51
|
ZHANG MINGHAO, WANG XIUYU, BAI BIN, ZHANG RUI, LI YUNHONG, WANG YIN. Oxymatrine protects against sepsis-induced myocardial injury via inhibition of the TNF-α/p38-MAPK/caspase-3 signaling pathway. Mol Med Rep 2016; 14:551-9. [DOI: 10.3892/mmr.2016.5250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 02/22/2016] [Indexed: 11/06/2022] Open
|
52
|
Schon HT, Bartneck M, Borkham-Kamphorst E, Nattermann J, Lammers T, Tacke F, Weiskirchen R. Pharmacological Intervention in Hepatic Stellate Cell Activation and Hepatic Fibrosis. Front Pharmacol 2016; 7:33. [PMID: 26941644 PMCID: PMC4764688 DOI: 10.3389/fphar.2016.00033] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/08/2016] [Indexed: 12/17/2022] Open
Abstract
The activation and transdifferentiation of hepatic stellate cells (HSCs) into contractile, matrix-producing myofibroblasts (MFBs) are central events in hepatic fibrogenesis. These processes are driven by autocrine- and paracrine-acting soluble factors (i.e., cytokines and chemokines). Proof-of-concept studies of the last decades have shown that both the deactivation and removal of hepatic MFBs as well as antagonizing profibrogenic factors are in principle suitable to attenuate ongoing hepatic fibrosis. Although several drugs show potent antifibrotic activities in experimental models of hepatic fibrosis, there is presently no effective pharmaceutical intervention specifically approved for the treatment of liver fibrosis. Pharmaceutical interventions are generally hampered by insufficient supply of drugs to the diseased liver tissue and/or by adverse effects as a result of affecting non-target cells. Therefore, targeted delivery systems that bind specifically to receptors solely expressed on activated HSCs or transdifferentiated MFBs and delivery systems that can improve drug distribution to the liver in general are urgently needed. In this review, we summarize current strategies for targeted delivery of drugs to the liver and in particular to pro-fibrogenic liver cells. The applicability and efficacy of sequestering molecules, selective protein carriers, lipid-based drug vehicles, viral vectors, transcriptional targeting approaches, therapeutic liver- and HSC-specific nanoparticles, and miRNA-based strategies are discussed. Some of these delivery systems that had already been successfully tested in experimental animal models of ongoing hepatic fibrogenesis are expected to translate into clinically useful therapeutics specifically targeting HSCs.
Collapse
Affiliation(s)
- Hans-Theo Schon
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| | - Matthias Bartneck
- Department of Medicine III, University Hospital RWTH Aachen Aachen, Germany
| | - Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University of Bonn Bonn, Germany
| | - Twan Lammers
- Department for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital RWTH Aachen Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| |
Collapse
|
53
|
Weiskirchen R. Hepatoprotective and Anti-fibrotic Agents: It's Time to Take the Next Step. Front Pharmacol 2016; 6:303. [PMID: 26779021 PMCID: PMC4703795 DOI: 10.3389/fphar.2015.00303] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis and cirrhosis cause strong human suffering and necessitate a monetary burden worldwide. Therefore, there is an urgent need for the development of therapies. Pre-clinical animal models are indispensable in the drug discovery and development of new anti-fibrotic compounds and are immensely valuable for understanding and proofing the mode of their proposed action. In fibrosis research, inbreed mice and rats are by far the most used species for testing drug efficacy. During the last decades, several hundred or even a thousand different drugs that reproducibly evolve beneficial effects on liver health in respective disease models were identified. However, there are only a few compounds (e.g., GR-MD-02, GM-CT-01) that were translated from bench to bedside. In contrast, the large number of drugs successfully tested in animal studies is repeatedly tested over and over engender findings with similar or identical outcome. This circumstance undermines the 3R (Replacement, Refinement, Reduction) principle of Russell and Burch that was introduced to minimize the suffering of laboratory animals. This ethical framework, however, represents the basis of the new animal welfare regulations in the member states of the European Union. Consequently, the legal authorities in the different countries are halted to foreclose testing of drugs in animals that were successfully tested before. This review provides a synopsis on anti-fibrotic compounds that were tested in classical rodent models. Their mode of action, potential sources and the observed beneficial effects on liver health are discussed. This review attempts to provide a reference compilation for all those involved in the testing of drugs or in the design of new clinical trials targeting hepatic fibrosis.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy, and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| |
Collapse
|
54
|
Screening and Research of Anti-Cancer Matrine Components Based on Hollow Fiber Cell Fishing with High-Performance Liquid Chromatography. Chromatographia 2016. [DOI: 10.1007/s10337-015-3006-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
55
|
Abstract
Oxymatrine is a kind of alkaloid extracted from traditional Chinese herb Sophora flavescens Ait. It has been proved to exert various biological activities such as anti-angiogenesis, proliferation-inhibiting, apoptosis-promoting, analgesic-strengthening, and anti-metastasis. The biological activities are related with inhibition of angiogenesis-associated factors, regulation of related signaling pathway and protein expression, synergistic effects with chemotherapy drug, cell cycle arrest and inhibition of voltage-activated K+ channel. In this review, we summarize the recent investigations of oxymatrine in cancer therapy so as to provide references for further study and clinical therapy.
