51
|
Liu L, Wu P, Guo A, Yang Y, Chen F, Zhang Q. Research progress on the regulation of production traits by gastrointestinal microbiota in dairy cows. Front Vet Sci 2023; 10:1206346. [PMID: 37592942 PMCID: PMC10427726 DOI: 10.3389/fvets.2023.1206346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
The composition and abundance of microorganisms in the gastrointestinal tract of cows are complex and extensive, and they play a crucial role in regulating nutrient digestion, absorption, maintaining digestive tract stability, and promoting the production and health of the host. The fermentation carried out by these microorganisms in the gastrointestinal tract is fundamental to the health and productivity of cows. Rumen microorganisms produce the majority of enzymes required to break down feed substrates, such as cellulose, protein, lipids, and other plant materials, through fermentation. This process provides energy metabolism substrates that satisfy approximately 70% of the host's energy requirements for physiological activities. Gut microorganisms primarily decompose cellulose that is difficult to digest in the rumen, thereby providing heat and energy to the hosts. Additionally, they have an impact on host health and productivity through their role in immune function. Understanding the composition and function of the cow gut microbiota can help regulate dairy cattle breeding traits and improve their health status. As a result, it has become a popular research topic in dairy cattle breeding. This article provides a review of the composition, structure, physiological characteristics, and physiological effects of the cow gut microbiota, serving as a theoretical foundation for future studies that aim to utilize the gut microbiota for dairy cattle breeding or improving production traits. It may also serve as a reference for research on gut microbiota of other ruminants.
Collapse
Affiliation(s)
- Lily Liu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Peifu Wu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Aiwei Guo
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Yajin Yang
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Fenfen Chen
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Qin Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
52
|
Ng JJJ, Loo WM, Siah KTH. Associations between irritable bowel syndrome and non-alcoholic fatty liver disease: A systematic review. World J Hepatol 2023; 15:925-938. [PMID: 37547029 PMCID: PMC10401413 DOI: 10.4254/wjh.v15.i7.925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is associated with obesity and metabolic syndrome. IBS and non-alcoholic fatty liver disease (NAFLD) are highly prevalent entities worldwide and may share similar mechanisms including gut dysbiosis, impaired intestinal mucosal barrier and immune system activation.
AIM To systematically review their association according to the Preferred Reporting Items for Systemic Review and Meta-analyses guidelines.
METHODS PubMed, EMBASE and Cochrane Database of Systematic Reviews were searched for relevant papers. Manual searches were also performed.
RESULTS Six studies were included. Both IBS and NAFLD subjects had significantly more metabolic risk factors like hypertension, obesity, dyslipidaemia and diabetes. Our review showed that 23.2% to 29.4% of NAFLD patients had IBS. IBS was significantly higher in NAFLD patients compared with patients without NAFLD (23.2% vs 12.5%, P < 0.01). A higher proportion of IBS patients had NAFLD (65.8% to 74.0%). IBS patients were three times more likely to have NAFLD compared with non-IBS patients (P < 0.001). Two studies showed a significant correlation between the severity of IBS and NAFLD. The proportion of NAFLD subjects with IBS increased with NAFLD severity.
CONCLUSION Further prospective studies are warranted to evaluate the relationship and shared pathways between IBS and NAFLD, potentially leading to the development of future therapeutics.
Collapse
Affiliation(s)
- Jareth Jun Jie Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wai Mun Loo
- AliveoMedical, Mount Alvernia and Mount Elizabeth Hospitals, Singapore 574623, Singapore
| | - Kewin Tien Ho Siah
- Division of Gastroenterology and Hepatology, National University Hospital, Singapore 119228, Singapore
- Department of Medicine, National University Hospital, Singapore 119228, Singapore
| |
Collapse
|
53
|
Agustono B, Warsito SH, Yunita MN, Lokapirnasari WP, Hidanah S, Sabdoningrum EK, Al-Arif MA, Lamid M, Yuliani GA, Chhetri S, Windria S. Influence of microbiota inoculum as a substitute for antibiotic growth promoter during the initial laying phase on productivity performance, egg quality, and the morphology of reproductive organs in laying hens. Vet World 2023; 16:1461-1467. [PMID: 37621531 PMCID: PMC10446726 DOI: 10.14202/vetworld.2023.1461-1467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/09/2023] [Indexed: 08/26/2023] Open
Abstract
Background and Aim Antibiotics that increase growth have long been employed as a component of chicken growth. Long-term, unchecked usage may lead to microbial imbalance, resistance, and immune system suppression. Probiotics are a suitable and secure feed additive that may be provided as a solution. The objective of this research was to ascertain the effects of dietary multistrain probiotics (Lactobacillus acidophilus, Bifidobacterium spp., and Lactobacillus plantarum) on the morphology (length and weight) of reproductive organs and productivity performance of laying hens during the early stage of laying. Materials and Methods One hundred ISA Brown commercial layer chicks of the same body weight (BW) that were 5 days old were divided into five treatments, each with four replicates and four chicks in each duplicate. There were five different dietary interventions: (T1) 100% base feed; (T2) base feed with 2.5 g of antibiotic growth promoter/kg feed; (T3) base feed plus probiotics; (T4) base feed at 1 mL/kg with probiotics; and (T5) base feed with probiotics, 3 mL/kg feed, 5 mL/kg of feed. The parameters observed were performance, internal and exterior egg quality, and the morphology (length and weight) of laying hens' reproductive organs. Results Probiotic supplementation (L. acidophilus, Bifidobacterium, and L. plantarum) significantly affected the BW, feed intake, egg weight, yolk index, albumin index, Haugh unit, egg height, egg width, and morphology (length and weight) of laying hens' reproductive organs compared to the control group (basic feed). In addition, there was no discernible difference between treatment groups in theeggshell weight and thickness variables across all treatment groups. Conclusion When laying hens were between 17 and 21 weeks old, during the early laying period, microbiota inoculum supplements (L. acidophilus, Bifidobacterium, and L. plantarum) increased growth, the quality of the internal and external layers' eggs, and the morphology of the laying hens' reproductive organs.
Collapse
Affiliation(s)
- Bodhi Agustono
- Division of Animal Husbandry, School of Health and Life Sciences (SIKIA), Surabaya 60115, Indonesia
| | - Sunaryo Hadi Warsito
- Department of Veterinary Science, Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Maya Nurwartanti Yunita
- Division of Pathology Veterinary, School of Health and Life Sciences (SIKIA), Universitas Airlangga, Surabaya 60115, Indonesia
| | - Widya Paramita Lokapirnasari
- Department of Veterinary Science, Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Sri Hidanah
- Department of Veterinary Science, Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Emy Koestanti Sabdoningrum
- Department of Veterinary Science, Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mohammad Anam Al-Arif
- Department of Veterinary Science, Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mirni Lamid
- Department of Veterinary Science, Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Gandul Atik Yuliani
- Department of Veterinary Science, Division of Basic Veterinary, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Shekhar Chhetri
- Department of Animal Science, Royal University of Bhutan, Thimphu, Bhutan
| | - Sarasati Windria
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia
| |
Collapse
|
54
|
Nguyen HH, Swain MG. Avenues within the gut-liver-brain axis linking chronic liver disease and symptoms. Front Neurosci 2023; 17:1171253. [PMID: 37521690 PMCID: PMC10372440 DOI: 10.3389/fnins.2023.1171253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/09/2023] [Indexed: 08/01/2023] Open
Abstract
Symptoms of fatigue, social withdrawal and mood disturbances are commonly encountered in patients with chronic liver disease and have a detrimental effect on patient quality of life. Treatment options for these symptoms are limited and a current area of unmet medical need. In this review, we will evaluate the potential mechanistic avenues within the gut-liver-brain axis that may be altered in the setting of chronic liver disease that drive the development of these symptoms. Both clinical and pre-clinical studies will be highlighted as we discuss how perturbations in host immune response, microbiome, neural responses, and metabolites composition can affect the central nervous system.
Collapse
Affiliation(s)
- Henry H. Nguyen
- University of Calgary Liver Unit, Departments of Medicine and Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark G. Swain
- University of Calgary Liver Unit, Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
55
|
Liu P, Zhang Y, Zhang Z, Huang X, Su X, Yang S, Xie Y. Antibiotic-Induced Dysbiosis of the Gut Microbiota Impairs Gene Expression in Gut-Liver Axis of Mice. Genes (Basel) 2023; 14:1423. [PMID: 37510327 PMCID: PMC10379678 DOI: 10.3390/genes14071423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Antibiotics can be a double-edged sword. The application of broad-spectrum antibiotics leads to the suppression of microorganisms in the human body without selective targeting, including numerous non-pathogenic microorganisms within the gut. As a result, dysbiosis of the gut microbiota can occur. The gut microbiota is a vast and intricate ecosystem that has been connected with various illnesses. Significantly, the gut and liver function in a closely coupled anatomical and physiological relationship referred to as the "gut-liver axis". Consequently, metabolites stemming from the gut microbiota migrate via the portal vein to the liver, thereby influencing gene expression and proper physiological activity within the liver. This study aimed to investigate the dysbiosis of gut microbiota ecology and the disruption of gene expression resulting from oral antibiotics and their subsequent recovery. In the experiment, mice were tube-fed neomycin (0.5 mg/mL) and ampicillin (1 mg/mL) for 21 days (ABX group) to conduct 16s rRNA sequencing. By simultaneously analyzing public datasets PRJDB6615, which utilized the same antibiotics, it was found that nearly 50% of the total microbiota abundance was attributed to the f__Lactobacillaceae family. Additionally, datasets GSE154465 and GSE159761, using the same antibiotics, were used to screen for differentially expressed genes pre-and post-antibiotic treatment. Quantitative real-time PCR was employed to evaluate gene expression levels before and after antibiotic treatment. It was discovered that oral antibiotics significantly disrupted gene expression in the gut and liver, likely due to the dysregulation of the gut microbiota ecology. Fecal microbiota transplantation (FMT) was found to be an effective method for restoring gut microbiota dysbiosis. To further enhance the restoration of gut microbiota and gene expression, an antioxidant, vitamin C, was added to the FMT process to counteract the oxidative effect of antibiotics on microorganisms. The results showed that FMTs with vitamin C were more effective in restoring gut microbiota and gene expression to the level of the fecal transplant donor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongfang Xie
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China (Y.Z.)
| |
Collapse
|
56
|
Han DW, Xu K, Jin ZL, Xu YN, Li YH, Wang L, Cao Q, Kim KP, Ryu D, Hong K, Kim NH. Customized liver organoids as an advanced in vitro modeling and drug discovery platform for non-alcoholic fatty liver diseases. Int J Biol Sci 2023; 19:3595-3613. [PMID: 37497008 PMCID: PMC10367556 DOI: 10.7150/ijbs.85145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its progressive form non-alcoholic steatohepatitis (NASH) have presented a major and common health concern worldwide due to their increasing prevalence and progressive development of severe pathological conditions such as cirrhosis and liver cancer. Although a large number of drug candidates for the treatment of NASH have entered clinical trial testing, all have not been released to market due to their limited efficacy, and there remains no approved treatment for NASH available to this day. Recently, organoid technology that produces 3D multicellular aggregates with a liver tissue-like cytoarchitecture and improved functionality has been suggested as a novel platform for modeling the human-specific complex pathophysiology of NAFLD and NASH. In this review, we describe the cellular crosstalk between each cellular compartment in the liver during the pathogenesis of NAFLD and NASH. We also summarize the current state of liver organoid technology, describing the cellular diversity that could be recapitulated in liver organoids and proposing a future direction for liver organoid technology as an in vitro platform for disease modeling and drug discovery for NAFLD and NASH.
