51
|
Parker D, Ahn D, Cohen T, Prince A. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol Rev 2016; 96:19-53. [PMID: 26582515 DOI: 10.1152/physrev.00009.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation.
Collapse
Affiliation(s)
- Dane Parker
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Danielle Ahn
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Taylor Cohen
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Alice Prince
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| |
Collapse
|
52
|
Shrestha M, Xiao Y, Robinson H, Schubot FD. Structural Analysis of the Regulatory Domain of ExsA, a Key Transcriptional Regulator of the Type Three Secretion System in Pseudomonas aeruginosa. PLoS One 2015; 10:e0136533. [PMID: 26317977 PMCID: PMC4552939 DOI: 10.1371/journal.pone.0136533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/04/2015] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa employs a type three secretion system to facilitate infections in mammalian hosts. The operons encoding genes of structural components of the secretion machinery and associated virulence factors are all under the control of the AraC-type transcriptional activator protein, ExsA. ExsA belongs to a unique subfamily of AraC-proteins that is regulated through protein-protein contacts rather than small molecule ligands. Prior to infection, ExsA is inhibited through a direct interaction with the anti-activator ExsD. To activate ExsA upon host cell contact this interaction is disrupted by the anti-antiactivator protein ExsC. Here we report the crystal structure of the regulatory domain of ExsA, which is known to mediate ExsA dimerization as well as ExsD binding. The crystal structure suggests two models for the ExsA dimer. Both models confirmed the previously shown involvement of helix α-3 in ExsA dimerization but one also suggest a role for helix α-2. These structural data are supported by the observation that a mutation in α-2 greatly diminished the ability of ExsA to activate transcription in vitro. Additional in vitro transcription studies revealed that a conserved pocket, used by AraC and the related ToxT protein for the binding of small molecule regulators, although present in ExsA is not involved in binding of ExsD.
Collapse
Affiliation(s)
- Manisha Shrestha
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Washington Street, Blacksburg, VA 24060, United States of America
| | - Yi Xiao
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Washington Street, Blacksburg, VA 24060, United States of America
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973–5000, United States of America
| | - Florian D. Schubot
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Washington Street, Blacksburg, VA 24060, United States of America
- * E-mail:
| |
Collapse
|
53
|
Unexpected Roles for Toll-Like Receptor 4 and TRIF in Intraocular Infection with Gram-Positive Bacteria. Infect Immun 2015. [PMID: 26195555 DOI: 10.1128/iai.00502-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inflammation caused by infection with Gram-positive bacteria is typically initiated by interactions with Toll-like receptor 2 (TLR2). Endophthalmitis, an infection and inflammation of the posterior segment of the eye, can lead to vision loss when initiated by a virulent microbial pathogen. Endophthalmitis caused by Bacillus cereus develops as acute inflammation with infiltrating neutrophils, and vision loss is potentially catastrophic. Residual inflammation observed during B. cereus endophthalmitis in TLR2(-/-) mice led us to investigate additional innate pathways that may trigger intraocular inflammation. We first hypothesized that intraocular inflammation during B. cereus endophthalmitis would be controlled by MyD88- and TRIF-mediated signaling, since MyD88 and TRIF are the major adaptor molecules for all bacterial TLRs. In MyD88(-/-) and TRIF(-/-) mice, we observed significantly less intraocular inflammation than in eyes from infected C57BL/6J mice, suggesting an important role for these TLR adaptors in B. cereus endophthalmitis. These results led to a second hypothesis, that TLR4, the only TLR that signals through both MyD88 and TRIF signaling pathways, contributed to inflammation during B. cereus endophthalmitis. Surprisingly, B. cereus-infected TLR4(-/-) eyes also had significantly less intraocular inflammation than infected C57BL/6J eyes, indicating an important role for TLR4 in B. cereus endophthalmitis. Taken together, our results suggest that TLR4, TRIF, and MyD88 are important components of the intraocular inflammatory response observed in experimental B. cereus endophthalmitis, identifying a novel innate immune interaction for B. cereus and for this disease.
