51
|
Preetam S, Duhita Mondal D, Mukerjee N, Naser SS, Tabish TA, Thorat N. Revolutionizing Cancer Treatment: The Promising Horizon of Zein Nanosystems. ACS Biomater Sci Eng 2024; 10:1946-1965. [PMID: 38427627 PMCID: PMC11005017 DOI: 10.1021/acsbiomaterials.3c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
Various nanomaterials have recently become fascinating tools in cancer diagnostic applications because of their multifunctional and inherent molecular characteristics that support efficient diagnosis and image-guided therapy. Zein nanoparticles are a protein derived from maize. It belongs to the class of prolamins possessing a spherical structure with conformational properties similar to those of conventional globular proteins like ribonuclease and insulin. Zein nanoparticles have gained massive interest over the past couple of years owing to their natural hydrophilicity, ease of functionalization, biodegradability, and biocompatibility, thereby improving oral bioavailability, nanoparticle targeting, and prolonged drug administration. Thus, zein nanoparticles are becoming a promising candidate for precision cancer drug delivery. This review highlights the clinical significance of applying zein nanosystems for cancer theragnostic─moreover, the role of zein nanosystems for cancer drug delivery, anticancer agents, and gene therapy. Finally, the difficulties and potential uses of these NPs in cancer treatment and detection are discussed. This review will pave the way for researchers to develop theranostic strategies for precision medicine utilizing zein nanosystems.
Collapse
Affiliation(s)
- Subham Preetam
- Department
of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Deb Duhita Mondal
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata, West Bengal 700107, India
| | - Nobendu Mukerjee
- Centre
for Global Health Research, Saveetha Medical
College and Hospital, Chennai 602105, India
- Department
of Science and Engineering, Novel Global
Community and Educational Foundation, Hebasham 2770, NSW, Australia
| | | | - Tanveer A. Tabish
- Division
of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford, OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick
Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
52
|
da Silva Gomes B, Cláudia Paiva-Santos A, Veiga F, Mascarenhas-Melo F. Beyond the adverse effects of the systemic route: Exploiting nanocarriers for the topical treatment of skin cancers. Adv Drug Deliv Rev 2024; 207:115197. [PMID: 38342240 DOI: 10.1016/j.addr.2024.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/21/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Skin cancer is a heterogeneous disease that can be divided into two main groups, melanoma and nonmelanoma skin cancers. Conventional therapies for skin cancer have numerous systemic side effects and a high recurrence rate. Topical treatment is an alternative approach, but drug permeability remains a challenge. Therefore, nanocarriers appear as important nanotechnology tools that reduces both the side effects and improves clinical outcomes. This is why they are attracting growing interest. In this review, scientific articles on the use of nanocarriers for the topical treatment of skin cancer were collected. Despite the promising results of the presented nanocarriers and considering that some of them are already on the market, there is an urgent need for investment in the development of manufacturing methods, as well as of suitable toxicological and regulatory evaluations, since the conventional methods currently used to develop these nanocarriers-based products are more time-consuming and expensive than conventional products.
Collapse
Affiliation(s)
- Beatriz da Silva Gomes
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Francisco Veiga
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Filipa Mascarenhas-Melo
- University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300 - 307 Guarda, Portugal.
| |
Collapse
|
53
|
Gaballa SA, Shimizu T, Ando H, Takata H, Emam SE, Ramadan E, Naguib YW, Mady FM, Khaled KA, Ishida T. Treatment-induced and Pre-existing Anti-peg Antibodies: Prevalence, Clinical Implications, and Future Perspectives. J Pharm Sci 2024; 113:555-578. [PMID: 37931786 DOI: 10.1016/j.xphs.2023.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Polyethylene glycol (PEG) is a versatile polymer that is used in numerous pharmaceutical applications like the food industry, a wide range of disinfectants, cosmetics, and many commonly used household products. PEGylation is the term used to describe the covalent attachment of PEG molecules to nanocarriers, proteins and peptides, and it is used to prolong the circulation half-life of the PEGylated products. Consequently, PEGylation improves the efficacy of PEGylated therapeutics. However, after four decades of research and more than two decades of clinical applications, an unappealing side of PEGylation has emerged. PEG immunogenicity and antigenicity are remarkable challenges that confound the widespread clinical application of PEGylated therapeutics - even those under clinical trials - as anti-PEG antibodies (Abs) are commonly reported following the systemic administration of PEGylated therapeutics. Furthermore, pre-existing anti-PEG Abs have also been reported in healthy individuals who have never been treated with PEGylated therapeutics. The circulating anti-PEG Abs, both treatment-induced and pre-existing, selectively bind to PEG molecules of the administered PEGylated therapeutics inducing activation of the complement system, which results in remarkable clinical implications with varying severity. These include increased blood clearance of the administered PEGylated therapeutics through what is known as the accelerated blood clearance (ABC) phenomenon and initiation of serious adverse effects through complement activation-related pseudoallergic reactions (CARPA). Therefore, the US FDA industry guidelines have recommended the screening of anti-PEG Abs, in addition to Abs against PEGylated proteins, in the clinical trials of PEGylated protein therapeutics. In addition, strategies revoking the immunogenic response against PEGylated therapeutics without compromising their therapeutic efficacy are important for the further development of advanced PEGylated therapeutics and drug-delivery systems.
Collapse
Affiliation(s)
- Sherif A Gaballa
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Sherif E Emam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519 Egypt
| | - Eslam Ramadan
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Youssef W Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Fatma M Mady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Khaled A Khaled
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
54
|
Cooper CG, Kafetzis KN, Patabendige A, Tagalakis AD. Blood-brain barrier disruption in dementia: Nano-solutions as new treatment options. Eur J Neurosci 2024; 59:1359-1385. [PMID: 38154805 DOI: 10.1111/ejn.16229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/30/2023]
Abstract
Candidate drugs targeting the central nervous system (CNS) demonstrate extremely low clinical success rates, with more than 98% of potential treatments being discontinued due to poor blood-brain barrier (BBB) permeability. Neurological conditions were shown to be the second leading cause of death globally in 2016, with the number of people currently affected by neurological disorders increasing rapidly. This increasing trend, along with an inability to develop BBB permeating drugs, is presenting a major hurdle in the treatment of CNS-related disorders, like dementia. To overcome this, it is necessary to understand the structure and function of the BBB, including the transport of molecules across its interface in both healthy and pathological conditions. The use of CNS drug carriers is rapidly gaining popularity in CNS research due to their ability to target BBB transport systems. Further research and development of drug delivery vehicles could provide essential information that can be used to develop novel treatments for neurological conditions. This review discusses the BBB and its transport systems and evaluates the potential of using nanoparticle-based delivery systems as drug carriers for CNS disease with a focus on dementia.
Collapse
Affiliation(s)
| | | | - Adjanie Patabendige
- Department of Biology, Edge Hill University, Ormskirk, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Aristides D Tagalakis
- Department of Biology, Edge Hill University, Ormskirk, UK
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
55
|
Arafat M, Sakkal M, Beiram R, AbuRuz S. Nanomedicines: Emerging Platforms in Smart Chemotherapy Treatment-A Recent Review. Pharmaceuticals (Basel) 2024; 17:315. [PMID: 38543101 PMCID: PMC10974155 DOI: 10.3390/ph17030315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 01/06/2025] Open
Abstract
Cancer continues to pose one of the most critical challenges in global healthcare. Despite the wide array of existing cancer drugs, the primary obstacle remains in selectively targeting and eliminating cancer cells while minimizing damage to healthy ones, thereby reducing treatment side effects. The revolutionary approach of utilizing nanomaterials for delivering cancer therapeutic agents has significantly enhanced the efficacy and safety of chemotherapeutic drugs. This crucial shift is attributed to the unique properties of nanomaterials, enabling nanocarriers to transport therapeutic agents to tumor sites in both passive and active modes, while minimizing drug elimination from delivery systems. Furthermore, these nanocarriers can be designed to respond to internal or external stimuli, thus facilitating controlled drug release. However, the production of nanomedications for cancer therapy encounters various challenges that can impede progress in this field. This review aims to provide a comprehensive overview of the current state of nanomedication in cancer treatment. It explores a variety of nanomaterials, focusing on their unique properties that are crucial for overcoming the limitations of conventional chemotherapy. Additionally, the review delves into the properties and functionalities of nanocarriers, highlighting their significant impact on the evolution of nanomedicine. It also critically assesses recent advancements in drug delivery systems, covering a range of innovative delivery methodologies. Finally, the review succinctly addresses the challenges encountered in developing nanomedications, offering insightful perspectives to guide future research in this field.
Collapse
Affiliation(s)
- Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.)
| | - Molham Sakkal
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.)
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Salahdein AbuRuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
56
|
Yang Z, Chen J, Xiao Y, Yang C, Zhao CX, Chen D, Weitz DA. Digital Barcodes for High-Throughput Screening. CHEM & BIO ENGINEERING 2024; 1:2-12. [PMID: 39973970 PMCID: PMC11835184 DOI: 10.1021/cbe.3c00085] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2025]
Abstract
High-throughput screening is an indispensable technology in drug discovery, cancer therapy, and disease diagnosis, and it could greatly reduce time cost, reagent consumption, and labor expense. Here, four high-throughput screening methods with high sensitivity and accessibility are discussed in detail. Fluorescence, DNA, heavy metal, and nonmetal isotope barcodes, which generally label antibodies, proteins, and saccharides to identify cells, are detected by flow cytometry, second-generation DNA sequencing, mass cytometry, and second-ion mass spectrometry, respectively. Encoding binary information in barcodes, labeling individual cells by barcodes, performing the characterization of cells together, and identifying the result belonging to individual cells via barcodes are the main steps for high-throughput screening. Applications of the four digital barcodes in high-throughput screening for both in vitro and in vivo tests are described in detail, and their advantages and disadvantages are also summarized. High-throughput screening has provided a powerful platform widely accessible for multidisciplinary studies and has greatly sped up the progress of drug discovery, disease diagnosis, and cancer therapy.
Collapse
Affiliation(s)
- Ze Yang
- College
of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310003, Zhejiang
Province, People’s Republic
of China
- Zhejiang
Key Laboratory of Smart Biomaterials, College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, People’s Republic of China
| | - Jingyi Chen
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yao Xiao
- College
of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310003, Zhejiang
Province, People’s Republic
of China
| | - Chenjing Yang
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Wenzhou
Institute, University of Chinese Academy
of Sciences, Wenzhou, Zhejiang 325001, People’s Republic of China
| | - Chun-Xia Zhao
- School
of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Dong Chen
- College
of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310003, Zhejiang
Province, People’s Republic
of China
- Zhejiang
Key Laboratory of Smart Biomaterials, College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, People’s Republic of China
- Department
of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang
Province, People’s Republic
of China
| | - David A. Weitz
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
57
|
Bergillos-Ruiz M, Kumar A, Hodnett BK, Davern P, Rasmuson Å, Hudson SP. Impact of carrier particle surface properties on drug nanoparticle attachment. Int J Pharm 2024; 651:123743. [PMID: 38151103 DOI: 10.1016/j.ijpharm.2023.123743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
HYPOTHESIS The stabilization and isolation to dryness of drug nanoparticles has always been a challenge for nano-medicine production. In the past, the use of montmorillonite (MMT) clay carrier particles to adsorb drug nanoparticles and maintain their high surface area to volume ratio after isolation to dryness has proven to be effective. We hypothesise that the distribution of hydrophilic and hydrophobic patches on the clay's surface as well as its porosity/roughness, hinder the agglomeration of the drug nanoparticles to the extent that they retain their high surface area to volume ratio and display fast dissolution profiles. EXPERIMENTS In this work, the distribution of hydrophobicity and hydrophilicity, and the porosity/roughness, of the surface of selected silica carrier particles were varied and the impact of these variations on drug nanoparticle attachment to the carrier particle and subsequent dissolution profiles was studied. FINDINGS The fastest dissolution profiles at the highest drug nanoparticle loadings were obtained with a periodic mesoporous organosilane carrier particle which had a homogeneous distribution of hydrophobic and hydrophilic surface properties. Carrier particles with rough/porous surfaces and a combination of hydrophobic and hydrophilic patches resulted in nanocomposite powders with faster dissolution behaviour than carrier particles with predominantly either a hydrophobic or hydrophilic surface, or with non-porous/smoother surfaces.