Collapse
Affiliation(s)
- Dong Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China
- Research and Development, Qingdao Haier Biotech Co. Ltd, Qingdao, China
- Guangdong ORGANOID Biotechnology Co. Ltd, Jiangmen, China
| | - KangHe Xu
- Department of Surgery, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Zhe-Long Jin
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China
- Guangdong ORGANOID Biotechnology Co. Ltd, Jiangmen, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China
| | - Lin Wang
- Research and Development, Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Qilong Cao
- Research and Development, Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Kee-Pyo Kim
- Department of Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - DongHee Ryu
- Department of Surgery, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, The institute of advanced regenerative science, Konkuk University, Seoul, Republic of Korea
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China
- Research and Development, Qingdao Haier Biotech Co. Ltd, Qingdao, China
- Guangdong ORGANOID Biotechnology Co. Ltd, Jiangmen, China
| |
Collapse
|
57
|
Qu R, Zhang W, Ma Z, Ma Q, Chen M, Lan T, Zhou L, Hu X. Glaucocalyxin A attenuates carbon tetrachloride-induced liver fibrosis and improves the associated gut microbiota imbalance. Chem Biol Drug Des 2023; 102:51-64. [PMID: 37060267 DOI: 10.1111/cbdd.14241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
Liver fibrosis refers to the pathophysiological process of dysplasia on the connective tissue of the liver, caused by a variety of pathogenic factors. Glaucocalyxin A (GLA) has anticoagulation, antibacterial, anti-inflammation, antioxidant and antitumour properties. However, whether GLA ameliorates liver fibrosis or not is still unclear. In this study, a liver fibrosis model was established using male C57BL/6 mice. The mice were treated with 5 and 10 mg/kg GLA via intraperitoneal injection, respectively. The ones that were treated with 5 mg/kg OCA were used as the positive control group. The levels of liver function, liver fibrosis biomarkers and liver pathological changes were then evaluated. We also explored the effects of GLA on inflammatory response and liver cell apoptosis. In addition, we investigated the gut microbiota mechanisms of GLA on liver fibrosis. The results from this study that GLA could significantly decrease the level of liver function (AST, ALT, TBA) and liver fibrosis (HA, LN, PC-III, IV-C). On the other hand, a significant decrease in inflammation levels (IL-1β, TNF-α) were also noted. GLA also improves CCl4-induced pathological liver injuries and collagen deposition, in addition to decreasing apoptosis levels. In addition, an increase in the ratio of Bacteroidetes and Firmicutes in liver disease was also observed. GLA also improves the gut microbiota. In conclusion, GLA attenuates CCl4-induced liver fibrosis and improves the associated gut microbiota imbalance.
Collapse
Affiliation(s)
- Ru Qu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wang Zhang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhuang Ma
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianwen Ma
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Mingju Chen
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Tian Lan
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin Zhou
- School of Life Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuguang Hu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
58
|
Zeng X, He J, Li X, Chen P, Zuo J, Cai X, Fan Z, Qu J. Clinical efficacy of one-finger meditation massage on IBS-C based on the "gut-brain axis" theory: study protocol for a randomized controlled trial. BMC Complement Med Ther 2023; 23:185. [PMID: 37280574 PMCID: PMC10245512 DOI: 10.1186/s12906-023-04019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND As a common disorder of the gastrointestinal tract, irritable bowel syndrome (IBS) can have negative effects on patients and society, with irritable bowel syndrome with constipation(IBS-C) accounting for a large proportion of these effects. The main clinical manifestations of IBS-C are constipation, abdominal pain, and abdominal distension, which seriously impact the quality of life of patients. The mechanisms of IBS are complex, and the gut-brain axis has been an emerging and recognized theoretical system in recent years. Based on the theory of the gut-brain axis and the theory of Chinese medicine, we designed this study to evaluate the efficacy of one-finger meditation massage in treating IBS-C. METHODS/DESIGN This is a randomized controlled trial. Eligible patients with irritable bowel syndrome (IBS-C) wererandomized 1:1 to a test group (massage plus probiotics) and a control group (probiotics). Patients in the test group weretreated once every 10 days for three consecutive courses of treatment (i.e., three months) and weregiven Bifidobacterium trifolium capsules 630 mg/dose three times daily 30 min after meals every day during the treatment period, with follow-up observations at the end of the third and sixth months of the treatment period. The control group weregiven Bifidobacterium trifolium capsules 630 mg/dose, 3 times a day for 3 months, with follow-up observations at the end of the third and sixth months of the treatment period. The primary outcome indicators are the concentrations of 5-HT and substance P and the IBS Severity Scale (IBS-SSS) assessment. Secondary outcomes are the Bristol Rating Scale (BRSA) score, the IBS Quality of Life Questionnaire (IBS-QOL scale) score, and the assessment of the effectiveness of the evidence. The results wereassessed at the pretreatment, posttreatment, and follow-up stages. Any side effects weresubject to assessment. DISCUSSION The aim of this trial is to provide a new method of treatment based on pharmacological treatment that is easy to use, easy to promote and has proven efficacy and to establish the efficacy and safety of treating IBS-C through this trial. REGISTRATION FOR TRIAL Chinese Clinical Trial Registry ChiCTR2200066417 on 5 December 2022. https://www.chictr.org.cn/bin/project/edit?pid=183461.
Collapse
Affiliation(s)
- Xiayang Zeng
- Tui Na Department, Zhejiang Hospital, Hangzhou, China
| | - Jingjing He
- Surgical Department, The Third Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Xiaoyu Li
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Peng Chen
- Tui Na Department, Zhejiang Hospital, Hangzhou, China
| | - Jinhong Zuo
- Tui Na Department, Zhejiang Hospital, Hangzhou, China
| | - Xinlei Cai
- Tui Na Department, Zhejiang Hospital, Hangzhou, China
| | - Zhenyu Fan
- Tui Na Department, Zhejiang Hospital, Hangzhou, China
| | - Jianpeng Qu
- Tui Na Department, Zhejiang Hospital, Hangzhou, China.
| |
Collapse
|
59
|
Chen C, Chen W, Ding H, Zhang G, Xie K, Zhang T. Integrated Metabolomic and Transcriptomic Analysis Reveals Potential Gut-Liver Crosstalks in the Lipogenesis of Chicken. Animals (Basel) 2023; 13:ani13101659. [PMID: 37238090 DOI: 10.3390/ani13101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Growing evidence has shown the involvement of the gut-liver axis in lipogenesis and fat deposition. However, how the gut crosstalk with the liver and the potential role of gut-liver crosstalk in the lipogenesis of chicken remains largely unknown. In this study, to identify gut-liver crosstalks involved in regulating the lipogenesis of chicken, we first established an HFD-induced obese chicken model. Using this model, we detected the changes in the metabolic profiles of the cecum and liver in response to the HFD-induced excessive lipogenesis using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. The changes in the gene expression profiles of the liver were examined by RNA sequencing. The potential gut-liver crosstalks were identified by the correlation analysis of key metabolites and genes. The results showed that a total of 113 and 73 differentially abundant metabolites (DAMs) between NFD and HFD groups were identified in the chicken cecum and liver, respectively. Eleven DAMs overlayed between the two comparisons, in which ten DAMs showed consistent abundance trends in the cecum and liver after HFD feeding, suggesting their potential as signaling molecules between the gut and liver. RNA sequencing identified 271 differentially expressed genes (DEGs) in the liver of chickens fed with NFD vs. HFD. Thirty-five DEGs were involved in the lipid metabolic process, which might be candidate genes regulating the lipogenesis of chicken. Correlation analysis indicated that 5-hydroxyisourate, alpha-linolenic acid, bovinic acid, linoleic acid, and trans-2-octenoic acid might be transported from gut to liver, and thereby up-regulate the expression of ACSS2, PCSK9, and CYP2C18 and down-regulate one or more genes of CDS1, ST8SIA6, LOC415787, MOGAT1, PLIN1, LOC423719, and EDN2 in the liver to enhance the lipogenesis of chicken. Moreover, taurocholic acid might be transported from the gut to the liver and contribute to HFD-induced lipogenesis by regulating the expression of ACACA, FASN, AACS, and LPL in the liver. Our findings contribute to a better understanding of gut-liver crosstalks and their potential roles in regulating chicken lipogenesis.
Collapse
Affiliation(s)
- Can Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Weilin Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Hao Ding
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
60
|
Chernukha I, Vasilevskaya E, Klimina K, Yunes R, Kupaeva N, Tolmacheva G, Kibitkina A, Danilenko V, Karabanov S, Fedulova L. Effects of ultrasound-induced stress on gut microbiota of mice. Vet World 2023; 16:929-938. [PMID: 37576770 PMCID: PMC10420703 DOI: 10.14202/vetworld.2023.929-938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Prolonged stress causes deleterious effects on both the organism and its microbiota. In this study, we examined the effects of exposure to variable frequency ultrasound (US) on the gut microbiota-liver-brain axis of mice. Materials and Methods This study was conducted on 20 mature clinically healthy sexually naive C57BL/6J male mice (42-45 days old). Group 1 (Normal) consisted of healthy intact mice (n = 10). Group 2 (Stress) consisted of mice subjected to US-induced stress (n = 10) for 20 days with alternating frequencies (20-45 kHz). Stool samples were collected on days 0, 10, and 20, and the corresponding DNA was later subjected to 16SrRNA sequencing. After mice were sacrificed on day 21, the leukocyte count, blood serum biochemical parameters, and liver and brain antioxidant status were measured. Behavioral testing was performed on days 17, 18, and 19. Results Ultrasound lead to higher stress and anxiety levels; increase in creatinine by 8.29% and gamma-glutamyltransferase activity by 5 times, a decrease in alkaline phosphatase activity by 38.23%, increase of de Ritis coefficient by 21.34%; increased liver and brain superoxide dismutase level by 20.8% and 21.5%, respectively; the stress-related changes in the gut microbiota composition - Bacteroidaceae and Firmicutes. Conclusion Subjecting mice to 20 days of US-induced stress leads to systemic disorders due to oxidative stress and a decrease in the diversity of the gut microbiota.
Collapse
Affiliation(s)
- Irina Chernukha
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Ekaterina Vasilevskaya
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Ksenia Klimina
- Department of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Roman Yunes
- Department of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda Kupaeva
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Galina Tolmacheva
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Anastasiya Kibitkina
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Valery Danilenko
- Department of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Karabanov
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Liliya Fedulova
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| |
Collapse
|
61
|
MUHAMMAD M, MUCHIMAPURA S, WATTANATHORN J. Microbiota-gut-brain axis impairment in the pathogenesis of stroke: implication as a potent therapeutic target. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:143-151. [PMID: 37404572 PMCID: PMC10315190 DOI: 10.12938/bmfh.2022-067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/09/2023] [Indexed: 07/06/2023]
Abstract
The human microbiota-gut-brain axis has an enormous role in the maintenance of homeostasis and health. Over the last two decades, it has received concerted research attention and focus due to a rapidly emerging volume of evidence that has established that impairment within the microbiota-gut-brain axis contributes to the development and progression of various diseases. Stroke is one of the entities identified to be associated with microbiota-gut-brain axis impairment. Currently, there are still limitations in the clinical treatment of stroke, and the presence of a non-nervous factor from gut microbiota that can alter the course of stroke presents a novel strategy towards the search for a therapeutic silver bullet against stroke. Hence, the aim herein, was to focus on the involvement of microbiota-gut-brain axis impairment in the pathogenesis stroke as well as elucidate its implications as a potent therapeutic target against stroke. The findings of studies to date have revealed and extended the role microbiota-gut-brain axis impairment in the pathogenesis of stroke, and studies have identified from both clinical and pre-clinical perspectives targets within the microbiota-gut-brain axis and successfully modulated the outcome of stroke. It was concluded that the microbiota-gut-brain axis stands as potent target to salvage the neurons in the ischemic penumbra for the treatment of stroke. Assessment of the microbiota profile and its metabolites status holds enormous clinical potentials as a non-invasive indicator for the early diagnosis and prognosis of stroke.