Collapse
|
54
|
Börnigen D, Moon YS, Rahnavard G, Waldron L, McIver L, Shafquat A, Franzosa EA, Miropolsky L, Sweeney C, Morgan XC, Garrett WS, Huttenhower C. A reproducible approach to high-throughput biological data acquisition and integration. PeerJ 2015; 3:e791. [PMID: 26157642 PMCID: PMC4493686 DOI: 10.7717/peerj.791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/04/2015] [Indexed: 12/25/2022] Open
Abstract
Modern biological research requires rapid, complex, and reproducible integration of multiple experimental results generated both internally and externally (e.g., from public repositories). Although large systematic meta-analyses are among the most effective approaches both for clinical biomarker discovery and for computational inference of biomolecular mechanisms, identifying, acquiring, and integrating relevant experimental results from multiple sources for a given study can be time-consuming and error-prone. To enable efficient and reproducible integration of diverse experimental results, we developed a novel approach for standardized acquisition and analysis of high-throughput and heterogeneous biological data. This allowed, first, novel biomolecular network reconstruction in human prostate cancer, which correctly recovered and extended the NFκB signaling pathway. Next, we investigated host-microbiome interactions. In less than an hour of analysis time, the system retrieved data and integrated six germ-free murine intestinal gene expression datasets to identify the genes most influenced by the gut microbiota, which comprised a set of immune-response and carbohydrate metabolism processes. Finally, we constructed integrated functional interaction networks to compare connectivity of peptide secretion pathways in the model organisms Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Daniela Börnigen
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yo Sup Moon
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA
| | - Gholamali Rahnavard
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Levi Waldron
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA.,City University of New York School of Public Health, Hunter College, New York, NY, USA
| | - Lauren McIver
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA
| | - Afrah Shafquat
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA
| | - Eric A Franzosa
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Larissa Miropolsky
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA
| | | | - Xochitl C Morgan
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wendy S Garrett
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Curtis Huttenhower
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
55
|
ExsB is required for correct assembly of the Pseudomonas aeruginosa type III secretion apparatus in the bacterial membrane and full virulence in vivo. Infect Immun 2015; 83:1789-98. [PMID: 25690097 DOI: 10.1128/iai.00048-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/06/2015] [Indexed: 01/31/2023] Open
Abstract
Pseudomonas aeruginosa is responsible for high-morbidity infections of cystic fibrosis patients and is a major agent of nosocomial infections. One of its most potent virulence factors is a type III secretion system (T3SS) that injects toxins directly into the host cell cytoplasm. ExsB, a lipoprotein localized in the bacterial outer membrane, is one of the components of this machinery, of which the function remained elusive until now. The localization of the exsB gene within the exsCEBA regulatory gene operon suggested an implication in the T3SS regulation, while its similarity with yscW from Yersinia spp. argued in favor of a role in machinery assembly. The present work shows that ExsB is necessary for full in vivo virulence of P. aeruginosa. Furthermore, the requirement of ExsB for optimal T3SS assembly and activity is demonstrated using eukaryotic cell infection and in vitro assays. In particular, ExsB promotes the assembly of the T3SS secretin in the bacterial outer membrane, highlighting the molecular role of ExsB as a pilotin. This involvement in the regulation of the T3S apparatus assembly may explain the localization of the ExsB-encoding gene within the regulatory gene operon.
Collapse
|
56
|
Fazeli N, Momtaz H. Virulence Gene Profiles of Multidrug-Resistant Pseudomonas aeruginosa Isolated From Iranian Hospital Infections. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e15722. [PMID: 25763199 PMCID: PMC4329751 DOI: 10.5812/ircmj.15722] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/25/2013] [Accepted: 01/18/2014] [Indexed: 12/20/2022]
Abstract
Background: The most common hospital-acquired pathogen is Pseudomonas aeruginosa. It is a multidrug resistant bacterium causing systemic infections. Objectives: The present study was carried out in order to investigate the distribution of virulence factors and antibiotic resistance properties of Pseudomonas aeruginosa isolated from various types of hospital infections in Iran. Patients and Methods: Two-hundred and seventeen human infection specimens were collected from Baqiyatallah and Payambaran hospitals in Tehran, Iran. The clinical samples were cultured immediately and samples positive for P. aeruginosa were analyzed for the presence of antibiotic resistance and bacterial virulence genes using PCR (polymerase chain reaction). Antimicrobial susceptibility testing was performed using disk diffusion methodology with Müeller–Hinton agar. Results: Fifty-eight out of 127 (45.66%) male infection specimens and 44 out of 90 (48.88%) female infection specimens harbored P. aeruginosa. Also, 65% (in male specimens) and 21% (in female specimens) of respiratory system infections were positive for P. aeruginosa, which was a high rate. The genes encoding exoenzyme S (67.64%) and phospholipases C (45.09%) were the most common virulence genes found among the strains. The incidences of various β-lactams encoding genes, including blaTEM, blaSHV, blaOXA, blaCTX-M, blaDHA, and blaVEB were 94.11%, 16.66%, 15.68%, 18.62%, 21.56%, and 17.64%, respectively. The most commonly detected fluoroquinolones encoding gene was gyrA (15. 68%). High resistance levels to penicillin (100%), tetracycline (90.19%), streptomycin (64.70%), and erythromycin (43.13%) were observed too. Conclusions: Our findings should raise awareness about antibiotic resistance in hospitalized patients in Iran. Clinicians should exercise caution in prescribing antibiotics, especially in cases of human infections.