Collapse
Affiliation(s)
- Marta Bergillos-Ruiz
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Ajay Kumar
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Benjamin K Hodnett
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Peter Davern
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Åke Rasmuson
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland; Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Sarah P Hudson
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| |
Collapse
|
58
|
Islam MF, islam S, Miah MAS, Huq AO, Saha AK, Mou ZJ, Mondol MMH, Bhuiyan MNI. Green synthesis of zinc oxide nano particles using Allium cepa L. waste peel extracts and its antioxidant and antibacterial activities. Heliyon 2024; 10:e25430. [PMID: 38333859 PMCID: PMC10850583 DOI: 10.1016/j.heliyon.2024.e25430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Synthesis of nanoparticles through the green approach using plant and vegetable extracts has gained popularity since they are thought to be efficient and cost-effective materials. This study is designed to synthesize zinc oxide nanoparticles (ZnO-NPs) from onion waste peel extract (Allium cepa L.) via the green synthesis approach. The synthesized ZnO-NPs were characterized by utilizing the UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), Energy Dispersive X-ray (EDX), Field Emission Scanning Electron Microscopy (FE-SEM) and X-ray Powder Diffraction (XRD)techniques. The nanoparticles formation was confirmed by the UV-Vis sharp absorption spectra at 318 and 322 nm. The synthesized ZnO-NPs size and shape was revealed by the XRD and SEM respectively. Smallest nanoparticle average crystallite size was found 57.38 nm with hexagonal shape. The bioactive functional groups that are in charge of capping and stabilizing the ZnO-NPs was assured by the FTIR data. Further, prepared ZnO-NPs were used to assess their possible antioxidant and antibacterial properties. DPPH test for free radical scavenging showed potential antioxidant properties of the synthesized ZnO-NPs. The antibacterial activity were studied against three clinical strains: P. aeruginosa, E. coli, and S. aureus with the maximum zone of inhibition 13.17 mm, 22.00 mm and 12.35 mm respectively at 100 μg/mL subsequently minimum inhibitory concentration was found 50 μg/mL for P. aeruginosa, and S. aureus whereas 100 μg/mL for E. coli. Antioxidant and antibacterial activity tests appear bio-resource based ZnO-NPs from Allium cepa L. extract have effects on free radical and growth of microorganisms.Therefore, it could be a promising candidates for agricultural and food safety applications as an effective antimicrobial agent against pathogenic microorganisms and also can address future biomedical applications after complete in vivo study.
Collapse
Affiliation(s)
- Md Faridul Islam
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka-1205, Bangladesh
| | - Shariful islam
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka-1205, Bangladesh
| | - Md Abdus Satter Miah
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka-1205, Bangladesh
| | - A.K. Obidul Huq
- Department of Food Technology and Nutritional Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Anik Kumar Saha
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Salna, Gazipur-1706, Bangladesh
| | - Zinia Jannat Mou
- Department of Food Technology and Nutritional Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Md Mahmudul Hassan Mondol
- Department of Chemical Engineering, Khulna University of Engineering & Technology (KUET), Khulna-9203, Bangladesh
| | - Mohammad Nazrul Islam Bhuiyan
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka-1205, Bangladesh
| |
Collapse
|
59
|
Gaballa SA, Shimizu T, Takata H, Ando H, Ibrahim M, Emam SE, Amorim Matsuo NC, Kim Y, Naguib YW, Mady FM, Khaled KA, Ishida T. Impact of Anti-PEG IgM Induced via the Topical Application of a Cosmetic Product Containing PEG Derivatives on the Antitumor Effects of PEGylated Liposomal Antitumor Drug Formulations in Mice. Mol Pharm 2024; 21:622-632. [PMID: 38273445 DOI: 10.1021/acs.molpharmaceut.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Poly(ethylene glycol) (PEG) is used in many common products, such as cosmetics. PEG, however, is also used to covalently conjugate drug molecules, proteins, or nanocarriers, which is termed PEGylation, to serve as a shield against the natural immune system of the human body. Repeated administration of some PEGylated products, however, is known to induce anti-PEG antibodies. In addition, preexisting anti-PEG antibodies are now being detected in healthy individuals who have never received PEGylated therapeutics. Both treatment-induced and preexisting anti-PEG antibodies alter the pharmacokinetic properties, which can result in a subsequent reduction in the therapeutic efficacy of administered PEGylated therapeutics through the so-called accelerated blood clearance (ABC) phenomenon. Moreover, these anti-PEG antibodies are widely reported to be related to severe hypersensitivity reactions following the administration of PEGylated therapeutics, including COVID-19 vaccines. We recently reported that the topical application of a cosmetic product containing PEG derivatives induced anti-PEG immunoglobulin M (IgM) in a mouse model. Our finding indicates that the PEG derivatives in cosmetic products could be a major cause of the preexistence of anti-PEG antibodies in healthy individuals. In this study, therefore, the pharmacokinetics and therapeutic effects of Doxil (doxorubicin hydrochloride-loaded PEGylated liposomes) and oxaliplatin-loaded PEGylated liposomes (Liposomal l-OHP) were studied in mice. The anti-PEG IgM antibodies induced by the topical application of cosmetic products obviously accelerated the blood clearance of both PEGylated liposomal formulations. Moreover, in C26 tumor-bearing mice, the tumor growth suppressive effects of both Doxil and Liposomal l-OHP were significantly attenuated in the presence of anti-PEG IgM antibodies induced by the topical application of cosmetic products. These results confirm that the topical application of a cosmetic product containing PEG derivatives could produce preexisting anti-PEG antibodies that then affect the therapeutic efficacy of subsequent doses of PEGylated therapeutics.
Collapse
Affiliation(s)
- Sherif A Gaballa
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
- Institute of Innovative Drug Delivery System, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
- Institute of Innovative Drug Delivery System, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Mohamed Ibrahim
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Sherif E Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Nana Cristina Amorim Matsuo
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Yuri Kim
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Youssef W Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Fatma M Mady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Khaled A Khaled
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
- Institute of Innovative Drug Delivery System, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| |
Collapse
|
60
|
Gao X, Lang X, El Khoury E, Wei M, Qian N, Min W. Quantitative Label-Free Chemical Imaging of PLGA Nanoparticles in Cells and Tissues with Single-Particle Sensitivity. NANO LETTERS 2024; 24:1024-1033. [PMID: 38207237 DOI: 10.1021/acs.nanolett.3c04463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Nanomedicine has brought significant advancements to healthcare by utilizing nanotechnology in medicine. Despite much promise, the further development of nanocarriers for clinical use has been hindered by a lack of understanding and visualization of nano-bio interactions. Conventional imaging methods have limitations in resolution, sensitivity, and specificity. This study introduces a label-free optical approach using stimulated Raman scattering (SRS) microscopy to image poly(lactic-co-glycolic acid) (PLGA) nanocarriers, the most widely used polymeric nanocarrier for delivery therapeutic agents, with single-particle sensitivity and quantification capabilities. A unique Raman peak was identified for PLGA ester, enabling generalized bio-orthogonal bond imaging. We demonstrated quantitative SRS imaging of PLGA nanocarriers across different biological systems from cells to animal tissues. This label-free imaging method provides a powerful tool for studying this prevalent nanocarrier and quantitatively visualizing their distribution, interaction, and clearance in vivo.
Collapse
Affiliation(s)
- Xin Gao
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Xiaoqi Lang
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Elsy El Khoury
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Mian Wei
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Naixin Qian
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Wei Min
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, New York 10027, United States
| |
Collapse
|
61
|
Flieger J, Raszewska-Famielec M, Radzikowska-Büchner E, Flieger W. Skin Protection by Carotenoid Pigments. Int J Mol Sci 2024; 25:1431. [PMID: 38338710 PMCID: PMC10855854 DOI: 10.3390/ijms25031431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Sunlight, despite its benefits, can pose a threat to the skin, which is a natural protective barrier. Phototoxicity caused by overexposure, especially to ultraviolet radiation (UVR), results in burns, accelerates photoaging, and causes skin cancer formation. Natural substances of plant origin, i.e., polyphenols, flavonoids, and photosynthetic pigments, can protect the skin against the effects of radiation, acting not only as photoprotectors like natural filters but as antioxidant and anti-inflammatory remedies, alleviating the effects of photodamage to the skin. Plant-based formulations are gaining popularity as an attractive alternative to synthetic filters. Over the past 20 years, a large number of studies have been published to assess the photoprotective effects of natural plant products, primarily through their antioxidant, antimutagenic, and anti-immunosuppressive activities. This review selects the most important data on skin photodamage and photoprotective efficacy of selected plant carotenoid representatives from in vivo studies on animal models and humans, as well as in vitro experiments performed on fibroblast and keratinocyte cell lines. Recent research on carotenoids associated with lipid nanoparticles, nanoemulsions, liposomes, and micelles is reviewed. The focus was on collecting those nanomaterials that serve to improve the bioavailability and stability of carotenoids as natural antioxidants with photoprotective activity.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Magdalena Raszewska-Famielec
- Faculty of Physical Education and Health, University of Physicl Education, Akademicka 2, 21-500 Biała Podlaska, Poland;
| | - Elżbieta Radzikowska-Büchner
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, K. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
62
|
Rodríguez-Gómez FD, Monferrer D, Penon O, Rivera-Gil P. Implementing Horizon Scanning as a tool for the strategic development of regulatory guidelines for nanotechnology-enabled health products. Front Med (Lausanne) 2024; 10:1308047. [PMID: 38298514 PMCID: PMC10829765 DOI: 10.3389/fmed.2023.1308047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
Strategic regulatory development is essential to ensure that new innovations in nanotechnology-enabled health products (NHPs) successfully reach the market and benefit patients. Currently, the lack of specific regulatory guidelines for NHPs is considered one of the primary causes of the so-called "valley of death" in these products, impacting both current and future advancements. In this study, we have implemented a methodology to anticipate key trends in NHP development and compare them with the current regulatory landscape applicable to NHPs. This methodology relies on Horizon Scanning, a tool commonly used by policymakers to foresee future needs and proactively shape a regulatory framework tailored to those needs. Through the application of this methodology, different trends in NHP have been identified, notably NHPs for drug delivery and dental applications. Furthermore, the most disruptive elements involve NHPs that are multicomposite and multifunctional, harnessing nano-scale properties to combine therapeutic and diagnostic purposes within a single product. When compared with the regulatory landscape, current regulations are gradually adapting to accommodate emerging trends, with specific guidelines being developed. However, for the most disruptive elements, multicomposite and multifunctional NHPs, their novelty still poses significant regulatory challenges, requiring a strategic development of guidelines by regulatory agencies to ensure their safe and effective integration into healthcare practices. This study underscores the importance of proactive regulatory planning to bridge the gap between NHP innovation and market implementation.