Collapse
Affiliation(s)
- Mubarak MUHAMMAD
- Graduate School (Neuroscience Program), Faculty of Medicine,
Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen
40002, Thailand
| | - Supaporn MUCHIMAPURA
- Department of Physiology, Faculty of Medicine, Khon Kaen
University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002,
Thailand
- Integrative Complementary Alternative Medicine Research and
Development Center in the Research Institute for Human High Performance and Health
Promotion, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District,
Khon Kaen 40002, Thailand
| | - Jintanaporn WATTANATHORN
- Department of Physiology, Faculty of Medicine, Khon Kaen
University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002,
Thailand
- Integrative Complementary Alternative Medicine Research and
Development Center in the Research Institute for Human High Performance and Health
Promotion, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District,
Khon Kaen 40002, Thailand
| |
Collapse
|
62
|
Wang F, Zhang Q, Cui J, Bao B, Deng X, Liu L, Guo MY. Polystyrene microplastics induce endoplasmic reticulum stress, apoptosis and inflammation by disrupting the gut microbiota in carp intestines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121233. [PMID: 36804561 DOI: 10.1016/j.envpol.2023.121233] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Microplastics have been recognized as a widespread new pollutant in nature and have induced an increase in the occurrence of a variety of diseases in carp. An animal model of microplastic ingestion was successfully established in an aqueous environment. The gut microbiota was analysed using a metagenomic approach. The results showed a significant reduction in the relative abundances of Lactococcus garvieae, Bacteroides_paurosaccharolyticus, and Romboutsia_ilealis after PS-MPs treatment. The 16S Silva database was used to predict and analyse the known genes. Intestinal flora disorders related to infectious diseases, cancers, neurodegenerative diseases, endocrine and metabolic diseases, cardiovascular diseases, and other diseases were found. The intake of PS-MPs resulted in damage to carp intestinal tissue and apoptosis of intestinal epithelial cells. The levels of the inflammatory cytokines IL-1β, IL-6, and TNF-α were significantly increased with the intake of PS-MPs. The gene and protein levels of GRP78, Caspase-3, Caspase-7, Caspase-9, Caspase-12, PERK, IRE1, and ATF6 were further examined in PS group. The occurrence of ERS and apoptosis in carp intestines was confirmed. These results suggest that the accumulation of PS-MPs in the aquatic environment can disturb the carp gut microbiota and induce ERS, apoptosis, and inflammation in the intestinal tissue.
Collapse
Affiliation(s)
- Fuhan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, People's Republic of China.
| | - Qirui Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Jie Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Bowen Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Xian Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Lin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Meng-Yao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, People's Republic of China.
| |
Collapse
|
63
|
Beldowska A, Barszcz M, Dunislawska A. State of the art in research on the gut-liver and gut-brain axis in poultry. J Anim Sci Biotechnol 2023; 14:37. [PMID: 37038205 PMCID: PMC10088153 DOI: 10.1186/s40104-023-00853-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/12/2023] [Indexed: 04/12/2023] Open
Abstract
The relationship between the intestines and their microbiota, the liver, and the neuronal system is called the gut-liver-brain axis. This relationship has been studied and observed for a relatively short time but is considered in the development of research focused on, e.g., liver diseases and intestinal dysbiosis. The role of the gut microbiota in this relationship is crucial, as it acts on poultry's performance and feed utilization, affecting meat and egg quality. The correct composition of the intestinal microbiota makes it possible to determine the essential metabolic pathways and biological processes of the individual components of the microbiota, allowing further speculation of the role of microbial populations on internal organs such as the liver and brain in the organism. The gut microbiota forms a complex, dense axis with the autonomic and enteric nervous systems. The symbiotic relationship between the liver and gut microbiota is based on immune, metabolic and neuroendocrine regulation, and stabilization. On the other hand, the gut-brain axis is a bidirectional interaction and information transfer system between the gastrointestinal tract and the central nervous system. The following paper will discuss the current state of knowledge of the gut-liver-brain axis of poultry, including factors that may affect this complex relationship.
Collapse
Affiliation(s)
- Aleksandra Beldowska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka 28, Bydgoszcz, 85-084, Poland
| | - Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, Jabłonna, 05-110, Poland
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka 28, Bydgoszcz, 85-084, Poland.
| |
Collapse
|
64
|
He D, Wang X, Ye J, Yao Y, Wen Y, Jia Y, Meng P, Yang X, Wu C, Ning Y, Wang S, Zhang F. Evaluating the genetic interaction effects of gut microbiome and diet on the risk of neuroticism in the UK Biobank cohort. Psychiatr Genet 2023; 33:59-68. [PMID: 36924244 DOI: 10.1097/ypg.0000000000000334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
OBJECTIVES In this study designed to investigate the effect of diet and gut microbiome on neuropsychiatric disorders, we explored the mechanisms of the interaction between diet and gut microbiome on the risk of neuroticism. METHODS First, using the individual genotype data from the UK Biobank cohort (N = 306 165), we calculated the polygenic risk score (PRS) based on 814 dietary habits single nucleotide polymorphisms (SNPs), 21 diet compositions SNPs and 1001 gut microbiome SNPs, respectively. Gut microbiome and diet-associated SNPs were collected from three genome-wide association studies (GWAS), including the gut microbiome (N = 3890), diet compositions (over 235 000 subjects) and dietary habits (N = 449 210). The neuroticism score was calculated by 12 questions from the Eysenck Personality Inventory Neuroticism scale. Then, regression analysis was performed to evaluate the interaction effects between diet and the gut microbiome on the risk of neuroticism. RESULTS Our studies demonstrated multiple candidate interactions between diet and gut microbiome, such as protein vs. Bifidobacterium (β = 4.59 × 10-3; P = 9.45 × 10-3) and fat vs. Clostridia (β = 3.67 × 10-3; P = 3.90 × 10-2). In addition, pieces of fresh fruit per day vs. Ruminococcus (β = -5.79 × 10-3, P = 1.10 × 10-3) and pieces of dried fruit per day vs. Clostridiales (β = -5.63 × 10-3, P = 1.49 × 10-3) were found to be negatively associated with neuroticism in fruit types. We also identified several positive interactions, such as tablespoons of raw vegetables per day vs. Veillonella (β = 5.92 × 10-3, P = 9.21 × 10-4) and cooked vegetables per day vs. Acidaminococcaceae (β = 5.69 × 10-3, P = 1.24 × 10-3). CONCLUSIONS Our results provide novel clues for understanding the roles of diet and gut microbiome in the development of neuroticism.
Collapse
Affiliation(s)
- Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Lee EJ, Edward OC, Seo EB, Mun EG, Jeong SJ, Ha G, Han A, Cha YS. Gochujang Ameliorates Hepatic Inflammation by Improving Dysbiosis of Gut Microbiota in High-Fat Diet-Induced Obese Mice. Microorganisms 2023; 11:microorganisms11040911. [PMID: 37110334 PMCID: PMC10141003 DOI: 10.3390/microorganisms11040911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Abnormal fat accumulation with gut microbiota dysbiosis results in hepatic inflammation by upregulating the release of lipopolysaccharide (LPS) and inflammatory cytokine. Gochujang, a traditional fermented condiment, has beneficial effects, such as anti-colonic inflammatory effects. However, Gochujang has been controversial because of its high salt content (the Korean Paradox). Thus, the present study aimed to investigate the preventative effects of Gochujang on hepatic inflammation and related gut microbiota through discussing the Korean Paradox. The mice were divided into groups including a normal diet (ND), high-fat diet (HD), HD with salt (SALT), HD with a high percentage of beneficial microbiota Gochujang (HBM), and HD with diverse beneficial microbiota Gochujang (DBM). Gochujang markedly reduced lipid accumulation, hepatic injury, and inflammation response. Furthermore, Gochujang attenuated protein expression involved in the JNK/IκB/NF-κB pathway. Additionally, Gochujang regulated the gut microbiota-derived LPS production and Firmicutes/Bacteroidetes ratio. Gochujang regulated the levels of gut microbiota such as Bacteroides, Muribaculum, Lactobacillus, and Enterorhabdus, which were correlated with hepatic inflammation. Salt did not have foregoing effects, meaning that the salt content in Gochujang did not affect its anti-inflammatory effect. In conclusion, Gochujang showed anti-hepatic inflammation effects via reduced lipid accumulation, hepatic injury, and inflammatory response together with reorganization of gut microbiota dysbiosis regardless of salt content and the difference of micro bacteria composition.
Collapse
Affiliation(s)
- Eun-Ji Lee
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Olivet Chiamaka Edward
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Eun-Bi Seo
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Eun-Gyung Mun
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Su-Ji Jeong
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-gun 56000, Republic of Korea
| | - Gwangsu Ha
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-gun 56000, Republic of Korea
| | - Anna Han
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea
- K-Food Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea
- K-Food Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
66
|
Guagliano G, Volpini C, Sardelli L, Bloise N, Briatico-Vangosa F, Cornaglia AI, Dotti S, Villa R, Visai L, Petrini P. Hep3Gel: A Shape-Shifting Extracellular Matrix-Based, Three-Dimensional Liver Model Adaptable to Different Culture Systems. ACS Biomater Sci Eng 2023; 9:211-229. [PMID: 36525369 PMCID: PMC9832437 DOI: 10.1021/acsbiomaterials.2c01226] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Drug-induced hepatotoxicity is a leading cause of clinical trial withdrawal. Therefore, in vitro modeling the hepatic behavior and functionalities is not only crucial to better understand physiological and pathological processes but also to support drug development with reliable high-throughput platforms. Different physiological and pathological models are currently under development and are commonly implemented both within platforms for standard 2D cultures and within tailor-made chambers. This paper introduces Hep3Gel: a hybrid alginate-extracellular matrix (ECM) hydrogel to produce 3D in vitro models of the liver, aiming to reproduce the hepatic chemomechanical niche, with the possibility of adapting its shape to different manufacturing techniques. The ECM, extracted and powdered from porcine livers by a specifically set-up procedure, preserved its crucial biological macromolecules and was embedded within alginate hydrogels prior to crosslinking. The viscoelastic behavior of Hep3Gel was tuned, reproducing the properties of a physiological organ, according to the available knowledge about hepatic biomechanics. By finely tuning the crosslinking kinetics of Hep3Gel, its dualistic nature can be exploited either by self-spreading or adapting its shape to different culture supports or retaining the imposed fiber shape during an extrusion-based 3D-bioprinting process, thus being a shape-shifter hydrogel. The self-spreading ability of Hep3Gel was characterized by combining empirical and numerical procedures, while its use as a bioink was experimentally characterized through rheological a priori printability evaluations and 3D printing tests. The effect of the addition of the ECM was evident after 4 days, doubling the survival rate of cells embedded within control hydrogels. This study represents a proof of concept of the applicability of Hep3Gel as a tool to develop 3D in vitro models of the liver.
