51
|
Leukocytospermia induces intraepithelial recruitment of dendritic cells and increases SIV replication in colorectal tissue explants. Commun Biol 2021; 4:861. [PMID: 34253821 PMCID: PMC8275775 DOI: 10.1038/s42003-021-02383-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Mucosal exposure to infected semen accounts for the majority of HIV-1 transmission events, with rectal intercourse being the route with the highest estimated risk of transmission. Yet, the impact of semen inflammation on colorectal HIV-1 transmission has never been addressed. Here we use cynomolgus macaques colorectal tissue explants to explore the effect of leukocytospermia, indicative of male genital tract inflammation, on SIVmac251 infection. We show that leukocytospermic seminal plasma (LSP) has significantly higher concentration of a number of pro-inflammatory molecules compared to normal seminal plasma (NSP). In virus-exposed explants, LSP enhance SIV infection more efficiently than NSP, being the increased viral replication linked to the level of inflammatory and immunomodulatory cytokines. Moreover, LSP induce leukocyte accumulation on the apical side of the colorectal lamina propria and the recruitment of a higher number of intraepithelial dendritic cells than with NSP. These results suggest that the outcome of mucosal HIV-1 infection is influenced by the inflammatory state of the semen donor, and provide further insights into mucosal SIV/HIV-1 pathogenesis.
Collapse
|
52
|
du Fossé NA, Lashley EELO, van Beelen E, Meuleman T, le Cessie S, van Lith JMM, Eikmans M, van der Hoorn MLP. Identification of distinct seminal plasma cytokine profiles associated with male age and lifestyle characteristics in unexplained recurrent pregnancy loss. J Reprod Immunol 2021; 147:103349. [PMID: 34246867 DOI: 10.1016/j.jri.2021.103349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/09/2021] [Accepted: 07/01/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Seminal plasma contains a wide range of cytokines, chemokines and growth factors. Part of these signalling molecules assist in inducing a state of active maternal immune tolerance towards the fetus. Disbalances in seminal plasma content may contribute to pregnancy loss. This study investigated cytokine expression profiles in seminal plasma of male partners of couples with unexplained recurrent pregnancy loss (RPL) and the association with clinical and lifestyle characteristics, including smoking, alcohol consumption and body mass index (BMI). METHODS In the seminal plasma of 52 men who visited a specialised RPL clinic the levels of 25 pre-selected cytokines, chemokines and growth factors were measured by Bio-Plex assay or ELISA. Two-way hierarchical cluster analysis was performed. Identified patient clusters were compared on clinical and lifestyle characteristics. RESULTS Two distinct cytokine expression profiles in the seminal plasma were revealed by cluster analysis. Patient cluster I showed relatively higher levels of pro-inflammatory cytokines, including IL-1α, IL-1β, IL-6, IL-8, IL-12, IL-18 and TNF-α, compared to Patient cluster II. Men belonging to Patient cluster I were significantly older and had significantly more lifestyle risk factors compared to men in Patient cluster II. CONCLUSION Cluster analysis suggested the existence of a less favourable pro-inflammatory cytokine expression profile, being present in part of men affected by RPL and associated with advanced male age and lifestyle risk factors. These findings may serve as a starting point for further research into underlying mechanisms and ultimately lead to novel diagnostic and therapeutic approaches for couples with RPL.
Collapse
Affiliation(s)
- N A du Fossé
- Department of Gynaecology and Obstetrics, Leiden University Medical Center, Leiden, the Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - E E L O Lashley
- Department of Gynaecology and Obstetrics, Leiden University Medical Center, Leiden, the Netherlands
| | - E van Beelen
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - T Meuleman
- Department of Gynaecology and Obstetrics, Leiden University Medical Center, Leiden, the Netherlands
| | - S le Cessie
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - J M M van Lith
- Department of Gynaecology and Obstetrics, Leiden University Medical Center, Leiden, the Netherlands
| | - M Eikmans
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - M L P van der Hoorn
- Department of Gynaecology and Obstetrics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
53
|
Baldeon-Vaca G, Marathe JG, Politch JA, Mausser E, Pudney J, Doud J, Nador E, Zeitlin L, Pauly M, Moench TR, Brennan M, Whaley KJ, Anderson DJ. Production and characterization of a human antisperm monoclonal antibody against CD52g for topical contraception in women. EBioMedicine 2021; 69:103478. [PMID: 34256345 PMCID: PMC8324805 DOI: 10.1016/j.ebiom.2021.103478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Approximately 40% of human pregnancies are unintended, indicating a need for more acceptable effective contraception methods. New antibody production systems make it possible to manufacture reagent-grade human monoclonal antibodies (mAbs) for clinical use. We used the Nicotiana platform to produce a human antisperm mAb and tested its efficacy for on-demand topical contraception. METHODS Heavy and light chain variable region DNA sequences of a human IgM antisperm antibody derived from an infertile woman were inserted with human IgG1 constant region sequences into an agrobacterium and transfected into Nicotiana benthamiana. The product, an IgG1 mAb ["Human Contraception Antibody" (HCA)], was purified on Protein A columns, and QC was performed using the LabChip GXII Touch protein characterization system and SEC-HPLC. HCA was tested for antigen specificity by immunofluorescence and western blot assays, antisperm activity by sperm agglutination and complement dependent sperm immobilization assays, and safety in a human vaginal tissue (EpiVaginal™) model. FINDINGS HCA was obtained at concentrations ranging from 0.4 to 4 mg/ml and consisted of > 90% IgG monomers. The mAb specifically reacted with a glycan epitope on CD52g, a glycoprotein produced in the male reproductive tract and found in abundance on sperm. HCA potently agglutinated sperm under a variety of relevant physiological conditions at concentrations ≥ 6.25 µg/ml, and mediated complement-dependent sperm immobilization at concentrations ≥ 1 µg/ml. HCA and its immune complexes did not induce inflammation in EpiVaginal™ tissue. INTERPRETATION HCA, an IgG1 mAb with potent sperm agglutination and immobilization activity and a good safety profile, is a promising candidate for female contraception. FUNDING This research was supported by grants R01 HD095630 and P50HD096957 from the National Institutes of Health.
Collapse
Affiliation(s)
- Gabriela Baldeon-Vaca
- Division of Medical Sciences, Boston University School of Medicine, Boston, MA 02118, United States
| | - Jai G Marathe
- Department of Medicine, Boston University School of Medicine, 670 Albany St. Rm 516, Boston, MA 02118, United States
| | - Joseph A Politch
- Department of Medicine, Boston University School of Medicine, 670 Albany St. Rm 516, Boston, MA 02118, United States
| | - Emilie Mausser
- Division of Medical Sciences, Boston University School of Medicine, Boston, MA 02118, United States
| | - Jeffrey Pudney
- Department of Medicine, Boston University School of Medicine, 670 Albany St. Rm 516, Boston, MA 02118, United States
| | - James Doud
- Department of Medicine, Boston University School of Medicine, 670 Albany St. Rm 516, Boston, MA 02118, United States
| | - Ellena Nador
- Division of Medical Sciences, Boston University School of Medicine, Boston, MA 02118, United States
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., 6160 Lusk Blvd., San Diego, CA 92121, United States
| | - Michael Pauly
- Mapp Biopharmaceutical, Inc., 6160 Lusk Blvd., San Diego, CA 92121, United States
| | - Thomas R Moench
- Mapp Biopharmaceutical, Inc., 6160 Lusk Blvd., San Diego, CA 92121, United States
| | - Miles Brennan
- Mapp Biopharmaceutical, Inc., 6160 Lusk Blvd., San Diego, CA 92121, United States; ZabBio, Inc. 6160 Lusk Blvd., San Diego, CA 92121, United States
| | - Kevin J Whaley
- Mapp Biopharmaceutical, Inc., 6160 Lusk Blvd., San Diego, CA 92121, United States; ZabBio, Inc. 6160 Lusk Blvd., San Diego, CA 92121, United States
| | - Deborah J Anderson
- Department of Medicine, Boston University School of Medicine, 670 Albany St. Rm 516, Boston, MA 02118, United States.
| |
Collapse
|
54
|
Paktinat S, Esfandyari S, Karamian A, Koochaki A, Asadirad A, Ghaffari Novin M, Mohammadi-Yeganeh S, Salehpour S, Hashemi SM, Nazarian H. Conditioned medium derived from seminal extracellular vesicles-exposed endometrial stromal cells induces inflammatory cytokine secretion by macrophages. Eur J Obstet Gynecol Reprod Biol 2021; 262:174-181. [PMID: 34034196 DOI: 10.1016/j.ejogrb.2021.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/06/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Seminal plasma (SP) contains large numbers of sub-cellular structures called extracellular vesicles (EV) which have been postulated to have immunological functions due to their bioactive contents including proteins and small non-coding RNAs. Although the response of endometrial cells to seminal EV (SEV) is recently being elucidated, the impact of these signaling vesicles on stroma-immune crosstalk is still unknown. Herein, we aimed to investigate the effect of conditioned medium (CM) derived from SEV-exposed endometrial stromal cells (eSC) on cytokine secretion by macrophages. STUDY DESIGN SEV were isolated from SP samples of healthy donors and characterized by common methods needed for EV characterization, including size determination by dynamic light scattering (DLS), transmission electron microscopy (TEM), and western blot analysis of EV markers. Endometrial biopsies were obtained from healthy individuals and eSC were isolated and characterized. EV internalization assay was performed by labeling the SEV with PKH67 green fluorescent dye. Then, the eSC were exposed to SEV and the CM was collected. Finally, the CM from SEV-exposed eSC was added to the macrophage culture and the level of inflammatory (interleukin (IL)-1α and IL-6) and anti-inflammatory (IL-10) cytokines were measured in the culture supernatant of macrophages. RESULTS The results demonstrated that the CM derived from SEV-exposed eSC induce IL-1α and IL-6 secretion by the macrophages, while the secretion of IL-10 was reduced. CONCLUSION Our results support the idea that the stroma-immune interaction is affected by SEV. This effect may be a part of immunoregulatory function of SP inside upper female genital tract and have an obvious impact during peri-implantation period.
