51
|
Meena S, Deb S, Samtani H, Khurana P. Dissecting the Molecular Function of Triticum aestivum STI Family Members Under Heat Stress. Front Genet 2020; 11:873. [PMID: 32973870 PMCID: PMC7466592 DOI: 10.3389/fgene.2020.00873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/16/2020] [Indexed: 11/15/2022] Open
Abstract
STI/HOP functions as a co-chaperone of HSP90 and HSP70 whose molecular function has largely been being restricted as an adaptor protein. However, its role in thermotolerance is not well explored. In this article, we have identified six members of the TaSTI family, which were named according to their distribution on group 2 and group 6 chromosomes. Interestingly, TaSTI-2 members were found to express higher as compared to TaSTI-6 members under heat stress conditions, with TaSTI-2A being one of the most heat-responsive member. Consistent with this, the heterologous expression of TaSTI-2A in Arabidopsis resulted in enhanced basal as well as acquired thermotolerance as revealed by the higher yield of the plants under stress conditions. Similarly in the case of rice, TaSTI-2A transgenics exhibited enhanced thermal tolerance. Moreover, we demonstrate that TaSTI-2A interacts with TaHSP90 not only in the nucleus but also in the ER and Golgi bodies, which has not been shown till now. Additionally, TaHSP70 was also found to interact with TaSTI-6D specifically in the cytosol. Thus, these data together suggested that the TaSTI family members might play different roles under heat stress conditions in order to fine-tune the heat stress response in plants.
Collapse
Affiliation(s)
- Shaloo Meena
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sohini Deb
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
52
|
Calleja-Cabrera J, Boter M, Oñate-Sánchez L, Pernas M. Root Growth Adaptation to Climate Change in Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:544. [PMID: 32457782 PMCID: PMC7227386 DOI: 10.3389/fpls.2020.00544] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/09/2020] [Indexed: 05/05/2023]
Abstract
Climate change is threatening crop productivity worldwide and new solutions to adapt crops to these environmental changes are urgently needed. Elevated temperatures driven by climate change affect developmental and physiological plant processes that, ultimately, impact on crop yield and quality. Plant roots are responsible for water and nutrients uptake, but changes in soil temperatures alters this process limiting crop growth. With the predicted variable climatic forecast, the development of an efficient root system better adapted to changing soil and environmental conditions is crucial for enhancing crop productivity. Root traits associated with improved adaptation to rising temperatures are increasingly being analyzed to obtain more suitable crop varieties. In this review, we will summarize the current knowledge about the effect of increasing temperatures on root growth and their impact on crop yield. First, we will describe the main alterations in root architecture that different crops undergo in response to warmer soils. Then, we will outline the main coordinated physiological and metabolic changes taking place in roots and aerial parts that modulate the global response of the plant to increased temperatures. We will discuss on some of the main regulatory mechanisms controlling root adaptation to warmer soils, including the activation of heat and oxidative pathways to prevent damage of root cells and disruption of root growth; the interplay between hormonal regulatory pathways and the global changes on gene expression and protein homeostasis. We will also consider that in the field, increasing temperatures are usually associated with other abiotic and biotic stresses such as drought, salinity, nutrient deficiencies, and pathogen infections. We will present recent advances on how the root system is able to integrate and respond to complex and different stimuli in order to adapt to an increasingly changing environment. Finally, we will discuss the new prospects and challenges in this field as well as the more promising pathways for future research.
Collapse
Affiliation(s)
| | | | | | - M. Pernas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
53
|
Dikšaitytė A, Viršilė A, Žaltauskaitė J, Januškaitienė I, Praspaliauskas M, Pedišius N. Do plants respond and recover from a combination of drought and heatwave in the same manner under adequate and deprived soil nutrient conditions? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110333. [PMID: 31928679 DOI: 10.1016/j.plantsci.2019.110333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/25/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Extreme climatic conditions with extended drought periods and heatwaves are predicted to increase in frequency and severity in many regions of the world. Aside from this, other abiotic stress factors such as nutrient deficiency could pose a serious problem to plants when combined with other stressors resulting in more complex underpinning mechanisms. In the present study, we evaluated the response of Brassica napus to single and combined impacts of drought and heatwave (HW) under adequate or deprived (N-A and N-D) soil nutrient conditions. In addition, to get better insights in the plant response to combined stress, a post-stress period, pointing out a degree of the recovery after the cessation of stress, was also included. The results showed a different manner of single drought and heatwave action. The adverse effect of drought on leaf gas exchange was lagged on the growth and became more apparent only after recovery period with no obvious difference between different nutrient levels. Contrary, the growth response of nutrient-deprived plants to single HW was weak and in most cases, insignificant. Heatwave applied simultaneously with drought highly exacerbated the adverse effect of drought both under N-A and N-D conditions. Combined drought and heatwave stress resulted in the sharper decline of Asat and it was attributed to both stomatal and non-stomatal limitations. Interestingly, plants underwent combined drought and HW treatment under N-D conditions showed better aboveground growth recovery, compared to those grown under N-A conditions, while displayed far more diminished photochemistry of photosystem II and badly disturbed the C/N balance. This discrepancy came from the fact that soil nutrient deficiency, by itself, evoked strong stress under control climate conditions resulting in a dramatically slower aboveground growth of nutrient-deprived plant. In turn, although combined drought and HW stress had similar effect on the aboveground growth either under N-A or N-D conditions, the recovery of later one was better. These results highlight the necessity to look at plants' performance under unfavorable environmental conditions beyond the actual event, since it can be depended not only on the duration of exposure but also on the legacy effect after treatment.