Collapse
Affiliation(s)
- WW Lu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - R Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - JS Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - LQ Xia
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - J Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| |
Collapse
|
56
|
Liu W, Shi J, Zhu L, Dong L, Luo F, Zhao M, Wang Y, Hu M, Lu L, Liu Z. Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5771-83. [PMID: 26586934 PMCID: PMC4636097 DOI: 10.2147/dddt.s92276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxymatrine (OMT) is a pharmacologically active primary quinolizidine alkaloid with various beneficial and toxic effects. It is confirmed that, after oral administration, OMT could be transformed to the more toxic metabolite matrine (MT), and this process may be through the reduction reaction, but the study on the characteristics of this transformation is limited. The aim of this study was to investigate the characteristics of this transformation of OMT in the human liver microsomes (HLMs) and human intestinal microsomes (HIMs) and the cytochrome P450 (CYP) isoforms involved in this transformation. The current studies demonstrated that OMT could be metabolized to MT rapidly in HLMs and HIMs and CYP3A4 greatly contributed to this transformation. All HLMs, HIMs, and CYP3A4 isoform mediated reduction reaction followed typical biphasic kinetic model, and Km, Vmax, and CL were significant higher in HLMs than those in HIMs. Importantly, different oxygen contents could significantly affect the metabolism of OMT, and with the oxygen content decreased, the formation of metabolite was increased, suggesting this transformation was very likely a reduction reaction. Results of this in vitro study elucidated the metabolic pathways and characteristics of metabolism of OMT to MT and would provide a theoretical basis and guidance for the safe application of OMT.
Collapse
Affiliation(s)
- Wenqin Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China ; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Jian Shi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China ; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Lingna Dong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Feifei Luo
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Min Zhao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Ming Hu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China ; Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Zhongqiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China ; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
57
|
The Clinical Value of Oxymatrine in Preventing Lamivudine Induced YMDD Mutation: A Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:971616. [PMID: 26508988 PMCID: PMC4609836 DOI: 10.1155/2015/971616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/22/2015] [Accepted: 07/28/2015] [Indexed: 12/15/2022]
Abstract
Oxymatrine (OMTR) is widely used for the treatment of chronic hepatitis B (CHB) in China. Several reports revealed that combination of OMTR and lamivudine reduced the incidence of tyrosine- (Y-) methionine- (M-) aspartic acid- (D-) aspartic acid (D) (YMDD) mutations in CHB patients. The aim of this study was to evaluate the clinical value of oxymatrine in preventing lamivudine induced YMDD mutation using meta-analysis of data from published randomized controlled trials (RCTs) and to provide some useful information for clinical treatment and future research of YMDD mutation. The Cochrane Central Register of Controlled Trials, Medline, Science Citation Index, EMBASE, China National Knowledge Infrastructure, Wanfang Database, and China Biomedical Database were searched to identify RCTs that evaluated the incidence of YMDD-motif mutation to lamivudine therapy and lamivudine plus OMTR therapies in CHB patients. Data analysis was carried out with the use of RevMan 5.3.2. The literature search yielded 324 studies, and 16 RCTs matched the selection criteria. Overall, the incidence of YMDD mutation was significantly lower in patients treated with lamivudine plus OMTR than in patients treated with lamivudine alone (11.14% versus 28.18%; RR: 0.41; 95% CI: 0.33–0.52; p < 0.05). The exact outcome needs to perform rigorously designed, multicenter, and large randomized controlled trials.
Collapse
|
58
|
Chatani N, Kamada Y, Kizu T, Ogura S, Furuta K, Egawa M, Hamano M, Ezaki H, Kiso S, Shimono A, Ouchi N, Yoshida Y, Takehara T. Secreted frizzled-related protein 5 (Sfrp5) decreases hepatic stellate cell activation and liver fibrosis. Liver Int 2015; 35:2017-26. [PMID: 25488180 DOI: 10.1111/liv.12757] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 12/03/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Obesity-related adipocytokine dysregulation is known to accelerate liver fibrosis progression. Recently, a natural Wnt5a inhibitor, secreted frizzled-related protein 5 (Sfrp5), was identified as a novel adipocytokine that has reduced expression in obese adipose tissue in both rodents and human. In addition, hepatic gene expression of Wnt5a and its receptor frizzled 2 (Fz2) is elevated during fibrosis progression. Therefore, Sfrp5 could have biological significance in liver fibrosis. METHODS We first investigated the effects of Sfrp5 on primary cultured mouse hepatic stellate cells (HSCs) in vitro. Next, to elucidate the roles of Sfrp5 in liver fibrosis, we investigated a carbon-tetrachloride (CCl4 )-induced liver fibrosis model using Sfrp5 knockout (KO) and wild type (WT) mice in vivo. Each mouse was injected intraperitoneally with CCl4 (0.5 ml/kg) or olive oil as a single dose (acute liver injury model), or twice a week for 6 weeks (liver fibrosis model). RESULTS In in vitro studies, Wnt5a enhanced both proliferation and migration of HSCs, and these effects could be completely blocked by Sfrp5. Moreover, siRNA knockdown of Fz2 in HSCs could block the effects of Wnt5a on both HSC proliferation and migration. In in vivo studies, there were no differences in the CCl4 -induced liver injury between KO and WT mice. Hepatic Wnt5a gene expression and plasma Wnt5a levels significantly increased after a single CCl4 injection in both mice. Sfrp5 knockout significantly enhanced CCl4 -induced liver fibrosis. CONCLUSIONS Our findings demonstrate that Sfrp5 may ameliorate mouse liver fibrosis through inhibition of Wnt5a/Fz2 signalling.
