51
|
Felifel NT, Sliem MA, Kamel Z, Bojarska J, Seadawy MG, Amin RM, Elnagdy SM. Antimicrobial Photodynamic Therapy against Escherichia coli and Staphylococcus aureus Using Nanoemulsion-Encapsulated Zinc Phthalocyanine. Microorganisms 2023; 11:1143. [PMID: 37317117 PMCID: PMC10222491 DOI: 10.3390/microorganisms11051143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 06/16/2023] Open
Abstract
Multidrug-resistant microorganisms have become a significant public health threat, and traditional antibiotics are becoming ineffective. Photodynamic therapy (PDT) is a promising alternative that utilizes photosensitizers and light to produce Reactive Oxygen Species (ROS) that can kill microorganisms. Zinc phthalocyanine (ZnPc) is a promising photosensitizer due to its strong affinity for encapsulation in nanoemulsions and its antimicrobial properties. In this study, nanoemulsion was prepared using Miglyol 812N, a surfactant, and distilled water to dissolve hydrophobic drugs such as ZnPc. The nanoemulsion was characterized by its particle size, polydispersity index, Transmission Electron Microscope and Zeta potential, and the results showed that it was an efficient nanocarrier system that facilitated the solubilization of hydrophobic drugs in water. The use of ZnPc encapsulated in the nanoemulsion produced through the spontaneous emulsification method resulted in a significant reduction in cell survival percentages of gram-positive Staphylococcus aureus and gram-negative Escherichia coli by 85% and 75%, respectively. This may be attributed to the more complex cell membrane structure of E. coli compared to S. aureus. This demonstrates the potential of nanoemulsion-based PDT as an effective alternative to traditional antibiotics for treating multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- Nada T. Felifel
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamma St., Giza 12613, Egypt
| | - Mahmoud A. Sliem
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt
| | - Zienat Kamel
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamma St., Giza 12613, Egypt
| | - Joanna Bojarska
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Mohamed G. Seadawy
- Biological Prevention Department, Ministry of Defense, Cairo 11766, Egypt
| | - Rehab M. Amin
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt
| | - Sherif M. Elnagdy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamma St., Giza 12613, Egypt
| |
Collapse
|
52
|
Liu WT, Wang HT, Yeh YH, Wong TW. An Update on Recent Advances of Photodynamic Therapy for Primary Cutaneous Lymphomas. Pharmaceutics 2023; 15:pharmaceutics15051328. [PMID: 37242570 DOI: 10.3390/pharmaceutics15051328] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/16/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Primary cutaneous lymphomas are rare non-Hodgkin lymphomas consisting of heterogeneous disease entities. Photodynamic therapy (PDT) utilizing photosensitizers irradiated with a specific wavelength of light in the presence of oxygen exerts promising anti-tumor effects on non-melanoma skin cancer, yet its application in primary cutaneous lymphomas remains less recognized. Despite many in vitro data showing PDT could effectively kill lymphoma cells, clinical evidence of PDT against primary cutaneous lymphomas is limited. Recently, a phase 3 "FLASH" randomized clinical trial demonstrated the efficacy of topical hypericin PDT for early-stage cutaneous T-cell lymphoma. An update on recent advances of photodynamic therapy in primary cutaneous lymphomas is provided.
Collapse
Affiliation(s)
- Wei-Ting Liu
- Department of Dermatology, Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Han-Tang Wang
- Department of Dermatology, Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yi-Hsuan Yeh
- School of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
53
|
Naskar A, Kim KS. Friends against the Foe: Synergistic Photothermal and Photodynamic Therapy against Bacterial Infections. Pharmaceutics 2023; 15:1116. [PMID: 37111601 PMCID: PMC10146283 DOI: 10.3390/pharmaceutics15041116] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria are rapidly emerging, coupled with the failure of current antibiotic therapy; thus, new alternatives for effectively treating infections caused by MDR bacteria are required. Hyperthermia-mediated photothermal therapy (PTT) and reactive oxygen species (ROS)-mediated photodynamic therapy (PDT) have attracted extensive attention as antibacterial therapies owing to advantages such as low invasiveness, low toxicity, and low likelihood of causing bacterial resistance. However, both strategies have notable drawbacks, including the high temperature requirements of PTT and the weak ability of PDT-derived ROS to penetrate target cells. To overcome these limitations, a combination of PTT and PDT has been used against MDR bacteria. In this review, we discuss the unique benefits and limitations of PTT and PDT against MDR bacteria. The mechanisms underlying the synergistic effects of the PTT-PDT combination are also discussed. Furthermore, we introduced advancements in antibacterial methods using nano-based PTT and PDT agents to treat infections caused by MDR bacteria. Finally, we highlight the existing challenges and future perspectives of synergistic PTT-PDT combination therapy against infections caused by MDR bacteria. We believe that this review will encourage synergistic PTT- and PDT-based antibacterial research and can be referenced for future clinical applications.