Collapse
Affiliation(s)
- Shahrokh Paktinat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Esfandyari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Karamian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saghar Salehpour
- Department of Obstetrics and Gynecology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
55
|
Mngomezulu K, Mzobe GF, Mtshali A, Osman F, Liebenberg LJP, Garrett N, Singh R, Rompalo A, Mindel A, Karim SSA, Karim QA, Baxter C, Ngcapu S. Recent Semen Exposure Impacts the Cytokine Response and Bacterial Vaginosis in Women. Front Immunol 2021; 12:695201. [PMID: 34177961 PMCID: PMC8221111 DOI: 10.3389/fimmu.2021.695201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
Background The presence of semen in the vagina from unprotected sex may influence the immune and microbial environment of the female genital tract. Inflammatory cytokine concentrations and BV-associated bacteria in female genital secretions may influence HIV risk, although the effect of recent sexual intercourse on incident BV and the cytokine milieu of cervicovaginal secretions has rarely been measured in previous studies. Here, we investigated the extent to which partner semen impacts the cytokine response and incident BV. Methods At baseline, we assessed the recency of semen exposure in menstrual cup supernatants by quantifying prostate specific antigen (PSA) levels using ELISA in 248 HIV-uninfected women at high risk for HIV infection. Luminex was used to measure 48 cytokines in menstrual cup supernatants and vaginal swabs to diagnose BV by Nugent score. Point-of-care screening for Chlamydia trachomatis and Neisseria gonorrhoeae was conducted using GeneXpert while OSOM was used for Trichomonas vaginalis detection. Multivariable models, adjusted for age, sexually transmitted infections, BV, current contraception use and condom use, were used to assess the impact of semen exposure on biomarkers of inflammation and BV. Results Presence of PSA, indicating recent semen exposure within 48 hours prior to sampling, was observed in menstrual cup supernatants of 17% (43/248) of women. Of these women, 70% (30/43) had self-reported condom use at their last sex act and 84% (36/43) had BV (Nugent score >7). PSA presence was significantly associated with prevalent BV (Relative Risk (RR), 2.609; 95% Confidence Interval (CI), 1.104 - 6.165; p = 0.029). Furthermore, women with detectable PSA had high median concentrations of macrophage inflammatory protein- beta (MIP-1α, p=0.047) and low median concentration of the stem cell growth factor beta (SCGF-β, p=0.038) compared to those without PSA. Conclusion A degree of discordance between self-reports of consistent condom use and PSA positivity was observed. There was also evidence of a relationship between recent semen exposure, BV prevalence and altered cytokine concentrations. These findings suggest that PSA, as a semen biomarker, should be taken into consideration when investigating biological markers in the female genital tract and self-reported condom use in studies on reproductive and sexual health.
Collapse
Affiliation(s)
- Khanyisile Mngomezulu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Gugulethu F. Mzobe
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Mtshali
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Farzana Osman
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Ravesh Singh
- Department of Medical Microbiology, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology, National Health Laboratory Services, KwaZulu-Natal Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Anne Rompalo
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, United States
| | - Adrian Mindel
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, NY, United States
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, NY, United States
| | - Cheryl Baxter
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
56
|
Jewanraj J, Ngcapu S, Osman F, Ramsuran V, Fish M, Mtshali A, Singh R, Mansoor LE, Abdool Karim SS, Abdool Karim Q, Passmore JS, Liebenberg LJP. Transient association between semen exposure and biomarkers of genital inflammation in South African women at risk of HIV infection. J Int AIDS Soc 2021; 24:e25766. [PMID: 34164927 PMCID: PMC8223121 DOI: 10.1002/jia2.25766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Semen induces mucosal changes in the female reproductive tract to improve pregnancy outcomes. Since semen-induced alterations are likely short-lived and genital inflammation is linked to HIV acquisition in women, we investigated the contribution of recent semen exposure on biomarkers of genital inflammation in women at high HIV risk and the persistence of these associations. METHODS We assessed stored genital specimens from 152 HIV-negative KwaZulu-Natal women who participated in the CAPRISA 008 trial between November 2012 and October 2014. During the two-year study period, 651 vaginal specimens were collected biannually (mean five samples per woman). Cervicovaginal lavage (CVL) was screened for prostate-specific antigen (PSA) by ELISA, whereas Y-chromosome DNA (YcDNA) detection and quantification were conducted by RT-PCR, representing semen exposure within 48 hours (PSA+YcDNA+) and semen exposure within three to fifteen days (PSA-YcDNA+). Soluble protein concentrations were measured in CVLs by multiplexed ELISA. T-cell frequencies were assessed in cytobrushes by flow-cytometry, and vulvovaginal swabs were used to detect common vaginal microbes by PCR. Linear mixed models adjusting for factors associated with genital inflammation and HIV risk were used to assess the impact of semen exposure on biomarkers of inflammation over multiple visits. RESULTS Here, 19% (125/651) of CVLs were PSA+YcDNA+, 14% (93/651) were PSA-YcDNA+ and 67% (433/651) were PSA-YcDNA-. Semen exposure was associated with how often women saw their partners, the frequency of vaginal sex in the past month, HSV-2 antibody detection, current gonorrhoea infection and Nugent Score. Both PSA detection (PSA+YcDNA+) and higher cervicovaginal YcDNA concentrations predicted increases in several cytokines, barrier-related proteins (MMP-2, TIMP-1 and TIMP-4) and activated CD4+CCR5+HLA-DR+ T cells (β = 0.050; CI 0.001 to 0.098; p = 0.046) and CD4+HLA-DR+ T cells (β = 0.177; CI 0.016 to 0.339; p = 0.032) respectively. PSA detection was specifically associated with raised pro-inflammatory cytokines (including IL-6, TNF-α, IP-10 and RANTES), and with the detection of BVAB2 (OR = 1.755; CI 1.116 to 2.760; p = 0.015), P. bivia (OR = 1.886; CI 1.102 to 3.228; p = 0.021) and Gardnerella vaginalis (OR = 1.815; CI 1.093 to 3.015; p = 0.021). CONCLUSIONS More recent semen exposure was associated with raised levels of inflammatory biomarkers and the detection of BV-associated microbes, which declined by three to fifteen days of post-exposure. Although transient, semen-induced alterations may have implications for HIV susceptibility in women.
Collapse
Affiliation(s)
- Janine Jewanraj
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- Department of Medical MicrobiologySchool of Laboratory Medicine and Medical SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- Department of Medical MicrobiologySchool of Laboratory Medicine and Medical SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Farzana Osman
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
| | - Veron Ramsuran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- Department of Medical MicrobiologySchool of Laboratory Medicine and Medical SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
- KwaZulu‐Natal Research Innovation and Sequencing Platform (KRISP)DurbanSouth Africa
| | - Maryam Fish
- KwaZulu‐Natal Research Innovation and Sequencing Platform (KRISP)DurbanSouth Africa
| | - Andile Mtshali
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- Department of Medical MicrobiologySchool of Laboratory Medicine and Medical SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Ravesh Singh
- Department of Medical MicrobiologySchool of Laboratory Medicine and Medical SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
- Department of MicrobiologyNational Health Laboratory ServicesKwaZulu‐Natal Academic ComplexInkosi Albert Luthuli Central HospitalDurbanSouth Africa
| | - Leila E Mansoor
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- School of Nursing and Public HealthUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- Department of EpidemiologyColumbia UniversityNew YorkNYUSA
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- Department of EpidemiologyColumbia UniversityNew YorkNYUSA
| | - Jo‐Ann S Passmore
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM)University of Cape TownCape TownSouth Africa
- National Health Laboratory ServicesJohannesburgSouth Africa
| | - Lenine J P Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- Department of Medical MicrobiologySchool of Laboratory Medicine and Medical SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
57
|
Sperm modulate uterine immune parameters relevant to embryo implantation and reproductive success in mice. Commun Biol 2021; 4:572. [PMID: 33990675 PMCID: PMC8121928 DOI: 10.1038/s42003-021-02038-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Seminal fluid factors modulate the female immune response at conception to facilitate embryo implantation and reproductive success. Whether sperm affect this response has not been clear. We evaluated global gene expression by microarray in the mouse uterus after mating with intact or vasectomized males. Intact males induced greater changes in gene transcription, prominently affecting pro-inflammatory cytokine and immune regulatory genes, with TLR4 signaling identified as a top-ranked upstream driver. Recruitment of neutrophils and expansion of peripheral regulatory T cells were elevated by seminal fluid of intact males. In vitro, epididymal sperm induced IL6, CXCL2, and CSF3 in uterine epithelial cells of wild-type, but not Tlr4 null females. Collectively these experiments show that sperm assist in promoting female immune tolerance by eliciting uterine cytokine expression through TLR4-dependent signaling. The findings indicate a biological role for sperm beyond oocyte fertilization, in modulating immune mechanisms involved in female control of reproductive investment.
Collapse
|
58
|
Bai K, Li X, Zhong J, Ng EHY, Yeung WSB, Lee CL, Chiu PCN. Placenta-Derived Exosomes as a Modulator in Maternal Immune Tolerance During Pregnancy. Front Immunol 2021; 12:671093. [PMID: 34046039 PMCID: PMC8144714 DOI: 10.3389/fimmu.2021.671093] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a subset of extracellular vesicles with an average diameter of ~100nm. Exosomes are released by all cells through an endosome-dependent pathway and carry nucleic acids, proteins, lipids, cytokines and metabolites, mirroring the state of the originating cells. The function of exosomes has been implicated in various reproduction processes, such as embryo development, implantation, decidualization and placentation. Placenta-derived exosomes (pEXO) can be detected in the maternal blood as early as 6 weeks after conception and their levels increase with gestational age. Importantly, alternations in the molecular signatures of pEXO are observed in pregnancy-related complications. Thus, these differentially expressed molecules could be the potential biomarkers for diagnosis of the pregnancy-associated diseases. Recent studies have demonstrated that pEXO play a key role in the establishment of maternal immune tolerance, which is critical for a successful pregnancy. To gain a better understanding of the underlying mechanism, we highlighted the advanced studies of pEXO on immune cells in pregnancy.
Collapse
Affiliation(s)
- Kunfeng Bai
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xintong Li
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jiangming Zhong
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
59
|
Mousavi SO, Mohammadi R, Amjadi F, Zandieh Z, Aghajanpour S, Aflatoonian K, Sabbaghian M, Eslami M, Madani T, Aflatoonian R. Immunological response of fallopian tube epithelial cells to spermatozoa through modulating cytokines and chemokines. J Reprod Immunol 2021; 146:103327. [PMID: 34052728 DOI: 10.1016/j.jri.2021.103327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/13/2021] [Accepted: 04/27/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Spermatozoa interactions with fallopian tubes may influence fertilization. The purpose was to investigate cytokines, chemokines and growth factors expression from human fallopian tube epithelial cells (OE-E6/E7) exposed to spermatozoa. METHODS Fresh semen samples were obtained from 10 healthy normozoospermic men. Sperms were prepared and co-cultured with OE-E6/E7. The cell line without spermatozoa was considered as the control group. Afterwards, Expression of 84 cytokines from OE-E6/E7 cell line in the presence and absence of spermatozoa were measured using PCR-array. Quantitative PCR was performed on seven genes to confirm the results of PCR-array analysis. Differentially expressed genes were subjected to www.geneontology.org and www.pantherdb.org to perform GO enrichment and panther pathway analysis. The concentration of IL-8, IL-10, IL-1B and BMP-4 in culture medium were analyzed by ELISA. RESULTS Sperm interaction with the epithelial cells resulted in a significant increase in expression of TGF-β2, BMP-4, IL-10, IL-9, and CD40LG markers. Moreover, expression of IL-16, IL-17F, SPP-1, CXCL-13, MSTN, IL-1A, IL-1B, IL-8, BMP-7, CSF-2, CSF-3, VEGF-A, OSM, LTA, TNF, TNFRSF11B, TNFSF11, CCL-11, CCL-20, CCL-24, CCL-3, CCL-8, CX3CL1 and CXCL-9 were considerably reduced in presence of spermatozoa. Panther pathway analysis discovered 3 pathways for upregulated genes including gonadotropin-releasing hormone receptor, TGF-beta and interleukin signaling pathways. Furthermore, 9 pathways were detected for down-regulated genes. Inflammation signaling pathway which is mediated by chemokine and cytokine contains the most number of genes. CONCLUSION This study indicates that sperm modifies expression of cytokines, chemokines and growth factors from OE-E6/E7. Moreover, altered genes expression are toward higher survival chance of the spermatozoa.