Collapse
Affiliation(s)
- Norihiro Chatani
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshihiro Kamada
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan.,Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takashi Kizu
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoshi Ogura
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Kunimaro Furuta
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Mayumi Egawa
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Mina Hamano
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Hisao Ezaki
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinichi Kiso
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | | | - Noriyuki Ouchi
- Department of Molecular Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
59
|
Jang SM, Bae SH, Choi WK, Park JB, Kim D, Min JS, Yoo H, Kang M, Ryu KH, Bae SK. Pharmacokinetic properties of trifolirhizin, (-)-maackiain, (-)-sophoranone and 2-(2,4-dihydroxyphenyl)-5,6-methylenedioxybenzofuran after intravenous and oral administration of Sophora tonkinensis extract in rats. Xenobiotica 2015; 45:1092-104. [PMID: 26068519 DOI: 10.3109/00498254.2015.1041181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
1. SKI3301, a standardized dried 50% ethanolic extracts of Sophora tonkinensis, contains four marker compounds (trifolirhizin, TF; (-)-maackiain, Maack; (-)-sophoranone, SPN, and (2-(2,4-dihydroxyphenyl)-5,6-methylenedioxybenzofuran, ABF), is being developed as an herbal medicine for the treatment of asthma in Korea. This study investigates the pharmacokinetic properties of SKI3301 extract in rats. 2. The dose-proportional AUCs suggest linear pharmacokinetics of TF, Maack, SPN and ABF in the SKI3301 extract intravenous dose range of 5-20 mg/kg. After the oral administration of 200-1000 mg/kg of the extract, TF and Maack exhibited non-linearity due to the saturation of gastrointestinal absorption. However, linear pharmacokinetics of SPN and ABF were observed. 3. The absorptions of TF, Maack, SPN and ABF in the extract were increased relative to those of the respective pure forms due to the increased solubility and/or the decreased metabolism by other components in the SKI3301 extract. 4. No accumulation was observed after multiple dosing, and the steady-state pharmacokinetics of TF, Maack, SPN and ABF were not significantly different from those after a single oral administration of the extract. 5. The pharmacokinetics of TF, SPN and ABF were not significantly different between male and female rats after oral administration of the extract, but a significant gender difference in the pharmacokinetics of Maack in rats was observed. 6. Our findings may help to comprehensively elucidate the pharmacokinetic characteristics of TF, Maack, SPN and ABF and provide useful information for the clinical application of SKI3301 extract.
Collapse
Affiliation(s)
- Soo Min Jang
- a College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea , Bucheon , Republic of Korea
| | - Soo Hyeon Bae
- b Department of Pharmacology , College of Medicine, The Catholic University of Korea , Seoul , Republic of Korea
| | - Woong-Kee Choi
- a College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea , Bucheon , Republic of Korea
| | - Jung Bae Park
- a College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea , Bucheon , Republic of Korea
| | - Doyun Kim
- a College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea , Bucheon , Republic of Korea
| | - Jee Sun Min
- a College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea , Bucheon , Republic of Korea
| | - Hunseung Yoo
- c College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University , Seoul , Republic of Korea .,d New Drug Preclinical & Analytical Team , and
| | | | - Keun Ho Ryu
- e New Drug Team 1, Life Science R&D Center, SK Chemicals , Sungnam , Republic of Korea
| | - Soo Kyung Bae
- a College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea , Bucheon , Republic of Korea
| |
Collapse
|
60
|
Chen K, Rong YM, Cao WL, Zong LF, Ji RL. Effect of oxymatrine on expression of molecules of Smad signal pathway in pancreatic stellate cells stimulated with TGF-β1. Shijie Huaren Xiaohua Zazhi 2015; 23:1883-1889. [DOI: 10.11569/wcjd.v23.i12.1883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of oxymatrine (OM) on the expression of molecules of the Smad signal pathway in pancreatic stellate cell line (LTC-14 cells) stimulated with transforming growth factor-β1 (TGF-β1).
METHODS: LTC-14 cells were divided into a normal control group, a TGF-β1 stimulated group and a TGF-β1 + OM (1 mg/mL) group. The mRNA and protein were extracted from LTC-14 cells 12 h after treatment. The mRNA and protein expression of Smad2/3/4/7 was detected by real-time PCR and Western blot, respectively.
RESULTS: Compared with the TGF-β1 stimulated group, the mRNA and protein expression of Smad2/3/4 was dramatically reduced in the OM treated group (P < 0.05). Compared with the TGF-β1 stimulated group, the mRNA expression of Smad7 was significantly decreased in the OM treated group (P < 0.05), whereas the Smad7 protein expression was increased.