Collapse
Affiliation(s)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
54
|
Zagami R, Rubin Pedrazzo A, Franco D, Caldera F, De Plano LM, Trapani M, Patanè S, Trotta F, Mazzaglia A. Supramolecular Assemblies based on Polymeric Cyclodextrin Nanosponges and a Cationic Porphyrin with Antimicrobial Photodynamic Therapy Action. Int J Pharm 2023; 637:122883. [PMID: 36972777 DOI: 10.1016/j.ijpharm.2023.122883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Within of the increasing requirement of alternative approaches to fight emerging infections, nano-photosensitisers (nanoPS) are currently designed with the aim to optimize the antimicrobial photodynamic (aPDT) efficacy. The utilize of less expensive nanocarriers prepared by simple and eco-friendly methodologies and commercial photosensitisers are highly desiderable. In this direction, here we propose a novel nanoassembly composed of water soluble anionic polyester β-CD nanosponges (β-CD-PYRO hereafter named βNS) and the cationic 5,10,15,20-tetrakis(1-methylpyridinium-4- yl)porphine (TMPyP). Nanoassemblies were prepared in ultrapure water by mixing PS and βNS, by exploiting their mutual electrostatic interaction, and characterized by various spectroscopic techniques such as UV/Vis, Steady-State and Time Resolved Fluorescence, Dynamic Light Scattering and ζ-potential. NanoPS produce appreciable amount of single oxygen similar to free porphyrin and a prolonged stability after 6 days of incubations in physiological conditions and following photoirradiation. Antimicrobial photodynamic action against fatal hospital-acquired infections such as P. aeruginosa and S. aureus was investigated by pointing out the ability of cationic porphyrin loaded- CD nanosponges to photo-kill bacterial cells at prolonged time of incubation and following irradiation (MBC99 = 3.75 µM, light dose = 54.82 J/cm2).
Collapse
Affiliation(s)
- Roberto Zagami
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, URT Messina c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | | | - Domenico Franco
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Fabrizio Caldera
- Dipartimento di Chimica, University of Torino, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Laura M De Plano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Mariachiara Trapani
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, URT Messina c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Salvatore Patanè
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Francesco Trotta
- Dipartimento di Chimica, University of Torino, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Antonino Mazzaglia
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, URT Messina c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| |
Collapse
|
55
|
Azadeh SS, Esmaeeli Djavid G, Nobari S, Keshmiri Neghab H, Rezvan M. Light-Based Therapy: Novel Approach to Treat COVID-19. TANAFFOS 2023; 22:279-289. [PMID: 38638386 PMCID: PMC11022193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/01/2023] [Indexed: 04/20/2024]
Abstract
The pandemic outbreak of Coronavirus disease 2019 (COVID-19) which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), is a new viral infection in all countries around the world. An increase in inflammatory cytokines, fever, dry cough, and pneumonia are the main symptoms of COVID-19. A shared of growing clinical evidence confirmed that cytokine storm correlates with COVID-19 severity which is also a crucial cause of death from COVID-19. The success of anti-inflammatory therapies in the recovery process of COVID-19 patients has been well established. Over the years, phototherapy (PhT) has been identified as a promising non-invasive treatment approach for inflammatory conditions. New evidence suggests that PhT as an anti-inflammatory therapy may be effective in treating acute respiratory distress syndrome (ARDS) and COVID-19. This review aims to a comprehensive overview of the direct and indirect effects of anti-inflammatory mechanisms of PhT in ARDS and COVID-19 patients.
Collapse
Affiliation(s)
- Seyedeh Sara Azadeh
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Sima Nobari
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hoda Keshmiri Neghab
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Motahareh Rezvan
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| |
Collapse
|
56
|
Tang N, Yuan S, Luo Y, Wang AJ, Sun K, Liu NN, Tao K. Nanoparticle-Based Photodynamic Inhibition of Candida albicans Biofilms with Interfering Quorum Sensing. ACS OMEGA 2023; 8:4357-4368. [PMID: 36743058 PMCID: PMC9893753 DOI: 10.1021/acsomega.2c07740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Biofilm formation is a critical event in the pathogenesis and virulence of fungal infections caused by Candida albicans, giving rise to about a 1000-fold increase in the resistance to antifungal agents. Although photodynamic treatment (PDT) has been excellently implicated in bacterial infections, studies on its potential against fungal infection through the clearance of fungal biofilm formation remain at its infancy stage. Here, we have designed photodynamic nanoparticles with different sizes, modifications, and the ability of generating reactive oxygen species (ROS) to examine their effects on inhibiting biofilm formation and destructing mature biofilms of C. albicans. We found that the nanoparticles modified with oligo-chitosan exhibited a better binding efficiency for planktonic cells, leading to stronger inhibitory efficacy of the filamentation and the early-stage biofilm formation. However, for mature biofilms, the nanoparticles with the smallest size (∼15 nm) showed the fastest penetration speed and a pronounced destructing effect albeit conferring the lowest ROS-producing capability. The inhibitory effect of photodynamic nanoparticles was dependent on the disruption of fungal quorum sensing (QS) by the upregulation of QS molecules, farnesol and tyrosol, mediated through the upregulation of ARO 8 and DPP 3 expression. Our findings provide a powerful strategy of nanoparticulate PDT to combat fungal infections through the inhibition of both hyphal and biofilm formation by disrupting QS.