Collapse
Affiliation(s)
- Seyed Omidreza Mousavi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Roudabeh Mohammadi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Fatemehsadat Amjadi
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Science, Tehran, Iran
| | - Zahra Zandieh
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Science, Tehran, Iran
| | - Samaneh Aghajanpour
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Eslami
- Applied Biotechnology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Tahereh Madani
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
60
|
George AF, Jang KS, Nyegaard M, Neidleman J, Spitzer TL, Xie G, Chen JC, Herzig E, Laustsen A, Marques de Menezes EG, Houshdaran S, Pilcher CD, Norris PJ, Jakobsen MR, Greene WC, Giudice LC, Roan NR. Seminal plasma promotes decidualization of endometrial stromal fibroblasts in vitro from women with and without inflammatory disorders in a manner dependent on interleukin-11 signaling. Hum Reprod 2021; 35:617-640. [PMID: 32219408 DOI: 10.1093/humrep/deaa015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Do seminal plasma (SP) and its constituents affect the decidualization capacity and transcriptome of human primary endometrial stromal fibroblasts (eSFs)? SUMMARY ANSWER SP promotes decidualization of eSFs from women with and without inflammatory disorders (polycystic ovary syndrome (PCOS), endometriosis) in a manner that is not mediated through semen amyloids and that is associated with a potent transcriptional response, including the induction of interleukin (IL)-11, a cytokine important for SP-induced decidualization. WHAT IS KNOWN ALREADY Clinical studies have suggested that SP can promote implantation, and studies in vitro have demonstrated that SP can promote decidualization, a steroid hormone-driven program of eSF differentiation that is essential for embryo implantation and that is compromised in women with the inflammatory disorders PCOS and endometriosis. STUDY DESIGN, SIZE, DURATION This is a cross-sectional study involving samples treated with vehicle alone versus treatment with SP or SP constituents. SP was tested for the ability to promote decidualization in vitro in eSFs from women with or without PCOS or endometriosis (n = 9). The role of semen amyloids and fractionated SP in mediating this effect and in eliciting transcriptional changes in eSFs was then studied. Finally, the role of IL-11, a cytokine with a key role in implantation and decidualization, was assessed as a mediator of the SP-facilitated decidualization. PARTICIPANTS/MATERIALS, SETTING, METHODS eSFs and endometrial epithelial cells (eECs) were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. Assays were conducted to assess whether the treatment of eSFs with SP or SP constituents affects the rate and extent of decidualization in women with and without inflammatory disorders. To characterize the response of the endometrium to SP and SP constituents, RNA was isolated from treated eSFs or eECs and analyzed by RNA sequencing (RNAseq). Secreted factors in conditioned media from treated cells were analyzed by Luminex and ELISA. The role of IL-11 in SP-induced decidualization was assessed through Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-9-mediated knockout experiments in primary eSFs. MAIN RESULTS AND THE ROLE OF CHANCE SP promoted decidualization both in the absence and presence of steroid hormones (P < 0.05 versus vehicle) in a manner that required seminal proteins. Semen amyloids did not promote decidualization and induced weak transcriptomic and secretomic responses in eSFs. In contrast, fractionated SP enriched for seminal microvesicles (MVs) promoted decidualization. IL-11 was one of the most potently SP-induced genes in eSFs and was important for SP-facilitated decidualization. LARGE SCALE DATA RNAseq data were deposited in the Gene Expression Omnibus repository under series accession number GSE135640. LIMITATIONS, REASONS FOR CAUTION This study is limited to in vitro analyses. WIDER IMPLICATIONS OF THE FINDINGS Our results support the notion that SP promotes decidualization, including within eSFs from women with inflammatory disorders. Despite the general ability of amyloids to induce cytokines known to be important for implantation, semen amyloids poorly signaled to eSFs and did not promote their decidualization. In contrast, fractionated SP enriched for MVs promoted decidualization and induced a transcriptional response in eSFs that overlapped with that of SP. Our results suggest that SP constituents, possibly those associated with MVs, can promote decidualization of eSFs in an IL-11-dependent manner in preparation for implantation. STUDY FUNDING/COMPETING INTEREST(S) This project was supported by NIH (R21AI116252, R21AI122821 and R01AI127219) to N.R.R. and (P50HD055764) to L.C.G. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Ashley F George
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | - Karen S Jang
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jason Neidleman
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | - Trimble L Spitzer
- Lt Col, USAF; Women's Health Clinic, Naval Medical Center, Portsmouth, VA, USA
| | - Guorui Xie
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | | | - Eytan Herzig
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | - Anders Laustsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Erika G Marques de Menezes
- Vitalant Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Sahar Houshdaran
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Christopher D Pilcher
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Warner C Greene
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, CA, USA
| | - Linda C Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Nadia R Roan
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| |
Collapse
|
61
|
Rodriguez-Martinez H, Martinez EA, Calvete JJ, Peña Vega FJ, Roca J. Seminal Plasma: Relevant for Fertility? Int J Mol Sci 2021; 22:ijms22094368. [PMID: 33922047 PMCID: PMC8122421 DOI: 10.3390/ijms22094368] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Seminal plasma (SP), the non-cellular component of semen, is a heterogeneous composite fluid built by secretions of the testis, the epididymis and the accessory sexual glands. Its composition, despite species-specific anatomical peculiarities, consistently contains inorganic ions, specific hormones, proteins and peptides, including cytokines and enzymes, cholesterol, DNA and RNA-the latter often protected within epididymis- or prostate-derived extracellular vesicles. It is beyond question that the SP participates in diverse aspects of sperm function pre-fertilization events. The SP also interacts with the various compartments of the tubular genital tract, triggering changes in gene function that prepares for an eventual successful pregnancy; thus, it ultimately modulates fertility. Despite these concepts, it is imperative to remember that SP-free spermatozoa (epididymal or washed ejaculated) are still fertile, so this review shall focus on the differences between the in vivo roles of the SP following semen deposition in the female and those regarding additions of SP on spermatozoa handled for artificial reproduction, including cryopreservation, from artificial insemination to in vitro fertilization. This review attempts, including our own results on model animal species, to critically summarize the current knowledge of the reproductive roles played by SP components, particularly in our own species, which is increasingly affected by infertility. The ultimate goal is to reconcile the delicate balance between the SP molecular concentration and their concerted effects after temporal exposure in vivo. We aim to appraise the functions of the SP components, their relevance as diagnostic biomarkers and their value as eventual additives to refine reproductive strategies, including biotechnologies, in livestock models and humans.
Collapse
Affiliation(s)
- Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
- Correspondence: ; Tel.: +46-132-869-25
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (E.A.M.); (J.R.)
| | - Juan J. Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, C.S.I.C., 46010 Valencia, Spain;
| | - Fernando J. Peña Vega
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, 10003 Caceres, Spain;
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (E.A.M.); (J.R.)
| |
Collapse
|
62
|
Cheloufi M, Kazhalawi A, Pinton A, Rahmati M, Chevrier L, Prat-ellenberg L, Michel AS, Dray G, Mekinian A, Kayem G, Lédée N. The Endometrial Immune Profiling May Positively Affect the Management of Recurrent Pregnancy Loss. Front Immunol 2021; 12:656701. [PMID: 33841443 PMCID: PMC8024694 DOI: 10.3389/fimmu.2021.656701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction The endometrial immune profiling is an innovative approach based on the analysis of the local immune reaction occurring in the endometrium at the time of the embryo implantation. By documenting the local immune activation during the period of uterine receptivity, we aim to detect and correct potential imbalances before and at the very beginning of placentation. The main objective of the study was to analyze in women with a history of repeated pregnancy loss (RPL) the association of personalized strategies based on immune dysregulations with live birth rates. The secondary objective was to highlight the main prognostic factors for live births. Methods This is an observational retrospective analysis of 104 patients with RPL, included between January 2012 and December 2019. Inclusion criteria included a spontaneous fertility with at least three miscarriages, an assessment including a three-dimension ultrasound scan, an endometrial biopsy for uterine immune profiling and a follow-up over at least 6 months with personalized care if indicated after the complete assessment. We defined as a success if the patients had a live birth after the suggested plan, as a failure if the patient either did not get pregnant or experienced a new miscarriage after the targeted therapies. Results Uterine immune profiling was the only exploration to be significantly associated with a higher live birth rate (LBR) if a dysregulation was identified and treated accordingly (55% vs 45%, p=0.01). On the contrary, an absence of local dysregulation (resulting in an apparently balanced immune environment) was associated with a higher risk of a new miscarriage, suggesting that the cause inducing RPL still needed to be identified. Independently of age and AMH level, dysregulated immune profile is significatively associated with 3 times higher LBR than a non-deregulated profile (OR=3.4 CI 95%1.27-9.84) or five times in case of an overactive profile treated by immunotherapy (OR=5 CI 95% 1.65-16.5). The usage of ART was significantly associated with lower LBR regardless of the presence of a subfertility factor (p=0.012). Personalization of medical care using natural cycle or simple hormonal stimulation is associated with a significantly higher LBR than personalization including ART treatments regardless of maternal age and AMH level (OR= 2.9 CI 95% 1.03-8.88). Conclusion Our study suggests that some endometrial immune profiles with targeted management of RPL are associated with a higher rate of LBR. ART may be negatively associated with LBR.