Collapse
Affiliation(s)
- Francisco D. Rodríguez-Gómez
- Asphalion SL, Barcelona, Spain
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedicine Research Park (PRBB), Doctor Aiguader, Barcelona, Spain
| | | | | | - Pilar Rivera-Gil
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedicine Research Park (PRBB), Doctor Aiguader, Barcelona, Spain
| |
Collapse
|
63
|
El-Readi MZ, Abdulkarim MA, Abdellatif AAH, Elzubeir ME, Refaat B, Althubiti M, Almaimani RA, Mukhtar MH, Al-Moraya IS, Eid SY. Doxorubicin-sanguinarine nanoparticles: formulation and evaluation of breast cancer cell apoptosis and cell cycle. Drug Dev Ind Pharm 2024:1-15. [PMID: 38180322 DOI: 10.1080/03639045.2024.2302557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Therapeutic resistance fails cancer treatment. Drug-nanoparticle combinations overcome resistance. Sanguinarine-conjugated nanoparticles may boost sanguinarine's anticancer effects. METHODS Sanguinarine, HPMC-NPs, and doxorubicin were tested on Adriamycin-resistant MCF-7/ADR breast cancer cells, parent-sensitive MCF-7, and MCR-5 normal cells (DX). RESULTS Regular distribution, 156 nm diameter, <1 μm average size, 100% intensity-SN is therapeutic. Furthermore, the obtained NPs showed PDI = 0.145, zeta-potential=-37.6, and EE%=90.5%. DX sensitized MCF-7 cells (IC50 = 1.4 μM) more than MCF-7/ADR cells (IC50 = 27 μM) with RR = 19.3. SA and SN were more toxic to MCF-7/ADR cells (overexpressed with P-gp) than their sensitive parent MCF-7 cells (IC50 = 4 μM, RR = 0.6 and 0.6 μM, RR = 0.7). MCR-5 normal lung cells were more resistant to SA (IC50 = 7.2 μM) and SN (IC50 = 1.6 μM) with a selection index > 2. Synergistic cytotoxic interactions reduced the IC50 from 27 μM to 1.6 (CI = 0.1) and 0.9 (CI = 0.4) after DX and nontoxic dosages (IC20) of SA and SN. DS and SN killed 27.1% and 39.4% more cells than DX (7.7%), SA (4.9%), SN (5.5%), or untreated control (0.3%). DS and DSN lowered CCND1 and survival in MCF-7/ADR cells while raising p21 and Casp3 gene and protein expression. CONCLUSIONS Cellular and molecular studies suggested adjuvant chemosensitizers SA and SN to reverse MDR in breast cancer cells.
Collapse
Affiliation(s)
- Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Majed Abdurhman Abdulkarim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Sulaiman Alhabab Hospital, Alqassim, Saudi Arabia
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Mohamed E Elzubeir
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad Adnan Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed Hasan Mukhtar
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Issa Saad Al-Moraya
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Forensic Medicine & Toxicology Center, Abha, Saudi Arabia
| | - Safaa Yehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
64
|
Reichel LS, Traeger A. Stimuli-Responsive Non-viral Nanoparticles for Gene Delivery. Handb Exp Pharmacol 2024; 284:27-43. [PMID: 37644142 DOI: 10.1007/164_2023_694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Considering nucleic acids as the language of life and the genome as the instruction manual of cells, their targeted modulation promises great opportunities in treating and healing diseases. In addition to viral gene transfer, the overwhelming power of non-viral mRNA-based vaccines is driving the development of novel gene transporters. Thereby, various nucleic acids such as DNA (pDNA) or RNA (mRNA, siRNA, miRNA, gRNA, or ASOs) need to be delivered, requiring a transporter due to their high molar mass and negative charge in contrast to classical agents. This chapter presents the specific biological hurdles for using nucleic acids and shows how new materials can overcome these.
Collapse
Affiliation(s)
- Liên S Reichel
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Anja Traeger
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
65
|
Sadiq S, Khan I, Shen Z, Wang M, Xu T, Khan S, Zhou X, Bahadur A, Rafiq M, Sohail S, Wu P. Recent Updates on Multifunctional Nanomaterials as Antipathogens in Humans and Livestock: Classification, Application, Mode of Action, and Challenges. Molecules 2023; 28:7674. [PMID: 38005395 PMCID: PMC10675011 DOI: 10.3390/molecules28227674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens cause infections and millions of deaths globally, while antipathogens are drugs or treatments designed to combat them. To date, multifunctional nanomaterials (NMs), such as organic, inorganic, and nanocomposites, have attracted significant attention by transforming antipathogen livelihoods. They are very small in size so can quickly pass through the walls of bacterial, fungal, or parasitic cells and viral particles to perform their antipathogenic activity. They are more reactive and have a high band gap, making them more effective than traditional medications. Moreover, due to some pathogen's resistance to currently available medications, the antipathogen performance of NMs is becoming crucial. Additionally, due to their prospective properties and administration methods, NMs are eventually chosen for cutting-edge applications and therapies, including drug administration and diagnostic tools for antipathogens. Herein, NMs have significant characteristics that can facilitate identifying and eliminating pathogens in real-time. This mini-review analyzes multifunctional NMs as antimicrobial tools and investigates their mode of action. We also discussed the challenges that need to be solved for the utilization of NMs as antipathogens.
Collapse
Affiliation(s)
- Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Iltaf Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Zhenyu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Mengdong Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Tao Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Sohail Khan
- Department of Pharmacy, University of Swabi, Khyber Pakhtunkhwa 94640, Pakistan;
| | - Xuemin Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Ali Bahadur
- College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou 325060, China;
| | - Madiha Rafiq
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
| | - Sumreen Sohail
- Department of Information Technology, Careerera, Beltsville, MD 20705, USA;
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| |
Collapse
|
66
|
Sa P, Mohapatra P, Swain SS, Khuntia A, Sahoo SK. Phytochemical-Based Nanomedicine for Targeting Tumor Microenvironment and Inhibiting Cancer Chemoresistance: Recent Advances and Pharmacological Insights. Mol Pharm 2023; 20:5254-5277. [PMID: 37596986 DOI: 10.1021/acs.molpharmaceut.3c00286] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Cancer remains the leading cause of death and rapidly evolving disease worldwide. The understanding of disease pathophysiology has improved through advanced research investigation, and several therapeutic strategies are being used for better cancer treatment. However, the increase in cancer relapse and metastatic-related deaths indicate that available therapies and clinically approved chemotherapy drugs are not sufficient to combat cancer. Further, the constant crosstalk between tumor cells and the tumor microenvironment (TME) is crucial for the development, progression, metastasis, and therapeutic response to tumors. In this regard, phytochemicals with multimodal targeting abilities can be used as an alternative to current cancer therapy by inhibiting cancer survival pathways or modulating TME. However, due to their poor pharmacokinetics and low bioavailability, the success of phytochemicals in clinical trials is limited. Therefore, developing phytochemical-based nanomedicine or phytonanomedicine can improve the pharmacokinetic profile of these phytochemicals. Herein, the molecular characteristics and pharmacological insights of the proposed phytonanomedicine in cancer therapy targeting tumor tissue and altering the characteristics of cancer stem cells, chemoresistance, TME, and cancer immunity are well discussed. Further, we have highlighted the clinical perspective and challenges of phytonanomedicine in filling the gap in potential cancer therapeutics using various nanoplatforms. Overall, we have discussed how clinical success and pharmacological insights could make it more beneficial to boost the concept of nanomedicine in the academic and pharmaceutical fields to counter cancer metastases and drug resistance.
Collapse
Affiliation(s)
- Pratikshya Sa
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | - Priyanka Mohapatra
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | | | - Auromira Khuntia
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | | |
Collapse
|
67
|
Qian J, Guo Y, Xu Y, Wang X, Chen J, Wu X. Combination of micelles and liposomes as a promising drug delivery system: a review. Drug Deliv Transl Res 2023; 13:2767-2789. [PMID: 37278964 DOI: 10.1007/s13346-023-01368-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Among various nanocarriers, liposomes, and micelles are relatively mature drug delivery systems with the advantages of prolonging drug half-life, reducing toxicity, and improving efficacy. However, both have problems, such as poor stability and insufficient targeting. To further exploit the excellent properties of micelles and liposomes and avoid their shortcomings, researchers have developed new drug delivery systems by combining the two and making use of their respective advantages to achieve the goals of increasing the drug loading capacity, multiple targeting, and multiple drug delivery. The results have demonstrated that this new combination approach is a very promising delivery platform. In this paper, we review the combination strategies, preparation methods, and applications of micelles and liposomes to introduce the research progress, advantages, and challenges of composite carriers.
Collapse
Affiliation(s)
- Jiecheng Qian
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yankun Guo
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pharmacy, Organization Department, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youfa Xu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Shanghai Wei Er Lab, Shanghai, China
| | - Xinyu Wang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- Shanghai Wei Er Lab, Shanghai, China.
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- Shanghai Wei Er Lab, Shanghai, China.
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
68
|
Onishchenko AI, Prokopiuk VY, Chumachenko VA, Virych PA, Tryfonyuk LY, Kutsevol NV, Tkachenko AS. Hemocompatibility of dextran-graft-polyacrylamide/zinc oxide nanosystems: hemolysis or eryptosis? NANOTECHNOLOGY 2023; 35:035102. [PMID: 37827140 DOI: 10.1088/1361-6528/ad02a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
Aim. In this study, blood compatibility of ZnO nanoparticles-polymer nanocomplex (D-PAA/ZnONPs(SO42-)) synthesizedin situinto dextran-graft-polyacrylamide (D-PAA) using zinc sulphate as a precursor was tested using hemolysis, osmotic fragility and eryptosis assays.Materials and methods. Dose-dependent ability to induce eryptosis was assessed following 24 h incubation at concentrations of 0-800 mg l-1analyzing hallmarks of eryptosis (cell shrinkage and phosphatidylserine externalization), as well as reactive oxygen species generation. Hemolysis was detected spectrophotometrically based on hemoglobin release following exposure to the D-PAA/ZnONPs(SO42-) nanocomplex. Osmotic fragility test (OFT) involved detection of hemolysis of red blood cells exposed to 0.2% saline solution following incubation with the D-PAA/ZnONPs(SO42-) nanocomplex. Additional incubation of the nanocomplex in the presence or absence of either ascorbic acid or EGTA was used to reveal the implication of oxidative stress- or Ca2+-mediated mechanisms in D-PAA/ZnONPs(SO42-) nanocomplex-induced erythrotoxicity.Results. Hemocompatibility assessment of the D-PAA/ZnONPs(SO42-) nanocomplex revealed that it induced hemolysis and reduced resistance of erythrocytes to osmotic stress at concentrations of above 400 and 200 mg l-1, respectively. Oxidative stress- or Ca2+-mediated mechanisms were not involved in D-PAA/ZnONPs(SO42-) nanocomplex-induced hemolysis. Strikingly, the D-PAA/ZnONPs(SO42-) nanocomplex did not promote cell membrane scrambling, cell shrinkage and oxidative stress in red blood cells following the direct exposure for 24 h. Thus, the D-PAA/ZnONPs(SO42-) nanocomplex did not induce eryptosisin vitro. Eryptosis is generally considered to occur earlier than hemolysis in response to stress in order to prevent hemolytic cell death. Counterintuitively, our data suggest that hemolysis can be triggered by nanomaterials prior to eryptosis indicating that eryptosis and hemolysis assays should be used in combination for testing blood compatibility of nanomaterials.Conclusions. The D-PAA/ZnONPs(SO42-) nanocomplex has a good hemocompatibility profile at low concentrations. Hemocompatibility testing in nanotoxicology should include both eryptosis and hemolysis assays.
Collapse
Affiliation(s)
- Anatolii I Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave., 61022 Kharkiv, Ukraine
| | - Volodymyr Yu Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave., 61022 Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st., 61015 Kharkiv, Ukraine
| | - Vasyl A Chumachenko
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 60 Volodymyrska st., 01601 Kyiv, Ukraine
| | - Pavlo A Virych
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 60 Volodymyrska st., 01601 Kyiv, Ukraine
| | - Liliya Y Tryfonyuk
- Institute of Health, National University of Water and Environmental Engineering, 11 Sobornast, 33000 Rivne, Ukraine
| | - Nataliya V Kutsevol
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 60 Volodymyrska st., 01601 Kyiv, Ukraine
| | - Anton S Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave., 61022 Kharkiv, Ukraine
| |
Collapse
|
69
|
Mironov VF, Dimukhametov MN, Nemtarev AV, Pashirova TN, Tsepaeva OV, Voloshina AD, Vyshtakalyuk AB, Litvinov IA, Lyubina AP, Sapunova AS, Abramova DF, Zobov VV. Novel Mitochondria-Targeted Amphiphilic Aminophosphonium Salts and Lipids Nanoparticles: Synthesis, Antitumor Activity and Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2840. [PMID: 37947686 PMCID: PMC10649961 DOI: 10.3390/nano13212840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The creation of mitochondria-targeted vector systems is a new tool for the treatment of socially significant diseases. Phosphonium groups provide targeted delivery of drugs through biological barriers to organelles. For this purpose, a new class of alkyl(diethylAmino)(Phenyl) Phosphonium halides (APPs) containing one, two, or three diethylamino groups was obtained by the reaction of alkyl iodides (bromides) with (diethylamino)(phenyl)phosphines under mild conditions (20 °C) and high yields (93-98%). The structure of APP was established by NMR and XRD. A high in vitro cytotoxicity of APPs against M-HeLa, HuTu 80, PC3, DU-145, PANC-1, and MCF-7 lines was found. The selectivity index is in the range of 0.06-4.0 μM (SI 17-277) for the most active APPs. The effect of APPs on cancer cells is characterized by hyperproduction of ROS and depolarization of the mitochondrial membrane. APPs induce apoptosis, proceeding along the mitochondrial pathway. Incorporation of APPs into lipid systems (liposomes and solid lipid nanoparticles) improves cytotoxicity toward tumor cells and decrease toxicity against normal cell lines. The IC50s of lipid systems are lower than for the reference drug DOX, with a high SI (30-56) toward MCF-7 and DU-145. APPs exhibit high selective activity against Gram-positive bacteria S. aureus 209P and B. segeus 8035, including methicillin-resistant S. aureus (MRSA-1, MRSA-2), comparable to the activity of the fluoroquinolone antibiotic norfloxacin. A moderate in vivo toxicity in CD-1 mice was established for the lead APP.
