51
|
Mirza R, Shah KU, Khan AU, Fawad M, Rehman AU, Ahmed N, Nawaz A, Shah SU, Alasmari AF, Alharbi M, Alasmari F, Hafeez Z, Haq SU. Statistical design and optimization of nano-transfersomes based chitosan gel for transdermal delivery of cefepime. Drug Dev Ind Pharm 2024; 50:511-523. [PMID: 38718267 DOI: 10.1080/03639045.2024.2353098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVES This research aimed to overcome challenges posed by cefepime excessive elimination rate and poor patient compliance by developing transdermal delivery system using nano-transfersomes based chitosan gel. METHODS Rotary evaporation-sonication method and the Box-Behnken model were used to prepare cefepime loaded nano-transfersomes (CPE-NTFs). The physiochemical characterization of CPE-NTFs were analyzed including DLS, deformability index, DSC and antimicrobial study. Optimized CPE-NTFs loaded into chitosan gel and appropriately characterized. In vitro release, ex vivo and in vivo studies were performed. RESULTS The CPE-NTFs were physically stable with particle size 222.6 ± 1.8 nm, polydispersity index 0.163 ± 0.02, zeta potential -20.8 ± 0.1 mv, entrapment efficiency 81.4 ± 1.1% and deformability index 71 ± 0.2. DSC analysis confirmed successful drug loading and thermal stability. FTIR analysis showed no chemical interaction among the excipients of CPE-NTFs gel. The antibacterial activity demonstrated a remarkable reduction in the minimum inhibitory concentration of cefepime when incorporated into nano-transfersomes. CPE-NTFs based chitosan gel (CPE-NTFs gel) showed significant physicochemical properties. In vitro release studies exhibited sustained release behavior over 24 h, and ex vivo studies indicated enhanced permeation and retention compared to conventional cefepime gel. In vivo skin irritation studies confirmed CPE-NTFs gel was nonirritating and biocompatible for transdermal delivery. CONCLUSION This research showed nano-transfersomes based chitosan gel is a promising approach for cefepime transdermal delivery and provides sustained release of cefepime.
Collapse
Affiliation(s)
- Rashna Mirza
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kifayat Ullah Shah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Atif Ullah Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mohsin Fawad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asif Nawaz
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Sami Ul Haq
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| |
Collapse
|
52
|
El Ghoubary NM, Fadel M, Abdel Fadeel D. Non-pigmented laser hair removal mediated via sepia melanin nanoparticles: in vivo study on albino mice. Drug Dev Ind Pharm 2024; 50:524-536. [PMID: 38752842 DOI: 10.1080/03639045.2024.2356813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/13/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVES Melanin is considered the main chromophore for laser hair removal. Due to a lack of laser-absorbing chromophores, removing non-pigmented hair with laser is quite problematic with unsatisfactory outcomes. This problem could be solved by delivering more melanin to the area around the hair follicle and enhancing that area as a target for light absorption. The insolubility of Sepia melanin as an exogenous dye, in most solvents, limits its bioavailability and thus its clinical use. METHODS In our study, to overcome the solubility problems and increase the bioavailability of melanin for biomedical and cosmetic applications, natural sepia melanin was loaded in different nano-delivery systems (spanlastics and transfersomes) to be delivered to the hair follicles. The different formulations of melanin were prepared and characterized. In vivo skin deposition and histopathological studies were conducted on albino mice. RESULTS Transmission electron microscopy (TEM) showed the spherical shape of the prepared vesicles with an average particle size of 252 and 262 nm and zeta potential of -22.5 and -35 mV for melanin spanlastics and melanin transfersomes, respectively. Histopathological examination of hair follicles and pilosebaceous glands for the irradiated and non-irradiated albino mice skin was studied post the application of the prepared formulations topically and subcutaneously. Qualitative statistical analysis was conducted and melanin transfersomes and melanin spanlastics showed significant damage to pilosebaceous glands and hair follicles with a p-value of 0.031 and 0.009 respectively. CONCLUSION Melanin nanovesicles as transfersomes and spanlastics could be considered a promising approach for the removal of non-pigmented hair.
Collapse
Affiliation(s)
- Nayera Mohamed El Ghoubary
- Pharmaceutical Technology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Maha Fadel
- Pharmaceutical Technology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Doaa Abdel Fadeel
- Pharmaceutical Technology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| |
Collapse
|
53
|
Paramshetti S, Angolkar M, Talath S, Osmani RAM, Spandana A, Al Fatease A, Hani U, Ramesh KVRNS, Singh E. Unravelling the in vivo dynamics of liposomes: Insights into biodistribution and cellular membrane interactions. Life Sci 2024; 346:122616. [PMID: 38599316 DOI: 10.1016/j.lfs.2024.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Liposomes, as a colloidal drug delivery system dating back to the 1960s, remain a focal point of extensive research and stand as a highly efficient drug delivery method. The amalgamation of technological and biological advancements has propelled their evolution, elevating them to their current status. The key attributes of biodegradability and biocompatibility have been instrumental in driving substantial progress in liposome development. Demonstrating a remarkable ability to surmount barriers in drug absorption, enhance stability, and achieve targeted distribution within the body, liposomes have become pivotal in pharmaceutical research. In this comprehensive review, we delve into the intricate details of liposomal drug delivery systems, focusing specifically on their pharmacokinetics and cell membrane interactions via fusion, lipid exchange, endocytosis etc. Emphasizing the nuanced impact of various liposomal characteristics, we explore factors such as lipid composition, particle size, surface modifications, charge, dosage, and administration routes. By dissecting the multifaceted interactions between liposomes and biological barriers, including the reticuloendothelial system (RES), opsonization, enhanced permeability and retention (EPR) effect, ATP-binding cassette (ABC) phenomenon, and Complement Activation-Related Pseudoallergy (CARPA) effect, we provide a deeper understanding of liposomal behaviour in vivo. Furthermore, this review addresses the intricate challenges associated with translating liposomal technology into practical applications, offering insights into overcoming these hurdles. Additionally, we provide a comprehensive analysis of the clinical adoption and patent landscape of liposomes across diverse biomedical domains, shedding light on their potential implications for future research and therapeutic developments.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
54
|
Wu P, Wang X, Yin M, Zhu W, Chen Z, Zhang Y, Jiang Z, Shi L, Zhu Q. ULK1 Mediated Autophagy-Promoting Effects of Rutin-Loaded Chitosan Nanoparticles Contribute to the Activation of NF-κB Signaling Besides Inhibiting EMT in Hep3B Hepatoma Cells. Int J Nanomedicine 2024; 19:4465-4493. [PMID: 38779103 PMCID: PMC11110815 DOI: 10.2147/ijn.s443117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Background Liver cancer remains to be one of the leading causes of cancer worldwide. The treatment options face several challenges and nanomaterials have proven to improve the bioavailability of several drug candidates and their applications in nanomedicine. Specifically, chitosan nanoparticles (CNPs) are extremely biodegradable, pose enhanced biocompatibility and are considered safe for use in medicine. Methods CNPs were synthesized by ionic gelation, loaded with rutin (rCNPs) and characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The rCNPs were tested for their cytotoxic effects on human hepatoma Hep3B cells, and experiments were conducted to determine the mechanism of such effects. Further, the biocompatibility of the rCNPs was tested on L929 fibroblasts, and their hemocompatibility was determined. Results Initially, UV-vis and FTIR analyses indicated the possible loading of rutin on rCNPs. Further, the rutin load was quantitatively measured using Ultra-Performance Liquid Chromatography (UPLC) and the concentration was 88 µg/mL for 0.22 micron filtered rCNPs. The drug loading capacity (LC%) of the rCNPs was observed to be 13.29 ± 0.68%, and encapsulation efficiency (EE%) was 19.55 ± 1.01%. The drug release was pH-responsive as 88.58% of the drug was released after 24 hrs at the lysosomal pH 5.5, whereas 91.44% of the drug was released at physiological pH 7.4 after 102 hrs. The cytotoxic effects were prominent in 0.22 micron filtered samples of 5 mg/mL rutin precursor. The particle size for the rCNPs at this concentration was 144.1 nm and the polydispersity index (PDI) was 0.244, which is deemed to be ideal for tumor targeting. A zeta potential (ζ-potential) value of 16.4 mV indicated rCNPs with good stability. The IC50 value for the cytotoxic effects of rCNPs on human hepatoma Hep3B cells was 9.7 ± 0.19 μg/mL of rutin load. In addition, the increased production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential (MMP) were observed. Gene expression studies indicated that the mechanism for cytotoxic effects of rCNPs on Hep3B cells was due to the activation of Unc-51-like autophagy-activating kinase (ULK1) mediated autophagy and nuclear factor kappa B (NF-κB) signaling besides inhibiting the epithelial-mesenchymal Transition (EMT). In addition, the rCNPs were less toxic on NCTC clone 929 (L929) fibroblasts in comparison to the Hep3B cells and possessed excellent hemocompatibility (less than 2% of hemolysis). Conclusion The synthesized rCNPs were pH-responsive and possessed the physicochemical properties suitable for tumor targeting. The particles were effectively cytotoxic on Hep3B cells in comparison to normal cells and possessed excellent hemocompatibility. The very low hemolytic profile of rCNPs indicates that the drug could be administered intravenously for cancer therapy.
Collapse
Affiliation(s)
- Peng Wu
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiaoyong Wang
- The People’s Hospital of Rugao, Nantong, People’s Republic of China
| | - Min Yin
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wenjie Zhu
- Kangda College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zheng Chen
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yang Zhang
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ziyu Jiang
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People’s Republic of China
| | - Longqing Shi
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, Jiangsu, People’s Republic of China
| | - Qiang Zhu
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
55
|
Balmanno A, Falconer JR, Ravuri HG, Mills PC. Strategies to Improve the Transdermal Delivery of Poorly Water-Soluble Non-Steroidal Anti-Inflammatory Drugs. Pharmaceutics 2024; 16:675. [PMID: 38794337 PMCID: PMC11124993 DOI: 10.3390/pharmaceutics16050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The transdermal delivery of non-steroidal anti-inflammatory drugs (NSAIDs) has the potential to overcome some of the major disadvantages relating to oral NSAID usage, such as gastrointestinal adverse events and compliance. However, the poor solubility of many of the newer NSAIDs creates challenges in incorporating the drugs into formulations suitable for application to skin and may limit transdermal permeation, particularly if the goal is therapeutic systemic drug concentrations. This review is an overview of the various strategies used to increase the solubility of poorly soluble NSAIDs and enhance their permeation through skin, such as the modification of the vehicle, the modification of or bypassing the barrier function of the skin, and using advanced nano-sized formulations. Furthermore, the simple yet highly versatile microemulsion system has been found to be a cost-effective and highly successful technology to deliver poorly water-soluble NSAIDs.
Collapse
Affiliation(s)
- Alexandra Balmanno
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343, Australia;
| | - James R. Falconer
- School of Pharmacy, The University of Queensland, Dutton Park Campus, Woolloongabba, QLD 4102, Australia;
| | - Halley G. Ravuri
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - Paul C. Mills
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343, Australia;
| |
Collapse
|
56
|
G Popova P, Chen SP, Liao S, Sadarangani M, Blakney AK. Clinical perspective on topical vaccination strategies. Adv Drug Deliv Rev 2024; 208:115292. [PMID: 38522725 DOI: 10.1016/j.addr.2024.115292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Vaccination is one of the most successful measures in modern medicine to combat diseases, especially infectious diseases, and saves millions of lives every year. Vaccine design and development remains critical and involves many aspects, including the choice of platform, antigen, adjuvant, and route of administration. Topical vaccination, defined herein as the introduction of a vaccine to any of the three layers of the human skin, has attracted interest in recent years as an alternative vaccination approach to the conventional intramuscular administration because of its potential to be needle-free and induce a superior immune response against pathogens. In this review, we describe recent progress in developing topical vaccines, highlight progress in the development of delivery technologies for topical vaccines, discuss potential factors that might impact the topical vaccine efficacy, and provide an overview of the current clinical landscape of topical vaccines.