Collapse
Affiliation(s)
- Meryam Cheloufi
- Department of Obstetrics and Gynecology, Trousseau Hospital, APHP, Sorbonne Université, FHU PREMA, Paris, France
| | - Alaa Kazhalawi
- MatriceLAB Innove SARL, Pépinière Paris Santé Cochin, Paris, France
| | - Anne Pinton
- Department of Obstetrics and Gynecology, Trousseau Hospital, APHP, Sorbonne Université, FHU PREMA, Paris, France
| | | | - Lucie Chevrier
- MatriceLAB Innove SARL, Pépinière Paris Santé Cochin, Paris, France
| | - Laura Prat-ellenberg
- Centre d’Assistance Médical á la Procréation Bluets-Drouot, Hôpital Les Bluets, Paris, France
| | - Anne-Sophie Michel
- Department of Obstetrics and Gynecology, Trousseau Hospital, APHP, Sorbonne Université, FHU PREMA, Paris, France
- Centre d’Assistance Médical á la Procréation Bluets-Drouot, Hôpital Les Bluets, Paris, France
| | - Geraldine Dray
- Centre d’Assistance Médical á la Procréation Bluets-Drouot, Hôpital Les Bluets, Paris, France
| | - Arsène Mekinian
- Hôpital Saint-Antoine Groupe Hospitalier AP-HP, Sorbonne Université (Paris), Paris, France
| | - Gilles Kayem
- Department of Obstetrics and Gynecology, Trousseau Hospital, APHP, Sorbonne Université, FHU PREMA, Paris, France
| | - Nathalie Lédée
- MatriceLAB Innove SARL, Pépinière Paris Santé Cochin, Paris, France
- Centre d’Assistance Médical á la Procréation Bluets-Drouot, Hôpital Les Bluets, Paris, France
| |
Collapse
|
63
|
Omollo K, Lajoie J, Oyugi J, Wessels JM, Mwaengo D, Kimani J, Kaushic C, Fowke KR. Differential Elevation of Inflammation and CD4 + T Cell Activation in Kenyan Female Sex Workers and Non-Sex Workers Using Depot-Medroxyprogesterone Acetate. Front Immunol 2021; 11:598307. [PMID: 33717049 PMCID: PMC7949914 DOI: 10.3389/fimmu.2020.598307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
Background Depot Medroxyprogesterone (DMPA) is one of the most widely used contraceptives in Sub-Saharan Africa where HIV incidence is high. We explored the effect of DMPA on the activation of HIV cellular targets and inflammation as a possible mechanism of increased HIV risk with DMPA use. Since sex work is known to affect the immune system, this study aimed to understand the effect of DMPA on the immune system among sex workers and non-sex worker women. Methods Twenty-seven DMPA-using HIV seronegative female sex workers (FSW) and 30 DMPA-using HIV seronegative non-sex worker (SW) women were enrolled in the study. Twenty-four FSWs and 30 non-sex workers who were not using any hormonal contraception (no HC) were recruited as controls. Blood and cervico-vaginal samples were collected from all participants and assayed for T cell activation and proinflammatory cytokines. Results Among no HC users, sex workers had lower expression of CD38 and CD69 on blood-derived CD4+ T cells along with lower CD4+CCR5+ cells frequency in the endocervix. Plasma MCP-1, TNFα and IL-17 also had reduced expression in FSW not using HC. Non-sex workers using DMPA had elevated proportions of blood-derived CD4+CD38+, CD4+CD69+ and CD4+HLA-DR+ T cells relative to non-sex workers who were not taking any HC. DMPA-using non-sex workers also had an increased level of plasma interferon gamma (IFN-γ), monokine induced by interferon-γ (MIG) and sCD40L, alongside higher proportion of CD4+CD38+ and CD4+CD69+ T cells at the cervix compared to non-sex workers no-HC controls., Finally, non-sex workers and FSWs using DMPA had similar levels of genital and peripheral CD4+ T cell activation and inflammation. Conclusion DMPA increased inflammation and expression of activation markers on potential HIV target cells in non-sex workers. These data show that DMPA is a strong immune modulator and its use counteracts the decreased immune activation associated with sex work. These findings suggest that inflammation and increased HIV target cells in blood and at the genital tract may be mechanisms by which DMPA increases susceptibility to HIV.
Collapse
Affiliation(s)
- Kenneth Omollo
- Department Medical Microbiology, University of Nairobi, Nairobi, Kenya.,Partners for Health and Development in Africa, Nairobi, Kenya
| | - Julie Lajoie
- Department Medical Microbiology, University of Nairobi, Nairobi, Kenya.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Julius Oyugi
- Department Medical Microbiology, University of Nairobi, Nairobi, Kenya.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Jocelyn M Wessels
- McMaster Immunology Research Centre, Michael G. DeGroote Centre for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Dufton Mwaengo
- Department Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Joshua Kimani
- Department Medical Microbiology, University of Nairobi, Nairobi, Kenya.,Partners for Health and Development in Africa, Nairobi, Kenya
| | - Charu Kaushic
- McMaster Immunology Research Centre, Michael G. DeGroote Centre for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Keith R Fowke
- Department Medical Microbiology, University of Nairobi, Nairobi, Kenya.,Partners for Health and Development in Africa, Nairobi, Kenya.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,Department of Community Health Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
64
|
HIV susceptibility in women: The roles of genital inflammation, sexually transmitted infections and the genital microbiome. J Reprod Immunol 2021; 145:103291. [PMID: 33647576 DOI: 10.1016/j.jri.2021.103291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022]
Abstract
Given that heterosexual transmission of HIV across the genital mucosa is the most common route of infection in women, an in-depth understanding of the biological mechanisms associated with HIV risk in the female genital tract (FGT) is essential for effective control of the epidemic. Genital pro-inflammatory cytokines are well-described biological co-factors to HIV risk. Increased levels of pro-inflammatory cytokines in the FGT have been associated with a 3-fold higher-risk of acquiring HIV, presumably through involvement in barrier compromise and the recruitment of highly activated HIV target cells to the site of initial viral infection and replication. Sexually transmitted infections (STIs) and bacterial vaginosis (BV) are suggested possible contributors to genital inflammation in the FGT, and this, coupled with the relationship between genital inflammation and HIV risk, underscores the importance of effective treatment of STI and BV in the promotion of women's health. In most low- and middle-income countries, STIs are treated syndromically, a practice providing rapid treatment without identifying the infection source. However, this approach has been associated with over-diagnosis and the overuse of drugs. Further, because many women with STIs are asymptomatic, syndromic management also fails to treat a vast proportion of infected women. Although several studies have explored the role of STIs and the vaginal microbiome on genital inflammation and HIV risk, the impact of STI and BV management on genital inflammation remains poorly understood. This review aimed to collate the evidence on how BV and STI management efforts affect genital inflammation and the genital microbiome in women.
Collapse
|
65
|
Intrauterine Infusion of TGF-β1 Prior to Insemination, Alike Seminal Plasma, Influences Endometrial Cytokine Responses but Does Not Impact the Timing of the Progression of Pre-Implantation Pig Embryo Development. BIOLOGY 2021; 10:biology10020159. [PMID: 33671276 PMCID: PMC7923199 DOI: 10.3390/biology10020159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Seminal plasma (SP) in the female genital tract induces changes that affect multiple reproductive processes. One of the active components in SP is the transforming growth factor β1 (TGF-β1), which has major roles in embryo development and pregnancy. Embryo transfer (ET) technology is welcomed by the pig industry provided that embryo quality at embryo collection as well as the fertility and prolificacy of the recipients after the ET is increased. This study evaluated different intrauterine infusion treatments at estrus (40 mL of SP, TGF-β1 cytokine in the extender, or the extender alone (control)) by mimicking an ET scenario in so-called "donor" (inseminated) and "recipient" (uninseminated) sows. On day 6 (day 0-onset of estrus), all "donors" were laparotomized to determine their pregnancy status (presence and developmental stage of the embryos). In addition, endometrial explants were collected from pregnant "donors" and cyclic "recipients," incubated for 24 h, and analyzed for cytokine production. SP infusions (unlike TGF-β1 infusions) positively influenced the developmental stage of day 6 embryos. Infusion treatments differentially influenced the endometrial cytokine production, mainly in donors. We concluded that SP infusions prior to AI not only impacted the porcine preimplantation embryo development but also influenced the endometrial cytokine production six days after treatment, both in donors and recipients.
Collapse
|
66
|
Chambers M, Rees A, Cronin JG, Nair M, Jones N, Thornton CA. Macrophage Plasticity in Reproduction and Environmental Influences on Their Function. Front Immunol 2021; 11:607328. [PMID: 33519817 PMCID: PMC7840613 DOI: 10.3389/fimmu.2020.607328] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages are key components of the innate immune system and exhibit extensive plasticity and heterogeneity. They play a significant role in the non-pregnant cycling uterus and throughout gestation they contribute to various processes underpinning reproductive success including implantation, placentation and parturition. Macrophages are also present in breast milk and impart immunomodulatory benefits to the infant. For a healthy pregnancy, the maternal immune system must adapt to prevent fetal rejection and support development of the semi-allogenic fetus without compromising host defense. These functions are dependent on macrophage polarization which is governed by the local tissue microenvironmental milieu. Disruption of this microenvironment, possibly by environmental factors of infectious and non-infectious origin, can affect macrophage phenotype and function and is linked to adverse obstetric outcomes, e.g. spontaneous miscarriage and preterm birth. Determining environmental influences on cellular and molecular mechanisms that control macrophage polarization at the maternal-fetal interface and the role of this in pregnancy complications could support approaches to alleviating adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Megan Chambers
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - April Rees
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - James G Cronin
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Manju Nair
- Maternity and Child Health, Singleton Hospital, Swansea Bay University Health Board, Swansea, United Kingdom
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Catherine A Thornton
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| |
Collapse
|
67
|
Schjenken JE, Green ES, Overduin TS, Mah CY, Russell DL, Robertson SA. Endocrine Disruptor Compounds-A Cause of Impaired Immune Tolerance Driving Inflammatory Disorders of Pregnancy? Front Endocrinol (Lausanne) 2021; 12:607539. [PMID: 33912131 PMCID: PMC8072457 DOI: 10.3389/fendo.2021.607539] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Endocrine disrupting compounds (EDCs) are prevalent and ubiquitous in our environment and have substantial potential to compromise human and animal health. Amongst the chronic health conditions associated with EDC exposure, dysregulation of reproductive function in both females and males is prominent. Human epidemiological studies demonstrate links between EDC exposure and infertility, as well as gestational disorders including miscarriage, fetal growth restriction, preeclampsia, and preterm birth. Animal experiments show EDCs administered during gestation, or to either parent prior to conception, can interfere with gamete quality, embryo implantation, and placental and fetal development, with consequences for offspring viability and health. It has been presumed that EDCs operate principally through disrupting hormone-regulated events in reproduction and fetal development, but EDC effects on maternal immune receptivity to pregnancy are also implicated. EDCs can modulate both the innate and adaptive arms of the immune system, to alter inflammatory responses, and interfere with generation of regulatory T (Treg) cells that are critical for pregnancy tolerance. Effects of EDCs on immune cells are complex and likely exerted by both steroid hormone-dependent and hormone-independent pathways. Thus, to better understand how EDCs impact reproduction and pregnancy, it is imperative to consider how immune-mediated mechanisms are affected by EDCs. This review will describe evidence that several EDCs modify elements of the immune response relevant to pregnancy, and will discuss the potential for EDCs to disrupt immune tolerance required for robust placentation and optimal fetal development.