Collapse
Affiliation(s)
- Na Tang
- State
Key Lab of Metal Matrix Composites, School of Materials Science and
Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shenghao Yuan
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuxuan Luo
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| | - An-Jun Wang
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kang Sun
- State
Key Lab of Metal Matrix Composites, School of Materials Science and
Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ning-Ning Liu
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ke Tao
- State
Key Lab of Metal Matrix Composites, School of Materials Science and
Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
57
|
Anti-biofilm and bystander effects of antimicrobial photo-sonodynamic therapy against polymicrobial periopathogenic biofilms formed on coated orthodontic mini-screws with zinc oxide nanoparticles. Photodiagnosis Photodyn Ther 2023; 41:103288. [PMID: 36640857 DOI: 10.1016/j.pdpdt.2023.103288] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND The present study evaluated the anti-biofilm and bystander effects of antimicrobial photo-sonodynamic therapy (aPSDT) on the polymicrobial periopathogenic biofilms formed on mini-screws coated with zinc oxide nanoparticles (ZnONPs). MATERIALS AND METHODS Thirty orthodontic identical mini-screws were divided into 6 groups (n = 5) as follows: 1. negative control: uncoated mini-screw + phosphate-buffered saline (PBS), 2. positive control: uncoated mini-screw + 0.2% CHX, 3. coating control: coated mini-screw + PBS, 4. antimicrobial photodynamic therapy (aPDT): coated mini-screw+light emitting diode (LED), 5. Antimicrobial sonodynamic therapy (aSDT): coated mini-screw+ultrasound waves, and 6. aPSDT: coated mini-screw+LED+ultrasound waves. Electrostatic spray-assisted vapor deposition was employed to coat ZnONPs on titanium mini-screws. The biofilm inhibition test was used to assess the anti-biofilm efficacy against polymicrobial periopathogenic biofilms including Porphyromonas gingivitis, Prevotella intermedia, and Aggregatibacter actinomycetemcomitans, and the results were shown as the percent reduction of Log10 colony-forming unit (CFU)/mL. Following each treatment, the gene expression levels of TNF-α, IL-1β, and IL-6 were evaluated on human gingival fibroblast (HGF) cells via quantitative real-time polymerase chain reaction (qRT-PCR) to reveal the bystander effects of aPSDT on HGF cells. RESULTS A significant reduction in log10 CFU/mL of periopathogens was observed in groups treated with aPDT, aSDT, aPSDT, and 0.2% CHX up to 6.81, 6.63, 5.02, and 4.83 log, respectively, when compared with control groups (P<0.05). 0.2% CHX and aPSDT groups demonstrated significantly higher capacity in eliminating the periopathogen biofilm compared with other groups (P<0.05). The qRT-PCR showed that the expression level of inflammatory cytokines was significantly down regulated in aPDT, aSDT, and aPSDT groups (P<0.05). CONCLUSION It was found that the ZnONPs-mediated aPSDT could significantly reduce periopathogen biofilm as well as the expression level of inflammatory cytokines.
Collapse
|
58
|
Cordero PV, Alvarez MG, Gonzalez Lopez EJ, Heredia DA, Durantini EN. Photoinactivation of Planktonic Cells, Pseudohyphae, and Biofilms of Candida albicans Sensitized by a Free-Base Chlorin and Its Metal Complexes with Zn(II) and Pd(II). Antibiotics (Basel) 2023; 12:105. [PMID: 36671307 PMCID: PMC9854949 DOI: 10.3390/antibiotics12010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Invasive candidiasis is an important cause of morbidity and mortality, and its occurrence is increasing due to the growing complexity of patients. In particular, Candida albicans exhibits several virulence factors that facilitate yeast colonization in humans. In this sense, the photodynamic inactivation of yeasts is a promising new alternative to eliminate fungal infections. Herein, the photodynamic activity sensitized by a free-base chlorin (TPCF16) and its complexes with Zn(II) (ZnTPCF16) and Pd(II) (PdTPCF16) was investigated in order to eliminate C. albicans under different forms of cell cultures. A decrease in cell survival of more than 5 log was found in planktonic cells incubated with 5 μM TPCF16 or ZnTPCF16 upon 15 min of white-light irradiation. The mechanism of action mainly involved a type II pathway in the inactivation of C. albicans cells. In addition, the photodynamic action induced by these chlorins was able to suppress the growth of C. albicans in a culture medium. These photosensitizers were also effective to photoinactivate C. albicans pseudohyphae suspended in PBS. Furthermore, the biofilms of C. albicans that incorporated the chlorins during the proliferation stage were completely eradicated using 5 μM TPCF16 or ZnTPCF16 after 60 min of light irradiation. The studies indicated that these chlorins are effective photosensitizing agents to eliminate C. albicans as planktonic cells, pseudohyphae, and biofilms.