Collapse
Affiliation(s)
- Petya G Popova
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sunny P Chen
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Suiyang Liao
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada; Life Science Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, British Columbia V5Z 4H4, Canada; Department of Pediatrics, University of British Columbia, 4480 Oak St, Vancouver, BC V6H 0B3, Canada
| | - Anna K Blakney
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
57
|
Demartis S, Rassu G, Anjani QK, Volpe-Zanutto F, Hutton ARJ, Sabri AB, McCarthy HO, Giunchedi P, Donnelly RF, Gavini E. Improved pharmacokinetic and lymphatic uptake of Rose Bengal after transfersome intradermal deposition using hollow microneedles. J Control Release 2024; 369:363-375. [PMID: 38554770 DOI: 10.1016/j.jconrel.2024.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The lymphatic system is active in several processes that regulate human diseases, among which cancer progression stands out. Thus, various drug delivery systems have been investigated to promote lymphatic drug targeting for cancer therapy; mainly, nanosized particles in the 10-150 nm range quickly achieve lymphatic vessels after an interstitial administration. Herein, a strategy to boost the lymphotropic delivery of Rose Bengal (RB), a hydrosoluble chemotherapeutic, is proposed, and it is based on the loading into Transfersomes (RBTF) and their intradermal deposition in vivo by microneedles. RBTF of 96.27 ± 13.96 nm (PDI = 0.29 ± 0.02) were prepared by a green reverse-phase evaporation technique, and they showed an RB encapsulation efficiency of 98.54 ± 0.09%. In vitro, RBTF remained physically stable under physiological conditions and avoided the release of RB. In vivo, intravenous injection of RBTF prolonged RB half-life of 50 min in healthy rats compared to RB intravenous injection; the RB half-life in rat body was further increased after intradermal injection reaching 24 h, regardless of the formulation used. Regarding lymphatic targeting, RBTF administered intravenously provided an RB accumulation in the lymph nodes of 12.3 ± 0.14 ng/mL after 2 h, whereas no RB accumulation was observed after RB intravenous injection. Intradermally administered RBTF resulted in the highest RB amount detected in lymph nodes after 2 h from the injection (84.2 ± 25.10 ng/mL), which was even visible to the naked eye based on the pink colouration of the drug. In the case of intradermally administered RB, RB in lymph node was detected only at 24 h (13.3 ± 1.41 ng/mL). In conclusion, RBTF proved an efficient carrier for RB delivery, enhancing its pharmacokinetics and promoting lymph-targeted delivery. Thus, RBTF represents a promising nanomedicine product for potentially facing the medical need for novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Sara Demartis
- Department of Chemical, Mathematical, Natural and Physical Sciences, University of Sassari, Sassari 07100, Italy
| | - Giovanna Rassu
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy.
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Akmal B Sabri
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Helen O McCarthy
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Paolo Giunchedi
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Elisabetta Gavini
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
58
|
Singh S, Awasthi R. Berberine HCl and diacerein loaded dual delivery transferosomes: Formulation and optimization using Box-Behnken design. ADMET AND DMPK 2024; 12:553-580. [PMID: 39091899 PMCID: PMC11289510 DOI: 10.5599/admet.2268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/21/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Berberine is a poorly water-soluble alkaloid compound showing significant anti-inflammatory characteristics. It reduces the levels of pro-inflammatory and inflammatory cytokines, including tumour necrosis factor (TNF-α, IFN-γ) and interleukin (IL-23, IL-12, and IL-23). Diacerein significantly reduces the splenomegaly associated with psoriasis. It downregulates the production of TNF-α and IL-12. Method This study reported the development of transferosomes containing berberine HCl and diacerein using a film hydration method followed by optimization using a Box-Behnken design. Sodium deoxycholate was used as an edge activator. The impact of independent variables (amount of phosphatidylcholine, amount of edge activator, and sonication cycles) on dependent variables (particle size and entrapment efficiency) was examined. The optimized formulation was characterized for polydispersity index, vesicle size, entrapment efficiency, ζ potential, spectral analysis like Fourier transform infrared, thermal analysis, X-ray diffraction, deformability, transmission electron microscopy, antioxidant assay, in-vitro release, and ex-vivo skin permeation studies. Results The optimized formulation had a particle size of 110.90±2.8 nm with high entrapment efficiency (89.50±1.5 of berberine HCl and 91.23±1.8 of diacerein). Deformability, polydispersity index, ζ potential, and antioxidant activity of the optimized formulation were 2.44, 0.296, -13.3, and 38.36 %, respectively. Optimized transferosomes exhibited 82.093±0.81 % and 85.02±3.81 % release of berberine HCl and diacerein after 24 h of dissolution study. The transdermal flux of optimized formulation was 0.0224 μg cm-2 h-1 (2.24 cm h-1 permeation coefficient) and 0.0462 μg cm-2 h-1 (4.62 cm h-1 permeation coefficient), respectively, for berberine HCl and diacerein. Raman analysis of treated pig skin confirmed that the transferosomes can permeate the skin. No change in the skin condition or irritation was observed in BALB/c mice. Formulation stored at 4 and 25±2 °C / 60±5 % relative humidity was stable for 3 months. Conclusions Thus, the results demonstrated successful optimization of the transferosomes for the efficient topical delivery of berberine HCl and diacerein in the effective management of psoriasis.
Collapse
Affiliation(s)
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India
| |
Collapse
|
59
|
Kumari NU, Pardhi E, Chary PS, Mehra NK. Exploring contemporary breakthroughs in utilizing vesicular nanocarriers for breast cancer therapy. Ther Deliv 2024; 15:279-303. [PMID: 38374774 DOI: 10.4155/tde-2023-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Breast cancer (BC) is a heterogeneous disease with various morphological features, clinicopathological conditions and responses to different therapeutic options, which is responsible for high mortality and morbidity in women. The heterogeneity of BC necessitates new strategies for diagnosis and treatment, which is possible only by cautious harmonization of the advanced nanomaterials. Recent developments in vesicular nanocarrier therapy indicate a paradigm shift in breast cancer treatment by providing an integrated approach to address current issues. This review provides a detailed classification of various nanovesicles in the treatment of BC with a special emphasis on recent advances, challenges in translating nanomaterials and future potentials.
Collapse
Affiliation(s)
- Nalla Usha Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Ekta Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Padakanti Sandeep Chary
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| |
Collapse
|
60
|
Torabi A, Madsen FB, Skov AL. Permeation-Enhancing Strategies for Transdermal Delivery of Cannabinoids. Cannabis Cannabinoid Res 2024; 9:449-463. [PMID: 37751171 DOI: 10.1089/can.2023.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Introduction: This review aims to provide an overview of the advancements and status of clinical studies and potential permeation-enhancing strategies in the transdermal delivery of cannabinoids. Methods: A systematic and comprehensive literature search across academic databases, search engines, and online sources to identify relevant literature on the transdermal administration of cannabinoids. Results: Cannabinoids have proven beneficial in the treatment of wide-ranging physical and psychological disorders. A shift toward legalized cannabinoid products has increased both interests in cannabinoid research and the development of novel medicinal exploitations of cannabinoids in recent years. Oral and pulmonary delivery of cannabinoids has several limitations, including poor bioavailability, low solubility, and potential side effects. This has diverted scientific attention toward the transdermal route, successfully overcoming these hurdles by providing higher bioavailability, safety, and patient compliance. Yet, due to the barrier properties of the skin and the lipophilic nature of cannabinoids, there is a need to increase the permeation of the drugs to the underneath layers of skin to reach desired therapeutic plasma levels. Literature describing detailed clinical trials on cannabinoid transdermal delivery, either with or without permeation-enhancing strategies, is limited. Conclusion: The limited number of reports indicates that increased attention is needed on developing and examining efficient transdermal delivery systems for cannabinoids, including patch design and composition, drug-patch interaction, clinical effectiveness and safety in vivo, and permeation-enhancing strategies.
Collapse
Affiliation(s)
- Atefeh Torabi
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frederikke Bahrt Madsen
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne Ladegaard Skov
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
61
|
da Silva Gomes B, Cláudia Paiva-Santos A, Veiga F, Mascarenhas-Melo F. Beyond the adverse effects of the systemic route: Exploiting nanocarriers for the topical treatment of skin cancers. Adv Drug Deliv Rev 2024; 207:115197. [PMID: 38342240 DOI: 10.1016/j.addr.2024.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/21/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Skin cancer is a heterogeneous disease that can be divided into two main groups, melanoma and nonmelanoma skin cancers. Conventional therapies for skin cancer have numerous systemic side effects and a high recurrence rate. Topical treatment is an alternative approach, but drug permeability remains a challenge. Therefore, nanocarriers appear as important nanotechnology tools that reduces both the side effects and improves clinical outcomes. This is why they are attracting growing interest. In this review, scientific articles on the use of nanocarriers for the topical treatment of skin cancer were collected. Despite the promising results of the presented nanocarriers and considering that some of them are already on the market, there is an urgent need for investment in the development of manufacturing methods, as well as of suitable toxicological and regulatory evaluations, since the conventional methods currently used to develop these nanocarriers-based products are more time-consuming and expensive than conventional products.
Collapse
Affiliation(s)
- Beatriz da Silva Gomes
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Francisco Veiga
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Filipa Mascarenhas-Melo
- University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300 - 307 Guarda, Portugal.
| |
Collapse
|
62
|
Cheng Z, Kandekar U, Ma X, Bhabad V, Pandit A, Liu L, Luo J, Munot N, Chorage T, Patil A, Patil S, Tao L. Optimizing fluconazole-embedded transfersomal gel for enhanced antifungal activity and compatibility studies. Front Pharmacol 2024; 15:1353791. [PMID: 38606182 PMCID: PMC11007155 DOI: 10.3389/fphar.2024.1353791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Fungal infections are of major concern all over the globe, and fluconazole is the most prevalently used drug to treat it. The goal of this research work was to formulate a fluconazole-embedded transfersomal gel for the treatment of fungal infections. A compatibility study between fluconazole and soya lecithin was performed by differential scanning calorimetry (DSC). Transfersomes were formulated by a thin-film hydration technique using soya lecithin and Span 80. A central composite design was adopted to prepare different formulations. Soya lecithin and Span 80 were chosen as independent variables, and the effect of these variables was studied on in vitro drug diffusion. Formulations were evaluated for entrapment efficiency and in vitro drug diffusion. The results of in vitro drug diffusion were analyzed using the analysis of variance (ANOVA) test. Optimized formulation was prepared based on the overlay plot and evaluated by scanning electron microscopy, DSC, vesicle size, polydispersity index (PDI), zeta potential, and in vitro drug diffusion studies. An optimized formulation was loaded into xanthan gum gel base and evaluated for pH, viscosity, in vitro and ex vivo drug diffusion, and antifungal activity. DSC studies revealed compatibility between fluconazole and soya lecithin. Entrapment efficiency and in vitro drug diffusion of various formulations ranged between 89.92% ± 0.20% to 97.28% ± 0.42% and 64% ± 1.56% to 85% ± 2.05%, respectively. A positive correlation was observed between in vitro drug diffusion and Span 80; conversely, a negative correlation was noted with soya lecithin. Entrapment efficiency, particle size, zeta potential, PDI, and drug diffusion of optimized formulation were 95.0% ± 2.2%, 397 ± 2 nm, -38 ± 5 mV, 0.43%, and 81 % ± 2%, respectively. SEM images showed well-distributed spherical-shaped transfersomes. In vitro, ex vivo drug diffusion and antifungal studies were conclusive of better diffusion and enhanced antifungal potential fluconazole in transfersomal formulation.