Collapse
Affiliation(s)
- John E. Schjenken
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Newcastle, NSW, Australia
| | - Ella S. Green
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Tenuis S. Overduin
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Chui Yan Mah
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Darryl L. Russell
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Sarah A. Robertson
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Sarah A. Robertson,
| |
Collapse
|
68
|
Jewanraj J, Ngcapu S, Osman F, Mtshali A, Singh R, Mansoor LE, Abdool Karim SS, Abdool Karim Q, Passmore JAS, Liebenberg LJP. The Impact of Semen Exposure on the Immune and Microbial Environments of the Female Genital Tract. FRONTIERS IN REPRODUCTIVE HEALTH 2020; 2:566559. [PMID: 36304709 PMCID: PMC9580648 DOI: 10.3389/frph.2020.566559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/16/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Semen induces an immune response at the female genital tract (FGT) to promote conception. It is also the primary vector for HIV transmission to women during condomless sex. Since genital inflammation and immune activation increase HIV susceptibility in women, semen-induced alterations at the FGT may have implications for HIV risk. Here we investigated the impact of semen exposure, as measured by self-reported condom use and Y-chromosome DNA (YcDNA) detection, on biomarkers of female genital inflammation associated with HIV acquisition. Methods: Stored genital specimens were collected biannually (mean 5 visits) from 153 HIV-negative women participating in the CAPRISA 008 tenofovir gel open-label extension trial. YcDNA was detected in cervicovaginal lavage (CVL) pellets by RT-PCR and served as a biomarker of semen exposure within 15 days of genital sampling. Protein concentrations were measured in CVL supernatants by multiplexed ELISA, and the frequency of activated CD4+CCR5+ HIV targets was assessed on cytobrush-derived specimens by flow cytometry. Common sexually transmitted infections (STIs) and bacterial vaginosis (BV)-associated bacteria were measured by PCR. Multivariable linear mixed models were used to assess the relationship between YcDNA detection and biomarkers of inflammation over time. Results: YcDNA was detected at least once in 69% (106/153) of women during the trial (median 2, range 1-5 visits), and was associated with marital status, cohabitation, the frequency of vaginal sex, and Nugent Score. YcDNA detection but not self-reported condom use was associated with elevated concentrations of several cytokines: IL-12p70, IL-10, IFN-γ, IL-13, IP-10, MIG, IL-7, PDGF-BB, SCF, VEGF, β-NGF, and biomarkers of epithelial barrier integrity: MMP-2 and TIMP-4; and with reduced concentrations of IL-18 and MIF. YcDNA detection was not associated with alterations in immune cell frequencies but was related to increased detection of P. bivia (OR = 1.970; CI 1.309-2.965; P = 0.001) at the FGT. Conclusion: YcDNA detection but not self-reported condom use was associated with alterations in cervicovaginal cytokines, BV-associated bacteria, and matrix metalloproteinases, and may have implications for HIV susceptibility in women. This study highlights the discrepancies related to self-reported condom use and the need for routine screening for biomarkers of semen exposure in studies of mucosal immunity to HIV and other STIs.
Collapse
Affiliation(s)
- Janine Jewanraj
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Sinaye Ngcapu
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Farzana Osman
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Andile Mtshali
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ravesh Singh
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology, National Health Laboratory Services, KwaZulu-Natal Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Leila E. Mansoor
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Salim S. Abdool Karim
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Epidemiology, Columbia University, New York, NY, United States
| | - Quarraisha Abdool Karim
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Epidemiology, Columbia University, New York, NY, United States
| | - Jo-Ann S. Passmore
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Johannesburg, South Africa
| | - Lenine J. P. Liebenberg
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
69
|
Lédée N, Petitbarat M, Prat-Ellenberg L, Dray G, Cassuto GN, Chevrier L, Kazhalawi A, Vezmar K, Chaouat G. The uterine immune profile: A method for individualizing the management of women who have failed to implant an embryo after IVF/ICSI. J Reprod Immunol 2020; 142:103207. [DOI: 10.1016/j.jri.2020.103207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/06/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022]
|
70
|
Elevation of cervical C-X-C motif chemokine ligand 10 levels is associated with HIV-1 acquisition in pregnant and postpartum women. AIDS 2020; 34:1725-1733. [PMID: 32701583 DOI: 10.1097/qad.0000000000002613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate the relationship between cervical cytokine/chemokine concentrations and HIV-1 acquisition in peripartum Kenyan women. DESIGN Nested case-control study. METHODS Women participating in a prospective study of peripartum HIV acquisition in Kenya (the Mama Salama Study), were tested for HIV-1 at 1-3 month intervals during pregnancy and through 9 months postpartum. Cases positive for HIV-1 RNA during follow-up (N = 14), were matched 3 : 1 with HIV-negative controls (N = 42) based on age, marital status, partner HIV-1 status, transactional sex, and timing of cervical swab collection. Concentrations of five cytokines (IL-1β, IL-6, IL-10, IFNγ, and TNFα) and four chemokines (IL-8, C-X-C motif chemokine ligand 10 (CXCL10), macrophage inflammatory protein-1 α, and macrophage inflammatory protein-1 β) were measured from cervical swabs collected at the visit prior to HIV-1 diagnosis (cases) or matched gestational/postpartum time (controls). Cytokine/chemokine concentrations were compared between cases and controls using Wilcoxon rank-sum tests. Principal component analysis was used to create a summary score for closely correlated cytokines/chemokines. Associations with HIV-1 acquisition were analyzed using conditional logistic regression. Path analysis was used to evaluate hypothesized relationships between CXCL10, vaginal washing, Nugent score, and HIV-1 acquisition. RESULTS Conditional logistic regression analysis demonstrated an association between increased concentrations of CXCL10 and HIV-1 acquisition (odds ratio = 1.74, 95% confidence interval 1.04, 2.93; P = 0.034). Path analysis confirmed a positive independent association between higher concentrations of CXCL10 and HIV-1 acquisition (path coefficient = 0.37, 95% confidence interval 0.15, 0.59; P < 0.001). CONCLUSION HIV-1 acquisition was associated with increased cervical concentrations of CXCL10 in pregnant and postpartum women.
Collapse
|
71
|
Tamessar CT, Trigg NA, Nixon B, Skerrett-Byrne DA, Sharkey DJ, Robertson SA, Bromfield EG, Schjenken JE. Roles of male reproductive tract extracellular vesicles in reproduction. Am J Reprod Immunol 2020; 85:e13338. [PMID: 32885533 DOI: 10.1111/aji.13338] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are secreted cell-derived membrane structures present in all organisms across animal, bacterial, and plant phyla. These vesicles play important roles in cell-cell communication in many processes integral to health and disease. Recent studies demonstrate that EVs and their cargo have influential and conserved roles in male reproduction. While EVs have been isolated from virtually all specialized tissues comprising the male reproductive tract, they are best characterized in the epididymis (epididymosomes) and seminal fluid (seminal fluid extracellular vesicles or prostasomes). Broadly speaking, EVs promote reproductive success through supporting sperm development and function, as well as influencing the physiology of female reproductive tract cells after mating. In this review, we present current knowledge on the composition and function of male reproductive tract EV populations in both normal physiology and pathology, and argue that their functions identify them as critical regulators of fertility and fecundity.
Collapse
Affiliation(s)
- Cottrell T Tamessar
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - Natalie A Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - David J Sharkey
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Sarah A Robertson
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia.,The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
72
|
Batra V, Dagar K, Nayak S, Kumaresan A, Kumar R, Datta TK. A Higher Abundance of O-Linked Glycans Confers a Selective Advantage to High Fertile Buffalo Spermatozoa for Immune-Evasion From Neutrophils. Front Immunol 2020; 11:1928. [PMID: 32983120 PMCID: PMC7483552 DOI: 10.3389/fimmu.2020.01928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022] Open
Abstract
The glycans on the plasma membrane of cells manifest as the glycocalyx, which serves as an information-rich frontier that is directly in contact with its immediate milieu. The glycoconjugates (GCs) that adorn most of the mammalian cells are also abundant in gametes, especially the spermatozoa where they perform unique reproduction-specific functions e.g., inter-cellular recognition and communication. This study aimed to implicate the sperm glycosylation pattern as one of the factors responsible for low conception rates observed in buffalo bulls. We hypothesized that a differential abundance of glycans exists on the spermatozoa from bulls of contrasting fertilizing abilities endowing them with differential immune evasion abilities. Therefore, we investigated the role of glycan abundance in the phagocytosis and NETosis rates exhibited by female neutrophils (PMNs) upon exposure to such spermatozoa. Our results indicated that the spermatozoa from high fertile (HF) bulls possessed a higher abundance of O-linked glycans e.g., galactosyl (β-1,3)N-acetylgalactosamine and N-linked glycans like [GlcNAc]1-3, N-acetylglucosamine than the low fertile (LF) bull spermatozoa. This differential glycomic endowment appeared to affect the spermiophagy and NETosis rates exhibited by the female neutrophil cells (PMNs). The mean percentage of phagocytizing PMNs was significantly different (P < 0.0001) for HF and LF bulls, 28.44 and 59.59%, respectively. Furthermore, any introduced perturbations in the inherent sperm glycan arrangements promoted phagocytosis by PMNs. For example, after in vitro capacitation the mean phagocytosis rate (MPR) rate in spermatozoa from HF bulls significantly increased to 66.49% (P < 0.01). Likewise, the MPR increased to 70.63% (p < 0.01) after O-glycosidase & α2-3,6,8,9 Neuraminidase A treatment of spermatozoa from HF bulls. Moreover, the percentage of PMNs forming neutrophil extracellular traps (NETs) was significantly higher, 41.47% when exposed to spermatozoa from LF bulls vis-à-vis the spermatozoa from HF bulls, 15.46% (P < 0.0001). This is a pioneer report specifically demonstrating the role of O-linked glycans in the immune responses mounted against spermatozoa. Nevertheless, further studies are warranted to provide the measures to diagnose the sub-fertile phenotype thus preventing the losses incurred by incorrect selection of morphologically normal sperm in the AI/IVF reproduction techniques.
Collapse
Affiliation(s)
- Vipul Batra
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Komal Dagar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Samiksha Nayak
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Theriogenelogy Laboratory, SRS of National Dairy Research Institute, Bengaluru, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Tirtha K Datta
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
73
|
Morgan HL, Eid N, Khoshkerdar A, Watkins AJ. Defining the male contribution to embryo quality and offspring health in assisted reproduction in farm animals. Anim Reprod 2020; 17:e20200018. [PMID: 33029211 PMCID: PMC7534566 DOI: 10.1590/1984-3143-ar2020-0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Assisted reproductive technologies such as artificial insemination have delivered significant benefits for farm animal reproduction. However, as with humans, assisted reproduction in livestock requires the manipulation of the gametes and preimplantation embryo. The significance of this ‘periconception’ period is that it represents the transition from parental genome regulation to that of the newly formed embryo. Environmental perturbations during these early developmental stages can result in persistent changes in embryonic gene expression, fetal organ development and ultimately the long-term health of the offspring. While associations between maternal health and offspring wellbeing are well-defined, the significance of paternal health for the quality of his semen and the post-conception development of his offspring have largely been overlooked. Human and animal model studies have identified sperm epigenetic status (DNA methylation levels, histone modifications and RNA profiles) and seminal plasma-mediated maternal uterine immunological, inflammatory and vascular responses as the two central mechanisms capable of linking paternal health and post-fertilisation development. However, there is a significant knowledge gap about the father’s contribution to the long-term health of his offspring, especially with regard to farm animals. Such insights are essential to ensure the safety of widely used assisted reproductive practices and to gain better understanding of the role of paternal health for the well-being of his offspring. In this article, we will outline the impact of male health on semen quality (both sperm and seminal plasma), reproductive fitness and post-fertilisation offspring development and explore the mechanisms underlying the paternal programming of offspring health in farm animals.