Collapse
Affiliation(s)
- Giuseppe Guagliano
- Department
of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133Milan, Italy
| | - Cristina Volpini
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, 27100Pavia, Italy
| | - Lorenzo Sardelli
- Department
of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133Milan, Italy
| | - Nora Bloise
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, 27100Pavia, Italy
| | - Francesco Briatico-Vangosa
- Department
of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133Milan, Italy
| | - Antonia Icaro Cornaglia
- Department
of Public Health, Experimental and Forensic Medicine, Histology and
Embryology Unit, University of Pavia, 27100Pavia, Italy
| | - Silvia Dotti
- National
Reference Center for Alternative Methods, Welfare and Care of Laboratory
Animals, Istituto Zooprofilattico Sperimentale
della Lomabardia ed Emilia Romagna, 25124Brescia, Italy
| | - Riccardo Villa
- National
Reference Center for Alternative Methods, Welfare and Care of Laboratory
Animals, Istituto Zooprofilattico Sperimentale
della Lomabardia ed Emilia Romagna, 25124Brescia, Italy
| | - Livia Visai
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, 27100Pavia, Italy,Medicina
Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Via Boezio, 28-27100Pavia, Italy,Interuniversity
Center for the Promotion of the 3Rs Principles in Teaching and Research
(Centro 3R), Università di Pavia
Unit, 27100Pavia, Italy
| | - Paola Petrini
- Department
of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133Milan, Italy,Interuniversity
Center for the Promotion of the 3Rs Principles in Teaching and Research
(Centro 3R), Politecnico di Milano Unit, 20133Milan, Italy,
| |
Collapse
|
67
|
Luo M, Xin RJ, Hu FR, Yao L, Hu SJ, Bai FH. Role of gut microbiota in the pathogenesis and therapeutics of minimal hepatic encephalopathy via the gut-liver-brain axis. World J Gastroenterol 2023; 29:144-156. [PMID: 36683714 PMCID: PMC9850958 DOI: 10.3748/wjg.v29.i1.144] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Minimal hepatic encephalopathy (MHE) is a frequent neurological and psychiatric complication of liver cirrhosis. The precise pathogenesis of MHE is complicated and has yet to be fully elucidated. Studies in cirrhotic patients and experimental animals with MHE have indicated that gut microbiota dysbiosis induces systemic inflammation, hyperammonemia, and endotoxemia, subsequently leading to neuroinflammation in the brain via the gut-liver-brain axis. Related mechanisms initiated by gut microbiota dysbiosis have significant roles in MHE pathogenesis. The currently available therapeutic strategies for MHE in clinical practice, including lactulose, rifaximin, probiotics, synbiotics, and fecal microbiota transplantation, exert their effects mainly by modulating gut microbiota dysbiosis. Microbiome therapies for MHE have shown promised efficacy and safety; however, several controversies and challenges regarding their clinical use deserve to be intensively discussed. We have summarized the latest research findings concerning the roles of gut microbiota dysbiosis in the pathogenesis of MHE via the gut-liver-brain axis as well as the potential mechanisms by which microbiome therapies regulate gut microbiota dysbiosis in MHE patients.
Collapse
Affiliation(s)
- Ming Luo
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| | - Rui-Juan Xin
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| | - Fang-Rui Hu
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| | - Li Yao
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| | - Sheng-Juan Hu
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| | - Fei-Hu Bai
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| |
Collapse
|
68
|
Takakura K, Suka M, Kajihara M, Koido S. Clinical features, therapeutic outcomes, and recovery period of long COVID. J Med Virol 2023; 95:e28316. [PMID: 36412057 PMCID: PMC10108287 DOI: 10.1002/jmv.28316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022]
Abstract
To characterize the clinical features of long COVID, 286 patients who received care in our outpatient clinic for long COVID from May to December 2021 were surveyed. The recovery periods of each symptom and the key factors contributing to early recovery were statistically analysed. The median age of the patients was 35.8 years, with 137 men and 149 women. The median number of symptoms was 2.8. The most frequent symptoms were respiratory manifestations (52.1%), followed by fatigue (51.4%). Respiratory symptoms, fatigue, and headache/arthralgia were major complaints in the initial phase, whereas hair loss was a major complaint in the late phase, suggesting that the chief complaint of patients with long COVID may vary temporally. The best treatment outcome was observed for pulmonary symptoms, and hair loss had the worst outcome. COVID-19 severity, the number of manifestations, and the delay in starting treatment exerted a negative effect on the recovery period of long COVID. In addition, the smoking habit was an independent risk factor for slowing the recovery period from long COVID. This study provides insights into the clinical course of each manifestation and therapeutic options with a more certain future of long COVID to meet the unmet medical needs.
Collapse
Affiliation(s)
- Kazuki Takakura
- Department of Internal Medicine, UnMed Clinic Motomachi, Yokohama, Kanagawa, Japan
| | - Machi Suka
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mikio Kajihara
- Department of Internal Medicine, Kajihara Clinic, Hiratsuka, Kanagawa, Japan
| | - Shigeo Koido
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, The Jikei University Kashiwa Hospital, Chiba, Japan
| |
Collapse
|
69
|
Neag MA, Craciun AE, Inceu AI, Burlacu DE, Craciun CI, Buzoianu AD. Short-Chain Fatty Acids as Bacterial Enterocytes and Therapeutic Target in Diabetes Mellitus Type 2. Biomedicines 2022; 11:72. [PMID: 36672580 PMCID: PMC9855839 DOI: 10.3390/biomedicines11010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Diabetes mellitus is a disease with multiple gastrointestinal symptoms (diarrhea or constipation, abdominal pain, bloating) whose pathogenesis is multifactorial. The most important of these factors is the enteric nervous system, also known as the "second brain"; a part of the peripheral nervous system capable of functioning independently of the central nervous system. Modulation of the enteric nervous system can be done by short-chain fatty acids, which are bacterial metabolites of the intestinal microbiota. In addition, these acids provide multiple benefits in diabetes, particularly by stimulating glucagon-like peptide 1 and insulin secretion. However, it is not clear what type of nutraceuticals (probiotics, prebiotics, and alimentary supplements) can be used to increase the amount of short-chain fatty acids and achieve the beneficial effects in diabetes. Thus, even if several studies demonstrate that the gut microbiota modulates the activity of the ENS, and thus, may have a positive effect in diabetes, further studies are needed to underline this effect. This review outlines the most recent data regarding the involvement of SCFAs as a disease modifying agent in diabetes mellitus type 2. For an in-depth understanding of the modulation of gut dysbiosis with SCFAs in diabetes, we provide an overview of the interplay between gut microbiota and ENS.
Collapse
Affiliation(s)
- Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Elena Craciun
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Diana-Elena Burlacu
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cristian-Ioan Craciun
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
70
|
Zhou Z, Li K, Guo J, Wang Y, Wei Y, Duan J, Chen M, Shi L, Hu W. Green Tea Catechin EGCG Ameliorates Thioacetamide-Induced Hepatic Encephalopathy in Rats via Modulation of the Microbiota-Gut-Liver Axis. Mol Nutr Food Res 2022; 67:e2200821. [PMID: 36573265 DOI: 10.1002/mnfr.202200821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/23/2022] [Indexed: 12/28/2022]
Abstract
SCOPE Existing research suggests that (-)-epigallocatechin-3-gallate (EGCG), which is a natural tea catechin active substance, can protect against liver injury. However, its mechanism for hepatic encephalopathy (HE) treatment is still unclear. In this study, the role of EGCG in the amelioration of HE rats and the effect on the microbiota-gut-liver axis are mainly analyzed. METHODS AND RESULTS Thioacetamide (TAA) is employed to induce the HE model in rats. The results of open field test show that EGCG restores locomotor activity and exploratory behavior. Histological and biochemical results demonstrate that EGCG ameliorates brain and liver damage, decreases the expression of pro-inflammatory cytokines, and increases the activity of antioxidant enzymes. Meanwhile, EGCG modulates the Nrf2 pathway and TLR4/NF-κB pathway to mitigate TAA-induced oxidative stress and inflammatory responses. Immunohistochemistry reveals protection of the intestinal barrier by EGCG upregulating the expression of occludin and zonula occludens-1. Furthermore, serum levels of ammonia and LPS are reduced. 16S rRNA analysis shows that EGCG treatment increases the abundance of beneficial bacteria (e.g., Bifidobacterium, Lactobacillus, and Limosilactobacillus). CONCLUSION The above results reveal that EGCG has anti-oxidative stress and anti-inflammatory effects, and ameliorates the condition through the microbiota-gut-liver axis, with potential for the treatment of HE.
Collapse
Affiliation(s)
- Zhengming Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Li
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiankui Guo
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Wang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaoyao Wei
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Juan Duan
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Muxi Chen
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Shi
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wen Hu
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
71
|
He D, Liu L, Zhang Z, Yang X, Jia Y, Wen Y, Cheng S, Meng P, Li C, Zhang H, Pan C, Zhang F. Association between gut microbiota and longevity: a genetic correlation and mendelian randomization study. BMC Microbiol 2022; 22:302. [PMID: 36510142 PMCID: PMC9746102 DOI: 10.1186/s12866-022-02703-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Longevity is one of the most complex phenotypes, and its genetic basis remains unclear. This study aimed to explore the genetic correlation and potential causal association between gut microbiota and longevity. RESULTS Linkage disequilibrium score (LDSC) regression analysis and a bi-directional two-sample Mendelian Randomization (MR) analysis were performed to analyze gut microbiota and longevity-related traits. LDSC analysis detected four candidate genetic correlations, including Veillonella (genetic correlation = 0.5578, P = 4.67 × 10- 2) and Roseburia (genetic correlation = 0.4491, P = 2.67 × 10- 2) for longevity, Collinsella (genetic correlation = 0.3144, P = 4.07 × 10- 2) for parental lifespan and Sporobacter (genetic correlation = 0.2092, P = 3.53 × 10- 2) for healthspan. Further MR analysis observed suggestive causation between Collinsella and parental longevity (father's age at death) (weighted median: b = 1.79 × 10- 3, P = 3.52 × 10- 2). Reverse MR analysis also detected several causal effects of longevity-related traits on gut microbiota, such as longevity and Sporobacter (IVW: b = 7.02 × 10- 1, P = 4.21 × 10- 25). Statistical insignificance of the heterogeneity test and pleiotropy test supported the validity of the MR study. CONCLUSION Our study found evidence that gut microbiota is causally associated with longevity, or vice versa, providing novel clues for understanding the roles of gut microbiota in aging development.
Collapse
Affiliation(s)
- Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China.
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
72
|
Huertas-Abril PV, Prieto-Álamo MJ, Jurado J, García-Barrera T, Abril N. A selenium-enriched diet helps to recover liver function after antibiotic administration in mice. Food Chem Toxicol 2022; 171:113519. [PMID: 36464106 DOI: 10.1016/j.fct.2022.113519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
Antibiotic (Abx) treatments or inadvertent exposure to Abx-contaminated food and water can adversely affect health. Many studies show strong correlations between Abx and liver damage pointing to gut dysbiosis as a contributing factor because the gut microbiota (GM) forms a complex network with liver. Selenium (Se) is a beneficial micronutrient able to shape the composition of the GM. We analyzed here the ability of a low dose (120 μg/kg bodyweight/day) Se-enriched diet to ameliorate the effects of a 7-day intervention with an Abx-cocktail over the global health and the homeostasis of cholesterol and bile acids in the mouse liver. We found that Se restored lipid metabolism preventing the increased synthesis and accumulation of cholesterol caused by Abx treatment. Integrating these results with previous metataxonomic and metabolomic data in same mice, we conclude that part of the effect of Se against liver dysfunction (cholesterol and bile acids metabolism and transport) could be mediated by the GM. We provide data that contribute to a more complete view of the molecular mechanisms underlying the beneficial action of Se on health, pointing to a possible use of low doses of Se as a functional food additive (prebiotic) to prevent the negative effects of antibiotics.
