51
|
Rivera E, Seijas R, Rubio M, García-Balletbó M, Vilar JM, Boada PL, Cugat R. Outcomes at 2-Years Follow-Up After Hip Arthroscopy Combining Bone Marrow Concentrate. J INVEST SURG 2019; 33:655-663. [DOI: 10.1080/08941939.2018.1535010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Eila Rivera
- Department of Orthopaedic Surgery, Hospital Quirónsalud, Barcelona, Spain
- Garcia-Cugat Fundation, Barcelona, Spain
- Department of Orthopaedic Surgery, Artroscopia GC, Barcelona, Spain
| | - Roberto Seijas
- Department of Orthopaedic Surgery, Hospital Quirónsalud, Barcelona, Spain
- Garcia-Cugat Fundation, Barcelona, Spain
- Department of Orthopaedic Surgery, Artroscopia GC, Barcelona, Spain
- Department of Anatomy, Universidad Internacional de Catalunya, Barcelona, Spain
| | - Mónica Rubio
- Garcia-Cugat Fundation, Barcelona, Spain
- Department of Animal Medicine and Surgery, Universidad CEU Cardenal Herrera, Moncada, Valencia, Spain
- CEU-UCH Chair of Medicine and Regenerative Surgery, Universidad CEU Cardenal Herrera, Moncada, Valencia, Spain
| | - Montserrat García-Balletbó
- Department of Orthopaedic Surgery, Hospital Quirónsalud, Barcelona, Spain
- Garcia-Cugat Fundation, Barcelona, Spain
- Department of Orthopaedic Surgery, Artroscopia GC, Barcelona, Spain
| | - Jose Manuel Vilar
- Research Institute in Biomedical and Health Sciences, Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Patricia Laiz Boada
- Department of Orthopaedic Surgery, Hospital Quirónsalud, Barcelona, Spain
- Garcia-Cugat Fundation, Barcelona, Spain
- Department of Orthopaedic Surgery, Artroscopia GC, Barcelona, Spain
| | - Ramón Cugat
- Department of Orthopaedic Surgery, Hospital Quirónsalud, Barcelona, Spain
- Garcia-Cugat Fundation, Barcelona, Spain
- Department of Orthopaedic Surgery, Artroscopia GC, Barcelona, Spain
- CEU-UCH Chair of Medicine and Regenerative Surgery, Universidad CEU Cardenal Herrera, Moncada, Valencia, Spain
| |
Collapse
|
52
|
A comprehensive characterisation of large-scale expanded human bone marrow and umbilical cord mesenchymal stem cells. Stem Cell Res Ther 2019; 10:99. [PMID: 30885254 PMCID: PMC6421680 DOI: 10.1186/s13287-019-1202-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The manufacture of mesenchymal stem/stromal cells (MSCs) for clinical use needs to be cost effective, safe and scaled up. Current methods of expansion on tissue culture plastic are labour-intensive and involve several 'open' procedures. We have used the closed Quantum® hollow fibre bioreactor to expand four cultures each of MSCs derived from bone marrow (BM) and, for the first time, umbilical cords (UCs) and assessed extensive characterisation profiles for each, compared to parallel cultures grown on tissue culture plastic. METHODS Bone marrow aspirate was directly loaded into the Quantum®, and cells were harvested and characterised at passage (P) 0. Bone marrow cells were re-seeded into the Quantum®, harvested and further characterised at P1. UC-MSCs were isolated enzymatically and cultured once on tissue culture plastic, before loading cells into the Quantum®, harvesting and characterising at P1. Quantum®-derived cultures were phenotyped in terms of immunoprofile, tri-lineage differentiation, response to inflammatory stimulus and telomere length, as were parallel cultures expanded on tissue culture plastic. RESULTS Bone marrow cell harvests from the Quantum® were 23.1 ± 16.2 × 106 in 14 ± 2 days (P0) and 131 ± 84 × 106 BM-MSCs in 13 ± 1 days (P1), whereas UC-MSC harvests from the Quantum® were 168 ± 52 × 106 UC-MSCs after 7 ± 2 days (P1). Quantum®- and tissue culture plastic-expanded cultures at P1 adhered to criteria for MSCs in terms of cell surface markers, multipotency and plastic adherence, whereas the integrins, CD29, CD49c and CD51/61, were found to be elevated on Quantum®-expanded BM-MSCs. Rapid culture expansion in the Quantum® did not cause shortened telomeres when compared to cultures on tissue culture plastic. Immunomodulatory gene expression was variable between donors but showed that all MSCs upregulated indoleamine 2, 3-dioxygenase (IDO). CONCLUSIONS The results presented here demonstrate that the Quantum® can be used to expand large numbers of MSCs from bone marrow and umbilical cord tissues for next-generation large-scale manufacturing, without impacting on many of the properties that are characteristic of MSCs or potentially therapeutic. Using the Quantum®, we can obtain multiple MSC doses from a single manufacturing run to treat many patients. Together, our findings support the development of cheaper cell-based treatments.
Collapse
|
53
|
Domínguez Pérez JM, Fernández-Sarmiento JA, Aguilar García D, Granados Machuca MDM, Morgaz Rodríguez J, Navarrete Calvo R, Pérez Arévalo J, Carrillo Poveda JM, Alentorn-Geli E, Laiz Boada P, Cugat Bertomeu R. Cartilage regeneration using a novel autologous growth factors-based matrix for full-thickness defects in sheep. Knee Surg Sports Traumatol Arthrosc 2019; 27:950-961. [PMID: 30132050 DOI: 10.1007/s00167-018-5107-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE To investigate the chondrogenic-regenerative properties of a novel autologous-made matrix composed of hyaline cartilage chips combined with a growth factors-based clot for full-thickness defects in sheep. METHODS A full-thickness, 8-mm diameter cartilage defect was created in the weight-bearing area of the medial femoral condyle in 6 sheep. Treatment consisted of surgical implantation of an autologous-based matrix of hyaline cartilage chips combined with a clot of plasma poor in platelets and intraarticular injection of plasma rich in growth factors. Outcome measures at 1, 3 and 6 months included macroscopic International Cartilage Repair Society (ICRS) score, histological and immunohistochemical analysis for collagen expression, and transmission electron microscopy study. RESULTS The 6-month macroscopic evaluation showed nearly normal (11.1 ± 0.7) cartilage repair assessment. The ICRS score was significantly higher at 6 months compared to 3 months (5.5 ± 1.3; p < 0.0001) and 1 (1.1 ± 0.4; p < 0.0001) month. At 6 months, hyaline cartilage tissue filling the defect was observed with adequate integration of the regenerated cartilage at the surrounding healthy cartilage margin. At 6 months, mature chondrons and cartilage matrix contained collagen fibers with masked fibrillary structure, and the expression of collagen in the newly formed cartilage was similar in intensity and distribution pattern compared to the healthy adjacent cartilage. CONCLUSIONS This novel treatment enhanced chondrogenesis and regenerated hyaline cartilage at 6 months with nearly normal macroscopic ICRS assessment. Histological analysis showed equivalent structure to mature cartilage tissue in the defect and a collagen expression pattern in the newly formed cartilage similar to that found in adjacent healthy articular cartilage. The present technique may have clinical application for chondral injuries in humans because this procedure is cheap (no need for allograft, or expensive instrumentation/biomaterials/techniques), easy and fast-performing through a small arthrotomy, and safe (no rejection possibility because the patients' own tissue, cells, and plasma are used).
Collapse
Affiliation(s)
- Juan Manuel Domínguez Pérez
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain. .,Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.
| | - José Andrés Fernández-Sarmiento
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain.,Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain
| | - Daniel Aguilar García
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain
| | - María Del Mar Granados Machuca
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain
| | - Juan Morgaz Rodríguez
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain
| | - Rocío Navarrete Calvo
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain
| | - José Pérez Arévalo
- Departamento de Anatomía y Anatomía Patológica Comparadas, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain
| | - José María Carrillo Poveda
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Departamento de Medicina y Cirugía Animal, Cátedra García Cugat, Universidad CEU Cardenal Herrera, 46115, Valencia, Spain
| | - Eduard Alentorn-Geli
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Artroscopia GC, SL, Hospital Quirón, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Mutualidad Catalana de Futbolistas, Federación Española de Fútbol, Ronda Sant Pere 17-21, 08010, Barcelona, Spain
| | - Patricia Laiz Boada
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Artroscopia GC, SL, Hospital Quirón, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain
| | - Ramón Cugat Bertomeu
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Artroscopia GC, SL, Hospital Quirón, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Mutualidad Catalana de Futbolistas, Federación Española de Fútbol, Ronda Sant Pere 17-21, 08010, Barcelona, Spain
| |
Collapse
|
54
|
Xue Y, Hong X, Gao J, Shen R, Ye Z. Preparation and biological characterization of the mixture of poly(lactic-co-glycolic acid)/chitosan/Ag nanoparticles for periodontal tissue engineering. Int J Nanomedicine 2019; 14:483-498. [PMID: 30666109 PMCID: PMC6333395 DOI: 10.2147/ijn.s184396] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective This study aims to produce nanoparticles of chitosan (CS), poly(lactic-co-glycolic acid) (PLGA), and silver and investigate the optimal composite ratio of these three materials for periodontal tissue regeneration. Methods PLGA nanoparticles (nPLGA), CS nanoparticles (nCS), and silver nanoparticles (nAg) were prepared. The antibacterial properties of single nanoparticles and their effects on the proliferation and mineralization of periodontal membrane cells were investigated. Different ratios of nPLGA and nCS were combined, the proliferation and mineralization of periodontal membrane cells were investigated, and based on the results, the optimal ratio was determined. Finally, nPLGA and nCS in optimal ratio were combined with nAg, and the effects of the complex of these three materials on the proliferation and mineralization of periodontal membrane cells were investigated and tested in animals. Results The single nanoparticles were found to have no cytotoxicity and were able to promote cell mineralization. nCS and nAg in low concentrations showed antibacterial activity; however, nAg inhibited cell proliferation. The nPLGA and nCS complex in 3:7 ratio contributed to cell mineralization and had no cytotoxicity. nPLGA/nCS/nAg complex, which had the optimal proportion of the three materials, showed no cytotoxicity and contributed to cell mineralization. Conclusion nPLGA/nCS/nAg complex had no cytotoxicity and contributed to cell mineralization. The 3:7 ratio of nPLGA/nCS and 50 µg/mL nAg were found as the optimal proportion of the three materials.