Collapse
Affiliation(s)
- Hannah Louise Morgan
- Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Nader Eid
- Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Afsaneh Khoshkerdar
- Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Adam John Watkins
- Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
74
|
Marques de Menezes EG, Jang K, George AF, Nyegaard M, Neidleman J, Inglis HC, Danesh A, Deng X, Afshari A, Kim YH, Billaud JN, Marson K, Pilcher CD, Pillai SK, Norris PJ, Roan NR. Seminal Plasma-Derived Extracellular-Vesicle Fractions from HIV-Infected Men Exhibit Unique MicroRNA Signatures and Induce a Proinflammatory Response in Cells Isolated from the Female Reproductive Tract. J Virol 2020; 94:e00525-20. [PMID: 32434889 PMCID: PMC7394899 DOI: 10.1128/jvi.00525-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/15/2020] [Indexed: 11/20/2022] Open
Abstract
The continuing spread of HIV/AIDS is predominantly fueled by sexual exposure to HIV-contaminated semen. Seminal plasma (SP), the liquid portion of semen, harbors a variety of factors that may favor HIV transmission by facilitating viral entry into host cells, eliciting the production of proinflammatory cytokines, and enhancing the translocation of HIV across the genital epithelium. One important and abundant class of factors in SP is extracellular vesicles (EVs), which, in general, are important intercellular signal transducers. Although numerous studies have characterized blood plasma-derived EVs from both uninfected and HIV-infected individuals, little is known about the properties of EVs from the semen of HIV-infected individuals. We report here that fractionated SP enriched for EVs from HIV-infected men induces potent transcriptional responses in epithelial and stromal cells that interface with the luminal contents of the female reproductive tract. Semen EV fractions from acutely infected individuals induced a more proinflammatory signature than those from uninfected individuals. This was not associated with any observable differences in the surface phenotypes of the vesicles. However, microRNA (miRNA) expression profiling analysis revealed that EV fractions from infected individuals exhibit a broader and more diverse profile than those from uninfected individuals. Taken together, our data suggest that SP EVs from HIV-infected individuals exhibit unique miRNA signatures and exert potent proinflammatory transcriptional changes in cells of the female reproductive tract, which may facilitate HIV transmission.IMPORTANCE Seminal plasma (SP), the major vehicle for HIV, can modulate HIV transmission risk through a variety of mechanisms. Extracellular vesicles (EVs) are extremely abundant in semen, and because they play a key role in intercellular communication pathways and immune regulation, they may impact the likelihood of HIV transmission. However, little is known about the properties and signaling effects of SP-derived EVs in the context of HIV transmission. Here, we conduct a phenotypic, transcriptomic, and functional characterization of SP and SP-derived EVs from uninfected and HIV-infected men. We find that both SP and its associated EVs elicit potent proinflammatory transcriptional responses in cells that line the genital tract. EVs from HIV-infected men exhibit a more diverse repertoire of miRNAs than EVs from uninfected men. Our findings suggest that EVs from the semen of HIV-infected men may significantly impact the likelihood of HIV transmission through multiple mechanisms.
Collapse
Affiliation(s)
- Erika G Marques de Menezes
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Karen Jang
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, California, USA
| | - Ashley F George
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, California, USA
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jason Neidleman
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, California, USA
| | | | - Ali Danesh
- Vitalant Research Institute, San Francisco, California, USA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, California, USA
| | | | - Young H Kim
- Agilent Technologies, Inc., Santa Clara, California, USA
| | | | - Kara Marson
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Christopher D Pilcher
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Satish K Pillai
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
| | - Nadia R Roan
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, California, USA
| |
Collapse
|
75
|
Recuero S, Sánchez JM, Mateo-Otero Y, Bagés-Arnal S, McDonald M, Behura SK, Spencer TE, Kenny DA, Yeste M, Lonergan P, Fernandez-Fuertes B. Mating to Intact, but Not Vasectomized, Males Elicits Changes in the Endometrial Transcriptome: Insights From the Bovine Model. Front Cell Dev Biol 2020; 8:547. [PMID: 32766237 PMCID: PMC7381276 DOI: 10.3389/fcell.2020.00547] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
An appropriate female reproductive environment is essential for pregnancy success. In several species, including mice, pigs and horses, seminal plasma (SP) components have been shown to modulate this environment, leading to increased embryo viability and implantation. Due to the characteristics of mating in the aforementioned species, SP comes into direct contact with the uterus. However, it is questionable whether any SP reaches the uterus in species that ejaculate inside the vagina, such as humans and cattle. Hence, we hypothesized that sperm, perhaps acting as a vehicle for SP factors, play a more important role in the modulation of the maternal uterine environment in these species. In addition, changes elicited by SP and/or sperm may originate in the vagina and propagate to more distal regions of the female reproductive tract. To test these hypotheses, a bovine model in which heifers were mated to intact or vasectomized bulls or were left unmated was used. RNA-sequencing of endometrial samples collected 24 h after mating with a vasectomized bull did not reveal any differentially expressed genes (DEGs) in comparison with control samples. However, the endometrium of heifers mated with intact bulls exhibited 24 DEGs when compared to heifers mated with vasectomized bulls, and 22 DEGs when compared to unmated control heifers. The expression of a set of cytokines (IL6, IL1A, IL8, and TNFA) and candidate genes identified in the endometrial RNA-sequencing (PLA2G10, CX3CL1, C4BPA, PRSS2, BLA-DQB, and CEBPD) were assessed by RT-qPCR in the vagina and oviductal ampulla. No differences in expression of these genes were observed between treatments in any region. However, mating to both intact and vasectomized bulls induced an increase in IL1A and TNFA expression in the vagina compared to the oviduct. These data indicate that sperm, but not secretions from the accessory glands alone, induce modest changes in endometrial gene expression after natural mating in cattle. However, it is not clear whether this effect is triggered by inherent sperm proteins or SP proteins bound to sperm surface at the time of ejaculation.
Collapse
Affiliation(s)
- Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Sandra Bagés-Arnal
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - David A Kenny
- Animal and Bioscience Research Centre, Teagasc Grange, Meath, Ireland
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Beatriz Fernandez-Fuertes
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| |
Collapse
|
76
|
MicroRNA miR-155 is required for expansion of regulatory T cells to mediate robust pregnancy tolerance in mice. Mucosal Immunol 2020; 13:609-625. [PMID: 31988469 DOI: 10.1038/s41385-020-0255-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/11/2019] [Accepted: 01/08/2020] [Indexed: 02/04/2023]
Abstract
The immune-regulatory microRNA miR-155 is reduced in recurrent miscarriage, suggesting that miR-155 contributes to immune tolerance in pregnancy. Here we show miR-155 is induced in the uterine mucosa and draining lymph nodes (dLN) during the female immune response to male seminal fluid alloantigens. Mice with null mutation in miR-155 (miR-155-/-) exhibited a reduced CD4+ T cell response after mating, with a disproportionate loss of CD25+FOXP3+ Treg cells. miR-155 deficiency impaired expansion of both peripheral and thymic Treg cells, distinguished by neuropilin-1 (NRP1), and fewer Treg cells expressed Ki67 proliferation marker and suppressive function marker CTLA4. Altered Treg phenotype distribution in miR-155-/- mice was confirmed by t-distributed neighbor embedding (tSNE) analysis. Fewer dendritic cells (DCs) and macrophages trafficked to the dLN of miR-155-/- mice, associated with lower CCR7 on DCs, and reduced uterine Ccl19 expression, implicating compromised antigen presentation in the stunted Treg cell response. miR-155-/- mice exhibited elevated susceptibility to inflammation-induced fetal loss and fetal growth restriction compared with miR-155+/+ controls, but outcomes were restored by transfer of wild-type Tregs. Thus miR-155 is a key regulator of immune adaptation to pregnancy and is necessary for sufficient Tregs to achieve robust pregnancy tolerance and protect against fetal loss.
Collapse
|
77
|
Fair S, Meade KG, Reynaud K, Druart X, de Graaf SP. The biological mechanisms regulating sperm selection by the ovine cervix. Reproduction 2020; 158:R1-R13. [PMID: 30921769 DOI: 10.1530/rep-18-0595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/28/2019] [Indexed: 01/11/2023]
Abstract
In species where semen is deposited in the vagina, the cervix has the unique function of facilitating progress of spermatozoa towards the site of fertilisation while also preventing the ascending influx of pathogens from the vagina. For the majority of species, advances in assisted reproduction techniques facilitate the bypassing of the cervix and therefore its effect on the transit of processed spermatozoa has been largely overlooked. The exception is in sheep, as it is currently not possible to traverse the ovine cervix with an inseminating catheter due to its complex anatomy, and semen must be deposited at the external cervical os. This results in unacceptably low pregnancy rates when frozen-thawed or liquid stored (>24 h) semen is inseminated. The objective of this review is to discuss the biological mechanisms which regulate cervical sperm selection. We assess the effects of endogenous and exogenous hormones on cervical mucus composition and discuss how increased mucus production and flow during oestrus stimulates sperm rheotaxis along the crypts and folds of the cervix. Emerging results shedding light on the sperm-cervical mucus interaction as well as the dialogue between spermatozoa and the innate immune system are outlined. Finally, ewe breed differences in cervical function and the impact of semen processing on the success of fertilisation, as well as the most fruitful avenues of further investigation in this area are proposed.
Collapse
Affiliation(s)
- S Fair
- Laboratory of Animal Reproduction, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - K G Meade
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co Meath, Ireland
| | - K Reynaud
- UMR PRC, INRA 85, CNRS 7247, Université de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
| | - X Druart
- UMR PRC, INRA 85, CNRS 7247, Université de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
| | - S P de Graaf
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, New South Wales, Australia
| |
Collapse
|
78
|
Krop J, Heidt S, Claas FHJ, Eikmans M. Regulatory T Cells in Pregnancy: It Is Not All About FoxP3. Front Immunol 2020; 11:1182. [PMID: 32655556 PMCID: PMC7324675 DOI: 10.3389/fimmu.2020.01182] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
In pregnancy, the semi-allogeneic fetus needs to be tolerated by the mother's immune system. Regulatory T cells (Tregs) play a prominent role in this process. Novel technologies allow for in-depth phenotyping of previously unidentified immune cell subsets, which has resulted in the appreciation of a vast heterogeneity of Treg subsets. Similar to other immunological events, there appears to be great diversity within the Treg population during pregnancy, both at the maternal-fetal interface as in the peripheral blood. Different Treg subsets have distinct phenotypes and various ways of functioning. Furthermore, the frequency of individual Treg subsets varies throughout gestation and is altered in aberrant pregnancies. This suggests that distinct Treg subsets play a role at different time points of gestation and that their role in maintaining healthy pregnancy is crucial, as reflected for instance by their reduced frequency in women with recurrent pregnancy loss. Since pregnancy is essential for the existence of mankind, multiple immune regulatory mechanisms and cell types are likely at play to assure successful pregnancy. Therefore, it is important to understand the complete microenvironment of the decidua, preferably in the context of the whole immune cell repertoire of the pregnant woman. So far, most studies have focused on a single mechanism or cell type, which often is the FoxP3 positive regulatory T cell when studying immune regulation. In this review, we instead focus on the contribution of FoxP3 negative Treg subsets to the decidual microenvironment and their possible role in pregnancy complications. Their phenotype, function, and effect in pregnancy are discussed.