Collapse
Affiliation(s)
- Zhiqiang Cheng
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Department of Pathology, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ujjwala Kandekar
- Department of Pharmaceutics, JSPM’s Rajarshi Shahu College of Pharmacy and Research, Pune, Maharashtra, India
| | - Xiaoshi Ma
- Department of Pathology, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Vishal Bhabad
- Department of Pharmaceutics, JSPM’s Rajarshi Shahu College of Pharmacy and Research, Pune, Maharashtra, India
| | - Ashlesha Pandit
- Department of Pharmaceutics, JSPM’s Rajarshi Shahu College of Pharmacy and Research, Pune, Maharashtra, India
| | - Liming Liu
- Department of Pathology, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiping Luo
- Department of Pathology, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Neha Munot
- Department of Pharmaceutics, Rajmata Jijau Shikashan Prasarak Mandal College of Pharmacy, Pune, Maharashtra, India
| | - Trushal Chorage
- Department of Pharmacognosy, JSPM’s Charak College of Pharmacy and Research, Pune, Maharashtra, India
| | - Abhinandan Patil
- Department of Pharmaceutics, D. Y. Patil Education Society, Kolhapur, Maharashtra, India
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Liang Tao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
63
|
Gupta I, Adin SN, Aqil M, Mujeeb M. Nose to brain delivery of naringin loaded transniosomes for epilepsy: formulation, characterisation, blood-brain distribution and invivo pharmacodynamic evaluation. J Liposome Res 2024; 34:60-76. [PMID: 37212622 DOI: 10.1080/08982104.2023.2214619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
The current work limns the preparation of naringin-loaded transnioosomes (NRN-TN) to enhance NRN solubility, permeation and bioavailability via nasal mucosa for intranasal delivery. NRN-TN was created by the thin-film hydration technique, and with the BBD (Box-Behnken design), optimisation was carried out. NRN-TNopt was characterised for the vesicle size, PDI (Polydispersity index), zeta potential, entrapment efficiency (EE) and in vitro NRN release. For further assessment, nasal permeation study, study of Blood-brain distribution, TEM (Transmission Electron Microscopy), and CLSM (Confocal Scanning Laser Microscopy) were conducted withal. The NRN-TNopt exhibited spherical as well as sealed vesicles with a considerable small size of 151.3 nm, an EE of 75.23 percent, a PDI of 0.1257, and an in vitro release of 83.32 percent. CLSM investigation revealed that the new formulation allows for higher NRN permeation across nasal mucosa than the NRN solution. The blood-brain distribution investigation revealed that intranasally administered NRN-TN had a greater Cmax and AUC0-24 h than orally administered NRN-TN. Seizure activity and neuromuscular coordination as measured by the rotarod test, biochemical estimate of oxidative stress indicators, and histological investigations demonstrated that the NRN-TN has superior anti-epileptic potential in comparison to the standard diazepam. In addition, nasal toxicity studies demonstrate that the NRN-TN formulation is safer for intranasal administration. This study confirmed that the created TN vesicle formulation is a valuable carrier for the intranasal administration of NRN for the treatment of epilepsy.
Collapse
Affiliation(s)
- Isha Gupta
- Phytomedicine laboratory, Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, New Delhi, India
| | - Syeda Nashvia Adin
- Phytomedicine laboratory, Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, New Delhi, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, New Delhi, India
| | - Mohd Mujeeb
- Phytomedicine laboratory, Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, New Delhi, India
| |
Collapse
|
64
|
Opatha SAT, Chutoprapat R, Khankaew P, Titapiwatanakun V, Ruksiriwanich W, Boonpisuttinant K. Asiatic acid-entrapped transfersomes for the treatment of hypertrophic scars: In vitro appraisal, bioactivity evaluation, and clinical study. Int J Pharm 2024; 651:123738. [PMID: 38158144 DOI: 10.1016/j.ijpharm.2023.123738] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Non-invasive treatment options for hypertrophic scars (HTS) are limited, and treating HTS remains challenging due to their unappealing appearance and associated social stigma. In this work, a novel transfersomal system named Asiatic acid-entrapped transfersomes (AATs) was prepared. AATs were evaluated for their skin permeability, anti-inflammatory activity, and other characteristic parameters to determine the most promising formulation. Asiatic acid-entrapped transfersomal gel (AATG), which was obtained by incorporating the lead AATs in a gel base, underwent testing in an 8-week, double-blind, placebo-controlled, split-skin clinical study. The net skin elasticity (R5), melanin index (MI), and skin surface hydration were analyzed employing Cutometer®, Mexameter®, and Corneometer®, respectively, in order to evaluate the effectiveness of the developed AATG. AATs exhibited vesicular sizes and zeta potential values within the range of (27.15 ± 0.95 to 63.54 ± 2.51 nm) and (-0.010 to -0.129 mV), respectively. TW80AAT gave the highest %EE (90.84 ± 2.99%), deformability index (101.70 ± 11.59 mgs-1), permeation flux at 8 h (0.146 ± 0.005 mg/cm2/h), and anti-inflammatory activity (71.65 ± 1.83%). The clinical study results of AATG indicated no adverse skin reactions. Furthermore, product efficacy tests demonstrated a significant reduction in MI and an increase in net skin elasticity at 2, 4, and 8 weeks. These pilot study outcomes support the effectiveness of the AATG.
Collapse
Affiliation(s)
- Shakthi Apsara Thejani Opatha
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Romchat Chutoprapat
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand.
| | - Pichanon Khankaew
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Varin Titapiwatanakun
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korawinwich Boonpisuttinant
- Innovative Natural Products from Thai Wisdoms (INPTW), Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathumthani, 12130, Thailand
| |
Collapse
|
65
|
Lei Y, Yang Y, Yang G, Li A, Yang Y, Wang Y, Gao C. Delivery Strategies for Colchicine as a Critical Dose Drug: Reducing Toxicity and Enhancing Efficacy. Pharmaceutics 2024; 16:222. [PMID: 38399276 PMCID: PMC10891573 DOI: 10.3390/pharmaceutics16020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Colchicine (COL), a widely used natural drug, has potent anti-inflammatory effects; however, as a narrow therapeutic index drug, its clinical application is limited by its serious gastrointestinal adverse effects, and only oral formulations are currently marketed worldwide. Recent studies have shown that transdermal, injection, and oral drug delivery are the three main delivery strategies for COL. This article elaborates on the research progress of different delivery strategies in terms of toxicity reduction and efficacy enhancement, depicting that the transdermal drug delivery route can avoid the first-pass effect and the traumatic pain associated with the oral and injection routes, respectively. Therefore, such a dosage form holds a significant promise that requires the development of further research to investigate effective COL delivery formulations. In addition, the permeation-promoting technologies utilized for transdermal drug delivery systems are briefly discussed. This article is expected to provide scientific ideas and theoretical guidance for future research and the exploration of COL delivery strategies.
Collapse
Affiliation(s)
- Yaran Lei
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (Y.Y.); (G.Y.); (A.L.); (Y.Y.)
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Yulu Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (Y.Y.); (G.Y.); (A.L.); (Y.Y.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Guobao Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (Y.Y.); (G.Y.); (A.L.); (Y.Y.)
| | - Ao Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (Y.Y.); (G.Y.); (A.L.); (Y.Y.)
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (Y.Y.); (G.Y.); (A.L.); (Y.Y.)
| | - Yuli Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (Y.Y.); (G.Y.); (A.L.); (Y.Y.)
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (Y.Y.); (G.Y.); (A.L.); (Y.Y.)
| |
Collapse
|
66
|
Sahu N, Alam P, Ali A, Kumar N, Tyagi R, Madan S, Walia R, Saxena S. Optimization, In Vitro and Ex Vivo Assessment of Nanotransferosome Gels Infused with a Methanolic Extract of Solanum xanthocarpum for the Topical Treatment of Psoriasis. Gels 2024; 10:119. [PMID: 38391449 PMCID: PMC10888226 DOI: 10.3390/gels10020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
The goal of this investigation is to improve the topical delivery of medicine by preparing and maximizing the potential of a nanotransferosome gel infused with Solanum xanthocarpum methanolic extract (SXE) to provide localized and regulated distribution. Thin-film hydration was used to create SXE-infused nanotransferosomes (SXE-NTFs), and a Box-Behnken design was used to improve them. Phospholipon 90G (X1), cholesterol (X2) and sodium cholate (X3) were chosen as the independent variables, and their effects on vesicle size (Y1), polydispersity index (PDI) (Y2) and the percentage of entrapment efficiency (EE) (Y3) were observed both individually and in combination. For the SXE-NTFs, the vesicle size was 146.3 nm, the PDI was 0.2594, the EE was 82.24 ± 2.64%, the drug-loading capacity was 8.367 ± 0.07% and the drug release rate was 78.86 ± 5.24%. Comparing the antioxidant activity to conventional ascorbic acid, it was determined to be 83.51 ± 3.27%. Ex vivo permeation tests revealed that the SXE-NTF gel (82.86 ± 2.38%) considerably outperformed the SXE gel (35.28 ± 1.62%) in terms of permeation. In addition, it seemed from the confocal laser scanning microscopy (CLSM) picture of the Wistar rat's skin that the rhodamine-B-loaded SXE-NTF gel had a higher penetration capability than the control. Dermatokinetic studies showed that the SXE-NTF gel had a better retention capability than the SXE gel. According to the experimental results, the SXE-NTF gel is a promising and successful topical delivery formulation.
Collapse
Affiliation(s)
- Nilanchala Sahu
- Department of Pharmacy, Sharda School of Pharmacy, Sharda University, Greater Noida 201310, India
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Asad Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, M. B. Road, New Delhi 110062, India
| | - Neeraj Kumar
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, M. B. Road, New Delhi 110062, India
| | - Rama Tyagi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, India
| | - Swati Madan
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, India
| | - Ramanpreet Walia
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, India
| | - Shikha Saxena
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, India
| |
Collapse
|
67
|
Simrah, Hafeez A, Usmani SA, Izhar MP. Transfersome, an ultra-deformable lipid-based drug nanocarrier: an updated review with therapeutic applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:639-673. [PMID: 37597094 DOI: 10.1007/s00210-023-02670-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
The application of nanotechnology with integration of chemical sciences is increasing continuously in the management of diseases. The drug's physicochemical and pharmacological characteristics are enhanced by application of nanotechnological principles. Several nanotechnology-based formulations are being investigated to improve patient compliance. One such novel nanocarrier system is transfersome (TFS) and is composed of natural biocompatible phospholipids and edge activators. Morphologically, TFS are similar to liposomes but functionally, these are ultra-deformable vesicles which can travel through pores smaller than their size. Because of their amphipathic nature, TFS have the potential to deliver the drugs through sensitive biological membranes, especially the blood-brain barrier, skin layers, and nasal epithelium. Different molecular weight drugs can be transferred inside the cell by encapsulation into the TFS. Knowing the tremendous potentiality of TFS, the present work provides an in-depth and detailed account (pharmaceutical and preclinical characteristics) of TFS incorporating different categories of therapeutic moieties (anti-diabetic, anti-inflammatory, anti-cancer, anti-viral, anti-fungal, anti-oxidant, cardiovascular drugs, CNS acting drugs, vaccine delivery, and miscellaneous applications). It also includes information about the methods of preparation employed, significance of excipients used in the preparation, summary of clinical investigations performed, patent details, latest investigations, routes of administration, challenges, and future progresses related to TFS.
Collapse
Affiliation(s)
- Simrah
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| | | | | |
Collapse
|
68
|
Chen Y, Chen K, Zhong S, Wang J, Yu Z, Sun X, Wang Y, Liu Y, Zhang Z. Transdermal Transfersome Nanogels Control Hypertrophic Scar Formation via Synergy of Macrophage Phenotype-Switching and Anti-Fibrosis Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305468. [PMID: 38064170 PMCID: PMC10870058 DOI: 10.1002/advs.202305468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/08/2023] [Indexed: 02/17/2024]
Abstract
Hypertrophic scar (HS), which results from prolonged inflammation and excessive fibrosis in re-epithelialized wounds, is one of the most common clinical challenges. Consequently, sophisticated transdermal transfersome nanogels (TA/Fu-TS) are prepared to control HS formation by synergistically inhibiting inflammation and suppressing fibrosis. TA/Fu-TSs have unique structures comprising hydrophobic triamcinolone acetonide (TA) in lipid multilayers and hydrophilic 5-fluorouracil in aqueous cores, and perform satisfactorily with regard to transdermal co-delivery to macrophages and HS fibroblasts in emerging HS tissues. According to the in vitro/vivo results, TA/Fu-TSs not only promote macrophage phenotype-switching to inhibit inflammation by interleukin-related pathways, but also suppress fibrosis to remodel extracellular matrix by collagen-related pathways. Therefore, TA/Fu-TSs overcome prolonged inflammation and excessive fibrosis in emerging HS tissues, and provide an effective therapeutic strategy for controlling HS formation via their synergy of macrophage phenotype-switching and anti-fibrosis effect.