CONCLUSION: OM might exert a therapeutic effect against pancreatic fibrosis in pancreatic stellate cells stimulated with TGF-β1 by interfering with the mRNA and protein expression of molecules of the TGF-β1/Smad pathway.
Collapse
|
61
|
Abstract
Gallbladder carcinoma is the most common malignancy of the biliary tract and is associated with a very poor outcome. The aim of the present study was to investigate the effects of oxymatrine (OM) on gallbladder cancer cells and the possible mechanism of its effects. The effects of OM on the proliferation of gallbladder cancer cells (GBC-SD and SGC-996) were investigated using cell counting kit-8 and colony formation assays. Annexin V/propidium iodide double staining was performed to investigate whether OM could induce apoptosis in gallbladder cancer cells. The mitochondrial membrane potential (ΔΨm) and expression of apoptosis-associated proteins were evaluated to identify a mechanism for the effects of OM. In addition, the RNA expression of relevant genes was measured by qRT-PCR using the SYBR Green method. Finally, a subcutaneous implantation model was used to verify the effects of OM on tumor growth in vivo. We found that OM inhibited the proliferation of gallbladder cancer cells. In addition, Annexin V/propidium iodide double staining showed that OM induced apoptosis after 48 h and the ΔΨm decreased in a dose-dependent manner after OM treatment. Moreover, the activation of caspase-3 and Bax and downregulation of Bcl-2 and nuclear factor κB were observed in OM-treated cells. Finally, OM potently inhibited in-vivo tumor growth following subcutaneous inoculation of SGC-996 cells in nude mice. In conclusion, OM treatment reduced proliferation and induced apoptosis in gallbladder cancer cells, which suggests that this drug may serve as a novel candidate for adjuvant treatment in patients with gallbladder cancer.
Collapse
|
62
|
Modulation of IKKβ/NF-κB and TGF-β1/Smad via Fuzheng Huayu recipe involves in prevention of nutritional steatohepatitis and fibrosis in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:404-11. [PMID: 26019805 PMCID: PMC4439457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/24/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Fuzheng Huayu recipe (FZHY) exerts significant protective effects against liver fibrosis by strengthening the body's resistance and removing blood stasis. However, the molecular mechanisms through which FZHY affects liver fibrosis are still unclear. In this study, we examined the expression levels of factors involved in the inhibitor κB kinase-β (IKK-β)/nuclear factor-κB (NF-κB) and transforming growth factor beta 1 (TGF-β1)/Smad signaling pathways to elucidate whether FZHY could attenuate nutritional steatohepatitis and fibrosis in mice. MATERIALS AND METHODS C57BL/6J mice were fed with methionine-choline deficient (MCD) diet for 8 weeks to induce fibrotic steatohepatitis. FZHY and/or heme oxygenase-1 (HO-1) chemical inducer (hemin) were administered to mice. The effects of FZHY alone and in combination with hemin were assessed by comparing the severity of hepatic injury, activation of hepatic stellate cells (HSCs), and the expression of oxidative stress, inflammation and fibrogenesis related genes. RESULTS Administration of FZHY, hemin and FZHY plus hemin significantly ameliorated liver injury. Additionally, our analysis indicated that administration of these agents significantly attenuated oxidative stress, downregulated the expression of pro-inflammatory and pro-fibrotic genes, including IKK-β, NF-κB, monocyte chemoattractant protein-1 (MCP-1), α-smooth muscle actin (α-SMA), TGF-β1, Smad3 and Smad4, and upregulated the expression of the antifibrogenic gene Smad7 (P< 0.001). CONCLUSION FZHY-containing therapies prevented nutritional steatohepatitis and fibrosis through modulating the expression of factors associated with the IKKβ/NF-κB and TGF-β1/Smad signaling pathways and oxidative stress related genes.
Collapse
|
63
|
Oxymatrine downregulates HPV16E7 expression and inhibits cell proliferation in laryngeal squamous cell carcinoma Hep-2 cells in vitro. BIOMED RESEARCH INTERNATIONAL 2015; 2015:150390. [PMID: 25811021 PMCID: PMC4355122 DOI: 10.1155/2015/150390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/31/2015] [Accepted: 02/06/2015] [Indexed: 01/15/2023]
Abstract
Objective. To investigate the possible mechanisms of oxymatrine's role in anti laryngeal squamous cell carcinoma. Methods. We examined the effects of oxymatrine on the proliferation, cell cycle phase distribution, apoptosis, and the protein and mRNA expression levels of HPV16E7 gene in laryngeal carcinoma Hep-2 cells in vitro. The HPV16E7 siRNA inhibition was also done to confirm the effect of downregulating HPV16E7 on the proliferation in Hep-2 cells. Results. Oxymatrine significantly inhibited the growth and proliferation of Hep-2 cells in a dose-dependence and time-dependence manner. Oxymatrine blocked Hep-2 cells in G0/G1 phase, resulting in an obvious accumulation of G0/G1 phase cells while decreasing S phase cells. Oxymatrine induced apoptosis of Hep-2 cells, whose apoptotic rate amounted to about 42% after treatment with 7 mg/mL oxymatrine for 72 h. Oxymatrine also downregulated the expression of HPV16E7 gene, as determined by the western blotting and reverse transcription-polymerase chain reaction analysis. Knockdown of HPV16E7 effectively inhibited the proliferation of Hep-2 cells. Conclusions. Oxymatrine inhibits the proliferation and induces apoptosis of laryngeal carcinoma Hep-2 cells, which might be mediated by a significant cell cycle arrest in G0/G1 phase and downregulation of HPV16E7 gene. Oxymatrine is considered to be a likely preventive and curative candidate for laryngeal cancer.
