and allow to determine their effects on tissues. The last part of this review presents the latest findings on the possible application of RBCs as drug delivery systems (DDS). In conclusion, all these findings make erythrocytes highly valuable cells for in vitro biocompatibility assessment, cytotoxicity screening of a wide variety of substances as well as drug delivery.
Collapse
Affiliation(s)
- Maria Podsiedlik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| | - Joanna Sikora
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| |
Collapse
|
72
|
Masterson CH, McCarthy SD, O'Toole D, Laffey JG. The role of cells and their products in respiratory drug delivery: the past, present, and future. Expert Opin Drug Deliv 2020; 17:1689-1702. [PMID: 32842784 DOI: 10.1080/17425247.2020.1814732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Cell-based delivery systems offer considerable promise as novel and innovative therapeutics to target the respiratory system. These systems consist of cells and/or their extracellular vesicles that deliver their contents, such as anti-microbial peptides, micro RNAs, and even mitochondria to the lung, exerting direct therapeutic effects. AREAS COVERED The purpose of this article is to critically review the status of cell-based therapies in the delivery of therapeutics to the lung, evaluate current progress, and elucidate key challenges to the further development of these novel approaches. An overview as to how these cells and/or their products may be modified to enhance efficacy is given. More complex delivery cell-based systems, including cells or vesicles that are genetically modified to (over)express specific therapeutic products, such as proteins and therapeutic nucleic acids are also discussed. Focus is given to the use of the aerosol route to deliver these products directly into the lung. EXPERT OPINION The use of biological carriers to deliver chemical or biological agents demonstrates great potential in modern medicine. The next generation of drug delivery systems may comprise 'cell-inspired' drug carriers that are entirely synthetic, developed using insights from cell-based therapeutics to overcome limitations of current generation synthetic carriers.
Collapse
Affiliation(s)
- Claire H Masterson
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland
| | - Sean D McCarthy
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland
| | - Daniel O'Toole
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland
| | - John G Laffey
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland.,Department of Anaesthesia, Galway University Hospitals, SAOLTA University Health Group , Galway, Ireland
| |
Collapse
|