Collapse
Affiliation(s)
- Yunsheng Chen
- Department of BurnShanghai Burn InstituteRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Kun Chen
- Department of Burn and Plastic SurgeryBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijing100045China
- Shunyi Maternal and Children's Hospital of Beijing Children's HospitalBeijing101300China
| | - Shan Zhong
- Department of BurnShanghai Burn InstituteRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Jiaqiang Wang
- Department of BurnShanghai Burn InstituteRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Zhixi Yu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalSchool of MedicineShanghai Jiao Tong University639 Zhizaoju RdShanghai200011China
| | - Xiyang Sun
- Hongqiao International Institute of MedicineTongren HospitalSchool of MedicineShanghai Jiao Tong University1111 XianXia RoadShanghai200336China
| | - Yue Wang
- Department of Ear ReconstructionPlastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical College33 Badachu RoadBeijing100144China
| | - Yan Liu
- Department of BurnShanghai Burn InstituteRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Zheng Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalSchool of MedicineShanghai Jiao Tong University639 Zhizaoju RdShanghai200011China
| |
Collapse
|
69
|
John R, Monpara J, Swaminathan S, Kalhapure R. Chemistry and Art of Developing Lipid Nanoparticles for Biologics Delivery: Focus on Development and Scale-Up. Pharmaceutics 2024; 16:131. [PMID: 38276502 PMCID: PMC10819224 DOI: 10.3390/pharmaceutics16010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Lipid nanoparticles (LNPs) have gained prominence as primary carriers for delivering a diverse array of therapeutic agents. Biological products have achieved a solid presence in clinical settings, and the anticipation of creating novel variants is increasing. These products predominantly encompass therapeutic proteins, nucleic acids and messenger RNA. The advancement of efficient LNP-based delivery systems for biologics that can overcome their limitations remains a highly favorable formulation strategy. Moreover, given their small size, biocompatibility, and biodegradation, LNPs can proficiently transport therapeutic moiety into the cells without significant toxicity and adverse reactions. This is especially crucial for the existing and upcoming biopharmaceuticals since large molecules as a group present several challenges that can be overcome by LNPs. This review describes the LNP technology for the delivery of biologics and summarizes the developments in the chemistry, manufacturing, and characterization of lipids used in the development of LNPs for biologics. Finally, we present a perspective on the potential opportunities and the current challenges pertaining to LNP technology.
Collapse
Affiliation(s)
- Rijo John
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA; (R.J.); (J.M.)
| | - Jasmin Monpara
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA; (R.J.); (J.M.)
| | - Shankar Swaminathan
- Drug Product Development, Astellas Institute of Regenerative Medicine, Westborough, MA 01581, USA;
| | - Rahul Kalhapure
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Odin Pharmaceuticals LLC, 300 Franklin Square Dr, Somerset, NJ 08873, USA
| |
Collapse
|
70
|
Singh G, Narang RK. Quality by Design Assisted Development of Luliconazole Transethosomes in Gel for the Management of Candida albicans Infection. Assay Drug Dev Technol 2024; 22:1-17. [PMID: 38156818 DOI: 10.1089/adt.2023.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
The objective of this study was to develop and evaluate a novel vesicular formulation of luliconazole (LUL) for the management of Candida albicans infection through a topical route. LUL-loaded transethosomes (LUL-TE) were prepared by the film hydration method and various independent and dependent variables were optimized using the Box-Behnken design. Selected critical material attributes were the content of phospholipids (X1), concentration of ethanol (X2), and amount of sodium cholate (X3). Formulated LUL-TE were characterized for percent entrapment efficiency, percent drug loading, vesicle size, and polydispersity index (PDI) and were incorporated into the carbomer gel base and further evaluated for gel characterizations. The prepared transethosomal gel (LUL-TE-CHG) was evaluated for pH, spreadability, viscosity, antifungal activity, and in vitro study. From the observed results, it was evident that the prepared LUL-TE-CHG was in the desired pH (6.2 ± 0.45), spreadability [8.3 ± 0.42 g/(cm·s)], viscosity (236.1-19.2.26 mPa·s), nanovesicle size (252 ± 9.82), entrapment efficiency (85% ± 5.24%), zeta potential (-34.05 ± 3.52 mV), and PDI (0.233 ± 0.002). The zone of inhibition results suggested that the LUL-TE-CHG formulation has the highest antifungal activity, that is, 5.83 ± 0.15 mm3. The in vitro results showed that drug release within 2 h was 18.1% ± 2.0% and after that sustained release action, 83.2% ± 1.7% within 8 h. Finally, to confirm the therapeutic efficacy of the developed formulation, fungal infection was induced by using C. albicans in Wistar rats. In vivo, skin irritation study and histopathology studies were performed in the disease-induced model. Animal experiments revealed that LUL-TE-CHG has significantly improved the diseased condition in Wistar rats. The results observed from the skin permeation and skin deposition profile ensure that the prepared novel LUL-loaded TE system had a higher permeation rate and increased retention time compared with LUL-CHG. The hydrogel incorporated with LUL could be a novel approach with safe and effective fungal treatment.
Collapse
Affiliation(s)
- Gurmeet Singh
- Department of Pharmaceutical Sciences, I.K. Gujral Punjab Technical University, Kapurthala, Punjab, India
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutical Sciences, I.K. Gujral Punjab Technical University, Kapurthala, Punjab, India
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
71
|
Ahuja A, Bajpai M. Novel Arena of Nanocosmetics: Applications and their Remarkable Contribution in the Management of Dermal Disorders, Topical Delivery, Future Trends and Challenges. Curr Pharm Des 2024; 30:115-139. [PMID: 38204262 DOI: 10.2174/0113816128288516231228101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Nanocosmetics have attracted a considerable audience towards natural care due to their low cost, target-specific delivery, and reduced toxicity compared to chemical-based cosmetics. Nanofomulations, including nanoemulsions, nanotubes, and polymeric carriers, have become next-generation products explored for the multifaced applications of nanotechnology in skin care. The rise in the cosmetic industry demands innovative and personalized products designed using nanocarriers for better targeting and improving patient compliance. Furthermore, nanocosmetics increase the efficiency of skin permeation active ingredient entrapment, providing better UV protection. Moreover, it offers controlled drug release, targeting active sites and enhancing physical stability. Further, overcoming the drawback of penetration problems makes them sustainable formulations for precision medicine. Skincare nourishment with nanocosmetics using Indian spices helps to maintain, beautify, and rejuvenate human skin. Nanophytopharmaceuticals extracted from plants, including alkaloids, flavonoids, antioxidants, and volatile oils, are essential phyto-products for skin care. Nano herbals and nanocosmetics are a growing market and gift of nature that nourishes and cures skin ailments like acne, pemphigus, anti-aging, albinism, psoriasis, and fungal infections. The emerging concern is highlighted in the investigation of nanoformulation toxicity and safety concerns in skin care. Further, it helps to manifest research, development, and innovation in expanding the scope of herbal industries.
Collapse
Affiliation(s)
- Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| |
Collapse
|
72
|
Bansal K, Singh V, Mishra S, Bajpai M. Articulating the Pharmacological and Nanotechnological Aspects of Genistein: Current and Future Prospectives. Curr Pharm Biotechnol 2024; 25:807-824. [PMID: 38902930 DOI: 10.2174/0113892010265344230919170611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 06/22/2024]
Abstract
Throughout the past several centuries, herbal constituents have been the subject of scientific interest and the latest research into their therapeutic potential is underway. Genistein is a soy-derived isoflavone found in huge amounts in soy, along with the plants of the Fabaceae family. Scientific studies have demonstrated the beneficial effects of genistein on various health conditions. Genistein presents a broad range of pharmacological activities, including anticancer, neuroprotective, cardioprotective, antiulcer, anti-diabetic, wound healing, anti-bacterial, antiviral, skin, and radioprotective effects. However, the hydrophobic nature of genistein results in constrained absorption and restricts its therapeutic potential. In this review, the number of nanocarriers for genistein delivery has been explored, such as polymeric nanoparticles, nanostructured lipid carriers, solid lipid nanoparticles, liposomes, micelles, transferosomes, and nanoemulsions and nanofibers. These nano-formulations of genistein have been utilized as a potential strategy for various disorders, employing a variety of ex vivo, in vitro, and in vivo models and various administration routes. This review concluded that genistein is a potential therapeutic agent for treating various diseases, including cancer, neurodegenerative disorders, cardiovascular disorders, obesity, diabetes, ulcers, etc., when formulated in suitable nanocarriers.
Collapse
Affiliation(s)
- Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Vanshita Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Samiksha Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
73
|
Sarangi M, Padhi S, Rath G. Non-Invasive Delivery of Insulin for Breaching Hindrances against Diabetes. Crit Rev Ther Drug Carrier Syst 2024; 41:1-64. [PMID: 38608132 DOI: 10.1615/critrevtherdrugcarriersyst.2023048197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Insulin is recognized as a crucial weapon in managing diabetes. Subcutaneous (s.c.) injections are the traditional approach for insulin administration, which usually have many limitations. Numerous alternative (non-invasive) slants through different routes have been explored by the researchers for making needle-free delivery of insulin for attaining its augmented absorption as well as bioavailability. The current review delineating numerous pros and cons of several novel approaches of non-invasive insulin delivery by overcoming many of their hurdles. Primary information on the topic was gathered by searching scholarly articles from PubMed added with extraction of data from auxiliary manuscripts. Many approaches (discussed in the article) are meant for the delivery of a safe, effective, stable, and patient friendly administration of insulin via buccal, oral, inhalational, transdermal, intranasal, ocular, vaginal and rectal routes. Few of them have proven their clinical efficacy for maintaining the glycemic levels, whereas others are under the investigational pipe line. The developed products are comprising of many advanced micro/nano composite technologies and few of them might be entering into the market in near future, thereby garnishing the hopes of millions of diabetics who are under the network of s.c. insulin injections.