Collapse
Affiliation(s)
- Paula V Huertas-Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - María-José Prieto-Álamo
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| | - Juan Jurado
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Tamara García-Barrera
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| |
Collapse
|
73
|
The Protective Effects of Nutraceutical Components in Methotrexate-Induced Toxicity Models—An Overview. Microorganisms 2022; 10:microorganisms10102053. [PMID: 36296329 PMCID: PMC9608860 DOI: 10.3390/microorganisms10102053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
There are multiple concerns associated with methotrexate (MTX), widely recognized for anti-neoplastic and anti-inflammatory effects in life-threatening disease conditions, i.e., acute lymphoblastic leukemia, non-Hodgkin’s lymphoma, psoriasis, and rheumatoid arthritis, due to long-term side effects and associated toxicity, which limits its valuable potential. MTX acts as an inhibitor of dihydrofolate reductase, leading to suppression of purine and pyrimidine synthesis in high metabolic and turnover cells, targeting cancer and dysregulated immune cells. Due to low discrimination between neoplastic cells and naturally high turnover cells, MTX is prone to inhibiting the division of all fast-dividing cells, causing toxicity in multiple organs. Nutraceutical compounds are plant-based or food-derived compounds, used for their preventive and therapeutic role, ascertained in multiple organ dysfunctions, including cardiovascular disease, ischemic stroke, cancer, and neurodegenerative diseases. Gut microbiota and microbiota-derived metabolites take part in multiple physiological processes, their dysregulation being involved in disease pathogenesis. Modulation of gut microbiota by using nutraceutical compounds represents a promising therapeutic direction to restore intestinal dysfunction associated with MTX treatment. In this review, we address the main organ dysfunctions induced by MTX treatment, and modulations of them by using nutraceutical compounds. Moreover, we revealed the protective mechanisms of nutraceuticals in MTX-induced intestinal dysfunctions by modulation of gut microbiota.
Collapse
|
74
|
Hepatic Encephalopathy in Cirrhotic Patients and Risk of Small Intestinal Bacterial Overgrowth: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2469513. [PMID: 36303585 PMCID: PMC9596239 DOI: 10.1155/2022/2469513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022]
Abstract
Background Hepatic encephalopathy (HE) is a neurological and psychiatric syndrome. Recent evidence suggests that HE is not only a disease of the liver and brain but is also related to the gut. Small intestinal bacterial overgrowth (SIBO) is well known to be associated with cirrhosis, but the relationship between SIBO and HE is unclear. We conducted this comprehensive systematic review and meta-analysis to determine the association between SIBO and HE in cirrhotic patients. Methods We conducted a comprehensive literature search of all studies on the association of SIBO and HE in cirrhotic patients using the PubMed and Embase electronic databases. Studies were screened, and relevant data were extracted and analysed. We calculated the number of cases of SIBO in patients with HE and controls. We then compared the prevalence of SIBO between the two groups to calculate the odds ratios (ORs) and 95% confidence intervals (CIs). Funnel plots were constructed to identify potential publication bias. Results Six studies with 414 participants (219 HE patients and 195 controls) met the inclusion criteria. The prevalence of SIBO in cirrhotic patients with HE was significantly higher than that in those without HE. The combined OR was 4.43 (95% CI 1.73-11.32, P = 0.002). The heterogeneity was moderate (I2 = 66%), and the funnel plot suggested no significant publication bias. Subgroup analysis showed that the OR was 1.95 (95% CI 0.63–6.09) in studies using the lactulose breath test (LBT) and 7.60 (95% CI 3.50–16.50) in studies using the glucose breath test (GBT). The prevalence of SIBO in cirrhotic patients was also related to the severity of liver disease. Conclusions Our meta-analysis identified a strong association between SIBO and HE, and the risk of SIBO was 4.43 times higher among cirrhotic patients with HE than among those without HE. SIBO could be a predisposing factor for the development of HE in cirrhotic patients. Therefore, the importance of SIBO should be emphasized in patients with HE.
Collapse
|
75
|
Wu S, Yuan C, Yang Z, Liu S, Zhang Q, Zhang S, Zhu S. Non-alcoholic fatty liver is associated with increased risk of irritable bowel syndrome: a prospective cohort study. BMC Med 2022; 20:262. [PMID: 35989356 PMCID: PMC9394037 DOI: 10.1186/s12916-022-02460-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The relationship between non-alcoholic fatty liver degree as well as non-alcoholic fatty liver disease (NAFLD) and irritable bowel syndrome (IBS) remains poorly understood. We aimed to investigate the prospective association of non-alcoholic fatty liver degree as well as NAFLD with incident IBS in a large-scale population-based cohort. METHODS Participants free of IBS, coeliac disease, inflammatory bowel disease, alcoholic liver disease, and any cancer at baseline from the UK Biobank were included. Non-alcoholic fatty liver degree was measured by a well-validated fatty liver index (FLI), with FLI ≥ 60 as an indicator of NAFLD. Primary outcome was incident IBS. Cox proportional hazard model was used to investigate the associated risk of incident IBS. RESULTS Among 396,838 participants (mean FLI was 48.29 ± 30.07), 153,203(38.6%) were with NAFLD diagnosis at baseline. During a median of 12.4-year follow-up, 7129 cases of incident IBS were identified. Compared with non-NAFLD, NAFLD patients showed a 13% higher risk of developing IBS (HR = 1.13, 95%CI: 1.05-1.17) after multivariable adjustment. Compared with the lowest, the highest FLI quartile was associated with a significantly increased risk of IBS (HRQ4 VS Q1 = 1.21, 1.13-1.30, Ptrend < 0.001). Specifically, the positive association between non-alcoholic fatty liver degree and IBS was also observed by per SD change of FLI (adjusted HR = 1.08, 1.05-1.10). Further sensitivity analysis and subgroup analysis indicated similar results, with the positive association particularly observed in females, but not in males. CONCLUSIONS High degree of non-alcoholic fatty liver as well as non-alcoholic fatty liver disease is associated with increased risk of incident IBS. Further studies are warranted to confirm the findings and elucidate the underlying biological mechanisms.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Zhirong Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Primary Care Unit, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, CB18RN, UK
| | - Si Liu
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Qian Zhang
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shutian Zhang
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shengtao Zhu
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
76
|
Fu Q, Huang H, Ding A, Yu Z, Huang Y, Fu G, Huang Y, Huang X. Portulaca oleracea polysaccharides reduce serum lipid levels in aging rats by modulating intestinal microbiota and metabolites. Front Nutr 2022; 9:965653. [PMID: 35983485 PMCID: PMC9378863 DOI: 10.3389/fnut.2022.965653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic diseases characterized by dyslipidemia are common health problems for elderly populations. Dietary fiber intake is inversely associated with the risk of dyslipidemia. This study investigated the effects of Portulaca oleracea polysaccharide (POP) on the intestinal microbiota and its metabolites in aging rats using 16S rRNA sequencing and metabolomics techniques. Our results showed that POPs reduced the ratio of Firmicutes/Bacteroidetes (F/B), relative abundance of Fusobacteria, and levels of triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), and gamma-glutamyl transferase (γ-GT) in the serum of aging rats. POP supplementation also reduced 5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol, and vaccenic acid concentrations in lipids and lipoid-like molecules, while soyasapogenol E and monoacylglycerol (MG) (24:0/0:0/0:0) levels increased. This study demonstrated that POP’s beneficial effects on lipid levels in aging rats might be partially attributable to the modification of gut microbiota and related metabolites.
Collapse
Affiliation(s)
- Qiang Fu
- College of Medicine, Jinggangshan University, Ji'an, China.,Institute of Spinal Diseases, Jinggangshan University, Ji'an, China
| | - Hui Huang
- College of Medicine, Jinggangshan University, Ji'an, China
| | - Aiwen Ding
- College of Medicine, Jinggangshan University, Ji'an, China
| | - Ziqi Yu
- College of Medicine, Jinggangshan University, Ji'an, China
| | - Yuping Huang
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, China
| | - Guiping Fu
- College of Medicine, Jinggangshan University, Ji'an, China
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoliu Huang
- College of Medicine, Jinggangshan University, Ji'an, China.,Institute of Spinal Diseases, Jinggangshan University, Ji'an, China
| |
Collapse
|
77
|
Quinn MA, Pritchard AE, Visker JR, McPeek AC, Raghuvanshi R, Martin H C, Wellette-Hunsucker AG, Leszczynski EC, McCabe LR, Pfeiffer KA, Quinn RA, Ferguson DP. Longitudinal effects of growth restriction on the murine gut microbiome and metabolome. Am J Physiol Endocrinol Metab 2022; 323:E159-E170. [PMID: 35658543 PMCID: PMC9423779 DOI: 10.1152/ajpendo.00446.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Undernutrition-induced growth restriction in the early stages of life increases the risk of chronic disease in adulthood. Although metabolic impairments have been observed, few studies have characterized the gut microbiome and gut-liver metabolome profiles of growth-restricted animals during early-to-mid-life development. To induce growth restriction, mouse offspring were either born to gestational undernutrition (GUN) or suckled from postnatal undernutrition (PUN) dams fed a protein-restricted diet (8% protein) or control diet (CON; 20% protein) until weaning at postnatal age of 21 days (PN21). At PN21, all mice were fed the CON diet until adulthood (PN80). Livers were collected at PN21 and PN80, and fecal samples were collected weekly starting at PN21 (postweaning week 1) until PN80 (postweaning week 5) for gut microbiome and metabolome analyses. PUN mice exhibited the most alterations in gut microbiome and gut and liver metabolome compared with CON mice. These mice had altered fecal microbial β-diversity (P = 0.001) and exhibited higher proportions of Bifidobacteriales [linear mixed model (LMM) P = 7.1 × 10-6), Clostridiales (P = 1.459 × 10-5), Erysipelotrichales (P = 0.0003), and lower Bacteroidales (P = 4.1 × 10-5)]. PUN liver and fecal metabolome had a reduced total bile acid pool (P < 0.01), as well as lower abundance of riboflavin (P = 0.003), amino acids [i.e., methionine (P = 0.0018), phenylalanine (P = 0.0015), and tyrosine (P = 0.0041)], and higher excreted total peptides (LMM P = 0.0064) compared with CON. Overall, protein restriction during lactation permanently alters the gut microbiome into adulthood. Although the liver bile acids, amino acids, and acyl-carnitines recovered, the fecal peptides and microbiome remained permanently altered into adulthood, indicating that inadequate protein intake in a specific time frame in early life can have an irreversible impact on the microbiome and fecal metabolome.NEW & NOTEWORTHY Undernutrition-induced early-life growth restriction not only leads to increased disease risk but also permanently alters the gut microbiome and gut-liver metabolome during specific windows of early-life development.