Collapse
Affiliation(s)
- Yanxiang Xue
- Department of Stomatology, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China, .,Department of Stomatology, Southern Medical University Guangzhou, Guangzhou 510515, China,
| | - Xiaofang Hong
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Medical College of Xiamen University, Xiamen University, Xiamen 361000, China,
| | - Jie Gao
- Department of Stomatology, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China, .,Department of Stomatology, Southern Medical University Guangzhou, Guangzhou 510515, China,
| | - Renze Shen
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Medical College of Xiamen University, Xiamen University, Xiamen 361000, China,
| | - Zhanchao Ye
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Medical College of Xiamen University, Xiamen University, Xiamen 361000, China,
| |
Collapse
|
55
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 585] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
56
|
Kubsik-Gidlewska A, Klupiński K, Krochmalski M, Krochmalski J, Klimkiewicz P, Woldańska-Okońska M. CD34+ Stem Cell Treatment for Knee Osteoarthritis: A Treatment and Rehabilitation Algorithm. JOURNAL OF REHABILITATION MEDICINE - CLINICAL COMMUNICATIONS 2018; 3:1000012. [PMID: 33884126 PMCID: PMC8011677 DOI: 10.2340/20030711-1000012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 11/14/2018] [Indexed: 11/24/2022]
Abstract
Osteoarthritis is a group of multiple overlapping pathological conditions that cause destruction of articular cartilage and other structures of the joint. It is a progressive disease that leads to limitations of physical activity. New forms of treatment are therefore sought to alleviate the clinical symptoms of osteoarthritis and avoid surgery. Stem cell based therapy is an emerging field in orthopaedics. This study describes the treatment of knee osteoarthritis with CD34+ stem cells at the Medical Magnus Outpatient Clinic in Lodz, Poland, together with the treatment and rehabilitation algorithm developed for maximum effectiveness of this procedure. The algorithm includes 3 rehabilitation stages: preoperative, hospitalization and outpatient periods.
LAY ABSTRACT Osteoarthritis of the knee joint is a chronic disease that mainly affects people over 50 years of age. The main symptoms include pain and limitation of range of motion of the joint, which prevent patients from participating in physical activity. Stem cell therapy has been developed in orthopaedics in recent years for the treatment of gonarthrosis. Rehabilitation is necessary after stem cell transplantation in patients with gon-arthrosis in order to restore the proper range of joint mobility, for anti-oedematous action, muscle strength improvement, and for elimination of pain. This article describes the physiotherapy algorithm used for patients after stem cell transplantation. Kinesitherapy and physical therapy enabled a more rapid return of the patient to physical or professional activity.
Collapse
Affiliation(s)
- Anna Kubsik-Gidlewska
- Rehabilitation and Physical Medicine, Medical University of Lodz Chair of Nephrology and Hypertension, Lodz, Poland
| | - Kamil Klupiński
- Medical Magnus Clinic in Lodz, Medical Magnus Clinic in Lodz, Lodz, Poland
| | - Marek Krochmalski
- Rehabilitation and Physical Medicine, Medical University of Lodz Chair of Nephrology and Hypertension, Lodz, Poland
| | - Jakub Krochmalski
- Rehabilitation and Physical Medicine, Medical University of Lodz Chair of Nephrology and Hypertension, Lodz, Poland
| | - Paulina Klimkiewicz
- Rehabilitation and Physical Medicine, Medical University of Lodz Chair of Nephrology and Hypertension, Lodz, Poland
| | - Marta Woldańska-Okońska
- Rehabilitation and Physical Medicine, Medical University of Lodz Chair of Nephrology and Hypertension, Lodz, Poland
| |
Collapse
|
57
|
Graceffa V, Vinatier C, Guicheux J, Stoddart M, Alini M, Zeugolis DI. Chasing Chimeras - The elusive stable chondrogenic phenotype. Biomaterials 2018; 192:199-225. [PMID: 30453216 DOI: 10.1016/j.biomaterials.2018.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022]
Abstract
The choice of the best-suited cell population for the regeneration of damaged or diseased cartilage depends on the effectiveness of culture conditions (e.g. media supplements, three-dimensional scaffolds, mechanical stimulation, oxygen tension, co-culture systems) to induce stable chondrogenic phenotype. Herein, advances and shortfalls in in vitro, preclinical and clinical setting of various in vitro microenvironment modulators on maintaining chondrocyte phenotype or directing stem cells towards chondrogenic lineage are critically discussed. Chondrocytes possess low isolation efficiency, limited proliferative potential and rapid phenotypic drift in culture. Mesenchymal stem cells are relatively readily available, possess high proliferation potential, exhibit great chondrogenic differentiation capacity, but they tend to acquire a hypertrophic phenotype when exposed to chondrogenic stimuli. Embryonic and induced pluripotent stem cells, despite their promising in vitro and preclinical data, are still under-investigated. Although a stable chondrogenic phenotype remains elusive, recent advances in in vitro microenvironment modulators are likely to develop clinically- and commercially-relevant therapies in the years to come.
Collapse
Affiliation(s)
- Valeria Graceffa
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Claire Vinatier
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Jerome Guicheux
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Martin Stoddart
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mauro Alini
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
58
|
Trends in clinical trials for articular cartilage repair by cell therapy. NPJ Regen Med 2018; 3:17. [PMID: 30345076 PMCID: PMC6181982 DOI: 10.1038/s41536-018-0055-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/14/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022] Open
Abstract
Focal and degenerative lesions of articular cartilage greatly reduce the patient’s quality of life. Various therapies including surgical treatment have been developed, but a definitive therapy is not yet known. Several cell therapy products have already been developed and are available in the market. In this study, we examined the clinical research trends related to cell therapy products in the cartilage repair field based on data obtained from the ClinicalTrial.gov website. Although this website does not provide comprehensive results of clinical trials, it offers information on prospective clinical trials, including work in progress, and thus allows for chronological analysis of the data. We selected 203 studies related to the field of cartilage regeneration from ClinicalTrial.gov. The results showed a shift in the clinical translational trend in utilized cells from cartilage- and bone marrow- to adipose tissue-based cells. Whereas the studies that used cartilage as the cell source included many phase III trials, fewer studies using bone marrow and adipose tissue cells progressed to phase III, suggesting that most clinical developments using the latter sources have not been successful so far. One product covered the entire period from the start of phase I to the completion of phase III, with a time to completion of more than 100 months. Translational trends in autologous chondrocyte implantation were also discussed. The use of ClinicalTrials.gov as the sole data source can yield a perspective view of the global clinical translational trends, which has been difficult to observe up to this point. Bone marrow and fat tissue are increasingly tested, although the most clinically advanced cell therapies are still derived from cartilage. Takaharu Negoro from Fujita Health University in Toyoake, Japan, and colleagues identified 203 prospective trials involving cell therapy products for articular cartilage repair. They examined the sources of the cells using a unique chart analysis and observed a shift over time from studies testing products derived from cartilage and bone marrow to, most recently, those from fat. As the researchers document, however, most cell therapies that are approved or in late-stage testing come from cartilage cells, usually a patient’s own. Few of the newer candidates from bone marrow or fat tissue have successfully progressed from phase II proof-of-concept studies to phase III efficacy trials.
Collapse
|
59
|
A useful combination for the treatment of patellofemoral chondral lesions: realignment procedure plus mesenchymal stem cell—retrospective analysis and clinical results at 48 months of follow-up. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2018; 29:461-470. [DOI: 10.1007/s00590-018-2310-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/28/2018] [Indexed: 11/25/2022]
|
60
|
Park YB, Ha CW, Rhim JH, Lee HJ. Stem Cell Therapy for Articular Cartilage Repair: Review of the Entity of Cell Populations Used and the Result of the Clinical Application of Each Entity. Am J Sports Med 2018; 46:2540-2552. [PMID: 29023156 DOI: 10.1177/0363546517729152] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Following successful preclinical studies, stem cell therapy is emerging as a candidate for the treatment of articular cartilage lesions. Because stem cell therapy for cartilage repair in humans is at an early phase, confusion and errors are found in the literature regarding use of the term stem cell therapy in this field. PURPOSE To provide an overview of the outcomes of cartilage repair, elucidating the various cell populations used, and thus reduce confusion with regard to using the term stem cell therapy. STUDY DESIGN Systematic review. METHODS The authors systematically reviewed any studies on clinical application of mesenchymal stem cells (MSCs) in human subjects. A comprehensive search was performed in MEDLINE, EMBASE, the Cochrane Library, CINAHL, Web of Science, and Scopus for human studies that evaluated articular cartilage repair with cell populations containing MSCs. These studies were classified as using bone marrow-derived MSCs, adipose tissue-derived MSCs, peripheral blood-derived MSCs, synovium-derived MSCs, and umbilical cord blood-derived MSCs according to the entity of cell population used. RESULTS Forty-six clinical studies were identified to focus on cartilage repair with MSCs: 20 studies with bone marrow-derived MSCs, 21 studies with adipose tissue-derived MSCs, 3 studies with peripheral blood-derived MSCs, 1 study with synovium-derived MSCs, and 1 study with umbilical cord blood-derived MSCs. All clinical studies reported that cartilage treated with MSCs showed favorable clinical outcomes in terms of clinical scores or cartilage repair evaluated by MRI. However, most studies were limited to case reports and case series. Among these 46 clinical studies, 18 studies erroneously referred to adipose tissue-derived stromal vascular fractions as "adipose-derived MSCs," 2 studies referred to peripheral blood-derived progenitor cells as "peripheral blood-derived MSCs," and 1 study referred to bone marrow aspirate concentrate as "bone marrow-derived MSCs." CONCLUSION Limited evidence is available regarding clinical benefit of stem cell therapy for articular cartilage repair. Because the literature contains substantial errors in describing the therapeutic cells used, researchers need to be alert and observant of proper terms, especially regarding whether the cells used were stem cells or cell populations containing a small portion of stem cells, to prevent confusion in understanding the results of a given stem cell-based therapy.