Collapse
Affiliation(s)
- Juliette Krop
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Michael Eikmans
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
79
|
Seminal Plasma Modulates miRNA Expression by Sow Genital Tract Lining Explants. Biomolecules 2020; 10:biom10060933. [PMID: 32575588 PMCID: PMC7356309 DOI: 10.3390/biom10060933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
The seminal plasma (SP) modulates the female reproductive immune environment after mating, and microRNAs (miRNAs) could participate in the process. Considering that the boar ejaculate is built by fractions differing in SP-composition, this study evaluated whether exposure of mucosal explants of the sow internal genital tract (uterus, utero-tubal junction and isthmus) to different SP-fractions changed the profile of explant-secreted miRNAs. Mucosal explants retrieved from oestrus sows (n = 3) were in vitro exposed to: Medium 199 (M199, Control) or M199 supplemented (1:40 v/v) with SP from the sperm-rich fraction (SRF), the post-SRF or the entire recomposed ejaculate, for 16 h. After, the explants were cultured in M199 for 24 h to finally collect the media for miRNA analyses using GeneChip miRNA 4.0 Array (Affymetrix). Fifteen differentially expressed (False Discovery Rate (FDR) < 0.05 and Fold-change ≥ 2) miRNAs (11 down- versus 4 up-regulated) were identified (the most in the media of uterine explants incubated with SP from post-SRF). Bioinformatics analysis identified that predicted target genes of dysregulated miRNAs, mainly miR-34b, miR-205, miR-4776-3p and miR-574-5p, were involved in functions and pathways related to immune response. In conclusion, SP is able to elicit changes in the miRNAs profile secreted by female genital tract, ultimately depending SP-composition.
Collapse
|
80
|
Lédée N, Petitbarat M, Prat-Ellenberg L, Dray G, Cassuto GN, Chevrier L, Kazhalawi A, Vezmar K, Chaouat G. Endometrial Immune Profiling: A Method to Design Personalized Care in Assisted Reproductive Medicine. Front Immunol 2020; 11:1032. [PMID: 32582163 PMCID: PMC7287127 DOI: 10.3389/fimmu.2020.01032] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/29/2020] [Indexed: 11/20/2022] Open
Abstract
Objective: To assess the efficiency of the endometrial immune profiling as a method to design personalized care to enhance the pregnancy rate in a large heterogeneous infertile population. We hypothesized that some reproductive failures could be induced by a uterine immune dysregulation which could be identified and corrected with a targeted plan. Design: Prospective cohort study. Setting: Multicentric study. Intervention(s) and Main outcome measure(s): One thousand and seven hundred thirty-eight infertile patients had an immune profiling on a timed endometrial biopsy between 2012 and 2018. This test documented the absence or the presence of an endometrial immune dysregulation and identified its type. In case of dysregulation, a targeted personalized plan was suggested to the treating clinician aiming to supply the anomaly. One year after the test, the clinician was contacted to provide the outcome of the subsequent embryo transfer with the applied suggested plan. Result(s): After testing, 16.5% of the patients showed no endometrial immune dysregulation, 28% had a local immune under-activation, 45% had a local immune over-activation, and 10.5% had a mixed endometrial immune profile. In patients with a history of repeated implantation failures (RIF) or recurrent miscarriages (RM), the pregnancy rate was significantly higher if an endometrial dysregulation was found and the personalized plan applied, compared to the patients with an apparent balanced immune profile (respectively 37.7 and 56% vs. 26.9 and 24%, p < 0.001). In contrast, in good prognosis IVF (in vitro fertilization) subgroup and patients using donor eggs, this difference was not significant between dysregulated and balanced subgroups, but higher pregnancy rates were observed in absence of dysregulation. For patients with immune over-activation, pregnancy rates were significantly higher for patients who had a test of sensitivity, regarding the type of immunotherapy introduced, when compared to the ones who did not (51 vs. 39.9%, p = 0.012). Conclusion(s): Local endometrial immunity appears to be a new and important parameter able to influence the prognosis of pregnancy. Targeted medical care in case of local immune dysregulation resulted in significantly higher pregnancy rates in RIF and RM patients.
Collapse
Affiliation(s)
- Nathalie Lédée
- MatriceLAB Innove, Pépinière Paris Santé Cochin, Hôpital Cochin, Paris, France
- Centre d'Assistance Médicale à la Procréation, Hôpital des Bluets, Paris, France
| | - Marie Petitbarat
- MatriceLAB Innove, Pépinière Paris Santé Cochin, Hôpital Cochin, Paris, France
| | - Laura Prat-Ellenberg
- Centre d'Assistance Médicale à la Procréation, Hôpital des Bluets, Paris, France
| | - Géraldine Dray
- Centre d'Assistance Médicale à la Procréation, Hôpital des Bluets, Paris, France
| | - Guy N. Cassuto
- Centre d'Assistance Médicale à la Procréation, Hôpital des Bluets, Paris, France
- Laboratoire Drouot, Paris, France
| | - Lucie Chevrier
- MatriceLAB Innove, Pépinière Paris Santé Cochin, Hôpital Cochin, Paris, France
| | - Alaa Kazhalawi
- MatriceLAB Innove, Pépinière Paris Santé Cochin, Hôpital Cochin, Paris, France
| | - Katia Vezmar
- MatriceLAB Innove, Pépinière Paris Santé Cochin, Hôpital Cochin, Paris, France
| | | |
Collapse
|
81
|
Noda T, Fujihara Y, Matsumura T, Oura S, Kobayashi S, Ikawa M. Seminal vesicle secretory protein 7, PATE4, is not required for sperm function but for copulatory plug formation to ensure fecundity†. Biol Reprod 2020; 100:1035-1045. [PMID: 30452524 PMCID: PMC6483057 DOI: 10.1093/biolre/ioy247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/29/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
Seminal vesicle secretions (SVSs), together with spermatozoa, are ejaculated into the female reproductive tract. SVS7, also known as PATE4, is one of the major SVS proteins found in the seminal vesicle, copulatory plug, and uterine fluid after copulation. Here, we generated Pate4 knockout (-/-) mice and examined the detailed function of PATE4 on male fecundity. The morphology and weight of Pate4-/- seminal vesicles were comparable to the control. Although Pate4-/- cauda epididymal spermatozoa have no overt defects during in vitro fertilization, Pate4-/- males were subfertile. We found that the copulatory plugs were smaller in the vagina of females mated with Pate4-/- males, leading to semen leakage and a decreased sperm count in the uterus. When the females mated with Pate4-/- males were immediately re-caged with Pate4+/+ males, the females had subsequent productive matings. When the cauda epididymal spermatozoa were injected into the uterus and plugged artificially [artificial insemination (AI)], Pate4-/- spermatozoa could efficiently fertilize eggs as compared to wild-type spermatozoa. We finally examined the effect of SVSs on AI, and observed no difference in fertilization rates between Pate4+/+ and Pate4-/- SVSs. In conclusion, PATE4 is a novel factor in forming the copulatory plug that inhibits sequential matings and maintains spermatozoa in the uterus to ensure male fecundity.
Collapse
Affiliation(s)
- Taichi Noda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takafumi Matsumura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Seiya Oura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Sumire Kobayashi
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
82
|
Ibrahim LA, Rizo JA, Fontes PLP, Lamb GC, Bromfield JJ. Seminal plasma modulates expression of endometrial inflammatory meditators in the bovine†. Biol Reprod 2020; 100:660-671. [PMID: 30329018 DOI: 10.1093/biolre/ioy226] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/15/2018] [Accepted: 10/15/2018] [Indexed: 12/27/2022] Open
Abstract
Seminal plasma has conventionally been viewed as a transport and survival medium for mammalian sperm; however, its role now extends beyond this process to actively targeting female tissues. Studies in rodents, swine, and humans demonstrate that seminal plasma induces molecular and cellular changes within the endometrium or cervix following insemination. Seminal-plasma-induced alterations to the maternal environment have been theorized to facilitate embryo development, modulate maternal immunity toward the conceptus, and potentially improve pregnancy success. It is unknown if bovine seminal plasma modulates the uterine environment following insemination in the cow, where routine use of artificial insemination reduces maternal exposure to seminal plasma. We hypothesize that seminal plasma modulates the expression of inflammatory mediators in the endometrium, altering the maternal environment of early pregnancy. In vitro, seminal plasma altered intact endometrial explant expression of CSF2, IL1B, IL6, IL17A, TGFB1, IFNE, PTGS2, and AKR1C4. Furthermore, endometrial epithelial cell CSF2, CXCL8, TGFB1, PTGS2, and AKR1C4 expression were increased after seminal plasma exposure, while endometrial stromal cell CSF2, IL1B, IL6, CXCL8, IL17A, TGFB1, PTGS2, and AKR1C4 expression were increased following seminal plasma exposure. Endometrial expression of IL1B was increased in the cow 24 h after uterine infusion of seminal plasma, while other evaluated inflammatory mediators remained unchanged. These data indicate that seminal plasma may induce changes in the bovine endometrium in a temporal manner. Understanding the role of seminal plasma in modulating the maternal environment may aid in improving pregnancy success in cattle.
Collapse
Affiliation(s)
- Laila A Ibrahim
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Jason A Rizo
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Pedro L P Fontes
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - G Cliff Lamb
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - John J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
83
|
Kanannejad Z, Jahromi BN, Gharesi-Fard B. Seminal plasma and CD4 + T-cell cytokine profiles in the in vitro fertilization success. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:26. [PMID: 32419783 PMCID: PMC7212999 DOI: 10.4103/jrms.jrms_238_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/25/2019] [Accepted: 12/14/2019] [Indexed: 11/25/2022]
Abstract
Background: Abnormal female immune response is one of the potential causes of unexplained infertility (UI). Seminal plasma (SP) is an important regulator of female immune responses during pregnancy. This study investigated a SP effect on the expression of CD4+ T-cell-related cytokines in a group of UI woman candidates for in vitro fertilization (IVF) and healthy fertile women. Materials and Methods: This was a semi-experimental study that performed on 20 UI couples (ten unsuccessful and ten successful IVF outcomes) and 10 fertile couples as the healthy group. CD4+ T-cells were separated from peripheral blood mononuclear cells of women by magnetic-activated cell sorting technique and incubated with (stimulated condition) or without (unstimulated condition) SP of their husbands. After incubation, real-time polymerase chain reaction method was used to investigate interleukin (IL)-23, IL-17, IL-4, IL-10, transforming growth factor (TGF)-β, and interferon (IFN)-γ gene expression. Mann–Whitney U-test, Kruskal–Wallis test, and Wilcoxon signed-rank test were used for statistical analysis. Results: Baseline TCD4+ mRNA levels of IL-23 (P = 0.03) and TGF-β (P = 0.01) were different between healthy and infertile groups. However, IL-17, IL-4, IFN-γ, and IL-10 were expressed similarly regardless of fertility status. Comparing mRNA expression before and after SP exposure, our results have shown that relative expression of IL-23 significantly increased in successful (P = 0.04) and unsuccessful IVF groups (P = 0.01), whereas IL-10 expression increased only in the IVF failure group (P = 0.01). Conclusion: SP can make a positive effect on IVF outcome through alteration in CD4 + T-cell-related cytokines expression, especially IL-10 and IL-23.