Collapse
Affiliation(s)
| | | | | | | | - Edgardo N. Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto X5804BYA, Argentina
| |
Collapse
|
59
|
Garapati C, HS. Boddu S, Jacob S, Ranch KM, Patel C, Jayachandra Babu R, Tiwari AK, Yasin H. Photodynamic Therapy: A Special Emphasis on Nanocarrier-mediated Delivery of Photosensitizers in Antimicrobial Therapy. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
60
|
Trigo-Gutierrez JK, Calori IR, de Oliveira Bárbara G, Pavarina AC, Gonçalves RS, Caetano W, Tedesco AC, Mima EGDO. Photo-responsive polymeric micelles for the light-triggered release of curcumin targeting antimicrobial activity. Front Microbiol 2023; 14:1132781. [PMID: 37152758 PMCID: PMC10157243 DOI: 10.3389/fmicb.2023.1132781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Nanocarriers have been successfully used to solubilize, deliver, and increase the bioavailability of curcumin (CUR), but slow CUR release rates hinder its use as a topical photosensitizer in antimicrobial photodynamic therapy. A photo-responsive polymer (PRP) was designed for the light-triggered release of CUR with an effective light activation-dependent antimicrobial response. The characterization of the PRP was compared with non-responsive micelles comprising Pluronics™ P123 and F127. According to the findings, the PRP formed photo-responsive micelles in the nanometric scale (< 100 nm) with a lower critical micelle concentration (3.74 × 10-4 M-1, 5.8 × 10-4 M-1, and 7.2 × 10-6 M-1 for PRP, F127, P123, respectively, at 25°C) and higher entrapment efficiency of CUR (88.7, 77.2, and 72.3% for PRP, F127, and P123 micelles, respectively) than the pluronics evaluated. The PRP provided enhanced protection of CUR compared to P123 micelles, as demonstrated in fluorescence quenching studies. The light-triggered release of CUR from PRP occurred with UV light irradiation (at 355 nm and 25 mW cm-2) and a cumulative release of 88.34% of CUR within 1 h compared to 80% from pluronics after 36 h. In vitro studies showed that CUR-loaded PRP was non-toxic to mammal cell, showed inactivation of the pathogenic microorganisms Candida albicans, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus, and decreased biofilm biomass when associated with blue light (455 nm, 33.84 J/cm2). The findings show that the CUR-loaded PRP micelle is a viable option for antimicrobial activity.
Collapse
Affiliation(s)
- Jeffersson Krishan Trigo-Gutierrez
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Italo Rodrigo Calori
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Geovana de Oliveira Bárbara
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Ana Claudia Pavarina
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Renato Sonchini Gonçalves
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Maringá, Paraná, Brazil
| | - Wilker Caetano
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Maringá, Paraná, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ewerton Garcia de Oliveira Mima
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
- *Correspondence: Ewerton Garcia de Oliveira Mima,
| |
Collapse
|
61
|
Spectroscopic Investigations of Porphyrin-TiO 2 Nanoparticles Complexes. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010318. [PMID: 36615512 PMCID: PMC9822347 DOI: 10.3390/molecules28010318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
This study presents the spectral characterization of TiO2 nanoparticles (NPs) functionalized with three porphyrin derivatives: 5,10,15,20-(Tetra-4-aminophenyl) porphyrin (TAPP), 5,10,15,20-(Tetra-4-methoxyphenyl) porphyrin (TMPP), and 5,10,15,20-(Tetra-4-carboxyphenyl) porphyrin (TCPP). UV-Vis absorption and Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) spectroscopic studies of these porphyrins and their complexes with TiO2 NPs were performed. In addition, the efficiency of singlet oxygen generation, the key species in photodynamic therapy, was investigated. UV-Vis absorption spectra of the NPs complexes showed the characteristic bands of porphyrins. These allowed us to determine the loaded porphyrins on TiO2 NPs functionalized with porphyrins. FTIR-ATR revealed the formation of porphyrin-TiO2 complexes, suggesting that porphyrin adsorption on TiO2 may involve the pyrroles in the porphyrin ring, or the radicals of the porphyrin derivative. The quantum yield for singlet oxygen generation by the studied porphyrin complexes with TiO2 was higher compared to bare porphyrins for TAPP and TMPP, while for the TCPP-TiO2 NPs complex, a decrease was observed, but still maintained a good efficiency. The TiO2 NPs conjugates can be promising candidates to be tested in photodynamic therapy in vitro assays.