Collapse
|
64
|
Wu C, Huang W, Guo Y, Xia P, Sun X, Pan X, Hu W. Oxymatrine inhibits the proliferation of prostate cancer cells in vitro and in vivo. Mol Med Rep 2015; 11:4129-34. [PMID: 25672672 PMCID: PMC4394963 DOI: 10.3892/mmr.2015.3338] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022] Open
Abstract
Oxymatrine is an alkaloid, which is derived from the traditional Chinese herb, Sophora flavescens Aiton. Oxymatrine has been shown to exhibit anti-inflammatory, antiviral, and anticancer properties. The present study aimed to investigate the anticancer effects of oxymatrine in human prostate cancer cells, and the underlying molecular mechanisms of these effects. An MTT assay demonstrated that oxymatrine significantly inhibited the proliferation of prostate cancer cells in a time- and dose-dependent manner. In addition, flow cytometry and a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assay suggested that oxymatrine treatment may induce prostate cancer cell apoptosis in a dose-dependent manner. Furthermore, western blot analysis demonstrated a significant increase in the expression of p53 and bax, and a significant decrease in that of Bcl-2, in prostrate cancer cells in a dose-dependent manner. In vivo analysis demonstrated that oxymatrine inhibited tumor growth following subcutaneous inoculation of prostate cancer cells into nude mice. The results of the present study suggested that the antitumor properties of oxymatrine, may be associated with the inhibition of cell proliferation, and induction of apoptosis, via the regulation of apoptosis-associated gene expression. Therefore, the results may provide a novel approach for the development of prostate cancer therapy using oxymatrine, which is derived from the traditional Chinese herb, Sophora flavescens.
Collapse
Affiliation(s)
- Cunzao Wu
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weiping Huang
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong Guo
- Transplantation Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325013, P.R. China
| | - Peng Xia
- Transplantation Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325013, P.R. China
| | - Xianbin Sun
- Transplantation Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325013, P.R. China
| | - Xiaodong Pan
- Transplantation Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325013, P.R. China
| | - Weilie Hu
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
65
|
Zhao Y, Ma X, Wang J, Zhu Y, Li R, Wang J, He X, Shan L, Wang R, Wang L, Li Y, Xiao X. Paeoniflorin alleviates liver fibrosis by inhibiting HIF-1α through mTOR-dependent pathway. Fitoterapia 2014; 99:318-27. [DOI: 10.1016/j.fitote.2014.10.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/07/2014] [Accepted: 10/12/2014] [Indexed: 12/18/2022]
|
66
|
Curcumin protects against CCl4-induced liver fibrosis in rats by inhibiting HIF-1α through an ERK-dependent pathway. Molecules 2014; 19:18767-80. [PMID: 25407718 PMCID: PMC6270950 DOI: 10.3390/molecules191118767] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 02/05/2023] Open
Abstract
The ERK/HIF-1α signaling pathway is believed to play an important role in the genesis of progressive fibrosis. An increasing expression of HIF-1α and ERK accompanies CCl4-induced liver fibrosis in rats. Curcumin is verified to have antifibrotic effects in several kinds of liver fibrosis models. There is no specific evidence illustrating a connection between curcumin and the HIF-1α/ERK pathway in rat liver fibrosis induced by CCl4. In this study, liver fibrosis was induced by CCl4 in treated rats. The data demonstrated that curcumin was able to attenuate liver fibrosis and inhibit the proliferation of HSC. Moreover, curcumin could remarkably elevate the hepatic function by decreasing serum levels of ALT, AST and ALP, and increasing levels of ALB, TP and α-SMA, Col III mRNA expression. Meanwhile, ECM status could also be reflected by curcumin treatment. The alleviation with curcumin treatment was associated with inhibition of HIF-1α and phosphor-ERK. This study indicates that curcumin alleviates fibrosis by reducing the expression of HIF-1α partly through the ERK pathway.