Collapse
Affiliation(s)
- Yong-Beom Park
- Department of Orthopedic Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Dongjak-gu, Seoul, Republic of Korea
| | - Chul-Won Ha
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Gangnam-gu, Seoul, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Gangnam-gu, Seoul, Republic of Korea
| | - Ji Heon Rhim
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea
| | - Han-Jun Lee
- Department of Orthopedic Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Dongjak-gu, Seoul, Republic of Korea
| |
Collapse
|
61
|
Venkatesan JK, Moutos FT, Rey-Rico A, Estes BT, Frisch J, Schmitt G, Madry H, Guilak F, Cucchiarini M. Chondrogenic Differentiation Processes in Human Bone-Marrow Aspirates Seeded in Three-Dimensional-Woven Poly(ɛ-Caprolactone) Scaffolds Enhanced by Recombinant Adeno-Associated Virus-Mediated SOX9 Gene Transfer. Hum Gene Ther 2018; 29:1277-1286. [PMID: 29717624 DOI: 10.1089/hum.2017.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Combining gene therapy approaches with tissue engineering procedures is an active area of translational research for the effective treatment of articular cartilage lesions, especially to target chondrogenic progenitor cells such as those derived from the bone marrow. This study evaluated the effect of genetically modifying concentrated human mesenchymal stem cells from bone marrow to induce chondrogenesis by recombinant adeno-associated virus (rAAV) vector gene transfer of the sex-determining region Y-type high-mobility group box 9 (SOX9) factor upon seeding in three-dimensional-woven poly(ɛ-caprolactone; PCL) scaffolds that provide mechanical properties mimicking those of native articular cartilage. Prolonged, effective SOX9 expression was reported in the constructs for at least 21 days, the longest time point evaluated, leading to enhanced metabolic and chondrogenic activities relative to the control conditions (reporter lacZ gene transfer or absence of vector treatment) but without affecting the proliferative activities in the samples. The application of the rAAV SOX9 vector also prevented undesirable hypertrophic and terminal differentiation in the seeded concentrates. As bone marrow is readily accessible during surgery, such findings reveal the therapeutic potential of providing rAAV-modified marrow concentrates within three-dimensional-woven PCL scaffolds for repair of focal cartilage lesions.
Collapse
Affiliation(s)
- Jagadeesh K Venkatesan
- 1 Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University , Homburg/Saar, Germany
| | | | - Ana Rey-Rico
- 1 Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University , Homburg/Saar, Germany
| | | | - Janina Frisch
- 1 Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University , Homburg/Saar, Germany
| | - Gertrud Schmitt
- 1 Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University , Homburg/Saar, Germany
| | - Henning Madry
- 1 Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University , Homburg/Saar, Germany
| | - Farshid Guilak
- 2 Cytex Therapeutics, Inc. , Durham, North Carolina.,3 Departments of Orthopedic Surgery, Developmental Biology, and Biomedical Engineering, Washington University and Shriners Hospitals for Children-St. Louis , St. Louis, Missouri
| | - Magali Cucchiarini
- 1 Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University , Homburg/Saar, Germany
| |
Collapse
|
62
|
Tie K, Wu M, Deng Y, Wen Y, Dan Xu, Chen L, Wang H. Histone hypo-acetylation of Sox9 mediates nicotine-induced weak cartilage repair by suppressing BMSC chondrogenic differentiation. Stem Cell Res Ther 2018; 9:98. [PMID: 29631619 PMCID: PMC5891899 DOI: 10.1186/s13287-018-0853-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/02/2018] [Accepted: 03/21/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Nicotine has negative effects on tissue repair, little research concerns its effect on the cartilage repair of tissue engineering stem cells. The present study aimed to investigate the effects of nicotine on the bone marrow-derived mesenchymal stem cells' (BMSCs) chondrogenic repair function of cartilage defects and explored the molecular mechanism. METHODS A cartilage defect model of rat was repaired by BMSC transplantation, and treated with nicotine or saline at 2.0 mg/kg/d in 12 weeks. Nicotine's effect on chondrogenic differentiation was studied by exposing BMSCs to nicotine at 0.1, 1, 10, and 100 μM, and methyllycaconitine (MLA), which is a selective α7-nicotinic acetylcholine receptor (nAChR) inhibitor and si-RNA of nuclear factor of activated T cells 2 (NFATc2), were used to verify the molecular mechanism of nicotine's effect. RESULTS Data showed that nicotine inhibited cartilage repair function by suppressing SRY-type high-mobility group box 9 (Sox9) in regenerated tissues. Further in vitro study demonstrated that nicotine enhanced intracellular Ca2+ and activity of calcineurin (CaN) through α7-nAChR, increased the nucleic expressions of NFATc2 and the bindings to SOX9 promoter, and thus reduced the acetylation of H3K9 and H3K14 in SOX9 promoter. CONCLUSIONS Findings from this study demonstrated that nicotine suppressed the chondrogenic differentiation of BMSCs in vivo and in vitro, which offers insight into the risk assessment of cartilage defect repair in a nicotine exposure population and its therapeutic target.
Collapse
Affiliation(s)
- Kai Tie
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, 430071, People's Republic of China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Yu Deng
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, People's Republic of China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, People's Republic of China. .,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
63
|
Mendes LF, Katagiri H, Tam WL, Chai YC, Geris L, Roberts SJ, Luyten FP. Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo. Stem Cell Res Ther 2018; 9:42. [PMID: 29467016 PMCID: PMC5822604 DOI: 10.1186/s13287-018-0787-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/04/2018] [Accepted: 01/22/2018] [Indexed: 02/08/2023] Open
Abstract
Background Chondrogenic mesenchymal stem cells (MSCs) have not yet been used to address the clinical demands of large osteochondral joint surface defects. In this study, self-assembling tissue intermediates (TIs) derived from human periosteum-derived stem/progenitor cells (hPDCs) were generated and validated for stable cartilage formation in vivo using two different animal models. Methods hPDCs were aggregated and cultured in the presence of a novel growth factor (GF) cocktail comprising of transforming growth factor (TGF)-β1, bone morphogenetic protein (BMP)2, growth differentiation factor (GDF)5, BMP6, and fibroblast growth factor (FGF)2. Quantitative polymerase chain reaction (PCR) and immunohistochemistry were used to study in vitro differentiation. Aggregates were then implanted ectopically in nude mice and orthotopically in critical-size osteochondral defects in nude rats and evaluated by microcomputed tomography (µCT) and immunohistochemistry. Results Gene expression analysis after 28 days of in vitro culture revealed the expression of early and late chondrogenic markers and a significant upregulation of NOGGIN as compared to human articular chondrocytes (hACs). Histological examination revealed a bilayered structure comprising of chondrocytes at different stages of maturity. Ectopically, TIs generated both bone and mineralized cartilage at 8 weeks after implantation. Osteochondral defects treated with TIs displayed glycosaminoglycan (GAG) production, type-II collagen, and lubricin expression. Immunostaining for human nuclei protein suggested that hPDCs contributed to both subchondral bone and articular cartilage repair. Conclusion Our data indicate that in vitro derived osteochondral-like tissues can be generated from hPDCs, which are capable of producing bone and cartilage ectopically and behave orthotopically as osteochondral units. Electronic supplementary material The online version of this article (10.1186/s13287-018-0787-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L F Mendes
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Campus Gasthuisberg O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium
| | - H Katagiri
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Campus Gasthuisberg O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium
| | - W L Tam
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Campus Gasthuisberg O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium
| | - Y C Chai
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Campus Gasthuisberg O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium
| | - L Geris
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Campus Gasthuisberg O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.,Biomechanics Research Unit, University of Liege, Chemin des Chevreuils 1 - BAT 52/3, 4000, Liege 1, Belgium.,Biomechanics Section, KU Leuven, Celestijnenlaan 300C bus 2419, 3001, Leuven, Belgium
| | - S J Roberts
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Campus Gasthuisberg O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.,Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, The Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
| | - F P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Campus Gasthuisberg O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium. .,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.
| |
Collapse
|
64
|
Park S, Lee DR, Nam JS, Ahn CW, Kim H. Fetal bovine serum-free cryopreservation methods for clinical banking of human adipose-derived stem cells. Cryobiology 2018; 81:65-73. [PMID: 29448017 DOI: 10.1016/j.cryobiol.2018.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022]
Abstract
The use of fetal bovine serum (FBS) as a cryopreservation supplement is not suitable for the banking of mesenchymal stem cells (MSCs) due to the risk of transmission of disease as well as xenogeneic immune reactions in the transplanted host. Here, we investigated if human serum albumin (HSA), human serum (HS), or knockout serum replacement (KSR) can replace FBS for the cryopreservation of MSCs. In addition, we examined the characteristics of MSCs after multiple rounds of cryopreservation. Human adipose-derived stem cells (ASCs) cryopreserved with three FBS replacements, 9% HSA, 90% HS, or 90% KSR, in combination with 10% dimethyl sulfoxide (Me2SO) maintained stem cell properties including growth, immunophenotypes, gene expression patterns, and the potential to differentiate into adipogenic, osteogenic, and chondrogenic lineages, similar to ASCs frozen with FBS. Moreover, the immunophenotype, gene expression, and differentiation capabilities of ASCs were not altered by up to four freeze-thaw cycles. However, the performance of three or four freeze-thaw cycles significantly reduced the proliferation ability of ASCs, as indicated by the longer population doubling time and reduced colony-forming unit-fibroblast frequency. Together, our results suggest that HSA, HS, or KSR can replace FBS for the cryopreservation of ASCs, without altering their stemness, and should be processed with no more than two freeze-thaw cycles for clinical approaches.
Collapse
Affiliation(s)
- Seah Park
- Department of Biotechnology, Seoul Women's University, 621 Hwarangro, Nowon-Gu, Seoul, Republic of Korea.
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, 120 Haeryong-ro, Pocheon-shi, Gyeongghi-do, Republic of Korea.
| | - Ji Sun Nam
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Chul Woo Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Haekwon Kim
- Department of Biotechnology, Seoul Women's University, 621 Hwarangro, Nowon-Gu, Seoul, Republic of Korea.
| |
Collapse
|
65
|
Anz AW, Pinegar CO. The Role of Stem Cells in Surgical Repair. CARTILAGE RESTORATION 2018:151-164. [DOI: 10.1007/978-3-319-77152-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
66
|
Armiento AR, Stoddart MJ, Alini M, Eglin D. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater 2018; 65:1-20. [PMID: 29128537 DOI: 10.1016/j.actbio.2017.11.021] [Citation(s) in RCA: 378] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/05/2017] [Accepted: 11/07/2017] [Indexed: 12/27/2022]
Abstract
Articular cartilage is commonly described as a tissue that is made of up to 80% water, is devoid of blood vessels, nerves, and lymphatics, and is populated by only one cell type, the chondrocyte. At first glance, an easy tissue for clinicians to repair and for scientists to reproduce in a laboratory. Yet, chondral and osteochondral defects currently remain an open challenge in orthopedics and tissue engineering of the musculoskeletal system, without considering osteoarthritis. Why do we fail in repairing and regenerating articular cartilage? Behind its simple and homogenous appearance, articular cartilage hides a heterogeneous composition, a high level of organisation and specific biomechanical properties that, taken together, make articular cartilage a unique material that we are not yet able to repair or reproduce with high fidelity. This review highlights the available therapies for cartilage repair and retraces the research on different biomaterials developed for tissue engineering strategies. Their potential to recreate the structure, including composition and organisation, as well as the function of articular cartilage, intended as cell microenvironment and mechanically competent replacement, is described. A perspective of the limitations of the current research is given in the light of the emerging technologies supporting tissue engineering of articular cartilage. STATEMENT OF SIGNIFICANCE The mechanical properties of articular tissue reflect its functionally organised composition and the recreation of its structure challenges the success of in vitro and in vivo reproduction of the native cartilage. Tissue engineering and biomaterials science have revolutionised the way scientists approach the challenge of articular cartilage repair and regeneration by introducing the concept of the interdisciplinary approach. The clinical translation of the current approaches are not yet fully successful, but promising results are expected from the emerging and developing new generation technologies.