Collapse
Affiliation(s)
| | - Sasmita Padhi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, Pin-201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar-751030, Odisha, India
| |
Collapse
|
74
|
Vettorato E, Fiordelisi M, Ferro S, Zanin D, Franceschinis E, Marzaro G, Realdon N. Deformable Vesicles with Edge Activators for the Transdermal Delivery of Non-Psychoactive Cannabinoids. Curr Pharm Des 2024; 30:921-934. [PMID: 38482628 DOI: 10.2174/0113816128289593240226071813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Transdermal delivery of highly lipophilic molecules is challenging due to the strong barrier function of the skin. Vesicles with penetration enhancers are safe and efficient systems that could improve the transdermal delivery of non-psychoactive cannabinoids such as cannabidiol and desoxy-cannabidiol. In the last decades, research interest in desoxy-cannabidiol as a potent drug with anti-nociceptive properties has risen. Still, its scarce market availability poses a limit for both research and clinical applications. Therefore, it is necessary to improve the synthesis to produce sufficient amounts of desoxy-cannabidiol. Moreover, also the formulation aspects for this drug are challenging and require to be addressed to meet an efficient delivery to the patients. OBJECTIVE This work aimed to develop innovative phospholipid-based vesicles with propylene glycol (PG), oleic acid (OA), or limonene as edge activators, for the transdermal delivery of highly lipophilic drugs such as non-psychoactive cannabinoids. In particular, desoxy-cannabidiol was selected thanks to its anti-nociceptive activity, and its synthesis was improved enhancing the stereoselectivity of its synthon's production. METHODS Desoxy-cannabidiol was synthesized by Lewis acid-mediated condensation of p-mentha-2,8-dien- 1-ol and m-pentylphenol, improving the stereoselectivity of the first synthon's production. Transethosomes containing 20-50% w/w PG, 0.4-0.8% w/w OA, or 0.1-1% w/w limonene were optimized and loaded with cannabidiol or desoxy-cannabidiol (0.07-0.8% w/w, 0.6-7.0 mg/mL). Ex-vivo studies were performed to assess both the skin permeation and accumulation of the cannabinoids, as well as the penetration depth of fluorescein- loaded systems used as models. RESULTS An enantioselective bromination was added to the pathway, thus raising the production yield of pmentha- 2,8-dien-1-ol to 81% against 35%, and the overall yield of desoxy-cannabidiol synthesis from 12% to 48%. Optimized transethosomes containing 0.6 mg/mL cannabinoids were prepared with 1:10 PG:lipid weight ratio, 0.54 OA:lipid molar ratio, and 0.3 limonene:lipid molar ratio, showing good nanometric size (208 ± 20.8 nm - 321 ± 26.3 nm) and entrapment efficiency (> 80%). Ex-vivo tests showed both improved skin permeation rates of cannabinoids (up to 21.32 ± 4.27 μg/cm2 cannabidiol), and skin penetration (depth of fluorescein up to 240 μm, with PG). CONCLUSION Desoxy-cannabidiol was successfully produced at high yields, and formulated into transethosomes optimized for transdermal delivery. Loaded vesicles showed improved skin penetration of desoxy-cannabidiol, cannabidiol and a lipophilic probe. These results suggest the potential of these carriers for the transdermal delivery of highly lipophilic drugs.
Collapse
Affiliation(s)
- Elisa Vettorato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, Padova 35131, Italy
| | - Marisa Fiordelisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, Padova 35131, Italy
| | - Silvia Ferro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, Padova 35131, Italy
| | - Desirè Zanin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, Padova 35131, Italy
| | - Erica Franceschinis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, Padova 35131, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, Padova 35131, Italy
| | - Nicola Realdon
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, Padova 35131, Italy
| |
Collapse
|
75
|
Matharoo N, Mohd H, Michniak-Kohn B. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1918. [PMID: 37527953 DOI: 10.1002/wnan.1918] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 08/03/2023]
Abstract
The development of innovative approaches to deliver medications has been growing now for the last few decades and generates a growing interest in the dermatopharmaceutical field. Transdermal drug delivery in particular, remains an attractive alternative route for many therapeutics. However, due to the limitations posed by the barrier properties of the stratum corneum, the delivery of many pharmaceutical dosage forms remains a challenge. Most successful therapies using the transdermal route have been ones containing smaller lipophilic molecules with molecular weights of a few hundred Daltons. To overcome these limitations of size and lipophilicity of the drugs, transferosomes have emerged as a successful tool for transdermal delivery of a variety of therapeutics including hydrophilic actives, larger molecules, peptides, proteins, and nucleic acids. Transferosomes exhibit a flexible structure and higher surface hydrophilicity which both play a critical role in the transport of drugs and other solutes using hydration gradients as a driving force to deliver the molecules into and across the skin. This results in enhanced overall permeation as well as controlled release of the drug in the skin layers. Additionally, the physical-chemical properties of the transferosomes provide increased stability by preventing degradation of the actives by oxidation, light, and temperature. Here, we present the history of transferosomes from solid lipid nanoparticles and liposomes, their physical-chemical properties, dermal kinetics, and their recent advances as marketed dosage forms. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Namrata Matharoo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Center for Dermal Research, Life Sciences Building, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Hana Mohd
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Center for Dermal Research, Life Sciences Building, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Bozena Michniak-Kohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Center for Dermal Research, Life Sciences Building, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
76
|
Rahbari R, Francis L, Guy OJ, Sharma S, Von Ruhland C, Xia Z. Microneedle-Assisted Transfersomes as a Transdermal Delivery System for Aspirin. Pharmaceutics 2023; 16:57. [PMID: 38258069 PMCID: PMC10819469 DOI: 10.3390/pharmaceutics16010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Transdermal drug delivery systems offer several advantages over conventional oral or hypodermic administration due to the avoidance of first-pass drug metabolism and gastrointestinal degradation as well as patients' convenience due to a minimally invasive and painless approach. A novel transdermal drug delivery system, comprising a combination of transfersomes with either solid silicon or solid polycarbonate microneedles has been developed for the transdermal delivery of aspirin. Aspirin was encapsulated inside transfersomes using a "thin-film hydration sonication" technique, yielding an encapsulation efficiency of approximately 67.5%. The fabricated transfersomes have been optimised and fully characterised in terms of average size distribution and uniformity, surface charge and stability (shelf-life). Transdermal delivery, enhanced by microneedle penetration, allows the superior permeation of transfersomes into perforated porcine skin and has been extensively characterised using optical coherence tomography (OCT) and transmission electron microscopy (TEM). In vitro permeation studies revealed that transfersomes enhanced the permeability of aspirin by more than four times in comparison to the delivery of unencapsulated "free" aspirin. The microneedle-assisted delivery of transfersomes encapsulating aspirin yielded 13-fold and 10-fold increases in permeation using silicon and polycarbonate microneedles, respectively, in comparison with delivery using only transfersomes. The cytotoxicity of different dose regimens of transfersomes encapsulating aspirin showed that encapsulated aspirin became cytotoxic at concentrations of ≥100 μg/mL. The results presented demonstrate that the transfersomes could resolve the solubility issues of low-water-soluble drugs and enable their slow and controlled release. Microneedles enhance the delivery of transfersomes into deeper skin layers, providing a very effective system for the systemic delivery of drugs. This combined drug delivery system can potentially be utilised for numerous drug treatments.
Collapse
Affiliation(s)
- Raha Rahbari
- Centre for Nanohealth, Institute of Life Science 2, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Lewis Francis
- Centre for Nanohealth, Institute of Life Science 2, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Owen J. Guy
- Department of Chemistry, School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK;
| | - Sanjiv Sharma
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK
| | - Christopher Von Ruhland
- Electron Microscopy Unit, Central Biotechnology Services, Institute for Translation, Innovation, Methodology and Engagement, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK;
| | - Zhidao Xia
- Centre for Nanohealth, Institute of Life Science 2, Swansea University Medical School, Swansea SA2 8PP, UK
| |
Collapse
|
77
|
Phanphothong P, Kanpipit N, Thapphasaraphong S. The characteristics and biological activity enhancements of melatonin encapsulations for skin care product applications. Int J Pharm X 2023; 6:100217. [PMID: 37927583 PMCID: PMC10624970 DOI: 10.1016/j.ijpx.2023.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/27/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Melatonin (MLT) exhibits antioxidant, ultraviolet protection, anti-inflammatory, and anti-aging properties. However, its effectiveness is limited by instability, a short half-life, and incompatible absorption. In this research, we encapsulated melatonin (MLT) in transfersomes (MT) and niosomes (MN) to enhance their properties and investigate their effects through in vitro cell assays using murine macrophages cells and human foreskin fibroblasts cells. The vesicle morphology, vesicle size, polydispersity index, zeta potential, entrapment efficiency (EE%), attenuated total reflectance-Fourier transform spectroscopy (ATR-FTIR) spectra, along with in vitro release, permeation profiles, and stability study were also evaluated. The results showed that both encapsulations displayed spherical morphology at the nanometric scale, their great physical stability and provided an EE% range of 58-78%. The MLT incorporation into the vesicle was confirmed by the ATR-FTIR spectra. Additionally, the encapsulation' release profiles fitted with the Higuchi model, indicating controlled release of melatonin. Furthermore, MT showed greater permeability than MN and MS including melatonin deposition. In cell assays, MT exhibited significantly higher nitric oxide inhibition and stimulation of collagen compared to MN and MS. Therefore, MT demonstrated the highest possibility for anti-inflammatory and collagen-stimulating activities that could be applied in pharmaceutical or anti-aging cosmetic products.
Collapse
Affiliation(s)
- Phongsapak Phanphothong
- Pharmaceutical Chemistry and Natural Products Program, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nattawadee Kanpipit
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suthasinee Thapphasaraphong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
78
|
Nousheen K, Din FU, Jamshaid H, Afza R, Khan SU, Malik M, Ali Z, Batool S, Zeb A, Yousaf AM, Almari AH, Alqahtani S, Khan S, Khan GM. Metformin HCl-loaded transethosomal gel; development, characterization, and antidiabetic potential evaluation in the diabetes-induced rat model. Drug Deliv 2023; 30:2251720. [PMID: 37649375 PMCID: PMC10472853 DOI: 10.1080/10717544.2023.2251720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023] Open
Abstract
Herein we designed, optimized, and characterized the Metformin Hydrochloride Transethosomes (MTF-TES) and incorporate them into Chitosan gel to develop Metformin Hydrochloride loaded Transethosomal gel (MTF-TES gel) that provides a sustained release, improved transdermal flux and improved antidiabetic response of MTF. Design Expert® software (Ver. 12, Stat-Ease, USA) was applied for the statistical optimization of MTF-TES. The formulation with Mean Particle Size Distribution (MPSD) of 165.4 ± 2.3 nm, Zeta Potential (ZP) of -21.2 ± 1.9 mV, Polydispersity Index (PDI) of 0.169 ± 0.033, and MTF percent Entrapment Efficiency (%EE) of 89.76 ± 4.12 was considered to be optimized. To check the chemical incompatibility among the MTF and other formulation components, Fourier Transform Infrared (FTIR) spectroscopy was performed and demonstrated with no chemical interaction. Surface morphology, uniformity, and segregation were evaluated through Transmission Electron Microscopy (TEM). It was revealed that the nanoparticles were spherical and round in form with intact borders. The fabricated MTF-TES has shown sustained release followed by a more pronounced effect in MTF-TES gel as compared to the plain MTF solution (MTFS) at a pH of 7.4. The MTF-TES has shown enhanced permeation followed by MTF-TES gel as compared to the MTFS at a pH of 7.4. In vivo antidiabetic assay was performed and results have shown improved antidiabetic potential of the MTF-TES gel, in contrast to MTF-gel. Conclusively, MTF-TES is a promising anti-diabetic candidate for transdermal drug delivery that can provide sustained MTF release and enhanced antidiabetic effect.