Collapse
|
67
|
Yoo H, Ryu KH, Bae SK, Kim J. Simultaneous determination of trifolirhizin, (-)-maackiain, (-)-sophoranone, and 2-(2,4-dihydroxyphenyl)-5,6-methylenedioxybenzofuran from Sophora tonkinensis in rat plasma by liquid chromatography with tandem mass spectrometry and its application to a ph. J Sep Sci 2014; 37:3235-44. [DOI: 10.1002/jssc.201400691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Hunseung Yoo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences; Seoul National University; Seoul Korea
| | - Keun Ho Ryu
- New Drug Preclinical and Analytical Team; Life Science R&D Center, SK Chemicals; Pangyo-ro Korea
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences; The Catholic University of Korea; Bucheon Korea
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences; Seoul National University; Seoul Korea
| |
Collapse
|
68
|
Wen JB, Zhu FQ, Chen WG, Jiang LP, Chen J, Hu ZP, Huang YJ, Zhou ZW, Wang GL, Lin H, Zhou SF. Oxymatrine improves intestinal epithelial barrier function involving NF-κB-mediated signaling pathway in CCl4-induced cirrhotic rats. PLoS One 2014; 9:e106082. [PMID: 25171482 PMCID: PMC4149463 DOI: 10.1371/journal.pone.0106082] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 07/31/2014] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence suggests that intestinal epithelial barrier dysfunction plays an important role in the pathogenesis of hepatic cirrhosis and its complications such as gastrointestinal injury and hepatic encephalopathy. To date, there is no cure for cirrhosis-associated intestinal mucosal lesion and ulcer. This study aimed to investigate the effect of oxymatrine on intestinal epithelial barrier function and the underlying mechanism in carbon tetrachloride (CCl4)-induced cirrhotic rats. Thirty CCl4-induced cirrhotic rats were randomly divided into treatment group, which received oxymatrine treatment (63 mg/kg), and non-treatment group, which received the same dose of 5% glucose solution (vehicle). The blank group (n = 10 healthy rats) received no treatment. Terminal ileal samples were collected for histopathological examination. The expression level of nuclear factor-κB (NF-κB) p65 in ileal tissue was evaluated by immunohistochemistry. The gene and protein expression levels of tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) in ileal tissues were analyzed by reverse-transcriptase polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Additionally, plasma endotoxin level was determined. In comparison to the blank group, a significant alteration in the morphology of intestinal mucosal villi in the non-treatment group was observed. The intestinal mucosal villi were atrophic, shorter, and fractured, and inflammatory cells were infiltrated into the lamina propria and muscular layer. Besides, serious swell of villi and loose structure of mucous membrane were observed. Oxymatrine reversed the CCl4-induced histological changes and restored intestinal barrier integrity. Moreover, oxymatrine reduced the protein expression level of NF-κB p65, TNF-α, and IL-6, which were elevated in the vehicle-treated group. In addition, the serum endotoxin level was significantly decreased after oxymatrine treatment in CCl4-induced cirrhotic rats. The results indicate that oxymatrine improves intestinal barrier function via NF-κB-mediated signaling pathway and may be used as a new protecting agent for cirrhosis-associated intestinal mucosal damage.
Collapse
Affiliation(s)
- Jian-Bo Wen
- Department of Gastroenterology, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
- * E-mail: (JBW); (SFZ)
| | - Fang-Qing Zhu
- Department of Gastroenterology, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
| | - Wei-Guo Chen
- Department of Gastroenterology, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
| | - Li-Ping Jiang
- Animal Laboratory, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
| | - Jie Chen
- Department of Pharmacology, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
| | - Zhao-Peng Hu
- Department of Pathology, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
| | - Yong-Jian Huang
- Department of Clinical Laboratory, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
| | - Gui-Liang Wang
- Department of Gastroenterology, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
| | - Hao Lin
- Department of Gastroenterology, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
- * E-mail: (JBW); (SFZ)
| |
Collapse
|
69
|
Ma ZG, Chen L, Zhan LL, Lv XP. Regulation of activation and proliferation of hepatic stellate cells through the Wnt signaling pathway: Implications for treatment of liver fibrosis. Shijie Huaren Xiaohua Zazhi 2014; 22:3048-3055. [DOI: 10.11569/wcjd.v22.i21.3048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis, a reversible pathological condition occurring after chronic liver injury, is closely associated with the activation and proliferation of hepatic stellate cells (HSCs). Several studies have demonstrated that the Wnt signaling pathway is involved in the activation of HSCs, and then contributes to the occurrence and development of liver fibrosis. Thus, the Wnt signaling pathway and HSCs are considered to be the valid targets for the treatment of liver fibrosis. In recent years, domestic and international scholars have carried on many studies on the regulation of the Wnt signaling pathway and HSCs, trying to find out effective antifibrotic therapies. A large number of studies have shown that regulating HSCs can play a positive role in the treatment of liver fibrosis through the Wnt signaling pathway. On the basis of the relationship among the Wnt signaling pathway, HSCs and liver fibrosis, this review mainly summarizes the latest progress in the study of strategies for regulating HSCs through the Wnt signaling pathway and discusses the implications for the treatment of liver fibrosis.