Collapse
Affiliation(s)
- Vladimir F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Mudaris N. Dimukhametov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Andrey V. Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Olga V. Tsepaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Alexandra B. Vyshtakalyuk
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Igor A. Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Anna P. Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Anastasiia S. Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Dinara F. Abramova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Vladimir V. Zobov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| |
Collapse
|
70
|
Bhattacharya T, Preetam S, Ghosh B, Chakrabarti T, Chakrabarti P, Samal SK, Thorat N. Advancement in Biopolymer Assisted Cancer Theranostics. ACS APPLIED BIO MATERIALS 2023; 6:3959-3983. [PMID: 37699558 PMCID: PMC10583232 DOI: 10.1021/acsabm.3c00458] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world's fatal diseases, has drawn scientists' attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood-brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department
of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic
of Korea
- Nondestructive
Bio-Sensing Laboratory, Dept. of Biosystems Machinery Engineering,
College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Subham Preetam
- Centre
for Biotechnology, Siksha O Anusandhan (Deemed
to be University), Bhubaneswar 751024, Odisha, India
- Daegu
Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Basab Ghosh
- KIIT
School of Biotechnology, Kalinga Institute
of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tulika Chakrabarti
- Department
of Chemistry, Sir Padampat Singhania University, Bhatewar, Udaipur 313601, Rajasthan, India
| | | | - Shailesh Kumar Samal
- Section of
Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick Digital Cancer Research
Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
71
|
Cant DJH, Pei Y, Shchukarev A, Ramstedt M, Marques SS, Segundo MA, Parot J, Molska A, Borgos SE, Shard AG, Minelli C. Cryo-XPS for Surface Characterization of Nanomedicines. J Phys Chem A 2023; 127:8220-8227. [PMID: 37733882 DOI: 10.1021/acs.jpca.3c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Nanoparticles used for medical applications commonly possess coatings or surface functionalities intended to provide specific behavior in vivo, for example, the use of PEG to provide stealth properties. Direct, quantitative measurement of the surface chemistry and composition of such systems in a hydrated environment has thus far not been demonstrated, yet such measurements are of great importance for the development of nanomedicine systems. Here we demonstrate the first use of cryo-XPS for the measurement of two PEG-functionalized nanomedicines: a polymeric drug delivery system and a lipid nanoparticle mRNA carrier. The observed differences between cryo-XPS and standard XPS measurements indicate the potential of cryo-XPS for providing quantitative measurements of such nanoparticle systems in hydrated conditions.
Collapse
Affiliation(s)
- David J H Cant
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Yiwen Pei
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | | | | | - Sara S Marques
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marcela A Segundo
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Jeremie Parot
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465 Trondheim, Norway
| | - Alicja Molska
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465 Trondheim, Norway
| | - Sven E Borgos
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465 Trondheim, Norway
| | - Alexander G Shard
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Caterina Minelli
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| |
Collapse
|
72
|
Kamenova K, Radeva L, Konstantinov S, Petrov PD, Yoncheva K. Copolymeric Micelles of Poly(ε-caprolactone) and Poly(methacrylic acid) as Carriers for the Oral Delivery of Resveratrol. Polymers (Basel) 2023; 15:3769. [PMID: 37765623 PMCID: PMC10537763 DOI: 10.3390/polym15183769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, we report the development of a micellar system based on a poly(methacrylic acid)-b-poly(ε-caprolactone)-b-poly(methacrylic acid) triblock copolymer (PMAA16-b-PCL35-b-PMAA16) for the oral delivery of resveratrol. The micellar nanocarriers were designed to comprise a PCL core for solubilizing the poorly water-soluble drug and a hydrated PMAA corona with bioadhesive properties for providing better contact with the gastrointestinal mucosa. The micelles were first formed in an aqueous media via the solvent evaporation method and then loaded with resveratrol (72% encapsulation efficiency). Studies by transmission electron microscopy (TEM) and dynamic and electrophoretic light scattering (DLS and PALS) revealed a spherical shape, nanoscopic size (100 nm) and a negative surface charge (-30 mV) of the nanocarriers. Loading of the drug slightly decreased the hydrodynamic diameter (Dh) and increased the ƺ-potential of micelles. In vitro dissolution tests showed that 80% and 100% of resveratrol were released in 24 h in buffers with pH 1.2 and 6.8, respectively, whereas for the same time, not more than 10% of pure resveratrol was dissolved. A heat-induced albumin denaturation assay demonstrated the advantage of the aqueous micellar formulation of resveratrol, which possessed anti-inflammatory potential as high as that of the pure drug. Further, the micellar resveratrol (5 µM) exerted a strong protective effect and maintained viability of mucosa epithelial HT-29 cells in a co-cultural model, representing the production of inflammatory cytokines. For comparison, the pure resveratrol at the same concentration did not protect the damaged HT-29 cells at all. Thus, the present study revealed that the PMAA-b-PCL-b-PMAA copolymeric micelles might be considered appropriate nanocarriers for the oral delivery of resveratrol.
Collapse
Affiliation(s)
- Katya Kamenova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Str. 103A, 1113 Sofia, Bulgaria;
| | - Lyubomira Radeva
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (L.R.); (S.K.)
| | - Spiro Konstantinov
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (L.R.); (S.K.)
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Str. 103A, 1113 Sofia, Bulgaria;
| | - Krassimira Yoncheva
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (L.R.); (S.K.)
| |
Collapse
|
73
|
Mori T, Giovannelli L, Bilia AR, Margheri F. Exosomes: Potential Next-Generation Nanocarriers for the Therapy of Inflammatory Diseases. Pharmaceutics 2023; 15:2276. [PMID: 37765245 PMCID: PMC10537720 DOI: 10.3390/pharmaceutics15092276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammatory diseases are common pathological processes caused by various acute and chronic factors, and some of them are autoimmune diseases. Exosomes are fundamental extracellular vesicles secreted by almost all cells, which contain a series of constituents, i.e., cytoskeletal and cytosolic proteins (actin, tubulin, and histones), nucleic acids (mRNA, miRNA, and DNA), lipids (diacylglycerophosphates, cholesterol, sphingomyelin, and ceramide), and other bioactive components (cytokines, signal transduction proteins, enzymes, antigen presentation and membrane transport/fusion molecules, and adhesion molecules). This review will be a synopsis of the knowledge on the contribution of exosomes from different cell sources as possible therapeutic agents against inflammation, focusing on several inflammatory diseases, neurological diseases, rheumatoid arthritis and osteoarthritis, intestinal bowel disease, asthma, and liver and kidney injuries. Current knowledge indicates that the role of exosomes in the therapy of inflammation and in inflammatory diseases could be distinctive. The main limitations to their clinical translation are still production, isolation, and storage. Additionally, there is an urgent need to personalize the treatments in terms of the selection of exosomes; their dosages and routes of administration; and a deeper knowledge about their biodistribution, type and incidence of adverse events, and long-term effects of exosomes. In conclusion, exosomes can be a very promising next-generation therapeutic option, superior to synthetic nanocarriers and cell therapy, and can represent a new strategy of effective, safe, versatile, and selective delivery systems in the future.
Collapse
Affiliation(s)
- Tosca Mori
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy;
| | - Lisa Giovannelli
- Department of Neurosciences (Department of Neurosciences, Psychology, Drug Research and Child Health), University of Florence, 50139 Florence, Italy
| | - Anna Rita Bilia
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy;
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50121 Florence, Italy;
| |
Collapse
|
74
|
Lipsa D, Magrì D, Della Camera G, La Spina R, Cella C, Garmendia-Aguirre I, Mehn D, Ruiz-Moreno A, Fumagalli F, Calzolai L, Gioria S. Differences in Physico-Chemical Properties and Immunological Response in Nanosimilar Complex Drugs: The Case of Liposomal Doxorubicin. Int J Mol Sci 2023; 24:13612. [PMID: 37686418 PMCID: PMC10487543 DOI: 10.3390/ijms241713612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
This study aims to highlight the impact of physicochemical properties on the behaviour of nanopharmaceuticals and how much carrier structure and physiochemical characteristics weigh on the effects of a formulation. For this purpose, two commercially available nanosimilar formulations of Doxil and their respective carriers were compared as a case study. Although the two formulations were "similar", we detected different toxicological effects (profiles) in terms of in vitro toxicity and immunological responses at the level of cytokines release and complement activation (iC3b fragment), that could be correlated with the differences in the physicochemical properties of the formulations. Shedding light on nanosimilar key quality attributes of liposome-based materials and the need for an accurate characterization, including investigation of the immunological effects, is of fundamental importance considering their great potential as delivery system for drugs, genes, or vaccines and the growing market demand.
Collapse
Affiliation(s)
- Dorelia Lipsa
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Davide Magrì
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Giacomo Della Camera
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Claudia Cella
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Irantzu Garmendia-Aguirre
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Ana Ruiz-Moreno
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Francesco Fumagalli
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| |
Collapse
|
75
|
Urbanova M, Cihova M, Buocikova V, Slopovsky J, Dubovan P, Pindak D, Tomas M, García-Bermejo L, Rodríguez-Garrote M, Earl J, Kohl Y, Kataki A, Dusinska M, Sainz B, Smolkova B, Gabelova A. Nanomedicine and epigenetics: New alliances to increase the odds in pancreatic cancer survival. Biomed Pharmacother 2023; 165:115179. [PMID: 37481927 DOI: 10.1016/j.biopha.2023.115179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers worldwide, primarily due to its robust desmoplastic stroma and immunosuppressive tumor microenvironment (TME), which facilitate tumor progression and metastasis. In addition, fibrous tissue leads to sparse vasculature, high interstitial fluid pressure, and hypoxia, thereby hindering effective systemic drug delivery and immune cell infiltration. Thus, remodeling the TME to enhance tumor perfusion, increase drug retention, and reverse immunosuppression has become a key therapeutic strategy. In recent years, targeting epigenetic pathways has emerged as a promising approach to overcome tumor immunosuppression and cancer progression. Moreover, the progress in nanotechnology has provided new opportunities for enhancing the efficacy of conventional and epigenetic drugs. Nano-based drug delivery systems (NDDSs) offer several advantages, including improved drug pharmacokinetics, enhanced tumor penetration, and reduced systemic toxicity. Smart NDDSs enable precise targeting of stromal components and augment the effectiveness of immunotherapy through multiple drug delivery options. This review offers an overview of the latest nano-based approaches developed to achieve superior therapeutic efficacy and overcome drug resistance. We specifically focus on the TME and epigenetic-targeted therapies in the context of PDAC, discussing the advantages and limitations of current strategies while highlighting promising new developments. By emphasizing the immense potential of NDDSs in improving therapeutic outcomes in PDAC, our review paves the way for future research in this rapidly evolving field.