Collapse
Affiliation(s)
- Melissa A Quinn
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
| | - Abby E Pritchard
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Joseph R Visker
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah
| | - Ashley C McPeek
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
| | - Ruma Raghuvanshi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing Michigan
| | - Christian Martin H
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing Michigan
| | - Austin G Wellette-Hunsucker
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Eric C Leszczynski
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
| | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing Michigan
| | - Karin A Pfeiffer
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing Michigan
| | - David P Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
78
|
Li YG, Yu ZJ, Li A, Ren ZG. Gut microbiota alteration and modulation in hepatitis B virus-related fibrosis and complications: Molecular mechanisms and therapeutic inventions. World J Gastroenterol 2022; 28:3555-3572. [PMID: 36161048 PMCID: PMC9372803 DOI: 10.3748/wjg.v28.i28.3555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/06/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) has posed a threat to public health, mainly resulting in liver damage. With long-term accumulation of extracellular matrix, patients with chronic hepatitis B are at high risk of developing into liver fibrosis and cirrhosis and even life-threatening hepatic carcinoma. The occurrence of complications such as spontaneous bacterial peritonitis and hepatic encephalopathy greatly increases disability and mortality. With deeper understanding of the bidirectional interaction between the liver and the gut (gut-liver axis), there is a growing consensus that the human health closely relates to the gut microbiota. Supported by animal and human studies, the gut microbiota alters as the HBV-related liver fibrosis initials and progresses, characterized as the decrease of the ratio between “good” and “potentially pathogenic” microbes. When the primary disease is controlled via antiviral treatment, the gut microbiota dysfunction tends to be improved. Conversely, the recovery of gut microbiota can promote the regression of liver fibrosis. Therapeutic strategies targeted on gut microbiota (rifaximin, probiotics, engineered probiotics and fecal microbiota transplantation) have been applied to animal models and patients, obtaining satisfactory results.
Collapse
Affiliation(s)
- Yao-Guang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zu-Jiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Ang Li
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zhi-Gang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, Shandong Province, China
| |
Collapse
|
79
|
Total Flavonoids from Chimonanthus nitens Oliv. Leaves Ameliorate HFD-Induced NAFLD by Regulating the Gut–Liver Axis in Mice. Foods 2022; 11:foods11142169. [PMID: 35885412 PMCID: PMC9322569 DOI: 10.3390/foods11142169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the chronic liver diseases with high incidence in the world. This study aimed to investigate whether total flavonoids from Chimonanthus nitens Oliv. leaves (TFC) can ameliorate NAFLD. Herein, a high-fat diet (HFD)-induced NAFLD mice model was established, and TFC was administered orally. The results showed that TFC reduced the body weight and liver index and decreased the serum and hepatic levels of triglyceride (TG) and total cholesterol (TC). TFC significantly reduced the activity of liver functional transaminase. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) decreased by 34.61% and 39.57% in serum and 22.46% and 40.86% in the liver, respectively. TFC regulated the activities of oxidative-stress-related enzymes and upregulated the protein expression of nuclear factor E2-related factor (Nrf2)/heme oxygenase (HO-1) pathway in NAFLD mice, and the activities of total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX) in serum were increased by 89.76% and 141.77%, respectively. In addition, TFC reduced the levels of free fatty acids (FFA), endotoxin (ET), and related inflammatory factors in mouse liver tissue and downregulated the expression of proteins associated with inflammatory pathways. After TFC treatment, the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β in the liver tissues of NAFLD mice were downregulated by 67.10%, 66.56%, and 61.45%, respectively. Finally, TFC reduced liver fat deposition, oxidative stress, and inflammatory response to repair liver damage and alleviate NAFLD. Further studies showed that TFC regulated the expression of intestinal-barrier-related genes and improved the composition of gut microbiota. Therefore, TFC reduced liver inflammation and restored intestinal homeostasis by regulating the gut–liver axis. Overall, our findings revealed a novel function of TFC as a promising prophylactic for the treatment of NAFLD.
Collapse
|
80
|
Wang TY, Tao SY, Wu YX, An T, Lv BH, Liu JX, Liu YT, Jiang GJ. Quinoa Reduces High-Fat Diet-Induced Obesity in Mice via Potential Microbiota-Gut-Brain-Liver Interaction Mechanisms. Microbiol Spectr 2022; 10:e0032922. [PMID: 35583337 PMCID: PMC9241864 DOI: 10.1128/spectrum.00329-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/21/2022] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota is important in the occurrence and development of obesity. It can not only via its metabolites, but also through microbiota-gut-brain-liver interactions, directly or indirectly, influence obesity. Quinoa, known as one kind of pseudocereals and weight loss food supplements, has been high-profile for its high nutritional value and broad applications. In this context, we produced high-fat diet-induced (HFD) obese mouse models and assessed the efficacy of quinoa with saponin and quinoa without saponin on obesity. We explored the potential therapeutic mechanisms of quinoa using methods such as 16S rRNA, Western blotting, Immunohistochemical (IHC). Our results indicated that quinoa can improve the obese symptoms significantly on HFD mice, as well as aberrant glucose and lipid metabolism. Further analyses suggest that quinoa can regulate microbiota in the colon and have predominantly regulation on Bacteroidetes, Actinobacteria and Desulfovibrio, meanwhile can decrease the F/B ratio and the abundance of Blautia. Contemporaneously, quinoa can upregulate the expression of TGR5 in the colon and brain, as well as GLP-1 in the colon, liver and brain. while downregulate the expression of TLR4 in the colon and liver, as well as markers of ER stress and oxidative stress in livers and serums. Beyond this, tight junctional proteins in colons and brains are also increased in response to quinoa. Therefore, quinoa can effectively reduce obesity and may possibly exert through microbiota-gut-brain-liver interaction mechanisms. IMPORTANCE Gut microbiota has been investigated extensively, as a driver of obesity as well as a therapeutic target. Studies of its mechanisms are predominantly microbiota-gut-brain axis or microbiota-gut-liver axis. Recent studies have shown that there is an important correlation between the gut-brain-liver axis and the energy balance of the body. Our research focus on microbiota-gut-brain-liver axis, as well as influences of quinoa in intestinal microbiota. We extend this study to the interaction between microbiota and brains, and the result shows obvious differences in the composition of the microbiome between the HFD group and others. These observations infer that besides the neurotransmitter and related receptors, microbiota itself may be a mediator for regulating bidirectional communication, along the gut-brain-liver axis. Taken together, these results also provide strong evidence for widening the domain of applicability of quinoa.
Collapse
Affiliation(s)
- Ting-Ye Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Si-Yu Tao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan-Xiang Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tian An
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Han Lv
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Xian Liu
- Zhong Li Science and Technology Limited Company, Beijing, China
| | - Yu-Tong Liu
- Gansu Pure High-Land Agricultural Science and Technology Limited Company, Lanzhou, Gansu, China
| | - Guang-Jian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
81
|
Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Mol Neurodegener 2022; 17:43. [PMID: 35715821 PMCID: PMC9204954 DOI: 10.1186/s13024-022-00548-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
A consequence of our progressively ageing global population is the increasing prevalence of worldwide age-related cognitive decline and dementia. In the absence of effective therapeutic interventions, identifying risk factors associated with cognitive decline becomes increasingly vital. Novel perspectives suggest that a dynamic bidirectional communication system between the gut, its microbiome, and the central nervous system, commonly referred to as the microbiota-gut-brain axis, may be a contributing factor for cognitive health and disease. However, the exact mechanisms remain undefined. Microbial-derived metabolites produced in the gut can cross the intestinal epithelial barrier, enter systemic circulation and trigger physiological responses both directly and indirectly affecting the central nervous system and its functions. Dysregulation of this system (i.e., dysbiosis) can modulate cytotoxic metabolite production, promote neuroinflammation and negatively impact cognition. In this review, we explore critical connections between microbial-derived metabolites (secondary bile acids, trimethylamine-N-oxide (TMAO), tryptophan derivatives and others) and their influence upon cognitive function and neurodegenerative disorders, with a particular interest in their less-explored role as risk factors of cognitive decline.
Collapse
|
82
|
Interactions between Tryptophan Metabolism, the Gut Microbiome and the Immune System as Potential Drivers of Non-Alcoholic Fatty Liver Disease (NAFLD) and Metabolic Diseases. Metabolites 2022; 12:metabo12060514. [PMID: 35736447 PMCID: PMC9227929 DOI: 10.3390/metabo12060514] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing and therefore is its burden of disease as NALFD is a risk factor for cirrhosis and is associated with other metabolic conditions such as type II diabetes, obesity, dyslipidaemia and atherosclerosis. Linking these cardiometabolic diseases is a state of low-grade inflammation, with higher cytokines and c-reactive protein levels found in individuals with NAFLD, obesity and type II diabetes. A possible therapeutic target to decrease this state of low-grade inflammation is the metabolism of the essential amino-acid tryptophan. Its three main metabolic pathways (kynurenine pathway, indole pathway and serotonin/melatonin pathway) result in metabolites such as kynurenic acid, xanturenic acid, indole-3-propionic acid and serotonin/melatonin. The kynurenine pathway is regulated by indoleamine 2,3-dioxygenase (IDO), an enzyme that is upregulated by pro-inflammatory molecules such as INF, IL-6 and LPS. Higher activity of IDO is associated with increased inflammation and fibrosis in NAFLD, as well with increased glucose levels, obesity and atherosclerosis. On the other hand, increased concentrations of the indole pathway metabolites, regulated by the gut microbiome, seem to result in more favorable outcomes. This narrative review summarizes the interactions between tryptophan metabolism, the gut microbiome and the immune system as potential drivers of cardiometabolic diseases in NAFLD.
Collapse
|
83
|
Li X, Lin Y, Jiang Y, Wu B, Yu Y. Aqueous Extract of Phyllanthus emblica L. Alleviates Functional Dyspepsia through Regulating Gastrointestinal Hormones and Gut Microbiome In Vivo. Foods 2022; 11:foods11101491. [PMID: 35627061 PMCID: PMC9141879 DOI: 10.3390/foods11101491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Phyllanthus emblica L. fruits were extracted by a hot water assistant with ultrasonication to obtain aqueous Phyllanthus emblica L. extract (APE). The ameliorating functional dyspepsia (FD) effect of a low dose (150 mg/kg) and a high dose (300 mg/kg) of APE was exhibited by determining the gastrointestinal motility, gastrointestinal hormones, and gut microbiome shifts in reserpine induced FD male balb/c mice. APE increased the gastrointestinal motility including the gastric emptying (GE) rate and small intestinal transit (SIT) rate. The level of serum gastrointestinal hormones such as motilin (MTL) and gastrin (GAS) increased, and the vasoactive intestinal peptide (VIP) level decreased after the administration of APE. Furthermore, the gut microbiome analysis demonstrated that APE could regulate the microbiome structure and restore homeostasis by elevating useful bacterial abundance, while simultaneously decreasing harmful bacterial abundance. This study demonstrated the ameliorating FD effect of APE and its potential efficacy in curing functional gastrointestinal disorders and maintaining a healthy digestive tract.
Collapse
Affiliation(s)
- Xiaoqing Li
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China; (X.L.); (Y.L.); (Y.J.)
| | - Yilin Lin
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China; (X.L.); (Y.L.); (Y.J.)
| | - Yiqi Jiang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China; (X.L.); (Y.L.); (Y.J.)
| | - Binbin Wu
- Lui Che Woo Institute of Innovative Medicine, Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China;
| | - Yigang Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China; (X.L.); (Y.L.); (Y.J.)