Collapse
Affiliation(s)
- Nastaran Fazeli
- Department of Microbiology, Shahrekord Branch, Islamic Azad University, Shahrekord, IR Iran
| | - Hassan Momtaz
- Department of Microbiology, Shahrekord Branch, Islamic Azad University, Shahrekord, IR Iran
- Corresponding Author: Hassan Momtaz, Department of Microbiology, Shahrekord Branch, Islamic Azad University, Shahrekord, IR Iran. Tel: +98-9133812574, E-mail:
| |
Collapse
|
57
|
The ADP-ribosyltransferase domain of the effector protein ExoS inhibits phagocytosis of Pseudomonas aeruginosa during pneumonia. mBio 2014; 5:e01080-14. [PMID: 24917597 PMCID: PMC4056551 DOI: 10.1128/mbio.01080-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative pathogen commonly associated with nosocomial infections such as hospital-acquired pneumonia. It uses a type III secretion system to deliver effector proteins directly into the cytosol of host cells. Type III secretion in P. aeruginosa has been linked to severe disease and worse clinical outcomes in animal and human studies. The majority of P. aeruginosa strains secrete ExoS, a bifunctional toxin with GTPase-activating protein and ADP-ribosyltransferase activities. Numerous in vitro studies have investigated the targets and cellular effects of ExoS, linking both its enzymatic activities with inhibition of bacterial internalization. However, little is known about how this toxin facilitates the progression of infection in vivo. In this study, we used a mouse model to investigate the role of ExoS in inhibiting phagocytosis during pneumonia. We first confirmed previous findings that the ADP-ribosyltransferase activity of ExoS, but not the GTPase-activating protein activity, was responsible for bacterial persistence and decreased host survival in this model. We then used two distinct assays to demonstrate that ExoS inhibited phagocytosis during pneumonia. In contrast to the findings of several in vitro studies, this in vivo inhibition was also dependent on the ADP-ribosyltransferase activity, but not the GTPase-activating protein activity, of ExoS. These results demonstrate for the first time the antiphagocytic function of ExoS in the context of an actual infection and indicate that blocking the ADP-ribosyltransferase activity of ExoS may have potential therapeutic benefit. Pseudomonas aeruginosa is a major cause of hospital-acquired infections. To cause severe disease, this bacterium uses a type III secretion system that delivers four effector proteins, ExoS, ExoT, ExoU, and ExoY, into host cells. The majority of P. aeruginosa strains secrete ExoS, a bifunctional toxin with GTPase-activating protein and ADP-ribosyltransferase activities. In cell culture models, both enzymatic activities have been associated with decreased bacterial internalization. However, our study is the first to examine a role for ExoS in blocking phagocytosis in an animal model. We report that ExoS does inhibit phagocytosis during pneumonia. The ADP-ribosyltransferase activity, but not the GTPase-activating protein activity, of ExoS is necessary for this effect. Our findings highlight the ability of P. aeruginosa to manipulate the inflammatory response during pneumonia to facilitate bacterial survival.
Collapse
|
58
|
McCracken JM, Allen LAH. Regulation of human neutrophil apoptosis and lifespan in health and disease. J Cell Death 2014; 7:15-23. [PMID: 25278783 PMCID: PMC4167320 DOI: 10.4137/jcd.s11038] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 12/31/2022] Open
Abstract
Neutrophils (also called polymorphonuclear leukocytes, PMNs) are the most abundant white blood cells in humans and play a central role in innate host defense. Another distinguishing feature of PMNs is their short lifespan. Specifically, these cells survive for less than 24 hours in the bloodstream and are inherently pre-programed to die by constitutive apoptosis. Recent data indicate that this process is regulated by intracellular signaling and changes in gene expression that define an “apoptosis differentiation program.” Infection typically accelerates neutrophil turnover, and as such, phagocytosis-induced cell death (PICD) and subsequent clearance of the corpses by macrophages are essential for control of infection and resolution of the inflammatory response. Herein we reprise recent advances in our understanding of the molecular mechanisms of neutrophil apoptosis with a focus on regulatory factors and pathway intermediates that are specific to this cell type. In addition, we summarize mechanisms whereby perturbation of PMN death contributes directly to the pathogenesis of many infectious and inflammatory disease states.
Collapse
Affiliation(s)
- Jenna M McCracken
- Inflammation Program, University of Iowa, Iowa City, IA, USA. ; Department of Microbiology, University of Iowa, Iowa City, IA, USA
| | - Lee-Ann H Allen
- Inflammation Program, University of Iowa, Iowa City, IA, USA. ; Department of Microbiology, University of Iowa, Iowa City, IA, USA. ; Department of Medicine, University of Iowa, Iowa City, IA, USA. ; Veteran's Administration Medical Center, Iowa City, IA, USA
| |
Collapse
|
59
|
Yamaguchi S, Suzuki T, Kobayashi T, Oka N, Ishikawa E, Shinomiya H, Ohashi Y. Genotypic analysis of Pseudomonas aeruginosa isolated from ocular infection. J Infect Chemother 2014; 20:407-11. [PMID: 24746897 DOI: 10.1016/j.jiac.2014.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/06/2014] [Accepted: 02/27/2014] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is the causative pathogen of keratitis, conjunctivitis, and dacryocystitis. However little is known about their clinical epidemiology in Japan. In this study we investigated the genotypic characterization and serotype of P. aeruginosa isolates from ocular infections. Thirty-four clinical P. aeruginosa isolates were characterized according to infection type, the type III secretion system (TTSS), serotype, and multilocus sequence typing (MLST). We divided the isolates into four clinical infection types as follows: Contact lens (CL)-related keratitis (CL-keratitis; 15 isolates), non CL-related keratitis (non CL-keratitis; 8 isolates), conjunctivitis (7 isolates), and dacryocystitis (4 isolates). Regarding the TTSS classification and serotyping classification, no significant differences were found among the infection types. Two clusters (I, II) and three subclusters (A, B, C) were classified according to MLST. CL-keratitis isolates with exoU positivity were clustered in II-B, and conjunctivitis was clustered in cluster I. Some linkage was found between the genetic background and CL-keratitis or conjunctivitis.