Collapse
Affiliation(s)
- Austra Dikšaitytė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno St. 30, LT-54333, Babtai, Kaunas Distr., Lithuania; Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos St. 8, LT-44404, Kaunas, Lithuania.
| | - Akvilė Viršilė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno St. 30, LT-54333, Babtai, Kaunas Distr., Lithuania
| | - Jūratė Žaltauskaitė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos St. 8, LT-44404, Kaunas, Lithuania
| | - Irena Januškaitienė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos St. 8, LT-44404, Kaunas, Lithuania
| | - Marius Praspaliauskas
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Breslaujos St. 3, LT-44403, Kaunas, Lithuania
| | - Nerijus Pedišius
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Breslaujos St. 3, LT-44403, Kaunas, Lithuania
| |
Collapse
|
54
|
Lopez-Delacalle M, Camejo DM, García-Martí M, Nortes PA, Nieves-Cordones M, Martínez V, Rubio F, Mittler R, Rivero RM. Using Tomato Recombinant Lines to Improve Plant Tolerance to Stress Combination Through a More Efficient Nitrogen Metabolism. FRONTIERS IN PLANT SCIENCE 2020; 10:1702. [PMID: 32038679 PMCID: PMC6983915 DOI: 10.3389/fpls.2019.01702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/03/2019] [Indexed: 05/18/2023]
Abstract
The development of plant varieties with a better nitrogen use efficiency (NUE) is a means for modern agriculture to decrease environmental pollution due to an excess of nitrate and to maintain a sufficient net income. However, the optimum environmental conditions for agriculture will tend to be more adverse in the coming years, with increases in temperatures, water scarcity, and salinity being the most important productivity constrains for plants. NUE is inherently a complex trait, as each step, including N uptake, translocation, assimilation, and remobilization, is governed by multiple interacting genetic and environmental factors. In this study, two recombinant inbred lines (RIL-66 and RIL-76) from a cross between Solanum lycopersicum and Solanum pimpinellifoilum with different degree of tolerance to the combination of salinity and heat were subjected to a physiological, ionomic, amino acid profile, and gene expression study to better understand how nitrogen metabolism is affected in tolerant plants as compared to sensitive ones. The ionomics results showed a different profile between the two RILs, with K+ and Mg2+ being significantly lower in RIL-66 (low tolerant) as compared to RIL-76 (high tolerant) under salinity and heat combination. No differences were shown between the two RILs in N total content; however, N-NO3 - was significantly higher in RIL-66, whereas N-Norg was lower as compared to the other genotype, which could be correlated with its tolerance to the combination of salinity and heat. Total proteins and total amino acid concentration were significantly higher in RIL-76 as compared to the sensitive recombinant line under these conditions. Glutamate, but more importantly glutamine, was also highly synthesized and accumulated in RIL-76 under the combination of salinity and heat, which was in agreement with the upregulation of the nitrogen metabolism related transcripts studied (SlNR, SlNiR, SlGDH, SlGLT1, SlNRT1.2, SlAMT1, and SlAMT2). This study emphasized the importance of studying abiotic stress in combination and how recombinant material with different degrees of tolerance can be highly important for the improvement of nitrogen use efficiency in horticultural plants through the targeting of N-related markers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ron Mittler
- The Division of Plant Sciences, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Rosa M. Rivero
- Department of Plant Nutrition, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
55
|
Filiz E, Aydın Akbudak M. Investigation of PIC1 (permease in chloroplasts 1) gene’s role in iron homeostasis: bioinformatics and expression analyses in tomato and sorghum. Biometals 2019; 33:29-44. [DOI: 10.1007/s10534-019-00228-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/28/2019] [Indexed: 11/28/2022]
|
56
|
Singh D, Singh CK, Taunk J, Jadon V, Pal M, Gaikwad K. Genome wide transcriptome analysis reveals vital role of heat responsive genes in regulatory mechanisms of lentil (Lens culinaris Medikus). Sci Rep 2019; 9:12976. [PMID: 31506558 PMCID: PMC6736890 DOI: 10.1038/s41598-019-49496-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/23/2019] [Indexed: 01/29/2023] Open
Abstract
The present study reports the role of morphological, physiological and reproductive attributes viz. membrane stability index (MSI), osmolytes accumulations, antioxidants activities and pollen germination for heat stress tolerance in contrasting genotypes. Heat stress increased proline and glycine betaine (GPX) contents, induced superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione peroxidase (GPX) activities and resulted in higher MSI in PDL-2 (tolerant) compared to JL-3 (sensitive). In vitro pollen germination of tolerant genotype was higher than sensitive one under heat stress. In vivo stressed pollens of tolerant genotype germinated well on stressed stigma of sensitive genotype, while stressed pollens of sensitive genotype did not germinate on stressed stigma of tolerant genotype. De novo transcriptome analysis of both the genotypes showed that number of contigs ranged from 90,267 to 104,424 for all the samples with N50 ranging from 1,755 to 1,844 bp under heat stress and control conditions. Based on assembled unigenes, 194,178 high-quality Single Nucleotide Polymorphisms (SNPs), 141,050 microsatellites and 7,388 Insertion-deletions (Indels) were detected. Expression of 10 genes was evaluated using quantitative Real Time Polymerase Chain Reaction (RT-qPCR). Comparison of differentially expressed genes (DEGs) under different combinations of heat stress has led to the identification of candidate DEGs and pathways. Changes in expression of physiological and pollen phenotyping related genes were also reaffirmed through transcriptome data. Cell wall and secondary metabolite pathways are found to be majorly affected under heat stress. The findings need further analysis to determine genetic mechanism involved in heat tolerance of lentil.