Collapse
|
62
|
Gradova MA, Gradov OV, Lobanov AV, Bychkova AV, Nikolskaya ED, Yabbarov NG, Mollaeva MR, Egorov AE, Kostyukov AA, Kuzmin VA, Khudyaeva IS, Belykh DV. Characterization of a Novel Amphiphilic Cationic Chlorin Photosensitizer for Photodynamic Applications. Int J Mol Sci 2022; 24:ijms24010345. [PMID: 36613788 PMCID: PMC9820311 DOI: 10.3390/ijms24010345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
A novel amphiphilic cationic chlorin e6 derivative was investigated as a promising photosensitizer for photodynamic therapy. Two cationic -N(CH3)3+ groups on the periphery of the macrocycle provide additional hydrophilization of the molecule and ensure its electrostatic binding to the mitochondrial membranes and bacterial cell walls. The presence of a hydrophobic phytol residue in the same molecule results in its increased affinity towards the phospholipid membranes while decreasing its stability towards aggregation in aqueous media. In organic media, this chlorin e6 derivative is characterized by a singlet oxygen quantum yield of 55%. Solubilization studies in different polymer- and surfactant-based supramolecular systems revealed the effective stabilization of this compound in a photoactive monomolecular form in micellar nonionic surfactant solutions, including Tween-80 and Cremophor EL. A novel cationic chlorin e6 derivative also demonstrates effective binding towards serum albumin, which enhances its bioavailability and promotes effective accumulation within the target tissues. Laser confocal scanning microscopy demonstrates the rapid intracellular accumulation and distribution of this compound throughout the cells. Together with low dark toxicity and a rather good photostability, this compound demonstrates significant phototoxicity against HeLa cells causing cellular damage most likely through reactive oxygen species generation. These results demonstrate a high potential of this derivative for application in photodynamic therapy.
Collapse
Affiliation(s)
- Margarita A. Gradova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Oleg V. Gradov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Anton V. Lobanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V. Bychkova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena D. Nikolskaya
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nikita G. Yabbarov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mariia R. Mollaeva
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anton E. Egorov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexey A. Kostyukov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir A. Kuzmin
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Irina S. Khudyaeva
- Institute of Chemistry, Komi Scientific Center, Ural Division of the Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Dmitry V. Belykh
- Institute of Chemistry, Komi Scientific Center, Ural Division of the Russian Academy of Sciences, 167982 Syktyvkar, Russia
| |
Collapse
|
63
|
Santamarina SC, Heredia DA, Durantini AM, Durantini EN. Porphyrin Polymers Bearing N, N'-Ethylene Crosslinkers as Photosensitizers against Bacteria. Polymers (Basel) 2022; 14:polym14224936. [PMID: 36433062 PMCID: PMC9696963 DOI: 10.3390/polym14224936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
The appearance of microbes resistant to antibiotics requires the development of alternative therapies for the treatment of infectious diseases. In this work two polymers, PTPPF16-EDA and PZnTPPF16-EDA, were synthesized by the nucleophilic aromatic substitution of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin and its Zn(II) complex with ethylenediamine, respectively. In these structures, the tetrapyrrolic macrocycles were N,N'-ethylene crosslinked, which gives them greater mobility. The absorption spectra of the polymers showed a bathochromic shift of the Soret band of ~10 nm with respect to the monomers. This effect was also found in the red fluorescence emission peaks. Furthermore, both polymeric materials produced singlet molecular oxygen with high quantum yields. In addition, they were capable of generating superoxide anion radicals. Photodynamic inactivation sensitized by these polymers was tested in Staphylococcus aureus and Escherichia coli bacteria. A decrease in cell viability greater than 7 log (99.9999%) was observed in S. aureus incubated with 0.5 μM photosensitizer upon 30 min of irradiation. Under these conditions, a low inactivation of E. coli (0.5 log) was found. However, when the cells were treated with KI, the elimination of the Gram-negative bacteria was achieved. Therefore, these polymeric structures are interesting antimicrobial photosensitizing materials for the inactivation of pathogens.
Collapse
|
64
|
Preis E, Wojcik M, Litscher G, Bakowsky U. Editorial on the "Special Issue in Honor of Dr. Michael Weber's 70th Birthday: Photodynamic Therapy: Rising Star in Pharmaceutical Applications". Pharmaceutics 2022; 14:1786. [PMID: 36145534 PMCID: PMC9500869 DOI: 10.3390/pharmaceutics14091786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Thousands of years ago, phototherapy or heliotherapy was performed by ancient Egyptians, Greeks, and Romans [...].