Collapse
Affiliation(s)
- Maria Urbanova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Marina Cihova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Verona Buocikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Jan Slopovsky
- 2nd Department of Oncology, National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Comenius University, Spitalska 24, 813 72 Bratislava, Slovakia
| | - Peter Dubovan
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Daniel Pindak
- Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Miroslav Tomas
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group, Area4, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain
| | - Mercedes Rodríguez-Garrote
- Molecular Epidemiology and Predictive Tumor Markers Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; CIBERONC, Madrid, Spain
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; CIBERONC, Madrid, Spain
| | - Yvonne Kohl
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany
| | - Agapi Kataki
- 1st Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Vasilissis Sofias 114, 11527 Athens, Greece
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Bruno Sainz
- CIBERONC, Madrid, Spain; Instituto de Investigaciones Biomédicas"Alberto Sols" (IIBM), CSIC-UAM, 28029 Madrid, Spain; Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Alena Gabelova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia..
| |
Collapse
|
76
|
Aflakian F, Mirzavi F, Aiyelabegan HT, Soleimani A, Gholizadeh Navashenaq J, Karimi-Sani I, Rafati Zomorodi A, Vakili-Ghartavol R. Nanoparticles-based therapeutics for the management of bacterial infections: A special emphasis on FDA approved products and clinical trials. Eur J Pharm Sci 2023; 188:106515. [PMID: 37402428 DOI: 10.1016/j.ejps.2023.106515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/06/2023]
Abstract
Microbial resistance has increased in recent decades as a result of the extensive and indiscriminate use of antibiotics. The World Health Organization listed antimicrobial resistance as one of ten major global public health threats in 2021. In particular, six major bacterial pathogens, including third-generation cephalosporin-resistant Escherichia coli, methicillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumoniae, Streptococcus pneumoniae, and Pseudomonas aeruginosa, were found to have the highest resistance-related death rates in 2019. To respond to this urgent call, the creation of new pharmaceutical technologies based on nanoscience and drug delivery systems appears to be the promising strategy against microbial resistance in light of recent advancements, particularly the new knowledge of medicinal biology. Nanomaterials are often defined as substances having sizes between 1 and 100 nm. If the material is used on a small scale; its properties significantly change. They come in a variety of sizes and forms to help provide distinguishing characteristics for a wide range of functions. The field of health sciences has demonstrated a strong interest in numerous nanotechnology applications. Therefore, in this review, prospective nanotechnology-based therapeutics for the management of bacterial infections with multiple medication resistance are critically examined. Recent developments in these innovative treatment techniques are described, with an emphasis on preclinical, clinical, and combinatorial approaches.
Collapse
Affiliation(s)
- Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Anvar Soleimani
- Department of Medical Microbiology, College of Health Sciences, Cihan University-Sulaimaniya, Sulaimaniya, 46001, Kurdistan Region, Iraq
| | | | - Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
77
|
Hartl N, Jürgens DC, Carneiro S, König AC, Xiao X, Liu R, Hauck SM, Merkel OM. Protein corona investigations of polyplexes with varying hydrophobicity - From method development to in vitro studies. Int J Pharm 2023; 643:123257. [PMID: 37482228 DOI: 10.1016/j.ijpharm.2023.123257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
In the field of non-viral drug delivery, polyplexes (PXs) represent an advanced investigated and highly promising tool for the delivery of nucleic acids. Upon encountering physiological fluids, they adsorb biological molecules to form a protein corona (PC), that influence PXs biodistribution, transfection efficiencies and targeting abilities. In an effort to understand protein - PX interactions and the effect of PX material on corona composition, we utilized cationic branched 10 kDa polyethyleneimine (b-PEI) and a hydrophobically modified nylon-3 polymer (NM0.2/CP0.8) within this study to develop appropriate methods for PC investigations. A centrifugation procedure for isolating hard corona - PX complexes (PCPXs) from soft corona proteins after incubating the PXs in fetal bovine serum (FBS) for PC formation was successfully optimized and the identification of proteins by a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method clearly demonstrated that the PC composition is affected by the underlying PXs material. With regard to especially interesting functional proteins, which might be able to induce active targeting effects, several candidates could be detected on b-PEI and NM0.2/CP0.8 PXs. These results are of high interest to better understand how the design of PXs impacts the PC composition and subsequently PCPXs-cell interactions to enable precise adjustment of PXs for targeted drug delivery.
Collapse
Affiliation(s)
- Natascha Hartl
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - David C Jürgens
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Simone Carneiro
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Ann-Christine König
- Metbolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Heidemannsstr. 1, 80939 Munich, Germany
| | - Ximian Xiao
- East China University of Science and Technology, 30 Meilong Rd, Shanghai, China
| | - Runhui Liu
- East China University of Science and Technology, 30 Meilong Rd, Shanghai, China
| | - Stefanie M Hauck
- Metbolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Heidemannsstr. 1, 80939 Munich, Germany
| | - Olivia M Merkel
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany.
| |
Collapse
|
78
|
Ting SG, Lea-Banks H, Hynynen K. Physical Characterization to Improve Scalability and Potential of Anesthetic-Loaded Nanodroplets. Pharmaceutics 2023; 15:2077. [PMID: 37631291 PMCID: PMC10457791 DOI: 10.3390/pharmaceutics15082077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Drug-loaded perfluorocarbon nanodroplets (NDs) can be activated non-invasively by focused ultrasound (FUS) and allow for precise drug-delivery. Anesthetic-loaded NDs and transcranial FUS have previously achieved targeted neuromodulation. To assess the clinical potential of anesthetic-loaded NDs, in depth physical characterization and investigation of storage strategies and triggered-activation is necessary. Pentobarbital-loaded decafluorobutane nanodroplets (PBNDs) with a Definity-derived lipid shell (237 nm; 4.08 × 109 particles/mL) were fabricated and assessed. Change in droplet stability, concentration, and drug-release efficacy were tested for PBNDs frozen at -80 °C over 4 weeks. PBND diameter and the polydispersity index of thawed droplets remained consistent up to 14 days frozen. Cryo-TEM images revealed NDs begin to lose circularity at 7 days, and by 14 days, perfluorocarbon dissolution and lipid fragmentation occurred. The level of acoustic response and drug release decreases through prolonged storage. PBNDs showed no hemolytic activity at clinically relevant concentrations and conditions. At increasing sonication pressures, liquid PBNDs vaporized into gas microbubbles, and acoustic activity at the second harmonic frequency (2 f0) peaked at lower pressures than the subharmonic frequency (1/2 f0). Definity-based PBNDs have been thoroughly characterized, cryo-TEM has been shown to be suitable to image the internal structure of volatile NDs, and PBNDs can be reliably stored at -80 °C for future use up to 7 days without significant degradation, loss of acoustic response, or reduction in ultrasound-triggered drug release.
Collapse
Affiliation(s)
- Siulam Ginni Ting
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Harriet Lea-Banks
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
- Institute of Biomedical Imaging, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
79
|
Vakhshiteh F, Bagheri Z, Soleimani M, Ahvaraki A, Pournemat P, Alavi SE, Madjd Z. Heterotypic tumor spheroids: a platform for nanomedicine evaluation. J Nanobiotechnology 2023; 21:249. [PMID: 37533100 PMCID: PMC10398970 DOI: 10.1186/s12951-023-02021-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023] Open
Abstract
Nanomedicine has emerged as a promising therapeutic approach, but its translation to the clinic has been hindered by the lack of cellular models to anticipate how tumor cells will respond to therapy. Three-dimensional (3D) cell culture models are thought to more accurately recapitulate key features of primary tumors than two-dimensional (2D) cultures. Heterotypic 3D tumor spheroids, composed of multiple cell types, have become more popular than homotypic spheroids, which consist of a single cell type, as a superior model for mimicking in vivo tumor heterogeneity and physiology. The stromal interactions demonstrated in heterotypic 3D tumor spheroids can affect various aspects, including response to therapy, cancer progression, nanomedicine penetration, and drug resistance. Accordingly, to design more effective anticancer nanomedicinal therapeutics, not only tumor cells but also stromal cells (e.g., fibroblasts and immune cells) should be considered to create a more physiologically relevant in vivo microenvironment. This review aims to demonstrate current knowledge of heterotypic 3D tumor spheroids in cancer research, to illustrate current advances in utilizing these tumor models as a novel and versatile platform for in vitro evaluation of nanomedicine-based therapeutics in cancer research, and to discuss challenges, guidelines, and future directions in this field.
Collapse
Affiliation(s)
- Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Zeinab Bagheri
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Marziye Soleimani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Akram Ahvaraki
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Parisa Pournemat
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Seyed Ebrahim Alavi
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
80
|
Halwani AA, Balkhi B, Alamoudi AA, Almozain NH, Alajmi AM, Noorwali A, Badr MY, Noor AO, Bagalagel A, Tawfik EA. Current status and vision of local pharmaceutical industries in Saudi Arabia: The focus on nanomedicines. Saudi Pharm J 2023; 31:101674. [PMID: 37448843 PMCID: PMC10336578 DOI: 10.1016/j.jsps.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Background Pharmaceutical nanomedicine products are expected to impact the global pharmaceutical market and healthcare system significantly. Since 2000, the Food and Drug Administration (FDA) and European Medicines Agency (EMA) have approved over 80 nanomedicine products for marketing; an additional double that number is currently being tested in clinical trials. The nanomedicine market is expected to reach USD 350.8 billion by 2025 from USD 138.8 billion in 2016. This demonstrates the importance of nanotechnology to the delivery of pharmaceuticals. The main benefits of employing nanotechnology to distribute therapeutic agents include reducing the undesired toxicity from non-specific distribution and increasing patient adherence, which can indirectly minimize the burden on the country's healthcare system. Such products are expected to gain a significant economic impact on Saudi Arabia's pharmaceutical drugs market once they get developed locally. Method A descriptive and cross-sectional study, including a web-based questionnaire and a complete categorization of pharmaceutical products formed by the national industries in Saudi Arabia, was utilized to investigate the current and future direction of pharmaceutical manufacturing exploiting nanotechnology in the Kingdom. Results The survey showed an apparent lack of willingness within the national pharmaceutical industries, as the majority (≈ 86%) of the leading Saudi companies cannot enable nanotechnology-based medicines in their manufacturing. However, more than 93% of the national pharmaceutical industries, upon the basis of the responses, agreed that the development of pharmaceutical products with nanotechnology is an important step toward solving various complications associated with conventional forms of the available medicine. Conclusion National pharmaceutical industries in Saudi Arabia will need to get closer to manufacturing nanomedicines by partnering with international pioneer companies. In addition, empowering the local research and development (R&D) centers in nano delivery systems could facilitate translating their R&D outcomes into novel advanced and commercialized products. This could imitate the direction of the global pharmaceutical market and share its revenue which will positively reflect on the Kingdom's economy.
Collapse
Affiliation(s)
- Abdulrahman A. Halwani
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Regenerative Medicine Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bander Balkhi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Alamoudi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Areej M. Alajmi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Abdulwahab Noorwali
- Regenerative Medicine Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Moutaz Y. Badr
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Riyadh, Saudi Arabia
| | - Alaa Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Riyadh, Saudi Arabia
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| |
Collapse
|
81
|
Tehrani SF, Bharadwaj P, Leblond Chain J, Roullin VG. Purification processes of polymeric nanoparticles: How to improve their clinical translation? J Control Release 2023; 360:591-612. [PMID: 37422123 DOI: 10.1016/j.jconrel.2023.06.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/05/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Polymeric nanoparticles, as revolutionary nanomedicines, have offered a new class of diagnostic and therapeutic solutions for a multitude of diseases. With its immense potential, the world witnesses the new age of nanotechnology after the COVID-19 vaccines were developed based on nanotechnology. Even though there are countless benchtop research studies in the nanotechnology world, their integration into commercially available technologies is still restricted. The post-pandemic world demands a surge of research in the domain, which leaves us with the fundamental question: why is the clinical translation of therapeutic nanoparticles so restricted? Complications in nanomedicine purification, among other things, are to blame for the lack of transference. Polymeric nanoparticles, owing to their ease of manufacture, biocompatibility, and enhanced efficiency, are one of the more explored domains in organic-based nanomedicines. Purification of nanoparticles can be challenging and necessitates tailoring the available methods in accordance with the polymeric nanoparticle and impurities involved. Though a number of techniques have been described, there are no available guidelines that help in selecting the method to better suit our requirements. We encountered this difficulty while compiling articles for this review and looking for methods to purify polymeric nanoparticles. The currently accessible bibliography for purification techniques only provides approaches for a specific type of nanomaterial or sometimes even procedures for bulk materials, that are not fully relevant to nanoparticles. In our research, we tried to summarize the available purification techniques using the approach of A.F. Armington. We divided the purification systems into two major classes, namely: phase separation-based techniques (based on the physical differences between the phases) and matter exchange-based techniques (centered on physicochemical induced transfer of materials and compounds). The phase separation methods are based on either using nanoparticle size differences to retain them on a physical barrier (filtration techniques) or using their densities to segregate them (centrifugation techniques). The matter exchange separation methods rely on either transferring the molecules or impurities across a barrier using simple physicochemical phenomena, like the concentration gradients (dialysis method) or partition coefficients (extraction technique). After describing the methods in detail, we highlight their advantages and limitations, mainly focusing on preformed polymer-based nanoparticles. Tailoring a purification strategy takes into account the nanoparticle structure and its integrity, the method selected should be suited for preserving the integrity of the particles, in addition to conforming to the economical, material and productivity considerations. In the meantime, we advocate the use of a harmonized international regulatory framework to define the adequate physicochemical and biological characterization of nanomedicines. An appropriate purification strategy serves as the backbone to achieving desired characteristics, in addition to reducing variability. As a result, the present review aspires to serve as a comprehensive guide for researchers, who are new to the domain, as well as a synopsis of purification strategies and analytical characterization methods used in preclinical studies.