Collapse
Affiliation(s)
- A R Armiento
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - M J Stoddart
- AO Research Institute Davos, Davos Platz, Switzerland; University Medical Center, Albert-Ludwigs University, Freiburg, Germany.
| | - M Alini
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - D Eglin
- AO Research Institute Davos, Davos Platz, Switzerland.
| |
Collapse
|
67
|
Regenerative Medicine Applications of Mesenchymal Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1089:115-141. [PMID: 29767289 DOI: 10.1007/5584_2018_213] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major research challenge is to develop therapeutics that assist with healing damaged tissues and organs because the human body has limited ability to restore the majority of these tissues and organs to their original state. Tissue engineering (TE) and regenerative medicine (RM) promises to offer efficient therapeutic biological strategies that use mesenchymal stem cells (MSCs). MSCs possess the capability for self-renewal, multilineage differentiation, and immunomodulatory properties that make them attractive for clinical applications. They have been extensively investigated in numerous preclinical and clinical settings in an attempt to overcome their challenges and promote tissue regeneration and repair. This review explores the exciting opportunities afforded by MSCs, their desirable properties as cellular therapeutics in RM, and implicates their potential use in clinical practice. Here, we attempt to identify challenges and issues that determine the clinical efficacy of MSCs as treatment for skeletal and non-skeletal tissues.
Collapse
|
68
|
Paschos NK, Sennett ML. Update on mesenchymal stem cell therapies for cartilage disorders. World J Orthop 2017; 8:853-860. [PMID: 29312843 PMCID: PMC5745427 DOI: 10.5312/wjo.v8.i12.853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/23/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023] Open
Abstract
Cartilage disorders, including focal cartilage lesions, are among the most common clinical problems in orthopedic practice. Left untreated, large focal lesions may result in progression to osteoarthritis, with tremendous impact on the quality of life of affected individuals. Current management strategies have shown only a modest degree of success, while several upcoming interventions signify better outcomes in the future. Among these, stem cell therapies have been suggested as a promising new era for cartilage disorders. Certain characteristics of the stem cells, such as their potential to differentiate but also to support healing made them a fruitful candidate for lesions in cartilage, a tissue with poor healing capacity. The aim of this editorial is to provide an update on the recent advancements in the field of stem cell therapy for the management of focal cartilage defects. Our goal is to present recent basic science advances and to present the potential of the use of stem cells in novel clinical interventions towards enhancement of the treatment armamentarium for cartilage lesions. Furthermore, we highlight some thoughts for the future of cartilage regeneration and repair and to explore future perspectives for the next steps in the field.
Collapse
Affiliation(s)
- Nikolaos K Paschos
- Department of Orthopaedic Surgery, Division of Sports Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19107, United States
| | - Mackenzie L Sennett
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19107, United States
| |
Collapse
|
69
|
The Application of Stem Cells from Different Tissues to Cartilage Repair. Stem Cells Int 2017; 2017:2761678. [PMID: 29375622 PMCID: PMC5742463 DOI: 10.1155/2017/2761678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
The degeneration of articular cartilage represents an ongoing challenge at the clinical and basic level. Tissue engineering and regenerative medicine using stem/progenitor cells have emerged as valid alternatives to classical reparative techniques. This review offers a brief introduction and overview of the field, highlighting a number of tissue sources for stem/progenitor cell populations. Emphasis is given to recent developments in both clinical and basic sciences. The relative strengths and weaknesses of each tissue type are discussed.
Collapse
|
70
|
Kouroupis D, Wang XN, El-Sherbiny Y, McGonagle D, Jones E. The Safety of Non-Expanded Multipotential Stromal Cell Therapies. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-59165-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
71
|
Mahmoud EE, Tanaka Y, Kamei N, Harada Y, Ohdan H, Adachi N, Ochi M. Monitoring immune response after allogeneic transplantation of mesenchymal stem cells for osteochondral repair. J Tissue Eng Regen Med 2017; 12:e275-e286. [DOI: 10.1002/term.2413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 12/12/2016] [Accepted: 01/13/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Elhussein Elbadry Mahmoud
- Department of Orthopaedic Surgery, Integrated Health Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
- Department of Surgery, Faculty of Veterinary Medicine; South Valley University; Qena Egypt
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Integrated Health Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
- Medical Center for Translational and Clinical Research; Hiroshima University Hospital; Hiroshima Japan
| | - Yohei Harada
- Department of Orthopaedic Surgery, Integrated Health Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Integrated Health Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
| | - Mitsuo Ochi
- Department of Orthopaedic Surgery, Integrated Health Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
| |
Collapse
|
72
|
Zeineddine HA, Frush TJ, Saleh ZM, El-Othmani MM, Saleh KJ. Applications of Tissue Engineering in Joint Arthroplasty: Current Concepts Update. Orthop Clin North Am 2017; 48:275-288. [PMID: 28577777 DOI: 10.1016/j.ocl.2017.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Research in tissue engineering has undoubtedly achieved significant milestones in recent years. Although it is being applied in several disciplines, tissue engineering's application is particularly advanced in orthopedic surgery and in degenerative joint diseases. The literature is full of remarkable findings and trials using tissue engineering in articular cartilage disease. With the vast and expanding knowledge, and with the variety of techniques available at hand, the authors aimed to review the current concepts and advances in the use of cell sources in articular cartilage tissue engineering.
Collapse
Affiliation(s)
- Hussein A Zeineddine
- Department of Surgery, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Todd J Frush
- Department of Orthopaedics and Sports Medicine, Detroit Medical Center, University Health Center (UHC) 9B, 4201 Saint Antoine Street, Detroit, MI 48201-2153, USA
| | - Zeina M Saleh
- Department of Surgery, American University of Beirut Medical Center, Bliss Street, Riad El-Solh, Beirut 11072020, Lebanon
| | - Mouhanad M El-Othmani
- Department of Orthopaedics and Sports Medicine, Musculoskeletal Institute of Excellence, Detroit Medical Center, University Health Center (UHC) 9B, 4201 Saint Antoine Street, Detroit, MI 48201-2153, USA
| | - Khaled J Saleh
- Department of Orthopaedics and Sports Medicine, Detroit Medical Center, University Health Center (UHC) 9B, 4201 Saint Antoine Street, Detroit, MI 48201-2153, USA.
| |
Collapse
|
73
|
Borlongan CV, Yu G, Matsukawa N, Yasuhara T, Hara K, Xu L. Article Commentary: Cell Transplantation: Stem Cells in the Spotlight. Cell Transplant 2017; 14:519-526. [DOI: 10.3727/000000005783982774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Cesar V. Borlongan
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Guolong Yu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Noriyuki Matsukawa
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Takao Yasuhara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Koichi Hara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Lin Xu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| |
Collapse
|
74
|
SanMartin A, Borlongan CV. Article Commentary: Cell Transplantation: Toward Cell Therapy. Cell Transplant 2017; 15:665-73. [PMID: 17176618 DOI: 10.3727/000000006783981666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Agneta SanMartin
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, FL 33612, USA.
| | | |
Collapse
|
75
|
Richardson JB, Wright KT, Wales J, Kuiper JH, McCarthy HS, Gallacher P, Harrison PE, Roberts S. Efficacy and safety of autologous cell therapies for knee cartilage defects (autologous stem cells, chondrocytes or the two): randomized controlled trial design. Regen Med 2017. [PMID: 28635368 DOI: 10.2217/rme-2017-0032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM The main aim of this trial is to test the safety and efficacy of autologous stromal/stem cells, chondrocytes or the two combined in the treatment of knee cartilage defects. PATIENTS & METHODS Patients with symptomatic chondral/osteochondral defects will be randomized to cell therapy treatment with one of three cell populations (1:1:1). The primary efficacy outcome is a functional knee score (Lysholm) at 15 months post-treatment and the primary safety outcome is the incidence of adverse events. Secondary objectives are to analyze repair tissues, quality of life and cost-utility assessments. Exploratory objectives are to identify predictors for success/potency and dose-response relationships. RESULTS & CONCLUSION This trial has been carefully designed so that valuable scientific and clinical information can be gathered throughout and in the final analysis.
Collapse
Affiliation(s)
- James B Richardson
- Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, SY10 7AG, UK.,Institute for Science & Technology in Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Karina T Wright
- Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, SY10 7AG, UK.,Institute for Science & Technology in Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Johanna Wales
- Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, SY10 7AG, UK
| | - Jan Herman Kuiper
- Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, SY10 7AG, UK.,Institute for Science & Technology in Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Helen S McCarthy
- Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, SY10 7AG, UK.,Institute for Science & Technology in Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Peter Gallacher
- Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, SY10 7AG, UK
| | - Paul E Harrison
- Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, SY10 7AG, UK
| | - Sally Roberts
- Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, SY10 7AG, UK.,Institute for Science & Technology in Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
76
|
Ayerst BI, Merry CLR, Day AJ. The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications. Pharmaceuticals (Basel) 2017; 10:E54. [PMID: 28608822 PMCID: PMC5490411 DOI: 10.3390/ph10020054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
High sulfation, low cost, and the status of heparin as an already FDA- and EMA- approved product, mean that its inclusion in tissue engineering (TE) strategies is becoming increasingly popular. However, the use of heparin may represent a naïve approach. This is because tissue formation is a highly orchestrated process, involving the temporal expression of numerous growth factors and complex signaling networks. While heparin may enhance the retention and activity of certain growth factors under particular conditions, its binding 'promiscuity' means that it may also inhibit other factors that, for example, play an important role in tissue maintenance and repair. Within this review we focus on articular cartilage, highlighting the complexities and highly regulated processes that are involved in its formation, and the challenges that exist in trying to effectively engineer this tissue. Here we discuss the opportunities that glycosaminoglycans (GAGs) may provide in advancing this important area of regenerative medicine, placing emphasis on the need to move away from the common use of heparin, and instead focus research towards the utility of specific GAG preparations that are able to modulate the activity of growth factors in a more controlled and defined manner, with less off-target effects.