Collapse
Affiliation(s)
- Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Matthias Wojcik
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Gerhard Litscher
- President of ISLA (International Society for Medical Laser Applications), Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| |
Collapse
|
65
|
Youf R, Nasir A, Müller M, Thétiot F, Haute T, Ghanem R, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Ruthenium(II) Polypyridyl Complexes for Antimicrobial Photodynamic Therapy: Prospects for Application in Cystic Fibrosis Lung Airways. Pharmaceutics 2022; 14:pharmaceutics14081664. [PMID: 36015290 PMCID: PMC9412327 DOI: 10.3390/pharmaceutics14081664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) depends on a variety of parameters notably related to the photosensitizers used, the pathogens to target and the environment to operate. In a previous study using a series of Ruthenium(II) polypyridyl ([Ru(II)]) complexes, we reported the importance of the chemical structure on both their photo-physical/physico-chemical properties and their efficacy for aPDT. By employing standard in vitro conditions, effective [Ru(II)]-mediated aPDT was demonstrated against planktonic cultures of Pseudomonas aeruginosa and Staphylococcus aureus strains notably isolated from the airways of Cystic Fibrosis (CF) patients. CF lung disease is characterized with many pathophysiological disorders that can compromise the effectiveness of antimicrobials. Taking this into account, the present study is an extension of our previous work, with the aim of further investigating [Ru(II)]-mediated aPDT under in vitro experimental settings approaching the conditions of infected airways in CF patients. Thus, we herein studied the isolated influence of a series of parameters (including increased osmotic strength, acidic pH, lower oxygen availability, artificial sputum medium and biofilm formation) on the properties of two selected [Ru(II)] complexes. Furthermore, these compounds were used to evaluate the possibility to photoinactivate P. aeruginosa while preserving an underlying epithelium of human bronchial epithelial cells. Altogether, our results provide substantial evidence for the relevance of [Ru(II)]-based aPDT in CF lung airways. Besides optimized nano-complexes, this study also highlights the various needs for translating such a challenging perspective into clinical practice.
Collapse
Affiliation(s)
- Raphaëlle Youf
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Adeel Nasir
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Tanguy Haute
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Rosy Ghanem
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
- Correspondence:
| |
Collapse
|
66
|
Pourhajibagher M, Etemad-Moghadam S, Alaeddini M, Miri Mousavi RS, Bahador A. DNA-aptamer-nanographene oxide as a targeted bio-theragnostic system in antimicrobial photodynamic therapy against Porphyromonas gingivalis. Sci Rep 2022; 12:12161. [PMID: 35842460 PMCID: PMC9288515 DOI: 10.1038/s41598-022-16310-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/07/2022] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to design and evaluate the specificity of a targeted bio-theragnostic system based on DNA-aptamer-nanographene oxide (NGO) against Porphyromonas gingivalis during antimicrobial photodynamic therapy (aPDT). Following synthesis and confirmation of NGO, the binding of selected labeled DNA-aptamer to NGO was performed and its hemolytic activity, cytotoxic effect, and release times were evaluated. The specificity of DNA-aptamer-NGO to P. gingivalis was determined. The antimicrobial effect, anti-biofilm potency, and anti-metabolic activity of aPDT were then assessed after the determination of the bacteriostatic and bactericidal concentrations of DNA-aptamer-NGO against P. gingivalis. Eventually, the apoptotic effect and anti-virulence capacity of aPDT based on DNA-aptamer-NGO were investigated. The results showed that NGO with a flaky, scale-like, and layered structure in non-cytotoxic DNA-aptamer-NGO has a continuous release in the weak-acid environment within a period of 240 h. The binding specificity of DNA-aptamer-NGO to P. gingivalis was confirmed by flow cytometry. When irradiated, non-hemolytic DNA-aptamer-NGO were photoactivated, generated ROS, and led to a significant decrease in the cell viability of P. gingivalis (P < 0.05). Also, the data indicated that DNA-aptamer-NGO-mediated aPDT led to a remarkable reduction of biofilms and metabolic activity of P. gingivalis compared to the control group (P < 0.05). In addition, the number of apoptotic cells increased slightly (P > 0.05) and the expression level of genes involved in bacterial biofilm formation and response to oxidative stress changed significantly after exposure to aPDT. It is concluded that aPDT using DNA-aptamer-NGO as a targeted bio-theragnostic system is a promising approach to detect and eliminate P. gingivalis as one of the main bacteria involved in periodontitis in periopathogenic complex in real-time and in situ.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvaneh Sadat Miri Mousavi
- Pharmaceutical Engineering Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Abbas Bahador
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
67
|
The Enhancement of Antimicrobial Photodynamic Therapy of Escherichia Coli by a Functionalized Combination of Photosensitizers: In Vitro Examination of Single Cells by Quantitative Phase Imaging. Int J Mol Sci 2022; 23:ijms23116137. [PMID: 35682814 PMCID: PMC9181539 DOI: 10.3390/ijms23116137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
The prevention of biofilm formation is crucial for the limitation of bacterial infections typically associated with postoperative infections, complications in bedridden patients, and a short-term prognosis in affected cancer patients or mechanically ventilated patients. Antimicrobial photodynamic therapy (aPDT) emerges as a promising alternative for the prevention of infections due to the inability of bacteria to become resistant to aPDT inactivation processes. The aim of this study was to demonstrate the use of a functionalized combination of Chlorin e6 and Pheophorbide as a new approach to more effective aPDT by increasing the accumulation of photosensitizers (PSs) within Escherichia coli cells. The accumulation of PSs and changes in the dry mass density of single-cell bacteria before and after aPDT treatment were investigated by digital holotomography (DHT) using the refractive index as an imaging contrast for 3D label-free live bacteria cell imaging. The results confirmed that DHT can be used in complex examination of the cell–photosensitizer interaction and characterization of the efficiency of aPDT. Furthermore, the use of Pheophorbide a as an efflux pomp inhibitor in combination with Chlorin e6 increases photosensitizers accumulation within E. coli and overcomes the limited penetration of Gram-negative cells by anionic and neutral photosensitizers.