Collapse
Affiliation(s)
- Soudeh F Tehrani
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Priyanshu Bharadwaj
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| | | | - V Gaëlle Roullin
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
82
|
Bravo-Vázquez LA, Méndez-García A, Rodríguez AL, Sahare P, Pathak S, Banerjee A, Duttaroy AK, Paul S. Applications of nanotechnologies for miRNA-based cancer therapeutics: current advances and future perspectives. Front Bioeng Biotechnol 2023; 11:1208547. [PMID: 37576994 PMCID: PMC10416113 DOI: 10.3389/fbioe.2023.1208547] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
MicroRNAs (miRNAs) are short (18-25 nt), non-coding, widely conserved RNA molecules responsible for regulating gene expression via sequence-specific post-transcriptional mechanisms. Since the human miRNA transcriptome regulates the expression of a number of tumor suppressors and oncogenes, its dysregulation is associated with the clinical onset of different types of cancer. Despite the fact that numerous therapeutic approaches have been designed in recent years to treat cancer, the complexity of the disease manifested by each patient has prevented the development of a highly effective disease management strategy. However, over the past decade, artificial miRNAs (i.e., anti-miRNAs and miRNA mimics) have shown promising results against various cancer types; nevertheless, their targeted delivery could be challenging. Notably, numerous reports have shown that nanotechnology-based delivery of miRNAs can greatly contribute to hindering cancer initiation and development processes, representing an innovative disease-modifying strategy against cancer. Hence, in this review, we evaluate recently developed nanotechnology-based miRNA drug delivery systems for cancer therapeutics and discuss the potential challenges and future directions, such as the promising use of plant-made nanoparticles, phytochemical-mediated modulation of miRNAs, and nanozymes.
Collapse
Affiliation(s)
| | | | - Alma L. Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro, México
| | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro, México
| |
Collapse
|
83
|
Chen C, Chen C, Li Y, Gu R, Yan X. Characterization of lipid-based nanomedicines at the single-particle level. FUNDAMENTAL RESEARCH 2023; 3:488-504. [PMID: 38933557 PMCID: PMC11197724 DOI: 10.1016/j.fmre.2022.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/11/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
Lipid-based nanomedicines (LBNMs), including liposomes, lipid nanoparticles (LNPs) and extracellular vesicles (EVs), are recognized as one of the most clinically acceptable nano-formulations. However, the bench-to-bedside translation efficiency is far from satisfactory, mainly due to the lack of in-depth understanding of their physical and biochemical attributes at the single-particle level. In this review, we first give a brief introduction of LBNMs, highlighting some milestones and related scientific and clinical achievements in the past several decades, as well as the grand challenges in the characterization of LBNMs. Next, we present an overview of each category of LBNMs as well as the core properties that largely dictate their biological characteristics and clinical performance, such as size distribution, particle concentration, morphology, drug encapsulation and surface properties. Then, the recent applications of several analytical techniques including electron microscopy, atomic force microscopy, fluorescence microscopy, Raman microscopy, nanoparticle tracking analysis, tunable resistive pulse sensing and flow cytometry on the single-particle characterization of LBNMs are thoroughly discussed. Particularly, the comparative advantages of the newly developed nano-flow cytometry that enables quantitative analysis of both the physical and biochemical characteristics of LBNMs smaller than 40 nm with high throughput and statistical robustness are emphasized. The overall aim of this review article is to illustrate the importance, challenges and achievements associated with single-particle characterization of LBNMs.
Collapse
Affiliation(s)
- Chaoxiang Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Chen Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yurou Li
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ruilan Gu
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
84
|
Marques SS, Cant DJH, Minelli C, Segundo MA. Combining orthogonal measurements to unveil diclofenac encapsulation into polymeric and lipid nanocarriers. Anal Chim Acta 2023; 1262:341234. [PMID: 37179055 DOI: 10.1016/j.aca.2023.341234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
The quantification of the drug associated to nanoparticle carriers, often expressed in terms of encapsulation efficiency, is a regulatory requirement. The establishment of independent methods to evaluate this parameter provides a means for measurement validation, which is critical in providing confidence in the methods and enabling the robust characterization of nanomedicines. Chromatography is traditionally used to measure drug encapsulation into nanoparticles. Here, we describe an additional independent strategy based on analytical centrifugation. The encapsulation of diclofenac into nanocarriers was quantified based on the mass difference between placebo (i.e. unloaded) and loaded nanoparticles. This difference was estimated using particle densities measured by differential centrifugal sedimentation (DCS) and size and concentration values measured by particle tracking analysis (PTA). The proposed strategy was applied to two types of formulations, namely poly(lactic-co-glycolic acid) (PLGA) nanoparticles and nanostructured lipid carriers, which were analysed by DCS operated in sedimentation and flotation modes, respectively. The results were compared to those from high performance liquid chromatography (HPLC) measurements. Additionally, X-ray photoelectron spectroscopy analysis was used to elucidate the surface chemical composition of the placebo and loaded nanoparticles. The proposed approach enables the monitoring of batch-to-batch consistency and the quantification of diclofenac association to PLGA nanoparticles from 0.7 ng to 5 ng of drug per 1 μg of PLGA, with good linear correlation between DCS and HPLC results (R2 = 0.975). Using the same approach, similar quantification in lipid nanocarriers was possible for a loading of diclofenac ≥1.1 ng per 1 μg of lipids, with results in agreement with the HPLC method (R2 = 0.971). Hence, the strategy proposed here expands the analytical tools available for evaluating nanoparticles encapsulation efficiency, being thus significant for increasing the robustness of drug-delivery nanocarriers characterization.
Collapse
Affiliation(s)
- Sara S Marques
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom
| | - David J H Cant
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom
| | - Caterina Minelli
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom.
| | - Marcela A Segundo
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
85
|
Ying N, Liu S, Zhang M, Cheng J, Luo L, Jiang J, Shi G, Wu S, Ji J, Su H, Pan H, Zeng D. Nano delivery system for paclitaxel: Recent advances in cancer theranostics. Colloids Surf B Biointerfaces 2023; 228:113419. [PMID: 37393700 DOI: 10.1016/j.colsurfb.2023.113419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Paclitaxel is one of the most effective chemotherapeutic drugs which processes the obvious curative effect for a broad range of cancers including breast, ovarian, lung, and head & neck cancers. Though some novel paclitaxel-loaded formulations have been developed, the clinical application of the paclitaxel is still limited due to its toxicity and solubility issues. Over the past decades, we have seen rapid advances in applying nanocarriers in paclitaxel delivery systems. The nano-drug delivery systems offer unique advantages in enhancing the aqueous solubility, reducing side effects, increasing permeability, prolonging circulation half-life of paclitaxel. In this review, we summarize recent advances in developing novel paclitaxel-loaded nano delivery systems based on nanocarriers. These nanocarriers show great potentials in overcoming the disadvantages of pure paclitaxel and as a result improving the efficacy.
Collapse
Affiliation(s)
- Na Ying
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sisi Liu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengmeng Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Cheng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Linghuan Luo
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiayi Jiang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Gaofan Shi
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shu Wu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Ji
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haoyuan Su
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongzhi Pan
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Dongdong Zeng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
86
|
Brusini R, Tran NLL, Cailleau C, Domergue V, Nicolas V, Dormont F, Calet S, Cajot C, Jouran A, Lepetre-Mouelhi S, Laloy J, Couvreur P, Varna M. Assessment of Squalene-Adenosine Nanoparticles in Two Rodent Models of Cardiac Ischemia-Reperfusion. Pharmaceutics 2023; 15:1790. [PMID: 37513977 PMCID: PMC10384353 DOI: 10.3390/pharmaceutics15071790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Reperfusion injuries after a period of cardiac ischemia are known to lead to pathological modifications or even death. Among the different therapeutic options proposed, adenosine, a small molecule with platelet anti-aggregate and anti-inflammatory properties, has shown encouraging results in clinical trials. However, its clinical use is severely limited because of its very short half-life in the bloodstream. To overcome this limitation, we have proposed a strategy to encapsulate adenosine in squalene-based nanoparticles (NPs), a biocompatible and biodegradable lipid. Thus, the aim of this study was to assess, whether squalene-based nanoparticles loaded with adenosine (SQAd NPs) were cardioprotective in a preclinical cardiac ischemia/reperfusion model. Obtained SQAd NPs were characterized in depth and further evaluated in vitro. The NPs were formulated with a size of about 90 nm and remained stable up to 14 days at both 4 °C and room temperature. Moreover, these NPs did not show any signs of toxicity, neither on HL-1, H9c2 cardiac cell lines, nor on human PBMC and, further retained their inhibitory platelet aggregation properties. In a mouse model with experimental cardiac ischemia-reperfusion, treatment with SQAd NPs showed a reduction of the area at risk, as well as of the infarct area, although not statistically significant. However, we noted a significant reduction of apoptotic cells on cardiac tissue from animals treated with the NPs. Further studies would be interesting to understand how and through which mechanisms these nanoparticles act on cardiac cells.
Collapse
Affiliation(s)
- Romain Brusini
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Natalie Lan Linh Tran
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Catherine Cailleau
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Valérie Domergue
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, ANIMEX, 17 Avenue des Sciences, 91400 Orsay, France
| | - Valérie Nicolas
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, MIPSIT, 17 Avenue des Sciences, 91400 Orsay, France
| | - Flavio Dormont
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Serge Calet
- Holochem, Rue du Moulin de la Canne, 45300 Pithiviers, France
| | - Caroline Cajot
- Quality Assistance S.A, Technoparc de Thudinie 2, 6536 Thuin, Belgium
| | - Albin Jouran
- Quality Assistance S.A, Technoparc de Thudinie 2, 6536 Thuin, Belgium
| | - Sinda Lepetre-Mouelhi
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Julie Laloy
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Patrick Couvreur
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Mariana Varna
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| |
Collapse
|
87
|
Marques MP, Varela C, Mendonça L, Cabral C. Nanotechnology-Based Topical Delivery of Natural Products for the Management of Atopic Dermatitis. Pharmaceutics 2023; 15:1724. [PMID: 37376172 DOI: 10.3390/pharmaceutics15061724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic eczematous inflammatory disease that may arise from environmental, genetic, and immunological factors. Despite the efficacy of current treatment options such as corticosteroids, such approaches are mainly focused on symptom relief and may present certain undesirable side effects. In recent years, isolated natural compounds, oils, mixtures, and/or extracts have gained scientific attention because of their high efficiency and moderate to low toxicity. Despite their promising therapeutic effects, the applicability of such natural healthcare solutions is somewhat limited by their instability, poor solubility, and low bioavailability. Therefore, novel nanoformulation-based systems have been designed to overcome these limitations, thus enhancing the therapeutic potential, by promoting the capacity of these natural drugs to properly exert their action in AD-like skin lesions. To the best of our knowledge, this is the first literature review that has focused on summarizing recent nanoformulation-based solutions loaded with natural ingredients, specifically for the management of AD. We suggest that future studies should focus on robust clinical trials that may confirm the safety and effectiveness of such natural-based nanosystems, thus paving the way for more reliable AD treatments.