Collapse
Affiliation(s)
- Bethanie I Ayerst
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| | - Catherine L R Merry
- Stem Cell Glycobiology Group, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| |
Collapse
|
77
|
Frisch J, Orth P, Rey-Rico A, Venkatesan JK, Schmitt G, Madry H, Kohn D, Cucchiarini M. Peripheral blood aspirates overexpressing IGF-I via rAAV gene transfer undergo enhanced chondrogenic differentiation processes. J Cell Mol Med 2017; 21:2748-2758. [PMID: 28467017 PMCID: PMC5661259 DOI: 10.1111/jcmm.13190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/09/2017] [Indexed: 01/24/2023] Open
Abstract
Implantation of peripheral blood aspirates induced towards chondrogenic differentiation upon genetic modification in sites of articular cartilage injury may represent a powerful strategy to enhance cartilage repair. Such a single‐step approach may be less invasive than procedures based on the use of isolated or concentrated MSCs, simplifying translational protocols in patients. In this study, we provide evidence showing the feasibility of overexpressing the mitogenic and pro‐anabolic insulin‐like growth factor I (IGF‐I) in human peripheral blood aspirates via rAAV‐mediated gene transfer, leading to enhanced proliferative and chondrogenic differentiation (proteoglycans, type‐II collagen, SOX9) activities in the samples relative to control (reporter rAAV‐lacZ) treatment over extended periods of time (at least 21 days, the longest time‐point evaluated). Interestingly, IGF‐I gene transfer also triggered hypertrophic, osteo‐ and adipogenic differentiation processes in the aspirates, suggesting that careful regulation of IGF‐I expression may be necessary to contain these events in vivo. Still, the current results demonstrate the potential of targeting human peripheral blood aspirates via therapeutic rAAV transduction as a novel, convenient tool to treat articular cartilage injuries.
Collapse
Affiliation(s)
- Janina Frisch
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | | | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Dieter Kohn
- Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
78
|
Meng Q, Hu X, Huang H, Liu Z, Yuan L, Shao Z, Jiang Y, Zhang J, Fu X, Duan X, Ao Y. Microfracture combined with functional pig peritoneum-derived acellular matrix for cartilage repair in rabbit models. Acta Biomater 2017; 53:279-292. [PMID: 28115294 DOI: 10.1016/j.actbio.2017.01.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/14/2017] [Accepted: 01/18/2017] [Indexed: 12/30/2022]
Abstract
Due to avascular and hypocellular nature of cartilage, repair of articular cartilage defects within synovial joints still poses a significant clinical challenge. To promote neocartilage properties, we established a functional scaffold named APM-E7 by conjugating a bone marrow-derived mesenchymal stem cell (BM-MSC) affinity peptide (E7) onto the acellular peritoneum matrix (APM). During in vitro culture, the APM-E7 scaffold can support better proliferation as well as better differentiation into chondrocytes of BM-MSCs. After implanting into cartilage defects in rabbits for 24weeks, compared with microfracture and APM groups, the APM-E7 scaffolds exhibited superior quality of neocartilage without transplant rejection, according to general observations, histological assessment, synovial fluid analysis, magnetic resonance imaging (MRI) and nanomechanical properties. This APM-E7 scaffold provided a scaffold for cell attachment, which was crucial for cartilage regeneration. Overall, the APM-E7 is a promising biomaterial with low immunogenicity for one-step cartilage repair by promoting autologous connective tissue progenitor (CTP) attachment. STATEMENT OF SIGNIFICANCE We report the one-step transplantation of functional acellular peritoneum matrix (APM-E7) with specific mesenchymal stem cell recruitment to repair rabbit cartilage injury. The experimental results illustrated that the APM-E7 scaffold was successfully fabricated, which could specifically recruit MSCs and fill the cartilage defects in the femoral trochlear of rabbits at 24weeks post-surgery. The repaired tissue was hyaline cartilage, which exhibited ideal mechanical stability. The APM-E7 biomaterial could provide scaffold for MSCs and improve cell homing, which are two key factors required for cartilage tissue engineering, thereby providing new insights into cartilage tissue engineering.
Collapse
Affiliation(s)
- Qingyang Meng
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China
| | - Hongjie Huang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China
| | - Zhenlong Liu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China
| | - Lan Yuan
- Medical and Healthy Analysis Centre, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, People's Republic of China
| | - Zhenxing Shao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China
| | - Yanfang Jiang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China
| | - Jiying Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China
| | - Xin Fu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China
| | - Xiaoning Duan
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China.
| |
Collapse
|
79
|
Horner CB, Hirota K, Liu J, Maldonado M, Hyle Park B, Nam J. Magnitude‐dependent and inversely‐related osteogenic/chondrogenic differentiation of human mesenchymal stem cells under dynamic compressive strain. J Tissue Eng Regen Med 2017; 12:e637-e647. [DOI: 10.1002/term.2332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/01/2016] [Accepted: 09/26/2016] [Indexed: 01/02/2023]
Affiliation(s)
| | - Koji Hirota
- Department of BioengineeringUniversity of California Riverside CA 92521 USA
| | - Junze Liu
- Department of BioengineeringUniversity of California Riverside CA 92521 USA
| | - Maricela Maldonado
- Department of BioengineeringUniversity of California Riverside CA 92521 USA
| | - B. Hyle Park
- Department of BioengineeringUniversity of California Riverside CA 92521 USA
| | - Jin Nam
- Department of BioengineeringUniversity of California Riverside CA 92521 USA
| |
Collapse
|
80
|
Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel. Sci Rep 2017; 7:45018. [PMID: 28332587 PMCID: PMC5362895 DOI: 10.1038/srep45018] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/17/2017] [Indexed: 12/14/2022] Open
Abstract
Autologous chondrocyte implantation for cartilage repair represents a challenge because strongly limited by chondrocytes' poor expansion capacity in vitro. Mesenchymal stem cells (MSCs) can differentiate into chondrocytes, while mechanical loading has been proposed as alternative strategy to induce chondrogenesis excluding the use of exogenous factors. Moreover, MSC supporting material selection is fundamental to allow for an active interaction with cells. Here, we tested a novel thermo-reversible hydrogel composed of 8% w/v methylcellulose (MC) in a 0.05 M Na2SO4 solution. MC hydrogel was obtained by dispersion technique and its thermo-reversibility, mechanical properties, degradation and swelling were investigated, demonstrating a solution-gelation transition between 34 and 37 °C and a low bulk degradation (<20%) after 1 month. The lack of any hydrogel-derived immunoreaction was demonstrated in vivo by mice subcutaneous implantation. To induce in vitro chondrogenesis, MSCs were seeded into MC solution retained within a porous polyurethane (PU) matrix. PU-MC composites were subjected to a combination of compression and shear forces for 21 days in a custom made bioreactor. Mechanical stimulation led to a significant increase in chondrogenic gene expression, while histological analysis detected sulphated glycosaminoglycans and collagen II only in loaded specimens, confirming MC hydrogel suitability to support load induced MSCs chondrogenesis.
Collapse
|
81
|
Goldberg A, Mitchell K, Soans J, Kim L, Zaidi R. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J Orthop Surg Res 2017; 12:39. [PMID: 28279182 PMCID: PMC5345159 DOI: 10.1186/s13018-017-0534-y] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/13/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. SHORT CONCLUSIONS This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place.
Collapse
Affiliation(s)
- Andy Goldberg
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Katrina Mitchell
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Julian Soans
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Louise Kim
- Joint Research and Enterprise Office, St George’s University of London and St George’s University Hospitals NHS Foundation Trust, Hunter Wing, Cranmer Terrace, London, SW17 0RE UK
| | - Razi Zaidi
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| |
Collapse
|
82
|
Tao K, Rey-Rico A, Frisch J, Venkatesan JK, Schmitt G, Madry H, Lin J, Cucchiarini M. Effects of combined rAAV-mediated TGF-β and sox9 gene transfer and overexpression on the metabolic and chondrogenic activities in human bone marrow aspirates. J Exp Orthop 2017; 4:4. [PMID: 28176272 PMCID: PMC5296264 DOI: 10.1186/s40634-017-0077-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/16/2017] [Indexed: 02/08/2023] Open
Abstract
Background Transplantation of genetically modified bone marrow concentrates is an attractive approach to conveniently activate the chondrogenic differentiation processes as a means to improve the intrinsic repair capacities of damaged articular cartilage. Methods Human bone marrow aspirates were co-transduced with recombinant adeno-associated virus (rAAV) vectors to overexpress the pleiotropic transformation growth factor beta (TGF-β) and the cartilage-specific transcription factor sox9 as a means to enhance the chondroreparative processes in conditions of specific lineage differentiation. Results Successful TGF-β/sox9 combined gene transfer and overexpression via rAAV was achieved in chondrogenically induced human bone marrow aspirates for up to 21 days, the longest time point evaluated, leading to increased proliferation, matrix synthesis, and chondrogenic differentiation relative to control treatments (reporter lacZ treatment, absence of vector application) especially when co-applying the candidate vectors at the highest vector doses tested. Optimal co-administration of TGF-β with sox9 also advantageously reduced hypertrophic differentiation in the aspirates. Conclusions These findings report the possibility of directly modifying bone marrow aspirates by combined therapeutic gene transfer as a potent and convenient future approach to improve the repair of articular cartilage lesions.
Collapse
Affiliation(s)
- Ke Tao
- Institute of Arthritis, Peking University People's Hospital, No. 11 Xizhimen Nan Road, Xicheng District, Beijing, 100044, People's Republic of China.,Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Janina Frisch
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Jagadeesh Kumar Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Jianhao Lin
- Institute of Arthritis, Peking University People's Hospital, No. 11 Xizhimen Nan Road, Xicheng District, Beijing, 100044, People's Republic of China.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany.
| |
Collapse
|
83
|
Jeon OH, Elisseeff J. Orthopedic tissue regeneration: cells, scaffolds, and small molecules. Drug Deliv Transl Res 2016; 6:105-20. [PMID: 26625850 DOI: 10.1007/s13346-015-0266-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Orthopedic tissue regeneration would benefit the aging population or patients with degenerative bone and cartilage diseases, especially osteoporosis and osteoarthritis. Despite progress in surgical and pharmacological interventions, new regenerative approaches are needed to meet the challenge of creating bone and articular cartilage tissues that are not only structurally sound but also functional, primarily to maintain mechanical integrity in their high load-bearing environments. In this review, we discuss new advances made in exploiting the three classes of materials in bone and cartilage regenerative medicine--cells, biomaterial-based scaffolds, and small molecules--and their successes and challenges reported in the clinic. In particular, the focus will be on the development of tissue-engineered bone and cartilage ex vivo by combining stem cells with biomaterials, providing appropriate structural, compositional, and mechanical cues to restore damaged tissue function. In addition, using small molecules to locally promote regeneration will be discussed, with potential approaches that combine bone and cartilage targeted therapeutics for the orthopedic-related disease, especially osteoporosis and osteoarthritis.