Collapse
Affiliation(s)
- Satoshi Yamaguchi
- Department of Ophthalmology, Ehime University, Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan; ROHTO Pharmaceutical Co., Ltd., 1-8-1 Tatsumi-nishi, Ikuno-ku, Osaka 544-8666, Japan
| | - Takashi Suzuki
- Department of Ophthalmology, Ehime University, Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Takeshi Kobayashi
- Department of Ophthalmology, Ehime University, Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Naoko Oka
- Department of Ophthalmology, Ehime University, Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Eri Ishikawa
- Department of Ophthalmology, Ehime University, Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Hiroto Shinomiya
- Ehime Prefectural Institute of Public Health And Environmental Science, 8-234 Sanbancho, Matsuyama, Ehime 790-0003, Japan
| | - Yuichi Ohashi
- Department of Ophthalmology, Ehime University, Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| |
Collapse
|
60
|
Lovewell RR, Patankar YR, Berwin B. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2014; 306:L591-603. [PMID: 24464809 DOI: 10.1152/ajplung.00335.2013] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity.
Collapse
Affiliation(s)
- Rustin R Lovewell
- Dept. of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr., Lebanon, NH 03756.
| | | | | |
Collapse
|
61
|
Toska J, Sun Y, Carbonell DA, Foster ANS, Jacobs MR, Pearlman E, Rietsch A. Diversity of virulence phenotypes among type III secretion negative Pseudomonas aeruginosa clinical isolates. PLoS One 2014; 9:e86829. [PMID: 24466261 PMCID: PMC3900666 DOI: 10.1371/journal.pone.0086829] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/14/2013] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is a frequent cause of acute infections. The primary virulence factor that has been linked to clinical disease is the type III secretion system, a molecular syringe that delivers effector proteins directly into host cells. Despite the importance of type III secretion in dictating clinical outcomes and promoting disease in animal models of infections, clinical isolates often do not express the type III secretion system in vitro. Here we screened 81 clinical P. aeruginosa isolates for secretion of type III secretion system substrates by western blot. Non-expressing strains were also subjected to a functional test assaying the ability to intoxicate epithelial cells in vitro, and to survive and cause disease in a murine model of corneal infection. 26 of 81 clinical isolates were found to be type III secretion negative by western blot. 17 of these 26 non-expressing strains were tested for their ability to cause epithelial cell rounding. Of these, three isolates caused epithelial cell rounding in a type III secretion system dependent manner, and one strain was cytotoxic in a T3SS-independent manner. Five T3SS-negative isolates were also tested for their ability to cause disease in a murine model of corneal infection. Of these isolates, two strains caused severe corneal disease in a T3SS-independent manner. Interestingly, one of these strains caused significant disease (inflammation) despite being cleared. Our data therefore show that P. aeruginosa clinical isolates can cause disease in a T3SS-independent manner, demonstrating the existence of novel modifiers of clinical disease.
Collapse
Affiliation(s)
- Jonida Toska
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yan Sun
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Dalina Alvarez Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Altreisha N. -S. Foster
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Michael R. Jacobs
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Eric Pearlman
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
62
|
Dey S, Datta S. Interfacial residues of SpcS chaperone affects binding of effector toxin ExoT in Pseudomonas aeruginosa: novel insights from structural and computational studies. FEBS J 2014; 281:1267-80. [PMID: 24387107 DOI: 10.1111/febs.12704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/06/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022]
Abstract
ExoT belongs to the family of type 3 secretion system (T3SS) effector toxins in Pseudomonas aeruginosa, known to be one of the major virulence determinant toxins that cause chronic and acute infections in immuno-compromised individuals, burn victims and cystic fibrosis patients. Here, we report the X-ray crystal structure of the amino terminal fragment of effector toxin ExoT, in complex with full-length homodimeric chaperone SpcS at 2.1 Å resolution. The full-length dimeric chaperone SpcS has the conserved α-β-β-β-α-β-β-α fold of class I chaperones, the characteristic hydrophobic patches for binding effector proteins and a conserved polar cavity at the dimeric interface. The stable crystallized amino terminal fragment of ExoT consists of a chaperone binding domain and a membrane localization domain that wraps around the dimeric chaperone. Site-directed mutagenesis experiments and a molecular dynamics study complement each other in revealing Asn65, Phe67 and Trp88 as critical dimeric interfacial residues that can strongly influence the effector-chaperone interactions.