Collapse
|
70
|
Oxymatrine Extracted from Sophora flavescens Inhibited Cell Growth and Induced Apoptosis in Human Osteosarcoma MG-63 Cells In Vitro. Cell Biochem Biophys 2014; 70:1439-44. [DOI: 10.1007/s12013-014-0078-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
71
|
Giannitrapani L, Soresi M, Bondì ML, Montalto G, Cervello M. Nanotechnology applications for the therapy of liver fibrosis. World J Gastroenterol 2014; 20:7242-7251. [PMID: 24966595 PMCID: PMC4064070 DOI: 10.3748/wjg.v20.i23.7242] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/16/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic liver diseases represent a major global health problem both for their high prevalence worldwide and, in the more advanced stages, for the limited available curative treatment options. In fact, when lesions of different etiologies chronically affect the liver, triggering the fibrogenesis mechanisms, damage has already occurred and the progression of fibrosis will have a major clinical impact entailing severe complications, expensive treatments and death in end-stage liver disease. Despite significant advances in the understanding of the mechanisms of liver fibrinogenesis, the drugs used in liver fibrosis treatment still have a limited therapeutic effect. Many drugs showing potent antifibrotic activities in vitro often exhibit only minor effects in vivo because insufficient concentrations accumulate around the target cell and adverse effects result as other non-target cells are affected. Hepatic stellate cells play a critical role in liver fibrogenesis , thus they are the target cells of antifibrotic therapy. The application of nanoparticles has emerged as a rapidly evolving area for the safe delivery of various therapeutic agents (including drugs and nucleic acid) in the treatment of various pathologies, including liver disease. In this review, we give an overview of the various nanotechnology approaches used in the treatment of liver fibrosis.
Collapse
|
72
|
Pharmacokinetic study of multiple active constituents from Kushen-Gancao Decoction after oral administration in rat by HPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 965:19-26. [PMID: 24976484 DOI: 10.1016/j.jchromb.2014.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 12/26/2022]
Abstract
Kushen-Gancao Decoction (KGD) is a classic traditional Chinese herb combination in treating viral hepatitis and chronic liver diseases. This study aims to investigate the pharmacokinetic (PK) study of matrine (MT), oxymatrine (OMT), glycyrrhizic acid (GL) and glycyrrhetinic acid (GA) following oral administration of KGD in rats. A rapid, sensitive and reliable HPLC-MS/MS method was successfully developed for the simultaneous determination of MT, OMT, GL and GA in rat plasma. A Inertsil C18 analytical column was used with a gradient mobile phase system of methanol-ammonium acetate (5mM) with a flow rate of 0.5 mL/min. The analysis was performed on a positive and negative ionization electrospray mass spectrometer via multi reaction monitoring (MRM). Linear calibration curves were obtained for the following concentration range: 10-5000 ng/mL for MT, OMT and GL, 50-15,000 ng/mL for GA in rat plasma (R(2)>0.99). The lower limit of quantification (LLOQ) was 5 ng/mL (MT, OMT and GL) and 20 ng/mL (GA). The intra- and inter-day accuracies ranged from -7.91 to 9.10% and precisions (RSD) were within 15%. The analytes were found to be stable under short-term temperature conditions, post-preparative temperature conditions, and after three freeze-thaw cycles conditions. The validated method was successfully applied to a pharmacokinetic study in rats after oral administration of KGD.
Collapse
|
73
|
Effect of Sophora flavescens on the pharmacokinetics of carbamazepine in rats. Arch Pharm Res 2014; 37:1617-23. [DOI: 10.1007/s12272-014-0375-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 03/20/2014] [Indexed: 11/26/2022]
|
74
|
Liu Y, Xu Y, Ji W, Li X, Sun B, Gao Q, Su C. Anti-tumor activities of matrine and oxymatrine: literature review. Tumour Biol 2014; 35:5111-9. [PMID: 24526416 DOI: 10.1007/s13277-014-1680-z] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 01/22/2014] [Indexed: 12/11/2022] Open
Abstract
Matrine (MT) and oxymatrine (OMT), two kinds of alkaloid components found in the roots of Sophora species, have various pharmacological activities and are demonstrated to have anti-inflammatory, anti-allergic, anti-virus, anti-fibrotic, and cardiovascular protective effects. They are recently proved to have anti-cancer potentials, such as inhibiting cancer cell proliferation, inducing cell cycle arrest, accelerating apoptosis, restraining angiogenesis, inducing cell differentiation, inhibiting cancer metastasis and invasion, reversing multidrug resistance, and preventing or reducing chemotherapy- or radiotherapy-induced toxicity when combined with other chemotherapeutic drugs. In this review, we summarize the recent investigations regarding the anti-cancer activities and possible molecular targets of MT and OMT for cancer prevention and treatment in order to provide clues and references for further study.