Collapse
Affiliation(s)
- Mário Pedro Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carla Varela
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products (CIEPQPF), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Laura Mendonça
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Célia Cabral
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
88
|
Kumar V, Wahane A, Gupta A, Manautou JE, Bahal R. Multivalent Lactobionic Acid and N-Acetylgalactosamine-Conjugated Peptide Nucleic Acids for Efficient In Vivo Targeting of Hepatocytes. Adv Healthc Mater 2023; 12:e2202859. [PMID: 36636995 PMCID: PMC10175146 DOI: 10.1002/adhm.202202859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/27/2022] [Indexed: 01/14/2023]
Abstract
Peptide nucleic acids (PNAs) are used/applied in various studies to target genomic DNA and RNA to modulate gene expression. Non-specific targeting and rapid elimination always remain a challenge for PNA-based applications. Here, the synthesis, characterization, in vitro and in vivo study of di lactobionic acid (diLBA) and tris N-acetyl galactosamine (tGalNAc) conjugated PNAs for liver-targeted delivery are reported. For proof of concept, diLBA, and tGalNAc conjugated PNAs (anti-miR-122 PNAs) were synthesized to target microRNA-122 (miR-122) which is over-expressed in the hepatic tissue. Different lengths of anti-miR-122 PNAs conjugated with diLBA and tGalNAc are tested. Cell culture and in vivo analyses to determine biodistribution, efficacy, and toxicity profile are performed. This work indicates that diLBA conjugates show significant retention in hepatocytes in addition to tGalNAc conjugates after in vivo delivery. Full-length PNA conjugates show significant downregulation of miR-122 levels and subsequent de-repression of its downstream targets with no evidence of toxicity. The results provide a robust framework for ligand-conjugated delivery systems for PNAs that can be explored for broader biomedical applications.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Aniket Wahane
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Anisha Gupta
- School of Pharmacy, University of Saint Joseph, West Hartford, CT, 06117, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
89
|
Rama B, Ribeiro AJ. Role of nanotechnology in the prolonged release of drugs by the subcutaneous route. Expert Opin Drug Deliv 2023; 20:559-577. [PMID: 37305971 DOI: 10.1080/17425247.2023.2214362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/11/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Subcutaneous physiology is distinct from other parenteral routes that benefit the administration of prolonged-release formulations. A prolonged-release effect is particularly convenient for treating chronic diseases because it is associated with complex and often prolonged posologies. Therefore, drug-delivery systems focused on nanotechnology are proposed as alternatives that can overcome the limitations of current therapeutic regimens and improve therapeutic efficacy. AREAS COVERED This review presents an updated systematization of nanosystems, focusing on their applications in highly prevalent chronic diseases. Subcutaneous-delivered nanosystem-based therapies comprehensively summarize nanosystems, drugs, and diseases and their advantages, limitations, and strategies to increase their translation into clinical applications. An outline of the potential contribution of quality-by-design (QbD) and artificial intelligence (AI) to the pharmaceutical development of nanosystems is presented. EXPERT OPINION Although recent academic research and development (R&D) advances in the subcutaneous delivery of nanosystems have exhibited promising results, pharmaceutical industries and regulatory agencies need to catch up. The lack of standardized methodologies for analyzing in vitro data from nanosystems for subcutaneous administration and subsequent in vivo correlation limits their access to clinical trials. There is an urgent need for regulatory agencies to develop methods that faithfully mimic subcutaneous administration and specific guidelines for evaluating nanosystems.
Collapse
Affiliation(s)
- B Rama
- Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
| | - A J Ribeiro
- Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
- Genetics of Cognitive Disfunction, i3S, IBMC, Porto, Portugal
| |
Collapse
|
90
|
Solidum JGN, Ceriales JA, Ong EP, Ornos EDB, Relador RJL, Quebral EPB, Lapeña JFF, Tantengco OAG, Lee KY. Nanomedicine and nanoparticle-based delivery systems in plastic and reconstructive surgery. Maxillofac Plast Reconstr Surg 2023; 45:15. [PMID: 36995508 PMCID: PMC10060935 DOI: 10.1186/s40902-023-00383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Nanotechnology and nanomedicine are rising novel fields in plastic and reconstructive surgery (PRS). The use of nanomaterials often goes with regenerative medicine. Due to their nanoscale, these materials stimulate repair at the cellular and molecular levels. Nanomaterials may be placed as components of nanocomposite polymers allowing enhancement of overall biochemical and biomechanical properties with improved scaffold properties, cellular attachment, and tissue regeneration. They may also be formulated as nanoparticle-based delivery systems for controlled release of signal factors or antimicrobials, for example. However, more studies on nanoparticle-based delivery systems still need to be done in this field. Nanomaterials are also used as frameworks for nerves, tendons, and other soft tissues. MAIN BODY In this mini-review, we focus on nanoparticle-based delivery systems and nanoparticles targeting cells for response and regeneration in PRS. Specifically, we investigate their roles in various tissue regeneration, skin and wound healing, and infection control. Cell surface-targeted, controlled-release, and inorganic nanoparticle formulations with inherent biological properties have enabled enhanced wound healing, tumor visualization/imaging, tissue viability, and decreased infection, and graft/transplantation rejection through immunosuppression. CONCLUSIONS Nanomedicine is also now being applied with electronics, theranostics, and advanced bioengineering technologies. Overall, it is a promising field that can improve patient clinical outcomes in PRS.
Collapse
Affiliation(s)
- Jea Giezl N Solidum
- MD-PhD (Molecular Medicine) Program, College of Medicine, University of the Philippines Manila, Ermita, Manila, 1000, Philippines
| | - Jeremy A Ceriales
- MD-PhD (Molecular Medicine) Program, College of Medicine, University of the Philippines Manila, Ermita, Manila, 1000, Philippines
| | - Erika P Ong
- College of Medicine, University of the Philippines Manila, Ermita, Manila, 1000, Philippines
| | - Eric David B Ornos
- MD-PhD (Molecular Medicine) Program, College of Medicine, University of the Philippines Manila, Ermita, Manila, 1000, Philippines
| | - Ruth Joy L Relador
- MD-PhD (Molecular Medicine) Program, College of Medicine, University of the Philippines Manila, Ermita, Manila, 1000, Philippines
| | - Elgin Paul B Quebral
- MD-PhD (Molecular Medicine) Program, College of Medicine, University of the Philippines Manila, Ermita, Manila, 1000, Philippines
| | - Jose Florencio F Lapeña
- Department of Otolaryngology - Head and Neck Surgery, Section of Craniomaxillofacial Plastic and Restorative Surgery, College of Medicine - Philippine General Hospital, University of the Philippines Manila, Ermita, Manila, 1000, Philippines
| | - Ourlad Alzeus G Tantengco
- Department of Physiology, College of Medicine, University of the Philippines Manila, Ermita, Manila, 1000, Philippines.
- Department of Biology, College of Science, De La Salle University, Manila, 1004, Philippines.
| | - Ka Yiu Lee
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.
| |
Collapse
|
91
|
Khan MS, Mohapatra S, Gupta V, Ali A, Naseef PP, Kurunian MS, Alshadidi AAF, Alam MS, Mirza MA, Iqbal Z. Potential of Lipid-Based Nanocarriers against Two Major Barriers to Drug Delivery-Skin and Blood-Brain Barrier. MEMBRANES 2023; 13:343. [PMID: 36984730 PMCID: PMC10058721 DOI: 10.3390/membranes13030343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Over the past few years, pharmaceutical and biomedical areas have made the most astounding accomplishments in the field of medicine, diagnostics and drug delivery. Nanotechnology-based tools have played a major role in this. The implementation of this multifaceted nanotechnology concept encourages the advancement of innovative strategies and materials for improving patient compliance. The plausible usage of nanotechnology in drug delivery prompts an extension of lipid-based nanocarriers with a special reference to barriers such as the skin and blood-brain barrier (BBB) that have been discussed in the given manuscript. The limited permeability of these two intriguing biological barriers restricts the penetration of active moieties through the skin and brain, resulting in futile outcomes in several related ailments. Lipid-based nanocarriers provide a possible solution to this problem by facilitating the penetration of drugs across these obstacles, which leads to improvements in their effectiveness. A special emphasis in this review is placed on the composition, mechanism of penetration and recent applications of these carriers. It also includes recent research and the latest findings in the form of patents and clinical trials in this field. The presented data demonstrate the capability of these carriers as potential drug delivery systems across the skin (referred to as topical, dermal and transdermal delivery) as well as to the brain, which can be exploited further for the development of safe and efficacious products.
Collapse
Affiliation(s)
- Mohammad Sameer Khan
- School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Vaibhav Gupta
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Ahsan Ali
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | | | - Mohamed Saheer Kurunian
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdulkhaliq Ali F. Alshadidi
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan P.O. Box 114, Saudi Arabia
| | - Mohd. Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
92
|
Marques SS, Ramos II, Silva C, Barreiros L, Domingues MR, Segundo MA. Lab-on-Valve Automated and Miniaturized Assessment of Nanoparticle Concentration Based on Light-Scattering. Anal Chem 2023; 95:4619-4626. [PMID: 36802495 PMCID: PMC10018450 DOI: 10.1021/acs.analchem.2c04631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Nanoparticles (NPs) concentration directly impacts the dose delivered to target tissues by nanocarriers. The evaluation of this parameter is required during NPs developmental and quality control stages, for setting dose-response correlations and for evaluating the reproducibility of the manufacturing process. Still, faster and simpler procedures, dismissing skilled operators and post-analysis conversions are needed to quantify NPs for research and quality control operations, and to support result validation. Herein, a miniaturized automated ensemble method to measure NPs concentration was established under the lab-on-valve (LOV) mesofluidic platform. Automatic NPs sampling and delivery to the LOV detection unit were set by flow programming. NPs concentration measurements were based on the decrease in the light transmitted to the detector due to the light scattered by NPs when passing through the optical path. Each analysis was accomplished in 2 min, rendering a determination throughput of 30 h-1 (6 samples h-1 for n = 5) and only requiring 30 μL (≈0.03 g) of NPs suspension. Measurements were performed on polymeric NPs, as these represent one of the major classes of NPs under development for drug-delivery aims. Determinations for polystyrene NPs (of 100, 200, and 500 nm) and for NPs made of PEGylated poly-d,l-lactide-co-glycolide (PEG-PLGA, a biocompatible FDA-approved polymer) were accomplished within 108-1012 particles mL-1 range, depending on the NPs size and composition. NPs size and concentration were maintained during analysis, as verified for NPs eluted from the LOV by particle tracking analysis (PTA). Moreover, concentration measurements for PEG-PLGA NPs loaded with an anti-inflammatory drug, methotrexate (MTX), after their incubation in simulated gastric and intestinal fluids were successfully achieved (recovery values of 102-115%, as confirmed by PTA), showing the suitability of the proposed method to support the development of polymeric NPs targeting intestinal delivery.