Collapse
Affiliation(s)
- Supratim Dey
- Department of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
63
|
Balyimez A, Colmer-Hamood JA, San Francisco M, Hamood AN. Characterization of the Pseudomonas aeruginosa metalloendopeptidase, Mep72, a member of the Vfr regulon. BMC Microbiol 2013; 13:269. [PMID: 24279383 PMCID: PMC4222646 DOI: 10.1186/1471-2180-13-269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/20/2013] [Indexed: 02/08/2023] Open
Abstract
Background Pseudomonas aeruginosa Vfr (the virulence factor regulator) enhances P. aeruginosa virulence by positively regulating the expression of numerous virulence genes. A previous microarray analysis identified numerous genes positively regulated by Vfr in strain PAK, including the yet uncharacterized PA2782 and PA2783. Results In this study, we report the detailed characterization of PA2783 in the P. aeruginosa strain PAO1. RT-PCR analysis confirmed that PA2782-PA2783 constitute an operon. A mutation in vfr significantly reduced the expression of both genes. The predicted protein encoded by PA2783 contains a typical leader peptide at its amino terminus end as well as metalloendopeptidase and carbohydrate binding motifs at its amino terminus and carboxy terminus regions, respectively. An in-frame PA2783::phoA fusion encoded a hybrid protein that was exported to the periplasmic space of Escherichia coli and P. aeruginosa. In PAO1, the proteolytic activity of the PA2783-encoded protein was masked by other P. aeruginosa extracellular proteases but an E. coli strain carrying a PA2783 recombinant plasmid produced considerable proteolytic activity. The outer membrane fraction of an E. coli strain in which PA2783 was overexpressed contained specific endopeptidase activity. In the presence of cAMP, purified recombinant Vfr (rVfr) bound to a 98-bp fragment within the PA2782-PA2783 upstream region that carries a putative Vfr consensus sequence. Through a series of electrophoretic mobility shift assays, we localized rVfr binding to a 33-bp fragment that contains part of the Vfr consensus sequence and a 5-bp imperfect (3/5) inverted repeat at its 3′ and 5′ ends (TGGCG-N22-CGCTG). Deletion of either repeat eliminated Vfr binding. Conclusions PA2782 and PA2783 constitute an operon whose transcription is positively regulated by Vfr. The expression of PA2783 throughout the growth cycle of P. aeruginosa follows a unique pattern. PA2783 codes for a secreted metalloendopeptidase, which we named Mep72. Mep72, which has metalloendopeptidase and carbohydrate-binding domains, produced proteolytic and endopeptidase activities in E. coli. Vfr directly regulates the expression of the PA2782-mep72 operon by binding to its upstream region. However, unlike other Vfr-targeted genes, Vfr binding does not require an intact Vfr consensus binding sequence.
Collapse
Affiliation(s)
- Aysegul Balyimez
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | | | | | | |
Collapse
|
64
|
Roy S, Karmakar M, Pearlman E. CD14 mediates Toll-like receptor 4 (TLR4) endocytosis and spleen tyrosine kinase (Syk) and interferon regulatory transcription factor 3 (IRF3) activation in epithelial cells and impairs neutrophil infiltration and Pseudomonas aeruginosa killing in vivo. J Biol Chem 2013; 289:1174-82. [PMID: 24275652 DOI: 10.1074/jbc.m113.523167] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the current study, we examined the role of CD14 in regulating LPS activation of corneal epithelial cells and Pseudomonas aeruginosa corneal infection. Our findings demonstrate that LPS induces Toll-like receptor 4 (TLR4) internalization in corneal epithelial cells and that blocking with anti-CD14 selectively inhibits TLR4 endocytosis, spleen tyrosine kinase (Syk) and IRF3 phosphorylation, and production of CCL5/RANTES and IFN-β, but not IL-8. Using a murine model of P. aeruginosa corneal infection, we show that although infected CD14(-/-) corneas produce less CCL5, they exhibit significantly increased CXC chemokine production, neutrophil recruitment to the corneal stroma, and bacterial clearance than C57BL/6 mice. We conclude that CD14 has a critical role in mediating TLR4 signaling through IRF3 in resident corneal epithelial cells and macrophages and thereby modulates TLR4 cell surface activation of the MyD88/NF-κB/AP-1 pathway and production of CXC chemokines and neutrophil infiltration to infected tissues.
Collapse
Affiliation(s)
- Sanhita Roy
- From the Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44095
| | | | | |
Collapse
|
65
|
Martins VV, Pitondo-Silva A, Manço LDM, Falcão JP, Freitas SDS, da Silveira WD, Stehling EG. Pathogenic potential and genetic diversity of environmental and clinical isolates of Pseudomonas aeruginosa. APMIS 2013; 122:92-100. [PMID: 23879442 DOI: 10.1111/apm.12112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/19/2013] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the occurrence of virulence genes among clinical and environmental isolates of Pseudomonas aeruginosa and to establish their genetic relationships by Enterobacterial Repetitive Intergenic Consensus PCR (ERIC-PCR). A total of 60 P. aeruginosa isolates from environmental and clinical sources were studied. Of these, 20 bacterial isolates were from soil, 20 from water, and 20 from patients with cystic fibrosis. Analysis of ERIC-PCR demonstrated that the isolates of P. aeruginosa showed a considerable genetic variability, regardless of their habitat. Numerous virulence genes were detected in both clinical and environmental isolates, reinforcing the possible pathogenic potential of soil and water isolates. The results showed that the environmental P. aeruginosa has all the apparatus needed to cause disease in humans and animals.