Collapse
Affiliation(s)
- Ok Hee Jeon
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, 5031 Smith Building, 400N. Broadway, Baltimore, MD, 21231, USA
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, 5031 Smith Building, 400N. Broadway, Baltimore, MD, 21231, USA.
| |
Collapse
|
84
|
Frisch J, Cucchiarini M. Gene- and Stem Cell-Based Approaches to Regulate Hypertrophic Differentiation in Articular Cartilage Disorders. Stem Cells Dev 2016; 25:1495-1512. [DOI: 10.1089/scd.2016.0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Janina Frisch
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
85
|
Cui GH, Wang YY, Li CJ, Shi CH, Wang WS. Efficacy of mesenchymal stem cells in treating patients with osteoarthritis of the knee: A meta-analysis. Exp Ther Med 2016; 12:3390-3400. [PMID: 27882169 DOI: 10.3892/etm.2016.3791] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/16/2016] [Indexed: 01/10/2023] Open
Abstract
To assess the clinical efficacy and safety of mesenchymal stem cell (MSC) treatment for osteoarthritis of the knee (KOA), a systematic electronic literature search was performed on PubMed, EMBASE and Web of Science. Studies published in English from the earliest record to December 2014 were searched using the following keywords: Cartilage defect, cartilage repair, osteoarthritis, KOA, stem cells, MSCs, bone marrow concentrate (BMC), adipose-derived mesenchymal stem cells, synovial-derived mesenchymal stem cells and peripheral blood-derived mesenchymal stem cells. The effect sizes of selected studies were determined by extracting pain scores from the visual analog scale and functional changes from International Knee Documentation Committee and Lysholm and Western Ontario and McMaster Universities Osteoarthritis Index before and after MSCs or reference treatments at 3, 6, 12, and 24 months. The factors were analyzed and the outcomes were modified after comparing the MSC group pooled values with the pretreatment baseline or between different treatment arms. A systematic search identified 18 clinical trials on this topic, including 10 single-arm prospective studies, four quasi-experimental studies and four randomized controlled trials that used BMCs to treat 565 patients with KOA in total. MSC treatment in patients with KOA showed continual efficacy for 24 months compared with their pretreatment condition. Effectiveness of MSCs was improved at 12 and 24 months post-treatment, compared with at 3 and 6 months. No dose-responsive association in the MSCs numbers was demonstrated. However, patients with arthroscopic debridement, activation agent or lower degrees of Kellgren-Lawrence grade achieved improved outcomes. MSC application ameliorated the overall outcomes of patients with KOA, including pain relief and functional improvement from basal evaluations, particularly at 12 and 24 months after follow-up.
Collapse
Affiliation(s)
- Gang-Hua Cui
- Department of Orthopedics, Medical College of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Yang Yang Wang
- Department of Orthopedics, Medical College of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Chang-Jun Li
- Department of Orthopedics, Medical College of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Chen-Hui Shi
- Department of Orthopedics, Medical College of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Wei-Shan Wang
- Department of Orthopedics, Medical College of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| |
Collapse
|
86
|
Koizumi K, Ebina K, Hart DA, Hirao M, Noguchi T, Sugita N, Yasui Y, Chijimatsu R, Yoshikawa H, Nakamura N. Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering approach. Osteoarthritis Cartilage 2016; 24:1413-22. [PMID: 26973329 DOI: 10.1016/j.joca.2016.03.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess whether synovial mesenchymal stem cells (SMSCs) from patients with osteoarthritis (OA) or rheumatoid arthritis (RA) can be used as an alternative cell source for cartilage repair using allogenic tissue engineered construct (TEC). METHODS Twenty-five patients (17 female, average age 61.8 years) were divided according to their pathology (control trauma group; N = 6, OA group; N = 6) and RA patients were subdivided into two groups to evaluate the impact of biologics in accordance with whether treated with biologics [Bio(+)RA; N = 7] or not [Bio(-)RA; N = 6]. We compared the following characteristics among these groups: (1) The cell proliferation capacity of SMSCs; (2) The influence of passage number on features of SMSCs; (3) The weight and volume of TEC from the same number of SMSCs; (4) Inflammatory cytokine gene expressions levels of TEC; (5) The chondrogenic potential of TEC; and (6) Osteochondral repair using TEC in athymic nude rats. RESULTS SMSCs from the four groups exhibited equivalent features in the above evaluation items. In in vivo studies, the TEC-treated repair tissues for all groups exhibited significantly better outcomes than those for the untreated group and no significant differences among the four TEC groups. CONCLUSION SMSCs from OA or RA patients are no less appropriate for repairing cartilage than those from trauma patients and thus, may be an effective source for allogenic cell-based cartilage repair.
Collapse
Affiliation(s)
- K Koizumi
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - K Ebina
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - D A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Canada
| | - M Hirao
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - T Noguchi
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - N Sugita
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Y Yasui
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - R Chijimatsu
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - H Yoshikawa
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - N Nakamura
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Medical Science in Sports, Osaka Health Science University, 1-9-27, Tennma, Kita-ku, Osaka 530-0043, Japan.
| |
Collapse
|
87
|
Frisch J, Venkatesan JK, Rey-Rico A, Zawada AM, Schmitt G, Madry H, Cucchiarini M. Effects of rAAV-mediated FGF-2 gene transfer and overexpression upon the chondrogenic differentiation processes in human bone marrow aspirates. J Exp Orthop 2016; 3:16. [PMID: 27473203 PMCID: PMC4967065 DOI: 10.1186/s40634-016-0052-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/22/2016] [Indexed: 12/31/2022] Open
Abstract
Background Application of genetically modified bone marrow concentrates in articular cartilage lesions is a promising approach to enhance cartilage repair by stimulating the chondrogenic differentiation processes in sites of injury. Method In the present study, we examined the potential benefits of transferring the proliferative and pro-chondrogenic basic fibroblast growth factor (FGF-2) to human bone marrow aspirates in vitro using the clinically adapted recombinant adeno-associated virus (rAAV) vectors to monitor the biological and chondrogenic responses over time to the treatment compared with control (lacZ) gene application. Results Effective, significant FGF-2 gene transfer and expression via rAAV was established in the aspirates relative to the lacZ condition (from ~ 97 to 36 pg rhFGF-2/mg total proteins over an extended period of 21 days). Administration of the candidate FGF-2 vector led to prolonged increases in cell proliferation, matrix synthesis, and chondrogenesis but also to hypertrophic and terminal differentiation in the aspirates. Conclusion The present evaluation shows the advantages of rAAV-mediated FGF-2 gene transfer to conveniently modify bone marrow concentrates as a future approach to directly treat articular cartilage lesions, provided that expression of the growth factor is tightly regulated to prevent premature hypertrophy in vivo.
Collapse
Affiliation(s)
- Janina Frisch
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Adam M Zawada
- Department of Internal Medicine IV, Saarland University Medical Center, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany.
| |
Collapse
|
88
|
Yu NY, O'Brien CA, Slapetova I, Whan RM, Knothe Tate ML. Live Tissue Imaging to Elucidate Mechanical Modulation of Stem Cell Niche Quiescence. Stem Cells Transl Med 2016; 6:285-292. [PMID: 28170186 PMCID: PMC5442759 DOI: 10.5966/sctm.2015-0306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/16/2016] [Indexed: 12/20/2022] Open
Abstract
The periosteum, a composite cellular connective tissue, bounds all nonarticular bone surfaces. Like Velcro, collagenous Sharpey's fibers anchor the periosteum in a prestressed state to the underlying bone. The periosteum provides a niche for mesenchymal stem cells. Periosteal lifting, as well as injury, causes cells residing in the periosteum (PDCs) to change from an immobile, quiescent state to a mobile, active state. The physical cues that activate PDCs to home to and heal injured areas remain a conundrum. An understanding of these cues is key to unlocking periosteum's remarkable regenerative power. We hypothesized that changes in periosteum's baseline stress state modulate the quiescence of its stem cell niche. We report, for the first time, a three-dimensional, high-resolution live tissue imaging protocol to observe and characterize ovine PDCs and their niche before and after release of the tissue's endogenous prestress. Loss of prestress results in abrupt shrinkage of the periosteal tissue. At the microscopic scale, loss of prestress results in significantly increased crimping of collagen of periosteum's fibrous layer and a threefold increase in the number of rounded nuclei in the cambium layer. Given the body of published data describing the relationships between stem cell and nucleus shape, structure and function, these observations are consistent with a role for mechanics in the modulation of periosteal niche quiescence. The quantitative characterization of periosteum as a stem cell niche represents a critical step for clinical translation of the periosteum and periosteum substitute-based implants for tissue defect healing. Stem Cells Translational Medicine 2017;6:285-292.