Collapse
Affiliation(s)
- Kainat Nousheen
- Department of Pharmacy, Nanomedicine Research Group, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Nanomedicine Research Group, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Humzah Jamshaid
- Department of Pharmacy, Nanomedicine Research Group, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rabia Afza
- Department of Botany, Hazara University, Mansehra, Pakistan
| | - Saif Ullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsada, Pakistan
| | - Maimoona Malik
- Department of Pharmacy, Nanomedicine Research Group, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zakir Ali
- Department of Pharmacy, Nanomedicine Research Group, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sibgha Batool
- Department of Pharmacy, Nanomedicine Research Group, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, Comsats University Islamabad, Lahore Campus, Pakistan
| | - Ali H. Almari
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Saud Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Salman Khan
- Department of Pharmacy, Nanomedicine Research Group, Quaid-i-Azam University, Islamabad, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Nanomedicine Research Group, Quaid-i-Azam University, Islamabad, Pakistan
- Islamia College University, Peshawar, Pakistan
| |
Collapse
|
79
|
Qiu C, Zhang JZ, Wu B, Xu CC, Pang HH, Tu QC, Lu YQ, Guo QY, Xia F, Wang JG. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J Nanobiotechnology 2023; 21:456. [PMID: 38017573 PMCID: PMC10685519 DOI: 10.1186/s12951-023-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Wu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Huan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Chao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Qian Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
80
|
Mirza MA, Mahmood S, Hilles AR, Ali A, Khan MZ, Zaidi SAA, Iqbal Z, Ge Y. Quercetin as a Therapeutic Product: Evaluation of Its Pharmacological Action and Clinical Applications-A Review. Pharmaceuticals (Basel) 2023; 16:1631. [PMID: 38004496 PMCID: PMC10674654 DOI: 10.3390/ph16111631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Quercetin is the major polyphenolic flavonoid that belongs to the class called flavanols. It is found in many foods, such as green tea, cranberry, apple, onions, asparagus, radish leaves, buckwheat, blueberry, broccoli, and coriander. It occurs in many different forms, but the most abundant quercetin derivatives are glycosides and ethers, namely, Quercetin 3-O-glycoside, Quercetin 3-sulfate, Quercetin 3-glucuronide, and Quercetin 3'-metylether. Quercetin has antioxidant, anti-inflammatory, cardioprotective, antiviral, and antibacterial effects. It is found to be beneficial against cardiovascular diseases, cancer, diabetes, neuro-degenerative diseases, allergy asthma, peptic ulcers, osteoporosis, arthritis, and eye disorders. In pre-clinical and clinical investigations, its impacts on various signaling pathways and molecular targets have demonstrated favorable benefits for the activities mentioned above, and some global clinical trials have been conducted to validate its therapeutic profile. It is also utilized as a nutraceutical due to its pharmacological properties. Although quercetin has several pharmacological benefits, its clinical use is restricted due to its poor water solubility, substantial first-pass metabolism, and consequent low bioavailability. To circumvent this limited bioavailability, a quercetin-based nanoformulation has been considered in recent times as it manifests increased quercetin uptake by the epithelial system and enhances the delivery of quercetin to the target site. This review mainly focuses on pharmacological action, clinical trials, patents, marketed products, and approaches to improving the bioavailability of quercetin with the use of a nanoformulation.
Collapse
Affiliation(s)
- Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.M.); (S.A.A.Z.)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ayah Rebhi Hilles
- INHART, International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur 53100, Malaysia;
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Mohammed Zaafar Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.M.); (S.A.A.Z.)
| | - Syed Amir Azam Zaidi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.M.); (S.A.A.Z.)
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.M.); (S.A.A.Z.)
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
81
|
Anjani QK, Pandya AK, Demartis S, Domínguez-Robles J, Moreno-Castellanos N, Li H, Gavini E, Patravale VB, Donnelly RF. Liposome-loaded polymeric microneedles for enhanced skin deposition of rifampicin. Int J Pharm 2023; 646:123446. [PMID: 37751787 DOI: 10.1016/j.ijpharm.2023.123446] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a prevailing bacterial pathogen linked to superficial skin and soft tissue infections (SSTIs). Rifampicin (RIF), a potent antibiotic against systemic and localised staphylococcal infections, faces limitations due to its low solubility. This constraint hampers its therapeutic potential for MRSA-induced SSTIs. To address this, an advanced liposomal system was designed for efficient dermal RIF delivery. Rifampicin-loaded liposomes (LipoRIF) were embedded within polymeric dissolving microneedles (DMNs) to enable targeted intradermal drug delivery. A robust Design of Experiment (DoE) methodology guided the systematic preparation and optimisation of LipoRIF formulations. The optimal LipoRIF formulation integrated within polymeric DMNs. These LipoRIF-DMNs exhibited favourable mechanical properties and effective skin insertion characteristics. Notably, in vitro assays on skin deposition unveiled a transformative result - the DMN platform significantly enhanced LipoRIF deposition within the skin, surpassing LipoRIF dispersion alone. Moreover, LipoRIF-DMNs displayed minimal cytotoxicity toward cells. Encouragingly, rigorous in vitro antimicrobial evaluations demonstrated LipoRIF-DMNs' capacity to inhibit MRSA growth compared to the control group. LipoRIF-DMNs propose a potentially enhanced, minimally invasive approach to effectively manage SSTIs and superficial skin ailments stemming from MRSA infections.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Anjali K Pandya
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra 400 019, India
| | - Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Piazza Università 21, 07100 Sassari, Italy
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Natalia Moreno-Castellanos
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Huanhuan Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Piazza Università 21, Sassari 07100, Italy
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra 400 019, India
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
82
|
Abdelkader H, El-Wahab AA, El-Gendy AO, Abou-Taleb HA. Formulation and optimization of lipid- and Poloxamer-tagged niosomes for dermal delivery of terbinafine: preparation, evaluation, and in vitro antifungal activity. Pharm Dev Technol 2023; 28:803-810. [PMID: 37664988 DOI: 10.1080/10837450.2023.2255889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/09/2023] [Accepted: 09/02/2023] [Indexed: 09/05/2023]
Abstract
Fungal skin diseases are recognized as a global burden disease that affect human quality adjusted life. Terbinafine belongs to allylamine and broad-spectrum antifungal drugs but considered practically insoluble. Different lipids/surfactant with two different molar ratios were investigated with Span 40-based niosomes; characterized for size, morphology, loading capacity (EE%), in vitro release, kinetics, and antifungal activities. Vesicle sizes (0.19-1.23 µm), EE% (25-99%), zeta potential (> -32 mV), and in vitro release rates were dependent on both lipid types and ratios. Higher ratios of Poloxamer 407 preferably formed mixed micelles rather than forming noisome bilayers. Both Compritol and Precirol were deemed to be potential alternatives to cholesterol as bilayer membrane stabilizers. Terbinafine-loaded Compritol and Precirol stabilized niosomes were successfully prepared and demonstrated superior antifungal activities in vitro (inhibition zones) using Candida albicans ATCC 60913.
Collapse
Affiliation(s)
- Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Ahmed Osama El-Gendy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Merit University (MUE), Sohag, Egypt
| |
Collapse
|
83
|
Saeidi Z, Giti R, Rostami M, Mohammadi F. Nanotechnology-Based Drug Delivery Systems in the Transdermal Treatment of Melanoma. Adv Pharm Bull 2023; 13:646-662. [PMID: 38022807 PMCID: PMC10676549 DOI: 10.34172/apb.2023.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 12/01/2023] Open
Abstract
The incidence rate of melanoma is dramatically increasing worldwide, raising it to the fifth most common cancer in men and the sixth in women currently. Resistance generally occurs to the agents used in chemotherapy; besides their high toxicity destroys the normal cells. This study reviewed a detailed summary of the structure, advantages, and disadvantages of nanotechnology-based drug delivery systems in the treatment of melanoma, as well as some nanocarrier applications in animal models or clinical studies. Respective databases were searched for the target keywords and 93 articles were reviewed and discussed. A close study of the liposomes, niosomes, transferosomes, ethosomes, transethosomes, cubosomes, dendrimers, cyclodextrins, solid lipid nanoparticles, and carbon nanotubes (CNTs) was conducted. It was found that these nanocarriers could inhibit metastasis and migration of melanoma cells and decrease cell viability. Conclusively, some nanocarriers like liposomes, niosomes, and transferosomes have been discussed as superior to conventional therapies for melanoma treatment.
Collapse
Affiliation(s)
- Zahra Saeidi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Rashin Giti
- Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Rostami
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farhad Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
84
|
Asghar Z, Jamshaid T, Sajid-ur-Rehman M, Jamshaid U, Gad HA. Novel Transethosomal Gel Containing Miconazole Nitrate; Development, Characterization, and Enhanced Antifungal Activity. Pharmaceutics 2023; 15:2537. [PMID: 38004517 PMCID: PMC10675164 DOI: 10.3390/pharmaceutics15112537] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Miconazole nitrate (MCNR) is a BCS class II antifungal drug with poor water solubility. Although numerous attempts have been made to increase its solubility, formulation researchers struggle with this significant issue. Transethosomes are promising novel nanocarriers for improving the solubility and penetration of drugs that are inadequately soluble and permeable. Thus, the objective of this study was to develop MCNR-loaded transethosomal gel in order to enhance skin permeation and antifungal activity. MCNR-loaded transethosomes (MCNR-TEs) were generated using the thin film hydration method and evaluated for their zeta potential, particle size, polydispersity index, and entrapment efficiency (EE%). SEM, FTIR, and DSC analyses were also done to characterize the optimized formulation of MCNR-TEs (MT-8). The optimized formulation of MCNR-TEs was incorporated into a carbopol 934 gel base to form transethosomal gel (MNTG) that was subjected to ex vivo permeation and drug release studies. In vitro antifungal activity was carried out against Candida albicans through the cup plate technique. An in vivo skin irritation test was also performed on Wistar albino rats. MT-8 displayed smooth spherical transethosomal nanoparticles with the highest EE% (89.93 ± 1.32%), lowest particle size (139.3 ± 1.14 nm), polydispersity index (0.188 ± 0.05), and zeta potential (-18.1 ± 0.10 mV). The release profile of MT-8 displayed an initial burst followed by sustained release, and the release data were best fitted with the Korsmeyer-Peppas model. MCNR-loaded transethosomal gel was stable and showed a non-Newtonian flow. It was found that ex vivo drug permeation of MNTG was 48.76%, which was significantly higher than that of MNPG (plain gel) (p ≤ 0.05) following a 24-h permeation study. The prepared MCNR transethosomal gel exhibited increased antifungal activity, and its safety was proven by the results of an in vivo skin irritation test. Therefore, the developed transethosomal gel can be a proficient drug delivery system via a topical route with enhanced antifungal activity and skin permeability.
Collapse
Affiliation(s)
- Zara Asghar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Z.A.); (M.S.-u.-R.)
| | - Talha Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Z.A.); (M.S.-u.-R.)
| | - Muhammad Sajid-ur-Rehman
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Z.A.); (M.S.-u.-R.)
| | - Usama Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, Strasbourg University, 67084 Strasbourg, France;
| | - Heba A. Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| |
Collapse
|
85
|
Eleraky NE, El-Badry M, Omar MM, El-Koussi WM, Mohamed NG, Abdel-Lateef MA, Hassan AS. Curcumin Transferosome-Loaded Thermosensitive Intranasal in situ Gel as Prospective Antiviral Therapy for SARS-Cov-2. Int J Nanomedicine 2023; 18:5831-5869. [PMID: 37869062 PMCID: PMC10590117 DOI: 10.2147/ijn.s423251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/23/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Immunomodulatory and broad-spectrum antiviral activities have motivated the evaluation of curcumin for Coronavirus infection 2019 (COVID-19) management. Inadequate bioavailability is the main impediment to the therapeutic effects of oral Cur. This study aimed to develop an optimal curcumin transferosome-loaded thermosensitive in situ gel to improve its delivery to the lungs. Methods Transferosomes were developed by using 33 screening layouts. The phospholipid concentration as well as the concentration and type of surfactant were considered independent variables. The entrapment efficiency (EE%), size, surface charge, and polydispersity index (PDI) were regarded as dependent factors. A cold technique was employed to develop thermosensitive in-situ gels. Optimized transferosomes were loaded onto the selected gels. The produced gel was assessed based on shape attributes, ex vivo permeability enhancement, and the safety of the nasal mucosa. The in vitro cytotoxicity, antiviral cytopathic effect, and plaque assay (CV/CPE/Plaque activity), and in vivo performance were evaluated after intranasal administration in experimental rabbits. Results The optimized preparation displayed a particle size of 664.3 ± 69.3 nm, EE% of 82.8 ± 0.02%, ZP of -11.23 ± 2.5 mV, and PDI of 0.6 ± 0.03. The in vitro curcumin release from the optimized transferosomal gel was markedly improved compared with that of the free drug-loaded gel. An ex vivo permeation study revealed a significant improvement (2.58-fold) in drug permeability across nasal tissues of sheep. Histopathological screening confirmed the safety of these preparations. This formulation showed high antiviral activity against SARS-CoV-2 at reduced concentrations. High relative bioavailability (226.45%) was attained after the formula intranasally administered to rabbits compared to the free drug in-situ gel. The curcumin transferosome gel displayed a relatively high lung accumulation after intranasal administration. Conclusion This study provides a promising formulation for the antiviral treatment of COVID-19 patients, which can be evaluated further in preclinical and clinical studies.