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jyoti Taunk
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vasudha Jadon
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Kishor Gaikwad
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| |
Collapse
|
57
|
Sehgal A, Sita K, Bhandari K, Kumar S, Kumar J, Vara Prasad PV, Siddique KHM, Nayyar H. Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. PLANT, CELL & ENVIRONMENT 2019; 42:198-211. [PMID: 29744880 DOI: 10.1111/pce.13328] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/23/2018] [Indexed: 05/20/2023]
Abstract
Terminal droughts, along with high temperatures, are becoming more frequent to strongly influence the seed development in cool-season pulses like lentil. In the present study, the lentil plants growing outdoors under natural environment were subjected to following treatments at the time of seed filling till maturity: (a) 28/23 °C day/night temperature as controls; (b) drought stressed, plants maintained at 50% field capacity, under the same growth conditions as in a; (c) heat stressed, 33/28 °C day/night temperature, under the same growth conditions as in a; and (d) drought + heat stressed, plants at 50% field capacity, 33/28 °C day/night temperature, under the same growth conditions as in (a). Both heat and drought resulted in marked reduction in the rate and duration of seed filling to decrease the final seed size; drought resulted in more damage than heat stress; combined stresses accentuated the damage to seed starch, storage proteins and their fractions, minerals, and several amino acids. Comparison of a drought-tolerant and a drought-sensitive genotype indicated the former type showed significantly less damage to various components of seeds, under drought as well as heat stress suggesting a cross tolerance, which was linked to its (drought tolerant) better capacity to retain more water in leaves and hence more photo-assimilation ability, compared with drought-sensitive genotype.
Collapse
Affiliation(s)
- Akanksha Sehgal
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Kumari Sita
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Kalpna Bhandari
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | | | - Jitendra Kumar
- Indian Institute of Pulses Research, Kanpur, 208024, India
| | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, USA
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
58
|
De Laender F. Community- and ecosystem-level effects of multiple environmental change drivers: Beyond null model testing. GLOBAL CHANGE BIOLOGY 2018; 24:5021-5030. [PMID: 29959825 DOI: 10.1111/gcb.14382] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/05/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Understanding the joint effect of multiple drivers of environmental change is a key scientific challenge. The dominant approach today is to compare observed joint effects with predictions from various types of null models. Drivers are said to combine synergistically (antagonistically) when their observed joint effect is larger (smaller) than that predicted by the null model. Here, I argue that this approach does not promote understanding of effects on important community- and ecosystem-level variables such as biodiversity and ecosystem function. I use ecological theory to show that different mechanisms can lead to the same deviation from a null model's prediction. Inversely, I show that the same mechanism can lead to different deviations from a null model's prediction. These examples illustrate that it is not possible to make strong mechanistic inferences from null models. Next, I present an alternative framework to study such effects. This framework makes a clear distinction between two different kinds of drivers (resource ratio shifts and multiple stressors) and integrates both by incorporating stressor effects into resource uptake theory. I show that this framework can advance understanding because of three reasons. First, it forces formalization of "multiple stressors," using factors that describe the number and kind of stressors, their selectivity and dynamic behaviour, and the initial trait diversity and tolerance among species. Second, it produces testable predictions on how these factors affect biodiversity and ecosystem function, alone and in combination with resource ratio shifts. Third, it can fail in informative ways. That is, its assumptions are clear, so that different kinds of deviations between predictions and observed effects can guide new experiments and theory improvement. I conclude that this framework will more effectively progress understanding of global change effects on communities and ecosystems than does the current practice of null model testing.