Collapse
|
68
|
Randomized and Controlled Clinical Studies on Antibacterial Photodynamic Therapy: An Overview. PHOTONICS 2022. [DOI: 10.3390/photonics9050340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The emergence of drug-resistant bacteria is considered a critical public health problem. The need to establish alternative approaches to countering resistant microorganisms is unquestionable in overcoming this problem. Among emerging alternatives, antimicrobial photodynamic therapy (aPDT) has become promising to control infectious diseases. aPDT is based on the activation of a photosensitizer (PS) by a particular wavelength of light followed by generation of the reactive oxygen. These interactions result in the production of reactive oxygen species, which are lethal to bacteria. Several types of research have shown that aPDT has been successfully studied in in vitro, in vivo, and randomized clinical trials (RCT). Considering the lack of reviews of RCTs studies with aPDT applied in bacteria in the literature, we performed a systematic review of aPDT randomized clinical trials for the treatment of bacteria-related diseases. According to the literature published from 2008 to 2022, the RCT study of aPDT was mostly performed for periodontal disease, followed by halitosis, dental infection, peri-implantitis, oral decontamination, and skin ulcers. A variety of PSs, light sources, and protocols were efficiently used, and the treatment did not cause any side effects for the individuals.
Collapse
|
69
|
Inactivation of Bacillus subtilis by Curcumin-Mediated Photodynamic Technology through Inducing Oxidative Stress Response. Microorganisms 2022; 10:microorganisms10040802. [PMID: 35456852 PMCID: PMC9026882 DOI: 10.3390/microorganisms10040802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/05/2023] Open
Abstract
Photodynamic sterilization technology (PDT) is widely used in disease therapy, but its application in the food industry is still at the research stage because of the limitations of food-grade photosensitizers. Curcumin exhibits photosensitivity and is widely used as a food additive for its natural color. This study aimed to determine the effect of curcumin-mediated photodynamic technology (Cur-PDT) on Bacillus subtilis and to elucidate the anti-bacterial mechanism involved. First, the effects of curcumin concentration, duration of light irradiation, light intensity, and incubation time on the inactivation of B. subtilis were analyzed. It was found that Cur-PDT inactivated 100% planktonic cells with 50 μmol/L curcumin in 15 min (120 W). Then, the cell morphology, oxidation state and the expression of membrane structure- and DNA damage-related genes of B. subtilis vegetative cells were investigated under different treatment conditions. The membrane permeability of cells was enhanced and the cell membrane structure was damaged upon treatment with Cur-PDT, which were exacerbated with increases of treatment time and curcumin concentration. Meanwhile, the production of reactive oxygen species increased and the activities of the antioxidant enzymes SOD, GPX, and CAT decreased inside the cells. Furthermore, the Cur-PDT treatment significantly downregulated the mRNA of the membrane protein TasA and upregulated the DNA damage recognition protein UvrA and repair protein RecA of B. subtilis. These results suggested that curcumin-mediated PDT could effectively inactivate B. subtilis by inducing cell redox state imbalance, damaging DNA, and disrupting membrane structures.
Collapse
|
70
|
Applications of Antimicrobial Photodynamic Therapy against Bacterial Biofilms. Int J Mol Sci 2022; 23:ijms23063209. [PMID: 35328629 PMCID: PMC8953781 DOI: 10.3390/ijms23063209] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial photodynamic therapy and allied photodynamic antimicrobial chemotherapy have shown remarkable activity against bacterial pathogens in both planktonic and biofilm forms. There has been little or no resistance development against antimicrobial photodynamic therapy. Furthermore, recent developments in therapies that involve antimicrobial photodynamic therapy in combination with photothermal hyperthermia therapy, magnetic hyperthermia therapy, antibiotic chemotherapy and cold atmospheric pressure plasma therapy have shown additive and synergistic enhancement of its efficacy. This paper reviews applications of antimicrobial photodynamic therapy and non-invasive combination therapies often used with it, including sonodynamic therapy and nanozyme enhanced photodynamic therapy. The antimicrobial and antibiofilm mechanisms are discussed. This review proposes that these technologies have a great potential to overcome the bacterial resistance associated with bacterial biofilm formation.