Collapse
Affiliation(s)
- Nermin E Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud El-Badry
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud M Omar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Wesam M El-Koussi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Noha G Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Mohamed A Abdel-Lateef
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, Egypt
| |
Collapse
|
86
|
Pires PC, Paiva-Santos AC, Veiga F. Liposome-Derived Nanosystems for the Treatment of Behavioral and Neurodegenerative Diseases: The Promise of Niosomes, Transfersomes, and Ethosomes for Increased Brain Drug Bioavailability. Pharmaceuticals (Basel) 2023; 16:1424. [PMID: 37895895 PMCID: PMC10610493 DOI: 10.3390/ph16101424] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Psychiatric and neurodegenerative disorders are amongst the most prevalent and debilitating diseases, but current treatments either have low success rates, greatly due to the low permeability of the blood-brain barrier, and/or are connected to severe side effects. Hence, new strategies are extremely important, and here is where liposome-derived nanosystems come in. Niosomes, transfersomes, and ethosomes are nanometric vesicular structures that allow drug encapsulation, protecting them from degradation, and increasing their solubility, permeability, brain targeting, and bioavailability. This review highlighted the great potential of these nanosystems for the treatment of Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, anxiety, and depression. Studies regarding the encapsulation of synthetic and natural-derived molecules in these systems, for intravenous, oral, transdermal, or intranasal administration, have led to an increased brain bioavailability when compared to conventional pharmaceutical forms. Moreover, the developed formulations proved to have neuroprotective, anti-inflammatory, and antioxidant effects, including brain neurotransmitter level restoration and brain oxidative status improvement, and improved locomotor activity or enhancement of recognition and working memories in animal models. Hence, albeit being relatively new technologies, niosomes, transfersomes, and ethosomes have already proven to increase the brain bioavailability of psychoactive drugs, leading to increased effectiveness and decreased side effects, showing promise as future therapeutics.
Collapse
Affiliation(s)
- Patrícia C. Pires
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
87
|
Alam P, Imran M, Jahan S, Akhtar A, Hasan Z. Formulation and Characterization of Hesperidin-Loaded Transethosomal Gel for Dermal Delivery to Enhance Antibacterial Activity: Comprehension of In Vitro, Ex Vivo, and Dermatokinetic Analysis. Gels 2023; 9:791. [PMID: 37888364 PMCID: PMC10606654 DOI: 10.3390/gels9100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
In this study, hesperidin was loaded into a transethosome and was developed employing the rotary evaporator method. The formulation was optimized using the Box-Behnken design (BBD). The optimized HSD-TE formulation has a spherical shape, vesicle size, polydispersity index, entrapment efficiency, and zeta potential within the range of 178.98 nm; the PDI was 0.259 with a zeta potential of -31.14 mV and % EE of 89.51%, respectively. The in vitro drug release shows that HSD-TE exhibited the release of 81.124 ± 3.45% in comparison to HSD suspension. The ex vivo skin permeation showed a 2-fold increase in HSD-TE gel permeation. The antioxidant activity of HSD-TE was found to be 79.20 ± 1.77% higher than that of the HSD solution. The formulation showed 2-fold deeper HSD-TE penetration across excised rat skin membranes in confocal laser microscopy scanning, indicating promising in vivo prospects. In a dermatokinetic study, HSD-TE gel was compared to HSD conventional gel where TE significantly boosted HSD transport in the epidermis and dermal layers. The formulation showed greater efficacy than free HSD in the inhibition of microbial growth, as evidenced by antibacterial activity on the Gram-negative and positive bacteria. These investigations found that the HSD-TE formulation could enhance the topical application in the management of cutaneous bacterial infections.
Collapse
Affiliation(s)
- Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Mohd Imran
- Department of Pharmacognosy, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Samreen Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Ali Akhtar
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Zafrul Hasan
- Department of Medical Surgical Nursing, College of Nursing, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
88
|
Abd-Alaziz DM, Mansour M, Nasr M, Sammour OA. Spanethosomes as a novel topical carrier for silymarin in contrast to conventional spanlastics: Formulation development, in vitro and ex vivo evaluation for potential treatment of leishmaniasis. J Drug Deliv Sci Technol 2023; 88:104887. [DOI: 10.1016/j.jddst.2023.104887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
89
|
Peng X, Li X, Xie B, Lai Y, Sosnik A, Boucetta H, Chen Z, He W. Gout therapeutics and drug delivery. J Control Release 2023; 362:728-754. [PMID: 37690697 DOI: 10.1016/j.jconrel.2023.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Gout is a common inflammatory arthritis caused by persistently elevated uric acid levels. With the improvement of people's living standards, the consumption of processed food and the widespread use of drugs that induce elevated uric acid, gout rates are increasing, seriously affecting the human quality of life, and becoming a burden to health systems worldwide. Since the pathological mechanism of gout has been elucidated, there are relatively effective drug treatments in clinical practice. However, due to (bio)pharmaceutical shortcomings of these drugs, such as poor chemical stability and limited ability to target the pathophysiological pathways, traditional drug treatment strategies show low efficacy and safety. In this scenario, drug delivery systems (DDS) design that overcome these drawbacks is urgently called for. In this review, we initially describe the pathological features, the therapeutic targets, and the drugs currently in clinical use and under investigation to treat gout. We also comprehensively summarize recent research efforts utilizing lipid, polymeric and inorganic carriers to develop advanced DDS for improved gout management and therapy.
Collapse
Affiliation(s)
- Xiuju Peng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Xiaotong Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Alejandro Sosnik
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| |
Collapse
|
90
|
Abdelbari MA, Elshafeey AH, Abdelbary AA, Mosallam S. Implementing Nanovesicles for Boosting the Skin Permeation of Non-steroidal Anti-inflammatory Drugs. AAPS PharmSciTech 2023; 24:195. [PMID: 37770750 DOI: 10.1208/s12249-023-02649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
The consumption of non-steroidal anti-inflammatory drugs (NSAIDs) have increased lately around the world, as they are considered essential and popular drugs for effective reduction of pain and inflammation. They have analgesic, antipyretic, and anti-inflammatory activities; also, it was reported recently that they protect against various critical disorders like heart attacks and cancer. However, oral use of NSAIDs may cause several pulmonary, gastrointestinal, hepatic, cardiovascular, cerebral, and renal complications. Therefore, topical NSAIDs were recommended as a substitute to oral NSAIDs for the treatment of inflammation and pain. Still, the skin permeation of NSAIDs is considered a challenge, as the skin have an effective barrier function. Therefore, this review investigates various advanced vesicular nanocarriers and their applications through the skin, to augment the topical delivery of NSAIDs through stratum corneum over the conventional systems, enhance their effectiveness, and reduce the unwanted side effects. These innovative systems can manage bioavailability, solubility, stability, safety, and efficacy issues present in conventional systems.
Collapse
Affiliation(s)
- Manar Adel Abdelbari
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Ahmed Hassen Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Aly Ahmed Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
91
|
Bin Jardan YA, Ahad A, Raish M, Al-Jenoobi FI. Preparation and Characterization of Transethosome Formulation for the Enhanced Delivery of Sinapic Acid. Pharmaceutics 2023; 15:2391. [PMID: 37896151 PMCID: PMC10609874 DOI: 10.3390/pharmaceutics15102391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Sinapic acid (SA) is a bioactive phenolic acid; its diverse properties are its anti-inflammatory, antioxidant, anticancer, and antibacterial activities. The bioactive compound SA is poorly soluble in water. Our goal was to formulate SA-transethosomes using thin-film hydration. The prepared formulations were examined for various parameters. In addition, the optimized formulation was evaluated for surface morphology, in-vitro penetration studies across the Strat M®, and its antioxidant activity. The optimized formulation (F5) exhibited 74.36% entrapment efficacy. The vesicle size, zeta potential, and polydispersity index were found to be 111.67 nm, -7.253 mV, and 0.240, respectively. The surface morphology showed smooth and spherical vesicles of SA-transethosomes. In addition, the prepared SA-transethosomes exhibited enhanced antioxidant activity. The SA-transethosomes demonstrated considerably greater penetration across the Strat M® membrane during the study. The flux of SA and SA-transethosomes through the Strat M® membrane was 1.03 ± 0.07 µg/cm2/h and 2.93 ± 0.16 µg/cm2/h. The enhancement ratio of SA-transethosomes was 2.86 ± 0.35 compared to the control. The SA-transethosomes are flexible nano-sized vesicles and are able to penetrate the entrapped drug in a higher concentration. Hence, it was concluded that SA-transethosome-based approaches have the potential to be useful for accentuating the penetrability of SA across the skin.
Collapse
Affiliation(s)
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
92
|
Singh S, Shukla R. Nanovesicular-Mediated Intranasal Drug Therapy for Neurodegenerative Disease. AAPS PharmSciTech 2023; 24:179. [PMID: 37658972 DOI: 10.1208/s12249-023-02625-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Numerous neurodegenerative conditions, such as Alzheimer's, Huntington's, Parkinson's, amyotrophic lateral sclerosis, and glioblastoma multiform are now becoming significant concerns of global health. Formulation-related issues, physiological and anatomical barriers, post-administration obstacles, physical challenges, regulatory limitations, environmental hurdles, and health and safety issues have all hindered successful delivery and effective outcomes despite a variety of treatment options. In the current review, we covered the intranasal route, an alternative strategic route targeting brain for improved delivery across the BBB. The trans-nasal pathway is non-invasive, directing therapeutics directly towards brain, circumventing the barrier and reducing peripheral exposure. The delivery of nanosized vesicles loaded with drugs was also covered in the review. Nanovesicle systems are organised in concentric bilayered lipid membranes separated with aqueous layers. These carriers surmount the disadvantages posed by intranasal delivery of rapid mucociliary clearance and enzymatic degradation, and enhance retention of drug to reach the site of target. In conclusion, the review covers in-depth conclusions on numerous aspects of formulation of drug-loaded vesicular system delivery across BBB, current marketed nasal devices, significant jeopardies, potential therapeutic aids, and current advancements followed by future perspectives.
Collapse
Affiliation(s)
- Shalu Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
93
|
Raj A, Dua K, Nair RS, Sarath Chandran C, Alex AT. Transethosome: An ultra-deformable ethanolic vesicle for enhanced transdermal drug delivery. Chem Phys Lipids 2023; 255:105315. [PMID: 37356610 DOI: 10.1016/j.chemphyslip.2023.105315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Drug delivery through the skin improves solubility, bioavailability, and unwanted systemic side effects of the drug. The selection of a suitable carrier is a challenging process. The conventional lipid vesicles have some limitations. They deliver the drug in the stratum corneum and have poor colloidal stability. Here comes the need for ultra-deformable lipid vesicles to provide the drug beyond the stratum corneum. Transethosomes are novel ultra-deformable vesicles that can deliver drugs into deeper tissues. The composition of transethosomes includes phospholipid, ethanol and surfactants. Each ingredient has a pivotal role in the properties of the carrier. This review covers the design, preparation method, characterisation, and characteristics of the novel vesicle. Also, we cover the impact of surfactants on vesicular properties and the skin permeation behaviour of novel vesicles.
Collapse
Affiliation(s)
- Alan Raj
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - C Sarath Chandran
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Government Medical College Kannur, Pariyaram, Kerala, India
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
94
|
Abu-Huwaij R, Alkarawi A, Salman D, Alkarawi F. Exploring the use of niosomes in cosmetics for efficient dermal drug delivery. Pharm Dev Technol 2023; 28:708-718. [PMID: 37448342 DOI: 10.1080/10837450.2023.2233613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023]
Abstract
Dermal drug delivery has emerged as a promising alternative to traditional methods of drug administration due to its non-invasive nature and ease of use. However, the stratum corneum, the outermost layer of the skin, presents a significant barrier to drug penetration. Niosomes, self-assembled vesicular structures composed of nonionic surfactants and cholesterol, have been extensively investigated as a means of overcoming this barrier and improving the efficacy of dermal drug delivery. This review summarizes the current state of research on the use of niosomes in dermal drug delivery in cosmetics, with a particular focus on their formulation, characterization, and application in the delivery of various drug classes. The review highlights the advantages of niosomes over conventional drug delivery methods, including improved solubility and stability of drugs, controlled release, and enhanced skin permeation. The review also discusses the challenges associated with niosome-based drug delivery, such as their complex formulation and optimization, and the need for further studies on their long-term safety and toxicity.