Collapse
Affiliation(s)
- Frederik De Laender
- Research Unit in Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and the Institute of Life, Earth, and Environment, University of Namur, Namur, Belgium
| |
Collapse
|
59
|
Jarvi MP, Burton AJ. Adenylate control contributes to thermal acclimation of sugar maple fine-root respiration in experimentally warmed soil. PLANT, CELL & ENVIRONMENT 2018; 41:504-516. [PMID: 29124767 DOI: 10.1111/pce.13098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/19/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
We investigated the occurrence of and mechanisms responsible for acclimation of fine-root respiration of mature sugar maple (Acer saccharum) after 3+ years of experimental soil warming (+4 to 5 °C) in a factorial combination with soil moisture addition. Potential mechanisms for thermal respiratory acclimation included changes in enzymatic capacity, as indicated by root N concentration; substrate limitation, assessed by examining nonstructural carbohydrates and effects of exogenous sugar additions; and adenylate control, examined as responses of root respiration to a respiratory uncoupling agent. Partial acclimation of fine-root respiration occurred in response to soil warming, causing specific root respiration to increase to a much lesser degree (14% to 26%) than would be expected for a 4 to 5 °C temperature increase (approximately 55%). Acclimation was greatest when ambient soil temperature was warmer or soil moisture availability was low. We found no evidence that enzyme or substrate limitation caused acclimation but did find evidence supporting adenylate control. The uncoupling agent caused a 1.4 times greater stimulation of respiration in roots from warmed soil. Sugar maple fine-root respiration in warmed soil was at least partially constrained by adenylate use, helping constrain respiration to that needed to support work being performed by the roots.
Collapse
Affiliation(s)
- Mickey P Jarvi
- Forestry and Natural Resources, College of the Redwoods, Eureka, CA, 95501, USA
| | - Andrew J Burton
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
- Ecosystem Science Center, Michigan Technological University, Houghton, MI, 49931, USA
| |
Collapse
|
60
|
Benlloch-González M, Sánchez-Lucas R, Benlloch M. Effects of olive root warming on potassium transport and plant growth. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:182-188. [PMID: 28886454 DOI: 10.1016/j.jplph.2017.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Young olive (Olea europaea L.) plants generated from seed were grown in liquid hydroponic medium exposing the roots system for 33days or 24h to high temperature (37°C) while the aerial part to 25°C aiming to determine the prolonged and immediate effects of root warming on K+(Rb+) transport in the root and consequently on plant growth. The exposition of the root system to 37°C for 24h inhibited K+ (Rb+) transport from root to shoot having no effect on its uptake. However, when the root system was exposed permanently to 37°C both the K+ (Rb+) uptake and translocation to the aerial part were inhibited as well as the growth in all plants organs. The ability of the root system to recover K+ (Rb+) uptake and transport capacity after being exposed to high temperature was also evaluated. Plants grown in a root medium at 37°C for 31days were transferred to another at 25°C for 48 or 96h. The recovery of K+ (Rb+) root transport capacity after high root temperature was slow. Any signal of recovery was observed after 48h without stress: both potassium root uptake and subsequent transport to above organs were inhibited yet. Whereas 96h without stress led to restore potassium upward transport capacity although the uptake was partially inhibited yet. The results obtained in this study have shown that the root system of young olive plants is very sensitive to high temperature related to root potassium transport and growth of the plant. Taking into account the two processes involved in root potassium transport, the discharge of K+ to the xylem vessels was more affected than the uptake at the initial phase of high root temperature stress. However, it was the first process to be re-established during recovery. All this could explain the symptoms frequently observed in olive orchards when dry and high temperature spells occur: a reduction in shoots growth and leaves with low levels of potassium contents and dehydration symptoms.
Collapse
Affiliation(s)
- María Benlloch-González
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Ctra. Madrid-Cádiz, Km. 396, E-14071 Córdoba, Spain.
| | - Rosa Sánchez-Lucas
- Departamento de Bioquímica y Biología Molecular Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Ctra. Madrid-Cádiz, Km. 396, E-14071 Córdoba, Spain
| | - Manuel Benlloch
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Ctra. Madrid-Cádiz, Km. 396, E-14071 Córdoba, Spain
| |
Collapse
|