- Correspondence:
| |
Collapse
|
84
|
Del Castilo I, Neumann AS, Lemos FS, De Bastiani MA, Oliveira FL, Zimmer ER, Rêgo AM, Hardoim CCP, Antunes LCM, Lara FA, Figueiredo CP, Clarke JR. Lifelong Exposure to a Low-Dose of the Glyphosate-Based Herbicide RoundUp ® Causes Intestinal Damage, Gut Dysbiosis, and Behavioral Changes in Mice. Int J Mol Sci 2022; 23:5583. [PMID: 35628394 PMCID: PMC9146949 DOI: 10.3390/ijms23105583] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
RoundUp® (RUp) is a comercial formulation containing glyphosate (N-(phosphono-methyl) glycine), and is the world's leading wide-spectrum herbicide used in agriculture. Supporters of the broad use of glyphosate-based herbicides (GBH) claim they are innocuous to humans, since the active compound acts on the inhibition of enzymes which are absent in human cells. However, the neurotoxic effects of GBH have already been shown in many animal models. Further, these formulations were shown to disrupt the microbiome of different species. Here, we investigated the effects of a lifelong exposure to low doses of the GBH-RUp on the gut environment, including morphological and microbiome changes. We also aimed to determine whether exposure to GBH-RUp could harm the developing brain and lead to behavioral changes in adult mice. To this end, animals were exposed to GBH-RUp in drinking water from pregnancy to adulthood. GBH-RUp-exposed mice had no changes in cognitive function, but developed impaired social behavior and increased repetitive behavior. GBH-Rup-exposed mice also showed an activation of phagocytic cells (Iba-1-positive) in the cortical brain tissue. GBH-RUp exposure caused increased mucus production and the infiltration of plama cells (CD138-positive), with a reduction in phagocytic cells. Long-term exposure to GBH-RUp also induced changes in intestinal integrity, as demonstrated by the altered expression of tight junction effector proteins (ZO-1 and ZO-2) and a change in the distribution of syndecan-1 proteoglycan. The herbicide also led to changes in the gut microbiome composition, which is also crucial for the establishment of the intestinal barrier. Altogether, our findings suggest that long-term GBH-RUp exposure leads to morphological and functional changes in the gut, which correlate with behavioral changes that are similar to those observed in patients with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ingrid Del Castilo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (I.D.C.); (C.P.F.)
| | - Arthur S. Neumann
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.S.N.); (F.S.L.); (F.L.O.)
| | - Felipe S. Lemos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.S.N.); (F.S.L.); (F.L.O.)
| | - Marco A. De Bastiani
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-193, RS, Brazil; (M.A.D.B.); (E.R.Z.)
| | - Felipe L. Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.S.N.); (F.S.L.); (F.L.O.)
| | - Eduardo R. Zimmer
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-193, RS, Brazil; (M.A.D.B.); (E.R.Z.)
| | - Amanda M. Rêgo
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (A.M.R.); (L.C.M.A.); (F.A.L.)
| | - Cristiane C. P. Hardoim
- Instituto de Biociências, Universidade Estadual Paulista, São Vicente 11380-972, SP, Brazil;
| | - Luis Caetano M. Antunes
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (A.M.R.); (L.C.M.A.); (F.A.L.)
- Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro 21040-361, RJ, Brazil
| | - Flávio A. Lara
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (A.M.R.); (L.C.M.A.); (F.A.L.)
| | - Claudia P. Figueiredo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (I.D.C.); (C.P.F.)
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.S.N.); (F.S.L.); (F.L.O.)
| | - Julia R. Clarke
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (I.D.C.); (C.P.F.)
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.S.N.); (F.S.L.); (F.L.O.)
| |
Collapse
|
85
|
Fatahi S, Hosseini A, Sohouli MH, Sayyari A, Khatami K, Farsani ZF, Amiri H, Dara N, de Souza IGO, Santos HO. Effects of probiotic supplementation on abdominal pain severity in pediatric patients with irritable bowel syndrome: a systematic review and meta-analysis of randomized clinical trials. World J Pediatr 2022; 18:320-332. [PMID: 35106700 DOI: 10.1007/s12519-022-00516-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Probiotic supplementation has been used to alleviate abdominal pain in children and adolescents with irritable bowel syndrome (IBS), but the evidence is not compelling. Thus, a systematic review and meta-analysis of randomized clinical trials (RCTs) were performed to investigate the effects of probiotic supplementation on abdominal pain in pediatric patients with IBS. METHODS PubMed/MEDLINE, Web of Science, Scopus, Cochrane Library, and Embase were the available databases searched to find relevant randomized clinical trials up to April 2021. The effect size was expressed as weighted mean difference (WMD) and 95% confidence interval (CI). RESULTS Seven RCTs with 441 participants were included, from which the meta-analysis demonstrated that probiotic supplementation has a significant effect on reducing abdominal pain in pediatric patients with IBS (WMD = - 2.36; 95% CI - 4.12 to - 0.60; P = 0.009). Although our study involved children and adolescents (≤ 18 years), the effects of probiotic supplementation seem to be more potent in patients under 10 years old (WMD = - 2.55; 95% CI - 2.84 to - 2.27) compared to patients aged 10-18 years (WMD = - 1.70; 95% CI - 2.18 to - 1.22). The length of supplementation longer than four weeks was more effective (WMD = - 2.43; 95% CI - 2.76 to - 2.09). CONCLUSION Probiotic supplementation can reduce abdominal pain in pediatric patients with IBS.
Collapse
Affiliation(s)
- Somayeh Fatahi
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Hosseini
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aliakbar Sayyari
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Katayoun Khatami
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Fazeli Farsani
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamzeh Amiri
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghi Dara
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ivan G O de Souza
- School of Health Sciences, Universidade Salvador (UNIFACS), Salvador, Bahia, Brazil
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| |
Collapse
|
86
|
ALPTEKİN RAİM, ÇAKIROĞLU PDFP, KİREMİTCİ APS, NEMUTLU PDE, REÇBER RAT. Inulin may prevent steatosis by suppressing Cannabinoid receptor-1 and Patatin-like phospholipase-3 expression in liver. Nutrition 2022; 103-104:111742. [PMID: 35908495 DOI: 10.1016/j.nut.2022.111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
|
87
|
王 东, 叶 晓, 吴 捷. [Association between functional dyspepsia and serum levels of brain-gut peptides in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:387-391. [PMID: 35527413 PMCID: PMC9044979 DOI: 10.7499/j.issn.1008-8830.2112029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/02/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To study the association between functional dyspepsia (FD) and serum levels of brain-gut peptides including calcitonin gene-related peptide (CGRP), nesfatin-1, and ghrelin in children. METHODS A total of 38 children with FD who attended Shengjing Hospital of China Medical University from November 2019 to December 2020 were enrolled as the FD group. Thirty-four healthy children were enrolled as the control group. Serum samples were collected from all of the children. Enzyme-linked immunosorbent assay was used to measure serum levels of CGRP, ghrelin, and nesfatin-1 for comparison between the two groups. The scores of clinical symptoms were determined for the children with FD. Spearman rank correlation analysis was used to investigate the correlation of symptom scores with the serum levels of brain-gut peptides. RESULTS The FD group had significantly higher serum levels of nesfatin-1 and CGRP than the control group (P<0.05), while there was no significant difference in the serum level of ghrelin between the two groups (P>0.05). The serum level of nesfatin-1 was positively correlated with the symptom score of early satiety (rs=0.553, P<0.001), but was not significantly correlated with the total score of FD (rs=0.191, P=0.250). The serum level of CGRP was positively correlated with the scores of abdominal pain (rs=0.479, P=0.002) and belching (rs=0.619, P<0.001) and the total score of FD (rs=0.541, P<0.001). CONCLUSIONS CGRP and nesfatin-1 may play an important role in the pathophysiological process of FD.
Collapse
Affiliation(s)
| | - 晓琳 叶
- 首都医科大学附属北京儿童医院消化科北京100045
| | - 捷 吴
- 首都医科大学附属北京儿童医院消化科北京100045
| |
Collapse
|
88
|
Schöler D, Kostev K, Demir M, Luedde M, Konrad M, Luedde T, Roderburg C, Loosen SH. An Elevated FIB-4 Score Is Associated with an Increased Incidence of Depression among Outpatients in Germany. J Clin Med 2022; 11:jcm11082214. [PMID: 35456304 PMCID: PMC9032098 DOI: 10.3390/jcm11082214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
Background: Liver disease and depression are known to be closely associated. Non-invasive tests (NIT), such as the FIB-4 score, have been recommended by different guidelines to rule out advanced fibrosis and to stratify the risk of liver-related outcomes in patients with chronic liver diseases. However, the predictive value of an elevated FIB-4 score regarding the development of depression and/or anxiety disorders among the general population is unknown. Methods: By using the Disease Analyzer database (IQVIA), which compiles diagnoses and laboratory values as well as basic medical and demographic data of patients followed in general practices in Germany, we identified 370,756 patients with available lab values for FIB-4 score calculation between 2005 and 2019. Patients with an FIB-4 score < 2 were matched 1:1 to patients with an FIB-4 index ≥ 2 by age, sex and yearly consultation frequency. Results: In regression analysis, the incidence rate ratio (IRR) of depression was significantly higher among patients with an FIB-4 score ≥ 2.0 compared to patients with a lower FIB-4 score <2.0 (IRR: 1.12, p < 0.001). This association was significant for both female (IRR: 1.10, p = 0.004) and male (IRR: 1.15, p < 0.001) patients and strongest in the age groups ≤50 years (IRR: 1.42, p < 0.001) and 51-60 years (IRR: 1.34, p < 0.001). There was no significant association between an elevated FIB-4 score ≥ 2.0 and the incidence of depression among patients aged 60 years and older. There was no significant increase in the IRR of anxiety disorders for patients with high or low FIB-4 scores. Conclusion: Our study suggests a previously unknown association between an elevated FIB-4 score and an increased incidence of depression. This finding suggests that the FIB-4 score is not only a valuable tool for the prediction of liver-specific endpoints but also may be of relevance for the prediction of extrahepatic comorbidities, which in turn may argue for clinical screening programs in patients with an elevated FIB-4.
Collapse
Affiliation(s)
- David Schöler
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany; (D.S.); (T.L.)
| | | | - Münevver Demir
- Clinic for Hepatology and Gastroenterology, Charité University Medical Center, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Mark Luedde
- KGP Bremerhaven, 27574 Bremerhaven, Germany;
| | - Marcel Konrad
- FOM University of Applied Sciences for Economics and Management, 60549 Frankfurt am Main, Germany;
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany; (D.S.); (T.L.)
| | - Christoph Roderburg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany; (D.S.); (T.L.)
- Correspondence: (C.R.); (S.H.L.); Tel.: +49-211-81-16330 (C.R. & S.H.L.)
| | - Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany; (D.S.); (T.L.)