Collapse
Affiliation(s)
| | - Adian Alkarawi
- College of Pharmacy, Amman Arab University, Mubis, Jordan
| | - Dima Salman
- College of Pharmacy, Amman Arab University, Mubis, Jordan
| | | |
Collapse
|
95
|
Potisuwan S, Apichatwatana N, Rujivipat S. Improved skin permeation of transferosomes containing Eulophia macrobulbon extract. Colloids Surf B Biointerfaces 2023; 229:113474. [PMID: 37540959 DOI: 10.1016/j.colsurfb.2023.113474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
Eulophia macrobulbon (EM) extract-loaded transferosomes represent an advanced approach for enhancing skin permeation of bioactive compounds. The formulations improving skin permeation and characterizations of transferosomes were studied, including morphology, entrapment efficiency (EE), vesicle size, polydispersity index (PDI), zeta potential, and skin permeation in the Strat-M® synthetic membrane. Vesicle size increased with increasing transition temperature (Tm) of phosphatidylcholine and the hydrophilic-lipophilic balance (HLB) of the surfactant used as an edge activator. EM extract-loaded transferosomes with varying amounts of phosphatidylcholine, surfactants, and EM extract showed non-significant differences in EE, PDI, and zeta potential. The results demonstrated that the EM extract-loaded transferosomes improved membrane permeability better than the EM solution. The EM solution exhibited a shorter lag time. Considering the advantages of the EM extract-loaded transferosomes and EM solutions, a combination of both formulations was developed in this study. The results showed that the lag time decreased and membrane permeation increased. This study highlights a novel system combining EM extract-loaded transferosomes and an EM solution, exhibiting considerable improvement in skin permeation and presenting the potential for an efficient transdermal drug delivery system for natural bioactive compounds.
Collapse
Affiliation(s)
- Sasawat Potisuwan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Nutsawadee Apichatwatana
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Soravoot Rujivipat
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
96
|
Kietrungruang K, Sookkree S, Sangboonruang S, Semakul N, Poomanee W, Kitidee K, Tragoolpua Y, Tragoolpua K. Ethanolic Extract Propolis-Loaded Niosomes Diminish Phospholipase B1, Biofilm Formation, and Intracellular Replication of Cryptococcus neoformans in Macrophages. Molecules 2023; 28:6224. [PMID: 37687052 PMCID: PMC10488685 DOI: 10.3390/molecules28176224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Secretory phospholipase B1 (PLB1) and biofilms act as microbial virulence factors and play an important role in pulmonary cryptococcosis. This study aims to formulate the ethanolic extract of propolis-loaded niosomes (Nio-EEP) and evaluate the biological activities occurring during PLB1 production and biofilm formation of Cryptococcus neoformans. Some physicochemical characterizations of niosomes include a mean diameter of 270 nm in a spherical shape, a zeta-potential of -10.54 ± 1.37 mV, and 88.13 ± 0.01% entrapment efficiency. Nio-EEP can release EEP in a sustained manner and retains consistent physicochemical properties for a month. Nio-EEP has the capability to permeate the cellular membranes of C. neoformans, causing a significant decrease in the mRNA expression level of PLB1. Interestingly, biofilm formation, biofilm thickness, and the expression level of biofilm-related genes (UGD1 and UXS1) were also significantly reduced. Pre-treating with Nio-EEP prior to yeast infection reduced the intracellular replication of C. neoformans in alveolar macrophages by 47%. In conclusion, Nio-EEP mediates as an anti-virulence agent to inhibit PLB1 and biofilm production for preventing fungal colonization on lung epithelial cells and also decreases the intracellular replication of phagocytosed cryptococci. This nano-based EEP delivery might be a potential therapeutic strategy in the prophylaxis and treatment of pulmonary cryptococcosis in the future.
Collapse
Affiliation(s)
- Kritapat Kietrungruang
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (S.S.); (S.S.)
| | - Sanonthinee Sookkree
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (S.S.); (S.S.)
| | - Sirikwan Sangboonruang
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (S.S.); (S.S.)
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Worrapan Poomanee
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kuntida Kitidee
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand;
| | - Yingmanee Tragoolpua
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khajornsak Tragoolpua
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (S.S.); (S.S.)
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
97
|
Adnan M, Akhter MH, Afzal O, Altamimi ASA, Ahmad I, Alossaimi MA, Jaremko M, Emwas AH, Haider T, Haider MF. Exploring Nanocarriers as Treatment Modalities for Skin Cancer. Molecules 2023; 28:5905. [PMID: 37570875 PMCID: PMC10421083 DOI: 10.3390/molecules28155905] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer is a progressive disease of multi-factorial origin that has risen worldwide, probably due to changes in lifestyle, food intake, and environmental changes as some of the reasons. Skin cancer can be classified into melanomas from melanocytes and nonmelanoma skin cancer (NMSC) from the epidermally-derived cell. Together it constitutes about 95% of skin cancer. Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (CSCC) are creditworthy of 99% of NMSC due to the limited accessibility of conventional formulations in skin cancer cells of having multiple obstacles in treatment reply to this therapeutic regime. Despite this, it often encounters erratic bioavailability and absorption to the target. Nanoparticles developed through nanotechnology platforms could be the better topical skin cancer therapy option. To improve the topical delivery, the nano-sized delivery system is appropriate as it fuses with the cutaneous layer and fluidized membrane; thus, the deeper penetration of therapeutics could be possible to reach the target spot. This review briefly outlooks the various nanoparticle preparations, i.e., liposomes, niosomes, ethosomes, transferosomes, transethosomes, nanoemulsions, and nanoparticles technologies tested into skin cancer and impede their progress tend to concentrate in the skin layers. Nanocarriers have proved that they can considerably boost medication bioavailability, lowering the frequency of dosage and reducing the toxicity associated with high doses of the medication.
Collapse
Affiliation(s)
- Mohammad Adnan
- Faculty of Pharmacy, Integral University, Lucknow 226026, Uttar Pradesh, India;
| | - Md. Habban Akhter
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, Uttarakhand, India;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia;
| | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Tanweer Haider
- Amity Institute of Pharmacy, Amity University, Gwalior 474005, Madhya Pradesh, India;
| | - Md. Faheem Haider
- Faculty of Pharmacy, Integral University, Lucknow 226026, Uttar Pradesh, India;
| |
Collapse
|
98
|
Xie Y, Wu H, Chen Z, Sun Q, Liu X, Jiang J, Wang B, Chen Z. Non-invasive evaluation of transdermal drug delivery using 3-D transient triplet differential (TTD) photoacoustic imaging. PHOTOACOUSTICS 2023; 32:100530. [PMID: 37645257 PMCID: PMC10461203 DOI: 10.1016/j.pacs.2023.100530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 07/08/2023] [Indexed: 08/31/2023]
Abstract
Transdermal drug delivery (TDD) is less invasive and avoids first-pass metabolism, making it an attractive method for treating various diseases such as diabetes and hypertension. However, current methods for evaluating TDD systems lack in vivo descriptions of drug distribution in the skin. In this study, we demonstrate the capability of the Transient Triplet Differential (TTD) method, a non-invasive and background-free photoacoustic imaging technique, for accurately mapping drug distribution and evaluating different TDD systems. Our findings show that the TTD method can provide high sensitivity and specificity for targeted drug extraction and visualize 3D drug distribution in the skin. Furthermore, in vivo experiments confirmed the potential of the TTD method in evaluating the clinical performance of TDD. It's predictable that the TTD method can be a reliable and non-invasive approach for evaluating TDD systems and offer valuable insights into TDD research and development.
Collapse
Affiliation(s)
- Yang Xie
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Huayi Wu
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Ziyan Chen
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Qi Sun
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xiangdong Liu
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Jinsheng Jiang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Bo Wang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Zeyu Chen
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
99
|
Niu J, Yuan M, Chen J, Wang L, Qi Y, Bai K, Fan Y, Gao P. L-Cysteine-Modified Transfersomes for Enhanced Epidermal Delivery of Podophyllotoxin. Molecules 2023; 28:5712. [PMID: 37570682 PMCID: PMC10420961 DOI: 10.3390/molecules28155712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The purpose of this study was to evaluate L-cysteine-modified transfersomes as the topical carrier for enhanced epidermal delivery of podophyllotoxin (POD). L-cysteine-deoxycholic acid (LC-DCA) conjugate was synthesized via an amidation reaction. POD-loaded L-cysteine-modified transfersomes (POD-LCTs) were prepared via a thin membrane dispersion method and characterized for their particle size, zeta potential, morphology, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and in vitro release. Subsequently, in vitro skin permeation and retention, fluorescence distribution in the skin, hematoxylin-eosin staining and in vivo skin irritation were studied. The POD-LCTs formed spherical shapes with a particle size of 172.5 ± 67.2 nm and a zeta potential of -31.3 ± 6.7 mV. Compared with the POD-Ts, the POD-LCTs provided significantly lower drug penetration through the porcine ear skin and significantly increased the skin retention (p < 0.05). Meaningfully, unlike the extensive distribution of the POD-loaded transfersomes (POD-Ts) throughout the skin tissue, the POD-LCTs were mainly located in the epidermis. Moreover, the POD-LCTs did not induce skin irritation. Therefore, the POD-LCTs provided an enhanced epidermal delivery and might be a promising carrier for the topical delivery of POD.
Collapse
Affiliation(s)
| | | | | | - Liye Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (J.N.); (M.Y.); (J.C.); (K.B.); (Y.F.)
| | | | | | | | | |
Collapse
|
100
|
Ghazwani M, Alqarni MH, Hani U, Alam A. QbD-Optimized, Phospholipid-Based Elastic Nanovesicles for the Effective Delivery of 6-Gingerol: A Promising Topical Option for Pain-Related Disorders. Int J Mol Sci 2023; 24:9983. [PMID: 37373129 DOI: 10.3390/ijms24129983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, elastic nanovesicles, constructed of phospholipids optimized by Quality by Design (QbD), release 6-gingerol (6-G), a natural chemical that may alleviate osteoporosis and musculoskeletal-related pain. A 6-gingerol-loaded transfersome (6-GTF) formulation was developed using a thin film and sonication approach. 6-GTFs were optimized using BBD. Vesicle size, PDI, zeta potential, TEM, in vitro drug release, and antioxidant activity were evaluated for the 6-GTF formulation. The optimized 6-GTF formulation had a 160.42 nm vesicle size, a 0.259 PDI, and a -32.12 mV zeta potential. TEM showed sphericity. The 6-GTF formulation's in vitro drug release was 69.21%, compared to 47.71% for the pure drug suspension. The Higuchi model best described 6-G release from transfersomes, while the Korsmeyer-Peppas model supported non-Fickian diffusion. 6-GTF had more antioxidant activity than the pure 6-G suspension. The optimized transfersome formulation was converted into a gel to improve skin retention and efficacy. The optimized gel had a spreadability of 13.46 ± 4.42 g·cm/s and an extrudability of 15.19 ± 2.01 g/cm2. The suspension gel had a 1.5 μg/cm2/h ex vivo skin penetration flux, while the 6-GTF gel had 2.71 μg/cm2/h. Rhodamine B-loaded TF gel reached deeper skin layers (25 μm) compared to the control solution in the CLSM study. The gel formulation's pH, drug concentration, and texture were assessed. This study developed QbD-optimized 6-gingerol-loaded transfersomes. 6-GTF gel improved skin absorption, drug release, and antioxidant activity. These results show that the 6-GTF gel formulation has the ability to treat pain-related illnesses effectively. Hence, this study offers a possible topical treatment for conditions connected to pain.
Collapse
Affiliation(s)
- Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P.O. Box 1882, Abha 61441, Saudi Arabia
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P.O. Box 1882, Abha 61441, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| |
Collapse
|