Collapse
Affiliation(s)
- Vinicius Vicente Martins
- Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | |
Collapse
|
66
|
Lithium chloride promotes host resistance against Pseudomonas aeruginosa keratitis. Mol Vis 2013; 19:1502-14. [PMID: 23878501 PMCID: PMC3716469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 07/16/2013] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To explore the role of lithium chloride (LiCl) in Pseudomonas aeruginosa (PA) keratitis. METHODS B6 mice were subconjunctivally injected with LiCl in contrast to appropriate control sodium chloride (NaCl), and then routinely infected with PA. Clinical score, slit-lamp photography, hematoxylin and eosin (H&E) staining, and bacterial plate counts were used to determine the role of LiCl in PA keratitis. Messenger ribonucleic acid and protein levels of inflammatory cytokines in PA-challenged mouse corneas and in vitro cultured macrophages and neutrophils were measured with real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively. Apoptosis of the infiltrating inflammatory cells in the PA-infected murine corneas was assessed using terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling staining and propidium iodide staining associated with flow cytometry. In cultured murine macrophages and neutrophils, cell apoptosis was determined with annexin V/propidium iodide double staining associated with flow cytometry and western blot analysis for cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase. RESULTS Treatment with LiCl reduced the severity of corneal disease by reducing corneal inflammatory response and bacterial burden. Moreover, LiCl increased anti-inflammatory cytokine interleukin-10 levels, decreased proinflammatory cytokine tumor necrosis factor-α levels, and enhanced apoptosis of infiltrating macrophages and neutrophils in the PA-infected mouse corneas. In vitro studies further confirmed that LiCl elevated anti-inflammatory cytokine expression but reduced proinflammatory cytokine production, as well as promoted cell apoptosis in murine macrophages and neutrophils. CONCLUSIONS This study demonstrates a protective role of LiCl in PA keratitis. LiCl promotes host resistance against PA infection by suppressing inflammatory responses, enhancing inflammatory cell apoptosis, and promoting bacterial clearance.
Collapse
|
67
|
Pearlman E, Sun Y, Roy S, Karmakar M, Hise AG, Szczotka-Flynn L, Ghannoum M, Chinnery HR, McMenamin PG, Rietsch A. Host defense at the ocular surface. Int Rev Immunol 2013; 32:4-18. [PMID: 23360155 DOI: 10.3109/08830185.2012.749400] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Microbial infections of the cornea frequently cause painful, blinding and debilitating disease that is often difficult to treat and may require corneal transplantation. In addition, sterile corneal infiltrates that are associated with contact lens wear cause pain, visual impairment and photophobia. In this article, we review the role of Toll-Like Receptors (TLR) in bacterial keratitis and sterile corneal infiltrates, and describe the role of MD-2 regulation in LPS responsiveness by corneal epithelial cells. We conclude that both live bacteria and bacterial products activate Toll-Like Receptors in the cornea, which leads to chemokine production and neutrophil recruitment to the corneal stroma. While neutrophils are essential for bacterial killing, they also cause tissue damage that results in loss of corneal clarity. These disparate outcomes, therefore, represent a spectrum of disease severity based on this pathway, and further indicate that targeting the TLR pathway is a feasible approach to treating inflammation caused by live bacteria and microbial products. Further, as the P. aeruginosa type III secretion system (T3SS) also plays a critical role in disease pathogenesis by inducing neutrophil apoptosis and facilitating bacterial growth in the cornea, T3SS exotoxins are additional targets for therapy for P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Eric Pearlman
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Chan MF, Li J, Bertrand A, Casbon AJ, Lin JH, Maltseva I, Werb Z. Protective effects of matrix metalloproteinase-12 following corneal injury. J Cell Sci 2013; 126:3948-60. [PMID: 23813962 DOI: 10.1242/jcs.128033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Corneal scarring due to injury is a leading cause of blindness worldwide and results from dysregulated inflammation and angiogenesis during wound healing. Here we demonstrate that the extracellular matrix metalloproteinase MMP12 (macrophage metalloelastase) is an important regulator of these repair processes. Chemical injury resulted in higher expression of the fibrotic markers α-smooth muscle actin and type I collagen, and increased levels of angiogenesis in corneas of Mmp12(-/-) mice compared with corneas of wild-type mice. In vivo, we observed altered immune cell dynamics in Mmp12(-/-) corneas by confocal imaging. We determined that the altered dynamics were the result of an altered inflammatory response, with delayed neutrophil infiltration during the first day and excessive macrophage infiltration 6 days later, mediated by altered expression levels of chemokines CXCL1 and CCL2, respectively. Corneal repair returned to normal upon inhibition of these chemokines. Taken together, these data show that MMP12 has a protective effect on corneal fibrosis during wound repair through regulation of immune cell infiltration and angiogenesis.