Collapse
Affiliation(s)
- Yan Liu
- Department of General Surgery, Wujiang No.1 People's Hospital, Suzhou, 215200, China
| | | | | | | | | | | | | |
Collapse
|
75
|
Miao CG, Yang YY, He X, Huang C, Huang Y, Zhang L, Lv XW, Jin Y, Li J. Wnt signaling in liver fibrosis: progress, challenges and potential directions. Biochimie 2013; 95:2326-35. [PMID: 24036368 DOI: 10.1016/j.biochi.2013.09.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/02/2013] [Indexed: 12/25/2022]
Abstract
Liver fibrosis is a common wound-healing response to chronic liver injuries, including alcoholic or drug toxicity, persistent viral infection, and genetic factors. Myofibroblastic transdifferentiation (MTD) is the pivotal event during liver fibrogenesis, and research in the past few years has identified key mediators and molecular mechanisms responsible for MTD of hepatic stellate cells (HSCs). HSCs are undifferentiated cells which play an important role in liver regeneration. Recent evidence demonstrates that HSCs derive from mesoderm and at least in part via septum transversum and mesothelium, and HSCs express markers for different cell types which derive from multipotent mesenchymal progenitors. There is a regulatory commonality between differentiation of adipocytes and that of HSC, and the shift from adipogenic to myogenic or neuronal phenotype characterizes HSC MTD. Central of this shift is a loss of expression of the master adipogenic regulator peroxisome proliferator activated receptor γ (PPARγ). Restored expression of PPARγ and/or other adipogenic transcription genes can reverse myofibroblastic HSCs to differentiated cells. Vertebrate Wnt and Drosophila wingless are homologous genes, and their translated proteins have been shown to participate in the regulation of cell proliferation, cell polarity, cell differentiation, and other biological roles. More recently, Wnt signaling is implicated in human fibrosing diseases, such as pulmonary fibrosis, renal fibrosis, and liver fibrosis. Blocking the canonical Wnt signal pathway with the co-receptor antagonist Dickkopf-1 (DKK1) abrogates these epigenetic repressions and restores the gene PPARγ expression and HSC differentiation. The identified morphogen mediated epigenetic regulation of PPARγ and HSC differentiation also serves as novel therapeutic targets for liver fibrosis and liver regeneration. In conclusion, the Wnt signaling promotes liver fibrosis by enhancing HSC activation and survival, and we herein discuss what we currently know and what we expect will come in this field in the next future.
Collapse
Affiliation(s)
- Cheng-gui Miao
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Mei Shan Road, Hefei 230032, Anhui Province, China; School of Food and Drug, Anhui Science and Technology University, Bengbu 233100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Tang L, Dong LN, Peng XJ, Li Y, Shi J, Zhou FY, Liu ZQ. Pharmacokinetic characterization of oxymatrine and matrine in rats after oral administration of radix Sophorae tonkinensis extract and oxymatrine by sensitive and robust UPLC-MS/MS method. J Pharm Biomed Anal 2013; 83:179-85. [PMID: 23747747 DOI: 10.1016/j.jpba.2013.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/24/2013] [Accepted: 05/07/2013] [Indexed: 02/07/2023]
Abstract
The purpose of this study is to systematically investigate the pharmacokinetic (PK) behaviors of radix Sophorae tonkinensis (S. tonkinensis) using oxymatrine (OMT) and matrine (MT) as the target markers (2 mg/kg OMT and 1.3 mg/kg MT, oral administration). The PK characteristics in radix S. tonkinensis extracts were also compared with those of pure OMT. A fast ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed. OMT absorption was very fast, and no significant differences were observed (p>0.05) in tmax, CL, and t1/2 for both pure OMT and extracts. Cmax and AUC0→∞ of pure OMT were significantly higher than those of S. tonkinensis extracts (Cmax, 61.64±6.65 vs. 43.24±10.14 ng/mL; AUC, 9894.48±2234.99 vs. 4730.30±3503.8 min ng/mL) (p<0.05). However, the absolute OMT bioavailability of pure OMT was higher than that of the compound in radix S. tonkinensis extracts (6.79±2.52% vs. 1.87±2.66%). By contrast, the bioavailability of total alkaloids (OMT+MT) after pure OMT administration was 81.14±8.83%, similar to that of radix S. tonkinensis extracts (69.36±17.37%) (p>0.05). It was presumed that OMT absorption has no effect on the bioavailability of the two alkaloids. Other constituents in radix S. tonkinensis extracts can influence the transformation of OMT to MT, which directly leads to variations in the PK behavior of OMT. In addition, the protein binding of OMT and MT in plasma was very low (4.80%-8.95% for OMT, 5.10-10.55% for MT). In conclusion, OMT in radix S. tonkinensis extracts exhibits different PK behaviors with pure OMT through the transformation of OMT to MT due to other complex ingredients.
Collapse
Affiliation(s)
- Lan Tang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | | | |
Collapse
|
77
|
ZHANG MINGHAO, WANG XIUYU, WANG XIUMEI, HOU XIAOLIN, TENG PENG, JIANG YIDENG, ZHANG LINNA, YANG XIAOLING, TIAN JUE, LI GUIZHONG, CAO JUN, XU HUA, LI YUNHONG, WANG YIN. Oxymatrine protects against myocardial injury via inhibition of JAK2/STAT3 signaling in rat septic shock. Mol Med Rep 2013; 7:1293-9. [PMID: 23404057 DOI: 10.3892/mmr.2013.1315] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/21/2013] [Indexed: 11/05/2022] Open
|
78
|
DU MEILING, ZHANG JUN, XU DIANNAN, LI WENSHUAI, LIU JIE, LIU FEI. Inhibition of pro-collagen I expression by oxymatrine in hepatic stellate cells is mediated via nuclear translocation of Y-box binding protein 1. Mol Med Rep 2012; 12:8101-6. [DOI: 10.3892/mmr.2015.4428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 09/10/2015] [Indexed: 11/05/2022] Open
|