Collapse
Affiliation(s)
- Nicole Y.C. Yu
- Graduate School of Biomedical Engineering University of New South Wales, Sydney, Australia
| | - Connor A. O'Brien
- Graduate School of Biomedical Engineering University of New South Wales, Sydney, Australia
| | - Iveta Slapetova
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Renee M. Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa L. Knothe Tate
- Graduate School of Biomedical Engineering University of New South Wales, Sydney, Australia
| |
Collapse
|
89
|
Moore SR, Heu C, Yu NYC, Whan RM, Knothe UR, Milz S, Knothe Tate ML. Translating Periosteum's Regenerative Power: Insights From Quantitative Analysis of Tissue Genesis With a Periosteum Substitute Implant. Stem Cells Transl Med 2016; 5:1739-1749. [PMID: 27465072 DOI: 10.5966/sctm.2016-0004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/13/2016] [Indexed: 01/22/2023] Open
Abstract
: An abundance of surgical studies during the past 2 centuries provide empirical evidence of periosteum's regenerative power for reconstructing tissues as diverse as trachea and bone. This study aimed to develop quantitative, efficacy-based measures, thereby providing translational guidelines for the use of periosteum to harness the body's own healing potential and generate target tissues. The current study quantitatively and qualitatively demonstrated tissue generation modulated by a periosteum substitute membrane that replicates the structural constituents of native periosteum (elastin, collagen, progenitor cells) and its barrier, extracellular, and cellular properties. It shows the potentiation of the periosteum's regenerative capacity through the progenitor cells that inhabit the tissue, biological factors intrinsic to the extracellular matrix of periosteum, and mechanobiological factors related to implant design and implementation. In contrast to the direct intramembranous bone generated in defects surrounded by patent periosteum in situ, tissue generation in bone defects bounded by the periosteum substitute implant occurred primarily via endochondral mechanisms whereby cartilage was first generated and then converted to bone. In addition, in defects treated with the periosteum substitute, tissue generation was highest along the major centroidal axis, which is most resistant to prevailing bending loads. Taken together, these data indicate the possibility of designing modular periosteum substitute implants that can be tuned for vectorial and spatiotemporal delivery of biological agents and facilitation of target tissue genesis for diverse surgical scenarios and regenerative medicine approaches. It also underscores the potential to develop physical therapy protocols to maximize tissue genesis via the implant's mechanoactive properties. SIGNIFICANCE In the past 2 centuries, the periosteum, a niche for stem cells and super-smart biological material, has been used empirically in surgery to repair tissues as diverse as trachea and bone. In the past 25 years, the number of articles indexed in PubMed for the keywords "periosteum and tissue engineering" and "periosteum and regenerative medicine" has burgeoned. Yet the biggest limitation to the prescriptive use of periosteum is lack of easy access, giving impetus to the development of periosteum substitutes. Recent studies have opened up the possibility to bank periosteal tissues (e.g., from the femoral neck during routine resection for implantation of hip replacements). This study used an interdisciplinary, quantitative approach to assess tissue genesis in modular periosteum substitute implants, with the aim to provide translational strategies for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Shannon R Moore
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Céline Heu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicole Y C Yu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Renee M Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Ulf R Knothe
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stefan Milz
- Anatomische Anstalt, Ludwig Maximilians University of Munich, Munich, Germany
| | - Melissa L Knothe Tate
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
90
|
Aisenbrey EA, Bryant SJ. Mechanical loading inhibits hypertrophy in chondrogenically differentiating hMSCs within a biomimetic hydrogel. J Mater Chem B 2016; 4:3562-3574. [PMID: 27499854 PMCID: PMC4972607 DOI: 10.1039/c6tb00006a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three dimensional hydrogels are a promising vehicle for delivery of adult human bone-marrow derived mesenchymal stem cells (hMSCs) for cartilage tissue engineering. One of the challenges with using this cell type is the default pathway is terminal differentiation, a hypertrophic phenotype and precursor to endochondral ossification. We hypothesized that a synthetic hydrogel consisting of extracellular matrix (ECM) analogs derived from cartilage when combined with dynamic loading provides physiochemical cues for achieving a stable chondrogenic phenotype. Hydrogels were formed from crosslinked poly(ethylyene glycol) as the base chemistry and to which (meth)acrylate functionalized ECM analogs of RGD (cell adhesion peptide) and chondroitin sulfate (ChS, a negatively charged glycosaminoglycan) were introduced. Bone-marrow derived hMSCs from three donors were encapsulated in the hydrogels and cultured under free swelling conditions or under dynamic com pressive loading with 2.5 ng/ml TGF-β3. hMSC differentiation was assessed by quantitative PCR and immunohistochemistry. Nine hydrogel formulations were initially screened containing 0, 0.1 or 1mM RGD and 0, 1 or 2wt% ChS. After 21 days, the 1% ChS and 0.1 mM RGD hydrogel had the highest collagen II gene expression, but this was accompanied by high collagen X gene expression. At the protein level, collagen II was detected in all formulations with ECM analogs, but minimally detectable in the hydrogel without ECM analogs. Collagen X protein was present in all formulations. The 0.1 mM RGD and 1% ChS formulation was selected and subjected to five loading regimes: no loading, 5% strain 0.3Hz (1.5%/s), 10% strain 0.3 Hz (3%/s), 5% strain 1 Hz (5%/s), and 10% strain 1Hz (10%/s). After 21 days, ~70-90% of cells stained positive for collagen II protein regardless of the culture condition. On the contrary, only ~20-30% of cells stained positive for collagen X protein under 3 and 5%/s loading conditions, which was accompanied by minimal staining for RunX2. The other culture conditions had more cells staining positive for collagen X (40-60%) and was accompanied by positive staining for RunX2. In summary, a cartilage-like biomimetic hydrogel supports chondrogenesis of hMSCs, but dynamic loading only under select strain rates is able to inhibit hypertrophy.
Collapse
Affiliation(s)
- E A Aisenbrey
- University of Colorado,Boulder. Chemical and Biological Engineering, UCB 596. Boulder, CO. 80309
| | - S J Bryant
- University of Colorado,Boulder. Chemical and Biological Engineering, UCB 596. Boulder, CO. 80309
| |
Collapse
|
91
|
Macrophage phagocytosis alters the MRI signal of ferumoxytol-labeled mesenchymal stromal cells in cartilage defects. Sci Rep 2016; 6:25897. [PMID: 27174199 PMCID: PMC4865731 DOI: 10.1038/srep25897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/21/2016] [Indexed: 12/27/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants.
Collapse
|
92
|
Chang YH, Liu HW, Wu KC, Ding DC. Mesenchymal Stem Cells and Their Clinical Applications in Osteoarthritis. Cell Transplant 2016; 25:937-50. [DOI: 10.3727/096368915x690288] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis is a chronic degenerative joint disorder characterized by articular cartilage destruction and osteophyte formation. Chondrocytes in the matrix have a relatively slow turnover rate, and the tissue itself lacks a blood supply to support repair and remodeling. Researchers have evaluated the effectiveness of stem cell therapy and tissue engineering for treating osteoarthritis. All sources of stem cells, including embryonic, induced pluripotent, fetal, and adult stem cells, have potential use in stem cell therapy, which provides a permanent biological solution. Mesenchymal stem cells (MSCs) isolated from bone marrow, adipose tissue, and umbilical cord show considerable promise for use in cartilage repair. MSCs can be sourced from any or all joint tissues and can modulate the immune response. Additionally, MSCs can directly differentiate into chondrocytes under appropriate signal transduction. They also have immunosuppressive and anti-inflammatory paracrine effects. This article reviews the current clinical applications of MSCs and future directions of research in osteoarthritis.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hwan-Wun Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Occupational Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Kun-Chi Wu
- Department of Orthopedics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Dah-Ching Ding
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| |
Collapse
|
93
|
Filardo G, Perdisa F, Roffi A, Marcacci M, Kon E. Stem cells in articular cartilage regeneration. J Orthop Surg Res 2016; 11:42. [PMID: 27072345 PMCID: PMC4830073 DOI: 10.1186/s13018-016-0378-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/29/2016] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising option to treat articular defects and early osteoarthritis (OA) stages. However, both their potential and limitations for a clinical use remain controversial. Thus, the aim of this systematic review was to examine MSCs treatment strategies in clinical settings, in order to summarize the current evidence of their efficacy for the treatment of cartilage lesions and OA.Among the 60 selected studies, 7 were randomized, 13 comparative, 31 case series, and 9 case reports; 26 studies reported the results after injective administration, whereas 33 used surgical implantation. One study compared the two different modalities. With regard to the cell source, 20 studies concerned BMSCs, 17 ADSCs, 16 BMC, 5 PBSCs, 1 SDSCs, and 1 compared BMC versus PBSCs. Overall, despite the increasing literature on this topic, the evidence is still limited, in particular for high-level studies. On the other hand, the available studies allow to draw some indications. First, no major adverse events related to the treatment or to the cell harvest have been reported. Second, a clinical benefit of using MSCs therapies has been reported in most of the studies, regardless of cell source, indication, or administration method. This effectiveness has been reflected by clinical improvements and also positive MRI and macroscopic findings, whereas histologic features gave more controversial results among different studies. Third, young age, lower BMI, smaller lesion size for focal lesions, and earlier stages of OA joints have been shown to correlate with better outcomes, even though the available data strength does not allow to define clear cutoff values. Finally, definite trends can be observed with regard to the delivery method: currently cultured cells are mostly being administered by i.a. injection, while one-step surgical implantation is preferred for cell concentrates. In conclusion, while promising results have been shown, the potential of these treatments should be confirmed by reliable clinical data through double-blind, controlled, prospective and multicenter studies with longer follow-up, and specific studies should be designed to identify the best cell sources, manipulation, and delivery techniques, as well as pathology and disease phase indications.
Collapse
Affiliation(s)
- Giuseppe Filardo
- />II Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Francesco Perdisa
- />II Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Alice Roffi
- />Nanobiotechnology Laboratory, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Maurilio Marcacci
- />II Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
- />Nanobiotechnology Laboratory, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Elizaveta Kon
- />II Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
- />Nanobiotechnology Laboratory, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
94
|
Hirakata E, Tomita N, Tamada Y, Suguro T, Nakajima M, Kambe Y, Yamada K, Yamamoto K, Kawakami M, Otaka A, Okumura H, Suzuki S. Early tissue formation on whole-area osteochondral defect of rabbit patella by covering with fibroin sponge. J Biomed Mater Res B Appl Biomater 2016; 104:1474-82. [DOI: 10.1002/jbm.b.33656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/07/2016] [Accepted: 02/28/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Eiichi Hirakata
- Field of Medical Engineering; Division of Mechanical Engineering and Science Graduate School of Engineering; Kyoto University; Kyoto Japan
- Department of Plastic Surgery; Kyoto University Postgraduate School of Medicine; Kyoto Japan
| | - Naohide Tomita
- Field of Medical Engineering; Division of Mechanical Engineering and Science Graduate School of Engineering; Kyoto University; Kyoto Japan
| | - Yasushi Tamada
- National Institute of Agrobiological Sciences; Ibaraki Japan
| | - Toru Suguro
- Institute of Medical Science; Tokyo Medical University; Tokyo Japan
| | - Masaaki Nakajima
- Department of Physical Therapy; School of Health Science and Social Welfare, Kibi International University; Okayama Japan
| | - Yusuke Kambe
- Field of Medical Engineering; Division of Mechanical Engineering and Science Graduate School of Engineering; Kyoto University; Kyoto Japan
| | - Keisuke Yamada
- Field of Medical Engineering; Division of Mechanical Engineering and Science Graduate School of Engineering; Kyoto University; Kyoto Japan
| | - Koji Yamamoto
- Field of Medical Engineering; Division of Mechanical Engineering and Science Graduate School of Engineering; Kyoto University; Kyoto Japan
| | - Masahiro Kawakami
- Field of Medical Engineering; Division of Mechanical Engineering and Science Graduate School of Engineering; Kyoto University; Kyoto Japan
| | - Akihisa Otaka
- Field of Medical Engineering; Division of Mechanical Engineering and Science Graduate School of Engineering; Kyoto University; Kyoto Japan
| | - Hideo Okumura
- Department of Orthopaedic Surgery; Rakuyo Hospital; Kyoto Japan
| | - Shigehiko Suzuki
- Department of Plastic Surgery; Kyoto University Postgraduate School of Medicine; Kyoto Japan
| |
Collapse
|
95
|
Nazempour A, Van Wie BJ. Chondrocytes, Mesenchymal Stem Cells, and Their Combination in Articular Cartilage Regenerative Medicine. Ann Biomed Eng 2016; 44:1325-54. [PMID: 26987846 DOI: 10.1007/s10439-016-1575-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/17/2016] [Indexed: 01/05/2023]
Abstract
Articular cartilage (AC) is a highly organized connective tissue lining, covering the ends of bones within articulating joints. Its highly ordered structure is essential for stable motion and provides a frictionless surface easing load transfer. AC is vulnerable to lesions and, because it is aneural and avascular, it has limited self-repair potential which often leads to osteoarthritis. To date, no fully successful treatment for osteoarthritis has been reported. Thus, the development of innovative therapeutic approaches is desperately needed. Autologous chondrocyte implantation, the only cell-based surgical intervention approved in the United States for treating cartilage defects, has limitations because of de-differentiation of articular chondrocytes (AChs) upon in vitro expansion. De-differentiation can be abated if initial populations of AChs are co-cultured with mesenchymal stem cells (MSCs), which not only undergo chondrogenesis themselves but also support chondrocyte vitality. In this review we summarize studies utilizing AChs, non-AChs, and MSCs and compare associated outcomes. Moreover, a comprehensive set of recent human studies using chondrocytes to direct MSC differentiation, MSCs to support chondrocyte re-differentiation and proliferation in co-culture environments, and exploratory animal intra- and inter-species studies are systematically reviewed and discussed in an innovative manner allowing side-by-side comparisons of protocols and outcomes. Finally, a comprehensive set of recommendations are made for future studies.