Collapse
Affiliation(s)
- Matilda F Chan
- Francis I. Proctor Foundation, University of California, San Francisco, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
69
|
Karthikeyan RS, Priya JL, Leal SM, Toska J, Rietsch A, Prajna V, Pearlman E, Lalitha P. Host response and bacterial virulence factor expression in Pseudomonas aeruginosa and Streptococcus pneumoniae corneal ulcers. PLoS One 2013; 8:e64867. [PMID: 23750216 PMCID: PMC3672173 DOI: 10.1371/journal.pone.0064867] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/18/2013] [Indexed: 02/07/2023] Open
Abstract
P. aeruginosa and S. pneumoniae are major bacterial causes of corneal ulcers in industrialized and in developing countries. The current study examined host innate immune responses at the site of infection, and also expression of bacterial virulence factors in clinical isolates from patients in south India. Corneal ulcer material was obtained from 49 patients with confirmed P. aeruginosa and 27 patients with S. pneumoniae, and gene expression of Toll Like Receptors (TLR), cytokines and inflammasome proteins was measured by quantitative PCR. Expression of P. aeruginosa type III secretion exotoxins and S. pneumoniae pneumolysin was detected by western blot analysis. We found that neutrophils comprised >90% cells in corneal ulcers, and that there was elevated expression of TLR2, TLR4, TLR5 and TLR9, the NLRP3 and NLRC4 inflammasomes and the ASC adaptor molecule. IL-1α IL-1β and IFN-γ expression was also elevated; however, there was no significant difference in expression of any of these genes between corneal ulcers from P. aeruginosa and S. pneumoniae infected patients. We also show that 41/49 (84%) of P. aeruginosa clinical isolates expressed ExoS and ExoT, whereas 5/49 (10%) of isolates expressed ExoS, ExoT and ExoU with only 2/49 isolates expressing ExoT and ExoU. In contrast, all 27 S. pneumoniae clinical isolates produced pneumolysin. Taken together, these findings demonstrate that ExoS/T expressing P. aeruginosa and pneumolysin expressing S. pneumoniae predominate in bacterial keratitis. While P. aeruginosa strains expressing both ExoU and ExoS are usually rare, these strains actually outnumbered strains expressing only ExoU in the current study. Further, as neutrophils are the predominant cell type in these corneal ulcers, they are the likely source of cytokines and of the increased TLR and inflammasome expression.
Collapse
Affiliation(s)
| | | | - Sixto M. Leal
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jonida Toska
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Venkatesh Prajna
- Dr. G. Venkatasamy Eye Research Institute, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Eric Pearlman
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Prajna Lalitha
- Dr. G. Venkatasamy Eye Research Institute, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| |
Collapse
|
70
|
Shao H, Scott SG, Nakata C, Hamad AR, Chakravarti S. Extracellular matrix protein lumican promotes clearance and resolution of Pseudomonas aeruginosa keratitis in a mouse model. PLoS One 2013; 8:e54765. [PMID: 23358433 PMCID: PMC3554612 DOI: 10.1371/journal.pone.0054765] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022] Open
Abstract
Lumican is an extracellular protein that associates with CD14 on the surface of macrophages and neutrophils, and promotes CD14-TLR4 mediated response to bacterial lipopolysaccharides (LPS). Lumican-deficient (Lum(-/-)) mice and macrophages are impaired in TLR4 signals; raising the possibility that lumican may regulate host response to live bacterial infections. In a recent study we showed that invitro Lum(-/-) macrophages are impaired in phagocytosis of gram-negative bacteria and in a lung infection model the Lum(-/-) mice showed poor survival. The cornea is an immune privileged barrier tissue that relies primarily on innate immunity to protect against ocular infections. Lumican is a major component of the cornea, yet its role in counteracting live bacteria in the cornea remains poorly understood. Here we investigated Pseudomonas aeruginosa infections of the cornea in Lum(-/-) mice. By flow cytometry we found that 24 hours after infection macrophage and neutrophil counts were lower in the cornea of Lum(-/-) mice compared to wild types. Infected Lum(-/-) corneas showed lower levels of the leukocyte chemoattractant CXCL1 by 24-48 hours of infection, and increased bacterial counts up to 5 days after infection, compared to Lum(+/-) mice. The pro-inflammatory cytokine TNF-α was comparably low 24 hours after infection, but significantly higher in the Lum(-/-) compared to Lum(+/-) infected corneas by 2-5 days after infection. Taken together, the results indicate that lumican facilitates development of an innate immune response at the earlier stages of infection and lumican deficiency leads to poor bacterial clearance and resolution of corneal inflammation at a later stage.
Collapse
Affiliation(s)
- Hanjuan Shao
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Sherri-Gae Scott
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Chiaki Nakata
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Abdel R. Hamad
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Shukti Chakravarti
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
71
|
Roy S, Bonfield T, Tartakoff AM. Non-apoptotic toxicity of Pseudomonas aeruginosa toward murine cells. PLoS One 2013; 8:e54245. [PMID: 23358229 PMCID: PMC3554662 DOI: 10.1371/journal.pone.0054245] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/10/2012] [Indexed: 11/18/2022] Open
Abstract
Although P. aeruginosa is especially dangerous in cystic fibrosis (CF), there is no consensus as to how it kills representative cell types that are of key importance in the lung. This study concerns the acute toxicity of the sequenced strain, PAO1, toward a murine macrophage cell line (RAW 264.7). Toxicity requires brief contact with the target cell, but is then delayed for more than 12 h. None of the classical toxic effectors of this organism is required and cell death occurs without phagocytosis or acute perturbation of the actin cytoskeleton. Apoptosis is not required for toxicity toward either RAW 264.7 cells or for alveolar macrophages. Transcriptional profiling shows that encounter between PAO1 and RAW 264.7 cells elicits an early inflammatory response, followed by growth arrest. As an independent strategy to understand the mechanism of toxicity, we selected variant RAW 264.7 cells that resist PAO1. Upon exposure to P. aeruginosa, they are hyper-responsive with regard to classical inflammatory cytokine production and show transient downregulation of transcripts that are required for cell growth. They do not show obvious morphologic changes. Although they do not increase interferon transcripts, when exposed to PAO1 they dramatically upregulate a subset of the responses that are characteristic of exposure to g-interferon, including several guanylate-binding proteins. The present observations provide a novel foundation for learning how to equip cells with resistance to a complex challenge.