Collapse
Affiliation(s)
- Sara S Marques
- LAQV, REQUIMTE, University of Porto, Department of Chemical Sciences, Faculty of Pharmacy, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Inês I Ramos
- LAQV, REQUIMTE, University of Porto, Department of Chemical Sciences, Faculty of Pharmacy, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carla Silva
- Centre of Biological Engineering (CEB), University of Minho, 4710-057 Braga, Portugal.,LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães Portugal
| | - Luisa Barreiros
- LAQV, REQUIMTE, University of Porto, Department of Chemical Sciences, Faculty of Pharmacy, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,School of Health, Polytechnic Institute of Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Maria R Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal.,Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marcela A Segundo
- LAQV, REQUIMTE, University of Porto, Department of Chemical Sciences, Faculty of Pharmacy, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
93
|
Nirmala MJ, Kizhuveetil U, Johnson A, G B, Nagarajan R, Muthuvijayan V. Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSC Adv 2023; 13:8606-8629. [PMID: 36926304 PMCID: PMC10013677 DOI: 10.1039/d2ra07863e] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer is known as the most dangerous disease in the world in terms of mortality and lack of effective treatment. Research on cancer treatment is still active and of great social importance. Since 1930, chemotherapeutics have been used to treat cancer. However, such conventional treatments are associated with pain, side effects, and a lack of targeting. Nanomedicines are an emerging alternative due to their targeting, bioavailability, and low toxicity. Nanoparticles target cancer cells via active and passive mechanisms. Since FDA approval for Doxil®, several nano-therapeutics have been developed, and a few have received approval for use in cancer treatment. Along with liposomes, solid lipid nanoparticles, polymeric nanoparticles, and nanoemulsions, even newer techniques involving extracellular vesicles (EVs) and thermal nanomaterials are now being researched and implemented in practice. This review highlights the evolution and current status of cancer therapy, with a focus on clinical/pre-clinical nanomedicine cancer studies. Insight is also provided into the prospects in this regard.
Collapse
Affiliation(s)
- M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Uma Kizhuveetil
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Athira Johnson
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Balaji G
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Ramamurthy Nagarajan
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Vignesh Muthuvijayan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600 036 India
| |
Collapse
|
94
|
Chuang YC, Wu PH, Shen YA, Kuo CC, Wang WJ, Chen YC, Lee HL, Chiou JF. Recent Advances in Metal-Based NanoEnhancers for Particle Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1011. [PMID: 36985905 PMCID: PMC10056155 DOI: 10.3390/nano13061011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Radiotherapy is one of the most common therapeutic regimens for cancer treatment. Over the past decade, proton therapy (PT) has emerged as an advanced type of radiotherapy (RT) that uses proton beams instead of conventional photon RT. Both PT and carbon-ion beam therapy (CIBT) exhibit excellent therapeutic results because of the physical characteristics of the resulting Bragg peaks, which has been exploited for cancer treatment in medical centers worldwide. Although particle therapies show significant advantages to photon RT by minimizing the radiation damage to normal tissue after the tumors, they still cause damage to normal tissue before the tumor. Since the physical mechanisms are different from particle therapy and photon RT, efforts have been made to ameliorate these effects by combining nanomaterials and particle therapies to improve tumor targeting by concentrating the radiation effects. Metallic nanoparticles (MNPs) exhibit many unique properties, such as strong X-ray absorption cross-sections and catalytic activity, and they are considered nano-radioenhancers (NREs) for RT. In this review, we systematically summarize the putative mechanisms involved in NRE-induced radioenhancement in particle therapy and the experimental results in in vitro and in vivo models. We also discuss the potential of translating preclinical metal-based NP-enhanced particle therapy studies into clinical practice using examples of several metal-based NREs, such as SPION, Abraxane, AGuIX, and NBTXR3. Furthermore, the future challenges and development of NREs for PT are presented for clinical translation. Finally, we propose a roadmap to pursue future studies to strengthen the interplay of particle therapy and nanomedicine.
Collapse
Affiliation(s)
- Yao-Chen Chuang
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan; (Y.-C.C.)
| | - Ping-Hsiu Wu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan; (Y.-C.C.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Proton Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110301, Taiwan
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chia-Chun Kuo
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan; (Y.-C.C.)
- Proton Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110301, Taiwan
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei 110301, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Jun Wang
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan; (Y.-C.C.)
- Proton Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110301, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yu-Chen Chen
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan; (Y.-C.C.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Proton Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110301, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan; (Y.-C.C.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Proton Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
95
|
Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 02/28/2023]
Abstract
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
96
|
Yagolovich AV, Gasparian ME, Dolgikh DA. Recent Advances in the Development of Nanodelivery Systems Targeting the TRAIL Death Receptor Pathway. Pharmaceutics 2023; 15:pharmaceutics15020515. [PMID: 36839837 PMCID: PMC9961178 DOI: 10.3390/pharmaceutics15020515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
The TRAIL (TNF-related apoptosis-inducing ligand) apoptotic pathway is extensively exploited in the development of targeted antitumor therapy due to TRAIL specificity towards its cognate receptors, namely death receptors DR4 and DR5. Although therapies targeting the TRAIL pathway have encountered many obstacles in attempts at clinical implementation for cancer treatment, the unique features of the TRAIL signaling pathway continue to attract the attention of researchers. Special attention is paid to the design of novel nanoscaled delivery systems, primarily aimed at increasing the valency of the ligand for improved death receptor clustering that enhances apoptotic signaling. Optionally, complex nanoformulations can allow the encapsulation of several therapeutic molecules for a combined synergistic effect, for example, chemotherapeutic agents or photosensitizers. Scaffolds for the developed nanodelivery systems are fabricated by a wide range of conventional clinically approved materials and innovative ones, including metals, carbon, lipids, polymers, nanogels, protein nanocages, virus-based nanoparticles, dendrimers, DNA origami nanostructures, and their complex combinations. Most nanotherapeutics targeting the TRAIL pathway are aimed at tumor therapy and theranostics. However, given the wide spectrum of action of TRAIL due to its natural role in immune system homeostasis, other therapeutic areas are also involved, such as liver fibrosis, rheumatoid arthritis, Alzheimer's disease, and inflammatory diseases caused by bacterial infections. This review summarizes the recent innovative developments in the design of nanodelivery systems modified with TRAIL pathway-targeting ligands.
Collapse
Affiliation(s)
- Anne V. Yagolovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence:
| | - Marine E. Gasparian
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
97
|
Tan P, Chen X, Zhang H, Wei Q, Luo K. Artificial intelligence aids in development of nanomedicines for cancer management. Semin Cancer Biol 2023; 89:61-75. [PMID: 36682438 DOI: 10.1016/j.semcancer.2023.01.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/28/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Over the last decade, the nanomedicine has experienced unprecedented development in diagnosis and management of diseases. A number of nanomedicines have been approved in clinical use, which has demonstrated the potential value of clinical transition of nanotechnology-modified medicines from bench to bedside. The application of artificial intelligence (AI) in development of nanotechnology-based products could transform the healthcare sector by realizing acquisition and analysis of large datasets, and tailoring precision nanomedicines for cancer management. AI-enabled nanotechnology could improve the accuracy of molecular profiling and early diagnosis of patients, and optimize the design pipeline of nanomedicines by tuning the properties of nanomedicines, achieving effective drug synergy, and decreasing the nanotoxicity, thereby, enhancing the targetability, personalized dosing and treatment potency of nanomedicines. Herein, the advances in AI-enabled nanomedicines in cancer management are elaborated and their application in diagnosis, monitoring and therapy as well in precision medicine development is discussed.
Collapse
Affiliation(s)
- Ping Tan
- Department of Urology, and Department of Radiology, Institute of Urology, and Huaxi MR Research Center (HMRRC), Animal Experimental Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoting Chen
- Department of Urology, and Department of Radiology, Institute of Urology, and Huaxi MR Research Center (HMRRC), Animal Experimental Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Qiang Wei
- Department of Urology, and Department of Radiology, Institute of Urology, and Huaxi MR Research Center (HMRRC), Animal Experimental Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Kui Luo
- Department of Urology, and Department of Radiology, Institute of Urology, and Huaxi MR Research Center (HMRRC), Animal Experimental Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
98
|
Regulation of Staphylococcus aureus Virulence and Application of Nanotherapeutics to Eradicate S. aureus Infection. Pharmaceutics 2023; 15:pharmaceutics15020310. [PMID: 36839634 PMCID: PMC9960757 DOI: 10.3390/pharmaceutics15020310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus aureus is a versatile pathogen known to cause hospital- and community-acquired, foodborne, and zoonotic infections. The clinical infections by S. aureus cause an increase in morbidity and mortality rates and treatment costs, aggravated by the emergence of drug-resistant strains. As a multi-faceted pathogen, it is imperative to consolidate the knowledge on its pathogenesis, including the mechanisms of virulence regulation, development of antimicrobial resistance, and biofilm formation, to make it amenable to different treatment strategies. Nanomaterials provide a suitable platform to address this challenge, with the potential to control intracellular parasitism and multidrug resistance where conventional therapies show limited efficacy. In a nutshell, the first part of this review focuses on the impact of S. aureus on human health and the role of virulence factors and biofilms during pathogenesis. The second part discusses the large diversity of nanoparticles and their applications in controlling S. aureus infections, including combination with antibiotics and phytochemicals and the incorporation of antimicrobial coatings for biomaterials. Finally, the limitations and prospects using nanomaterials are highlighted, aiming to foster the development of novel nanotechnology-driven therapies against multidrug-resistant S. aureus.
Collapse
|
99
|
Valencia-Lazcano AA, Hassan D, Pourmadadi M, Shamsabadipour A, Behzadmehr R, Rahdar A, Medina DI, Díez-Pascual AM. 5-Fluorouracil nano-delivery systems as a cutting-edge for cancer therapy. Eur J Med Chem 2023; 246:114995. [PMID: 36493619 DOI: 10.1016/j.ejmech.2022.114995] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
5-Fluorouracil (5-FU) is amongst the most commonly used antimetabolite chemotherapeutic agents in recent decades. However, its low bioavailability, short half-life, rapid metabolism and the development of drug resistance after chemotherapy limit its therapeutic efficiency. In this study, 5-FU applications as an anti-cancer drug for treating diverse types of cancers (e.g. colon, pancreatic and breast) have been reviewed. Different approaches lately designed to circumvent the drawbacks of 5-FU therapy are described herein, including 5-FU-loaded lipid-based nanoparticles (NPs), polymeric NPs (both stimuli and non-stimuli responsive), carbon-based nanostructures and inorganic NPs. Furthermore, co-delivery systems of 5-FU with other drugs (e.g. paclitaxel, gelatin-doxorubicin and naproxen) have been reviewed, which aid to attain better bioavailability, higher effectiveness at a lower concentration and lower toxicity. This review provides researchers with the latest progress on 5-FU-loaded nanocarriers, which show great potential as an advanced tool for cancer therapy.
Collapse
Affiliation(s)
| | - Dilawar Hassan
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico 52926, Mexico.
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Amin Shamsabadipour
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran.
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, 538-98615, Zabol, Iran.
| | - Dora I Medina
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Nuevo Leon 64849, Monterrey, Mexico.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
100
|
Obozina AS, Komedchikova EN, Kolesnikova OA, Iureva AM, Kovalenko VL, Zavalko FA, Rozhnikova TV, Tereshina ED, Mochalova EN, Shipunova VO. Genetically Encoded Self-Assembling Protein Nanoparticles for the Targeted Delivery In Vitro and In Vivo. Pharmaceutics 2023; 15:231. [PMID: 36678860 PMCID: PMC9861179 DOI: 10.3390/pharmaceutics15010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Targeted nanoparticles of different origins are considered as new-generation diagnostic and therapeutic tools. However, there are no targeted drug formulations within the composition of nanoparticles approved by the FDA for use in the clinic, which is associated with the insufficient effectiveness of the developed candidates, the difficulties of their biotechnological production, and inadequate batch-to-batch reproducibility. Targeted protein self-assembling nanoparticles circumvent this problem since proteins are encoded in DNA and the final protein product is produced in only one possible way. We believe that the combination of the endless biomedical potential of protein carriers as nanoparticles and the standardized protein purification protocols will make significant progress in "magic bullet" creation possible, bringing modern biomedicine to a new level. In this review, we are focused on the currently existing platforms for targeted self-assembling protein nanoparticles based on transferrin, lactoferrin, casein, lumazine synthase, albumin, ferritin, and encapsulin proteins, as well as on proteins from magnetosomes and virus-like particles. The applications of these self-assembling proteins for targeted delivery in vitro and in vivo are thoroughly discussed, including bioimaging applications and different therapeutic approaches, such as chemotherapy, gene delivery, and photodynamic and photothermal therapy. A critical assessment of these protein platforms' efficacy in biomedicine is provided and possible problems associated with their further development are described.
Collapse
Affiliation(s)
| | | | | | - Anna M. Iureva
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Vera L. Kovalenko
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Fedor A. Zavalko
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | | | - Elizaveta N. Mochalova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Victoria O. Shipunova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|