Collapse
Affiliation(s)
- A Nazempour
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA
| | - B J Van Wie
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA.
| |
Collapse
|
96
|
Reissis D, Tang QO, Cooper NC, Carasco CF, Gamie Z, Mantalaris A, Tsiridis E. Current clinical evidence for the use of mesenchymal stem cells in articular cartilage repair. Expert Opin Biol Ther 2016; 16:535-57. [PMID: 26798997 DOI: 10.1517/14712598.2016.1145651] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Articular cartilage is renowned for its poor intrinsic capacity for repair. Current treatments for osteoarthritis are limited in their ability to reliably restore the native articular cartilage structure and function. Mesenchymal stem cells (MSCs) present an attractive treatment option for articular cartilage repair, with a recent expansion of clinical trials investigating their use in patients. AREAS COVERED This paper provides a current overview of the clinical evidence on the use of MSCs in articular cartilage repair. EXPERT OPINION The article demonstrates robust clinical evidence that MSCs have significant potential for the regeneration of hyaline articular cartilage in patients. The majority of clinical trials to date have yielded significantly positive results with minimal adverse effects. However the clinical research is still in its infancy. The optimum MSC source, cell concentrations, implantation technique, scaffold, growth factors and rehabilitation protocol for clinical use are yet to be identified. A larger number of randomised control trials are required to objectively compare the clinical efficacy and long-term safety of the various techniques. As the clinical research continues to evolve and address these challenges, it is likely that MSCs may become integrated into routine clinical practice in the near future.
Collapse
Affiliation(s)
- Dimitris Reissis
- a Department of Chemical Engineering, Biological Systems Engineering Laboratory (BSEL) , Imperial College London , London , UK
| | - Quen Oak Tang
- a Department of Chemical Engineering, Biological Systems Engineering Laboratory (BSEL) , Imperial College London , London , UK
| | - Nina Catherine Cooper
- a Department of Chemical Engineering, Biological Systems Engineering Laboratory (BSEL) , Imperial College London , London , UK
| | - Clare Francesca Carasco
- a Department of Chemical Engineering, Biological Systems Engineering Laboratory (BSEL) , Imperial College London , London , UK
| | - Zakareya Gamie
- a Department of Chemical Engineering, Biological Systems Engineering Laboratory (BSEL) , Imperial College London , London , UK
| | - Athanasios Mantalaris
- a Department of Chemical Engineering, Biological Systems Engineering Laboratory (BSEL) , Imperial College London , London , UK
| | - Eleftherios Tsiridis
- a Department of Chemical Engineering, Biological Systems Engineering Laboratory (BSEL) , Imperial College London , London , UK.,b Academic Orthopaedic Unit , Aristotle University Medical School , Thessaloniki , Greece
| |
Collapse
|
97
|
Tao K, Frisch J, Rey-Rico A, Venkatesan JK, Schmitt G, Madry H, Lin J, Cucchiarini M. Co-overexpression of TGF-β and SOX9 via rAAV gene transfer modulates the metabolic and chondrogenic activities of human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2016; 7:20. [PMID: 26830674 PMCID: PMC4736112 DOI: 10.1186/s13287-016-0280-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/16/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Articular cartilage has a limited potential for self-healing. Transplantation of genetically modified progenitor cells like bone marrow-derived mesenchymal stem cells (MSCs) is an attractive strategy to improve the intrinsic repair capacities of damaged articular cartilage. METHODS In this study, we examined the potential benefits of co-overexpressing the pleiotropic transformation growth factor beta (TGF-β) with the cartilage-specific transcription factor SOX9 via gene transfer with recombinant adeno-associated virus (rAAV) vectors upon the biological activities of human MSCs (hMSCs). Freshly isolated hMSCs were transduced over time with separate rAAV vectors carrying either TGF-β or sox9 in chondrogenically-induced aggregate cultures to evaluate the efficacy and duration of transgene expression and to monitor the effects of rAAV-mediated genetic modification upon the cellular activities (proliferation, matrix synthesis) and chondrogenic differentiation potency compared with control conditions (lacZ treatment, sequential transductions). RESULTS Significant, prolonged TGF-β/sox9 co-overexpression was achieved in chondrogenically-induced hMSCs upon co-transduction via rAAV for up to 21 days, leading to enhanced proliferative, biosynthetic, and chondrogenic activities relative to control treatments, especially when co-applying the candidate vectors at the highest vector doses tested. Optimal co-administration of TGF-β with sox9 also advantageously reduced hypertrophic differentiation of the cells in the conditions applied here. CONCLUSION The present findings demonstrate the possibility of modifying MSCs by combined therapeutic gene transfer as potent future strategies for implantation in clinically relevant animal models of cartilage defects in vivo.
Collapse
Affiliation(s)
- Ke Tao
- Institute of Arthritis, Peking University People's Hospital, Beijing, 100044, P.R. China. .,Peking University Health Science Center, Beijing, 100191, P.R. China. .,Center of Experimental Orthopedics, Saarland University Medical Center, Kirrbergerstraße Bldg 37, Homburg/Saar, D-66421, Germany.
| | - Janina Frisch
- Center of Experimental Orthopedics, Saarland University Medical Center, Kirrbergerstraße Bldg 37, Homburg/Saar, D-66421, Germany.
| | - Ana Rey-Rico
- Center of Experimental Orthopedics, Saarland University Medical Center, Kirrbergerstraße Bldg 37, Homburg/Saar, D-66421, Germany.
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopedics, Saarland University Medical Center, Kirrbergerstraße Bldg 37, Homburg/Saar, D-66421, Germany.
| | - Gertrud Schmitt
- Center of Experimental Orthopedics, Saarland University Medical Center, Kirrbergerstraße Bldg 37, Homburg/Saar, D-66421, Germany.
| | - Henning Madry
- Center of Experimental Orthopedics, Saarland University Medical Center, Kirrbergerstraße Bldg 37, Homburg/Saar, D-66421, Germany. .,Department of Orthopaedic Surgery, Saarland University Medical Center, Kirrbergerstr. Bldg 37, Homburg/Saar, D-66421, Germany.
| | - Jianhao Lin
- Institute of Arthritis, Peking University People's Hospital, Beijing, 100044, P.R. China. .,Peking University Health Science Center, Beijing, 100191, P.R. China.
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University Medical Center, Kirrbergerstraße Bldg 37, Homburg/Saar, D-66421, Germany.
| |
Collapse
|
98
|
Frisch J, Rey-Rico A, Venkatesan JK, Schmitt G, Madry H, Cucchiarini M. TGF-β gene transfer and overexpression via rAAV vectors stimulates chondrogenic events in human bone marrow aspirates. J Cell Mol Med 2016; 20:430-40. [PMID: 26808466 PMCID: PMC4759465 DOI: 10.1111/jcmm.12774] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
Genetic modification of marrow concentrates may provide convenient approaches to enhance the chondrogenic differentiation processes and improve the repair capacities in sites of cartilage defects following administration in the lesions. Here, we provided clinically adapted recombinant adeno‐associated virus (rAAV) vectors to human bone marrow aspirates to promote the expression of the potent transforming growth factor beta (TGF‐β) as a means to regulate the biological and chondrogenic activities in the samples in vitro. Successful TGF‐β gene transfer and expression viarAAV was reached relative to control (lacZ) treatment (from 511.1 to 16.1 pg rhTGF‐β/mg total proteins after 21 days), allowing to durably enhance the levels of cell proliferation, matrix synthesis, and chondrogenic differentiation. Strikingly, in the conditions applied here, application of the candidate TGF‐β vector was also capable of reducing the hypertrophic and osteogenic differentiation processes in the aspirates, showing the potential benefits of using this particular vector to directly modify marrow concentrates to generate single‐step, effective approaches that aim at improving articular cartilage repair in vivo.
Collapse
Affiliation(s)
- Janina Frisch
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | | | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
99
|
|
100
|
Yasui Y, Ando W, Shimomura K, Koizumi K, Ryota C, Hamamoto S, Kobayashi M, Yoshikawa H, Nakamura N. Scaffold-free, stem cell-based cartilage repair. J Clin Orthop Trauma 2016; 7:157-63. [PMID: 27489410 PMCID: PMC4949412 DOI: 10.1016/j.jcot.2016.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 01/01/2023] Open
Abstract
Various approaches to treat articular cartilage have been widely investigated due to its poor intrinsic healing capacity. Stem cell-based therapy could be a promising approach as an alternative to chondrocyte-based therapy and some of these therapies have been already applied in clinical condition. This review discusses the current development of stem cell-based therapies in cartilage repair, specifically focusing on scaffold-free approaches.
Collapse
Affiliation(s)
- Yukihiko Yasui
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Wataru Ando
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazunori Shimomura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kota Koizumi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chijimatsu Ryota
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuichi Hamamoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masato Kobayashi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norimasa Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan,Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan,Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan,Corresponding author at: Institute for Medical Science in Sports, Osaka Health Science University, 1-9-27, Tenma, Kita-ku, Osaka city, Osaka 530-0043, Japan. Tel.: +81-6-6352-0093; fax: +81-6-6352-5995.
| |
Collapse
|