Collapse
|
71
|
Shahmoradi S, Shariati A, Amini SM, Zargar N, Yadegari Z, Darban-Sarokhalil D. The application of selenium nanoparticles for enhancing the efficacy of photodynamic inactivation of planktonic communities and the biofilm of Streptococcus mutans. BMC Res Notes 2022; 15:84. [PMID: 35209935 PMCID: PMC8876442 DOI: 10.1186/s13104-022-05973-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/14/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Streptococcus mutans is one of the principal causative agents of dental caries (tooth decay) found in the oral cavity. Therefore, this study investigates whether selenium nanoparticles (SeNPs) enhance the efficacy of photodynamic therapy (PDT) against both planktonic communities and the one-day-old biofilm of S. mutans. In this study, the planktonic and 24-h biofilm of S. mutans have been prepared in 96-cell microplates. These forms were treated by methylene blue (MB) and SeNPs and then were exposed to light-emitting diode (LED) lighting. Finally, the results have been reported as CFU/ml. Results The outcomes demonstrated that MB-induced PDT and SeNPs significantly reduced the number of planktonic bacteria (P-value < 0.001). The comparison between the treated and untreated groups showed that combining therapy with SeNPs and PDT remarkably decreased colony-forming units of one-day-old S. mutans biofilm (P-value < 0.05). The findings revealed that PDT modified by SeNPs had a high potential to destroy S. mutans biofilm. This combination therapy showed promising results to overcome oral infection in dental science.
Collapse
Affiliation(s)
- Samane Shahmoradi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Next to Milad Tower, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Zargar
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Yadegari
- Department of Dental Biomaterials, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Next to Milad Tower, Tehran, Iran. .,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
72
|
Santamarina SC, Heredia DA, Durantini AM, Durantini EN. Antimicrobial Photosensitizing Material Based on Conjugated Zn(II) Porphyrins. Antibiotics (Basel) 2022; 11:91. [PMID: 35052968 PMCID: PMC8773278 DOI: 10.3390/antibiotics11010091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/13/2023] Open
Abstract
The widespread use of antibiotics has led to a considerable increase in the resistance of microorganisms to these agents. Consequently, it is imminent to establish new strategies to combat pathogens. An alternative involves the development of photoactive polymers that represent an interesting strategy to kill microbes and maintain aseptic surfaces. In this sense, a conjugated polymer (PZnTEP) based on Zn(II) 5,10,15,20-tetrakis-[4-(ethynyl)phenyl]porphyrin (ZnTEP) was obtained by the homocoupling reaction of terminal alkyne groups. PZnTEP exhibits a microporous structure with high surface areas allowing better interaction with bacteria. The UV-visible absorption spectra show the Soret and Q bands of PZnTEP red-shifted by about 18 nm compared to those of the monomer. Also, the conjugate presents the two red emission bands, characteristic of porphyrins. This polymer was able to produce singlet molecular oxygen and superoxide radical anion in the presence of NADH. Photocytotoxic activity sensitized by PZnTEP was investigated in bacterial suspensions. No viable Staphylococcus aureus cells were detected using 0.5 µM PZnTEP and 15 min irradiation. Under these conditions, complete photoinactivation of Escherichia coli was observed in the presence of 100 mM KI. Likewise, no survival was detected for E. coli incubated with 1.0 µM PZnTEP after 30 min irradiation. Furthermore, polylactic acid surfaces coated with PZnTEP were able to kill efficiently these bacteria. This surface can be reused for at least three photoinactivation cycles. Therefore, this conjugated photodynamic polymer is an interesting antimicrobial photoactive material for designing and developing self-sterilizing surfaces.
Collapse
Affiliation(s)
- Sofía C Santamarina
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto, Córdoba X5804BYA, Argentina
| | - Daniel A Heredia
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto, Córdoba X5804BYA, Argentina
| | - Andrés M Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto, Córdoba X5804BYA, Argentina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto, Córdoba X5804BYA, Argentina
| |
Collapse
|
73
|
Sewid FA, Annas KI, Dubavik A, Veniaminov AV, Maslov VG, Orlova AO. Chitosan nanocomposites with CdSe/ZnS quantum dots and porphyrin. RSC Adv 2021; 12:899-906. [PMID: 35425094 PMCID: PMC8978810 DOI: 10.1039/d1ra08148a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022] Open
Abstract
Water-soluble nanocomposites based on CdSe/ZnS quantum dots (QDs) and hydrophobic tetraphenylporphyrin (TPP) molecules passivated by chitosan (CS) have been formed. Magnetic circular dichroism (MCD) spectra evidence TPP presence in both monomeric and agglomerated forms in the nanocomposites. The nanocomposites demonstrate more pronounced singlet oxygen generation compared to free TPP in CS at the same concentration due to the intracomplex Förster resonance energy transfer (FRET) with a 45% average efficiency.
Collapse
Affiliation(s)
- F A Sewid
- ITMO University St. Petersburg 197101 Russia
- Faculty of Science, Mansoura University Egypt
| | - K I Annas
- ITMO University St. Petersburg 197101 Russia
| | - A Dubavik
- ITMO University St. Petersburg 197101 Russia
| | | | - V G Maslov
- ITMO University St. Petersburg 197101 Russia
| | - A O Orlova
- ITMO University St. Petersburg 197101 Russia
| |
Collapse
|