Collapse
Affiliation(s)
- Sanhita Roy
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Tracey Bonfield
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Alan M. Tartakoff
- Pathology Department and Cell Biology Program, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
72
|
Zhou R, Zhang R, Sun Y, Platt S, Szczotka-Flynn L, Pearlman E. Innate immune regulation of Serratia marcescens-induced corneal inflammation and infection. Invest Ophthalmol Vis Sci 2012; 53:7382-8. [PMID: 23033384 DOI: 10.1167/iovs.12-10238] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Serratia marcescens is frequently isolated from lenses of patients with contact lens-associated corneal infiltrates. In the current study, we examined the role of toll-like receptors (TLRs) and interleukin-1 receptor type 1 (IL-1R1) in S. marcescens-induced corneal inflammation and infection. METHODS The central corneal epithelium of C57BL/6 and gene knockout mice was abraded, and 1 × 10(7) S. marcescens were added in the presence of a silicone hydrogel contact lens, and we examined corneal inflammation by confocal microscopy and neutrophil enumeration. Viable bacteria were quantified by colony-forming units (CFU). RESULTS S. marcescens induced neutrophil recruitment to the corneal stroma, and increased corneal thickness and haze in C57BL/6 mice. Conversely, CFU was significantly lower by 48 hours post infection. In contrast, MyD88(-/-), IL-1R(-/-), TLR4(-/-), and TLR4/5(-/-) corneas infected with S. marcescens had significantly increased CFU, indicating impaired clearance. However, there was no significant difference in CFU among C57BL/6, TIRAP(-/-), and TRIF(-/-) mice. Tobramycin-killed S. marcescens induced corneal inflammation in C57BL/6 mice, which was impaired significantly in MD-2(-/-) mice and in C57BL/6 mice pretreated topically with the MD-2 antagonist eritoran tetrasodium. CONCLUSIONS S. marcescens induces corneal inflammation by activation of TLR4/MD-2/MyD88 and the IL-1R1/MyD88 pathways, which are potential therapeutic targets for inhibition of S. marcescens-induced corneal inflammation.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
73
|
Karmakar M, Sun Y, Hise AG, Rietsch A, Pearlman E. Cutting edge: IL-1β processing during Pseudomonas aeruginosa infection is mediated by neutrophil serine proteases and is independent of NLRC4 and caspase-1. THE JOURNAL OF IMMUNOLOGY 2012; 189:4231-5. [PMID: 23024281 DOI: 10.4049/jimmunol.1201447] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To examine the role of caspase-1 and the NLRC4 inflammasome during bacterial infection, C57BL/6, IL-1β(-/-), caspase-1(-/-), and NLRC4(-/-) mouse corneas were infected with ExoS/T- or ExoU-expressing Pseudomonas aeruginosa. We found that IL-1β was essential for neutrophil recruitment and bacterial clearance and was produced by myeloid cells rather than resident cells. In addition, neutrophils were found to be the primary source of mature IL-1β during infection, and there was no significant difference in IL-1β processing between C57BL/6 and caspase-1(-/-) or NLRC4(-/-) infected corneas. IL-1β cleavage by human and mouse neutrophils was blocked by serine protease inhibitors and was impaired in infected neutrophil elastase (NE)(-/-) corneas. NE(-/-) mice also had an impaired ability to clear the infection. Together, these results demonstrate that during P. aeruginosa infection, neutrophils are the primary source of mature IL-1β and that IL-1β processing is dependent on serine proteases and not NLRC4 or caspase-1.
Collapse
Affiliation(s)
- Mausita Karmakar
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
74
|
Topical neutralization of interleukin-17 during experimental Pseudomonas aeruginosa corneal infection promotes bacterial clearance and reduces pathology. Infect Immun 2012; 80:3706-12. [PMID: 22802348 DOI: 10.1128/iai.00249-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The proinflammatory cytokine interleukin-17 (IL-17) is involved in neutrophilic tissue infiltration, contributing to both microbial clearance as well as inflammation-associated tissue damage. Its role during bacterial corneal infections is unknown. We hypothesized that IL-17 responses would be detrimental in this setting and tested the impact of IL-17 receptor deficiency or antibody-mediated neutralization of IL-17 in a murine model of Pseudomonas aeruginosa ulcerative keratitis after scratch injury. We found that, compared with infected corneas from wild-type mice, those from IL-17 receptor (IL-17R)-deficient mice had significantly lower corneal pathology scores, neutrophil influx, and intracellular bacterial levels. Infected IL-17R-deficient corneas had low intercellular adhesion molecule 1 (ICAM-1) expression, and ICAM-1-deficient mice were similarly resistant to infection. Topical treatment with polyclonal antibodies to IL-17 resulted in significant reductions in corneal pathology and also lowered bacterial counts after infection with six different laboratory or clinical P. aeruginosa strains, including both invasive and cytotoxic strains. Thus, neutralization of IL-17 during P. aeruginosa corneal infection reduces neutrophil influx and pathology without compromising bacterial clearance and offers a promising new avenue for therapy of these potentially sight-threatening infections.
Collapse
|