- Correspondence: (C.R.); (S.H.L.); Tel.: +49-211-81-16330 (C.R. & S.H.L.)
| |
Collapse
|
89
|
Chen Q, Li C, Tao E, Asakawa T, Zhang Y. Exploration of a Brain-Liver-Communication-Related Mechanism Involved in the Experimental Perimenopausal Depression Rat Model using Chaihu-Shugan-San. Neurochem Res 2022; 47:1354-1368. [DOI: 10.1007/s11064-022-03534-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/30/2022]
|
90
|
Bioactive Foods Decrease Liver and Brain Alterations Induced by a High-Fat-Sucrose Diet through Restoration of Gut Microbiota and Antioxidant Enzymes. Nutrients 2021; 14:nu14010022. [PMID: 35010897 PMCID: PMC8746716 DOI: 10.3390/nu14010022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity is associated with cognitive deficit and liver alterations; however, it remains unclear whether a combination of functional foods could reverse cognitive damage and to what extent it would be associated with changes in gut microbiota and liver. With this aim, male Wistar rats were fed a high-fat-5%sucrose diet (HFS) for 4 mo. And were then fed for 1 mo. with bioactive foods. At the end of this period, liver, serum, feces, intestine, and brain samples were taken. Body composition, energy expenditure, LPS, hormones, intraperitoneal glucose tolerance test, behavioral tests, and gut microbiota were evaluated. We showed that male rats fed high-fat-sucrose diet developed gut microbiota dysbiosis, increased in body fat, decreased antioxidant activity, decreased brain neuropeptide Y, increased the number of astrocytes and activated microglia, along with reduced spine density associated with deficits in working memory. Ingestion of a combination of nopal, soy protein, curcumin, and chia seed oil (bioactive foods) for three months was associated with an increase in a cluster of bacteria with anti-inflammatory capacity, a decrease in serum LPS levels and an increase in serum eicosapentaenoic acid (EPA) with neuroprotective properties. In the liver, ingestion of bioactive food significantly increased antioxidant enzymes, decreased lipogenesis, reduced inflammation mediated by the TLR4-TNFα pathway along with a decrease in body fat, glucose intolerance, and metabolic inflexibility. Finally, neuroinflammation in the brain was reduced and working memory improved. Our study demonstrates that consumption of bioactive foods was associated with reduced liver, brain, and gut microbiota alterations in obese rats.
Collapse
|
91
|
Maslennikov R, Ivashkin V, Efremova I, Poluektova E, Shirokova E. Gut-liver axis in cirrhosis: Are hemodynamic changes a missing link? World J Clin Cases 2021; 9:9320-9332. [PMID: 34877269 PMCID: PMC8610853 DOI: 10.12998/wjcc.v9.i31.9320] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/05/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests that the condition of the gut and its microbiota greatly influence the course of liver disease, especially cirrhosis. This introduces the concept of the gut–liver axis, which can be imagined as a chain connected by several links. Gut dysbiosis, small intestinal bacterial overgrowth, and intestinal barrier alteration lead to bacterial translocation, resulting in systemic inflammation. Systemic inflammation further causes vasodilation, arterial hypotension, and hyperdynamic circulation, leading to the aggravation of portal hypertension, which contributes to the development of complications of cirrhosis, resulting in a poorer prognosis. The majority of the data underlying this model were obtained initially from animal experiments, and most of these correlations were further reproduced in studies including patients with cirrhosis. However, despite the published data on the relationship of the disorders of the gut microbiota with the complications of cirrhosis and the proposed pathogenetic role of hemodynamic disorders in their development, the direct relations between gut dysbiosis and hemodynamic changes in this disease are poorly studied. They remain a missing link in the gut–liver axis and a challenge for future research.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Interregional Public Organization "Scientific Community for the Promotion of the Clinical Study of the Human Microbiome", Moscow 119435, Russia
- Department of Internal Medicine, Consultative and Diagnostic Center of the Moscow City Health Department, Moscow 107564, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Interregional Public Organization "Scientific Community for the Promotion of the Clinical Study of the Human Microbiome", Moscow 119435, Russia
| | - Elena Shirokova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| |
Collapse
|
92
|
The prevalence of disorders of the gut-brain axis in type 2 diabetes mellitus patients with metabolic dysfunction-associated fatty liver disease: an observational study. Acta Gastroenterol Belg 2021; 84:541-547. [PMID: 34965034 DOI: 10.51821/84.4.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND STUDY AIM Disorders of the gut-brain axis (DGBI) and metabolic dysfunction-associated liver disease (MAFLD) are frequently diagnosed and exhibit pathophysiological similarities. This study aimed to estimate the prevalence of DGBI in type 2 diabetes mellitus (T2DM) patients with MAFLD. PATIENTS AND METHODS In this single center, observational study, in adults with T2DM demographics, diabetes-related parameters and liver tests were recorded. MAFLD was defined by the presence of hepatic steatosis on imaging. Functional dyspepsia (FD) and irritable bowel syndrome (IBS) were diagnosed based on Rome IV criteria. Quality of life (QOL), anxiety levels and depression levels were documented by validated questionnaires. RESULTS We included 77 patients, 44 with and 33 without steatosis. There were no significant differences in age, body mass index (BMI), waist circumference, HbA1c levels or metformin use between groups. IBS was significantly more prevalent in the liver steatosis group (9/44 vs. 2/33, p = .037), while a similar trend was observed for FD (9/35 vs. 2/31, p = .103). No differences were found in anxiety, depression and overall QOL. However, QOL subscales for health worry, food avoidance and social reaction were significantly higher in the liver steatosis group. CONCLUSIONS In otherwise comparable T2DM patients, DGBI, and especially IBS, are more prevalent in the presence of MAFLD. This difference could not be attributed to increased levels of anxiety or depression. Future research should target the underlying pathophysiological mechanisms.
Collapse
|
93
|
Balzano T, Leone P, Ivaylova G, Castro MC, Reyes L, Ramón C, Malaguarnera M, Llansola M, Felipo V. Rifaximin Prevents T-Lymphocytes and Macrophages Infiltration in Cerebellum and Restores Motor Incoordination in Rats with Mild Liver Damage. Biomedicines 2021; 9:1002. [PMID: 34440206 PMCID: PMC8393984 DOI: 10.3390/biomedicines9081002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
In patients with liver cirrhosis, minimal hepatic encephalopathy (MHE) is triggered by a shift in peripheral inflammation, promoting lymphocyte infiltration into the brain. Rifaximin improves neurological function in MHE by normalizing peripheral inflammation. Patients who died with steatohepatitis showed T-lymphocyte infiltration and neuroinflammation in the cerebellum, suggesting that MHE may already occur in these patients. The aims of this work were to assess, in a rat model of mild liver damage similar to steatohepatitis, whether: (1) the rats show impaired motor coordination in the early phases of liver damage; (2) this is associated with changes in the immune system and infiltration of immune cells into the brain; and (3) rifaximin improves motor incoordination, associated with improved peripheral inflammation, reduced infiltration of immune cells and neuroinflammation in the cerebellum, and restoration of the alterations in neurotransmission. Liver damage was induced by carbon tetrachloride (CCl4) injection over four weeks. Peripheral inflammation, immune cell infiltration, neuroinflammation, and neurotransmission in the cerebellum and motor coordination were assessed. Mild liver damage induces neuroinflammation and altered neurotransmission in the cerebellum and motor incoordination. These alterations are associated with increased TNFa, CCL20, and CX3CL1 in plasma and cerebellum, IL-17 and IL-15 in plasma, and CCL2 in cerebellum. This promotes T-lymphocyte and macrophage infiltration in the cerebellum. Early treatment with rifaximin prevents the shift in peripheral inflammation, immune cell infiltration, neuroinflammation, and motor incoordination. This report provides new clues regarding the mechanisms of the beneficial effects of rifaximin, suggesting that early rifaximin treatment could prevent neurological impairment in patients with steatohepatitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marta Llansola
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, 46012 Valencia, Spain; (T.B.); (P.L.); (G.I.); (M.C.C.); (L.R.); (C.R.); (M.M.); (V.F.)
| | | |
Collapse
|
94
|
El-Sayed A, Aleya L, Kamel M. Microbiota's role in health and diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36967-36983. [PMID: 34043164 PMCID: PMC8155182 DOI: 10.1007/s11356-021-14593-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/24/2021] [Indexed: 05/06/2023]
Abstract
The microbiome is a term that usually refers to the community of various microorganisms that inhabit/live inside human/animal bodies or on their skin. It forms a complex ecosystem that includes trillions of commensals, symbiotics, and even pathogenic microorganisms. The external environment, diet, and lifestyle are the major determinants influencing the microbiome's composition and vitality. Recent studies have indicated the tremendous influence of the microbiome on health and disease. Their number, constitution, variation, and viability are dynamic. All these elements are responsible for the induction, development, and treatment of many health disorders. Serious diseases such as cancer, metabolic disorders, cardiovascular diseases, and even psychological disorders such as schizophrenia are influenced directly or indirectly by microbiota. In addition, in the last few weeks, accumulating data about the link between COVID-19 and the microbiota were published. In the present work, the role of the microbiome in health and disease is discussed. A deep understanding of the exact role of microbiota in disease induction enables the prevention of diseases and the development of new therapeutic concepts for most diseases through the correction of diet and lifestyle. The present review brings together evidence from the most recent works and discusses suggested nutraceutical approaches for the management of COVID-19 pandemic.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
95
|
Wang Z, Zeng M, Wang Z, Qin F, Chen J, He Z. Dietary Polyphenols to Combat Nonalcoholic Fatty Liver Disease via the Gut-Brain-Liver Axis: A Review of Possible Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3585-3600. [PMID: 33729777 DOI: 10.1021/acs.jafc.1c00751] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyphenols are a group of micronutrients widely existing in plant foods including fruits, vegetables, and teas that can improve nonalcoholic fatty liver disease (NAFLD). In this review, the existing knowledge of dietary polyphenols for the development of NAFLD regulated by intestinal microecology is discussed. Polyphenols can influence the vagal afferent pathway in the central and enteric nervous system to control NAFLD via gut-brain-liver cross-talk. The possible mechanisms involve in the alteration of microbial community structure, effects of gut metabolites (short-chain fatty acids (SCFAs), bile acids (BAs), endogenous ethanol (EnEth)), and stimulation of gut-derived hormones (ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and leptin) based on the targets excavated from the gut-brain-liver axis. Consequently, the communication among the intestine, brain, and liver paves the way for new approaches to understand the underlying roles and mechanisms of dietary polyphenols in NAFLD pathology.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
96
|
Blesl A, Stadlbauer V. The Gut-Liver Axis in Cholestatic Liver Diseases. Nutrients 2021; 13:nu13031018. [PMID: 33801133 PMCID: PMC8004151 DOI: 10.3390/nu13031018] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
The gut-liver axis describes the physiological interplay between the gut and the liver and has important implications for the maintenance of health. Disruptions of this equilibrium are an important factor in the evolution and progression of many liver diseases. The composition of the gut microbiome, the gut barrier, bacterial translocation, and bile acid metabolism are the key features of this cycle. Chronic cholestatic liver diseases include primary sclerosing cholangitis, the generic term secondary sclerosing cholangitis implying the disease secondary sclerosing cholangitis in critically ill patients and primary biliary cirrhosis. Pathophysiology of these diseases is not fully understood but seems to be multifactorial. Knowledge about the alterations of the gut-liver axis influencing the pathogenesis and the outcome of these diseases has considerably increased. Therefore, this review aims to describe the function of the healthy gut-liver axis and to sum up the pathological changes in these cholestatic liver diseases. The review compromises the actual level of knowledge about the gut microbiome (including the mycobiome and the virome), the gut barrier and the consequences of increased gut permeability, the effects of bacterial translocation, and the influence of bile acid composition and pool size in chronic cholestatic liver diseases. Furthermore, therapeutic implications and future scientific objectives are outlined.
Collapse
Affiliation(s)
- Andreas Blesl
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Correspondence:
| | - Vanessa Stadlbauer
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| |
Collapse
|