Collapse
Affiliation(s)
- Zahra Kanannejad
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahia Namavar Jahromi
- Department of Gynecology and Obstetrics, Shiraz University of Medical Sciences, Shiraz, Iran.,Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrouz Gharesi-Fard
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran.,Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
84
|
Mateo-Otero Y, Sánchez JM, Recuero S, Bagés-Arnal S, McDonald M, Kenny DA, Yeste M, Lonergan P, Fernandez-Fuertes B. Effect of Exposure to Seminal Plasma Through Natural Mating in Cattle on Conceptus Length and Gene Expression. Front Cell Dev Biol 2020; 8:341. [PMID: 32478076 PMCID: PMC7235327 DOI: 10.3389/fcell.2020.00341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence suggests that paternal factors have an impact on offspring development. These studies have been mainly carried out in mice, where seminal plasma (SP) has been shown to regulate endometrial gene expression and impact embryo development and subsequent offspring health. In cattle, infusion of SP into the uterus also induces changes in endometrial gene expression, however, evidence for an effect of SP on early embryo development is lacking. In addition, during natural mating, the bull ejaculates in the vagina; hence, it is not clear whether any SP reaches the uterus in this species. Thus, the aim of the present study was to determine whether SP exposure leads to improved early embryo survival and developmental rates in cattle. To this end, Day 7 in vitro produced blastocysts were transferred to heifers (12-15 per heifer) previously mated to vasectomized bulls (n = 13 heifers) or left unmated (n = 12 heifers; control). At Day 14, heifers were slaughtered, and conceptuses were recovered to assess size, morphology and expression of candidate genes involved in different developmental pathways. Additionally, CL volume at Day 7, and weight and volume of CL at Day 14 were recorded. No effect of SP on CL volume and weight not on conceptus recovery rate was observed. However, filamentous conceptuses recovered from SP-exposed heifers were longer in comparison to the control group and differed in expression of CALM1, CITED1, DLD, HNRNPDL, PTGS2, and TGFB3. In conclusion, data indicate that female exposure to SP during natural mating can affect conceptus development in cattle. This is probably achieved through modulation of the female reproductive environment at the time of mating.
Collapse
Affiliation(s)
- Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Sandra Bagés-Arnal
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Ireland
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Beatriz Fernandez-Fuertes
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| |
Collapse
|
85
|
Zigo M, Maňásková-Postlerová P, Zuidema D, Kerns K, Jonáková V, Tůmová L, Bubeníčková F, Sutovsky P. Porcine model for the study of sperm capacitation, fertilization and male fertility. Cell Tissue Res 2020; 380:237-262. [PMID: 32140927 DOI: 10.1007/s00441-020-03181-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Mammalian fertilization remains a poorly understood event with the vast majority of studies done in the mouse model. The purpose of this review is to revise the current knowledge about semen deposition, sperm transport, sperm capacitation, gamete interactions and early embryonic development with a focus on the porcine model as a relevant, alternative model organism to humans. The review provides a thorough overview of post-ejaculation events inside the sow's reproductive tract including comparisons with humans and implications for human fertilization and assisted reproductive therapy (ART). Porcine methodology for sperm handling, preservation, in vitro capacitation, oocyte in vitro maturation, in vitro fertilization and intra-cytoplasmic sperm injection that are routinely used in pig research laboratories can be successfully translated into ART to treat human infertility. Last, but not least, new knowledge about mitochondrial inheritance in the pig can provide an insight into human mitochondrial diseases and new knowledge on polyspermy defense mechanisms could contribute to the development of new male contraceptives.
Collapse
Affiliation(s)
- Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Pavla Maňásková-Postlerová
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czech Republic.,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Dalen Zuidema
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Věra Jonáková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czech Republic
| | - Lucie Tůmová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Filipa Bubeníčková
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.,Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
86
|
Daly J, Smith H, McGrice HA, Kind KL, van Wettere WH. Towards Improving the Outcomes of Assisted Reproductive Technologies of Cattle and Sheep, with Particular Focus on Recipient Management. Animals (Basel) 2020; 10:E293. [PMID: 32069818 PMCID: PMC7070504 DOI: 10.3390/ani10020293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
The Australian agricultural industry contributes AUD 47 billion to the Australian economy, and Australia is the world's largest exporter of sheep meat and the third largest for beef. Within Australia, sheep meat consumption continues to rise, with beef consumption being amongst the highest in the world; therefore, efficient strategies to increase herd/flock size are integral to the success of these industries. Reproductive management is crucial to increasing the efficiency of Australian breeding programs. The use of assisted reproductive technologies (ARTs) has the potential to increase efficiency significantly. The implementation of multiple ovulation and embryo transfer (MOET) and juvenile in vitro fertilization and embryo transfer (JIVET) in combination with genomic selection and natural mating and AI is the most efficient way to increase genetic gain, and thus increase reproductive efficiency within the Australian livestock industries. However, ARTs are costly, and high variation, particularly between embryo transfer recipients in their ability to maintain pregnancy, is a significant constraint to the widespread commercial adoption of ARTs. The use of a phenotypic marker for the selection of recipients, as well as the better management of recipient animals, may be an efficient and cost-effective means to increase the productivity of the Australian livestock industry.
Collapse
Affiliation(s)
- Jamee Daly
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia; (H.S.); (H.A.M.); (K.L.K.)
| | | | | | | | | |
Collapse
|
87
|
Le Tortorec A, Matusali G, Mahé D, Aubry F, Mazaud-Guittot S, Houzet L, Dejucq-Rainsford N. From Ancient to Emerging Infections: The Odyssey of Viruses in the Male Genital Tract. Physiol Rev 2020; 100:1349-1414. [PMID: 32031468 DOI: 10.1152/physrev.00021.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.
Collapse
Affiliation(s)
- Anna Le Tortorec
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Dominique Mahé
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Florence Aubry
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Séverine Mazaud-Guittot
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Laurent Houzet
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| |
Collapse
|
88
|
Bodden C, Hannan AJ, Reichelt AC. Diet-Induced Modification of the Sperm Epigenome Programs Metabolism and Behavior. Trends Endocrinol Metab 2020; 31:131-149. [PMID: 31744784 DOI: 10.1016/j.tem.2019.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
Globally, obesity has reached epidemic proportions. The rapidly increasing numbers of overweight people can be traced back to overconsumption of energy-dense, poor-quality foods as well as physical inactivity. This development has far-reaching and costly implications. Not only is obesity associated with serious physiological and psychological complications, but mounting evidence also indicates a ripple effect through generations via epigenetic changes. Parental obesity could induce intergenerational and transgenerational changes in metabolic and brain function of the offspring. Most research has focused on maternal epigenetic and gestational effects; however, paternal contributions are likely to be substantial. We focus on the latest advances in understanding the mechanisms of epigenetic inheritance of obesity-evoked metabolic and neurobiological changes through the paternal germline that predict wide-ranging consequences for the following generation(s).
Collapse
Affiliation(s)
- Carina Bodden
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, 3010 VIC, Australia.
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, 3010 VIC, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, 3010 VIC, Australia.
| | - Amy C Reichelt
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, 3010 VIC, Australia; BrainsCAN, Western Interdisciplinary Research Building, Western University, London, ON, Canada; Robarts Research Institute, Western University, London, N6A 3K7 ON, Canada
| |
Collapse
|
89
|
Abstract
Seminal fluid is often assumed to have just one function in mammalian reproduction, delivering sperm to fertilize oocytes. But seminal fluid also transmits signaling agents that interact with female reproductive tissues to facilitate conception and .pregnancy. Upon seminal fluid contact, female tissues initiate a controlled inflammatory response that affects several aspects of reproductive function to ultimately maximize the chances of a male producing healthy offspring. This effect is best characterized in mice, where the female response involves several steps. Initially, seminal fluid factors cause leukocytes to infiltrate the female reproductive tract, and to selectively target and eliminate excess sperm. Other signals stimulate ovulation, induce an altered transcriptional program in female tract tissues that modulates embryo developmental programming, and initiate immune adaptations to promote receptivity to implantation and placental development. A key result is expansion of the pool of regulatory T cells that assist implantation by suppressing inflammation, mediating tolerance to male transplantation antigens, and promoting uterine vascular adaptation and placental development. Principal signaling agents in seminal fluid include prostaglandins and transforming growth factor-β. The balance of male signals affects the nature of the female response, providing a mechanism of ‟cryptic female choiceˮ that influences female reproductive investment. Male-female seminal fluid signaling is evident in all mammalian species investigated including human, and effects of seminal fluid in invertebrates indicate evolutionarily conserved mechanisms. Understanding the female response to seminal fluid will shed new light on infertility and pregnancy disorders and is critical to defining how events at conception influence offspring health.
Collapse
Affiliation(s)
- John E Schjenken
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
90
|
Morgan HL, Watkins AJ. The influence of seminal plasma on offspring development and health. Semin Cell Dev Biol 2020; 97:131-137. [DOI: 10.1016/j.semcdb.2019.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
|
91
|
Craenmehr MHC, van der Keur C, Anholts JDH, Kapsenberg JM, van der Westerlaken LA, van Kooten C, Claas FHJ, Heidt S, Eikmans M. Effect of seminal plasma on dendritic cell differentiation in vitro depends on the serum source in the culture medium. J Reprod Immunol 2019; 137:103076. [PMID: 31981817 DOI: 10.1016/j.jri.2019.103076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 11/18/2022]
Abstract
Dendritic cells (DCs) are key in shaping immune responses and are recruited to the human cervix after coitus by seminal plasma (SP). SP has been shown to skew the differentiation of monocyte-derived DCs towards an anti-inflammatory profile when cultured in medium containing fetal calf serum (FCS). Here, we confirmed that SP skewed DCs cultured in fetal bovine serum (FBS) towards a tolerogenic profile. To create a setting more similar to the in vivo situations in humans, we tested the immune regulatory effect of SP on DCs in cell cultures containing human serum (HS). SP-DCs cultured in HS did show increased CD14 and decreased CD1a, indicating an inhibited maturation phenotype. Gene expression of TGF-β and IL-10 and IL-10 protein expression were elevated in LPS-activated SP-DCs, whereas IL-12p70 protein levels were decreased compared to LPS-activated control DCs. In contrast to FBS culture conditions, in the presence of HS co-cultures of SP-DCs with allogeneic peripheral blood mononuclear cells (PBMCs) did not result in decreased T cell proliferation and inflammatory cytokine production. Thus, under HS culture conditions SP can skew the differentiation of monocyte-derived DCs phenotypically towards alternatively activated DCs, but this immune regulatory phenotype is functionally less pronounced compared to SP-treated DCs cultured in FBS containing medium. These findings highlight the importance of the source of the serum that is used in SP treated cell cultures in vitro.
Collapse
Affiliation(s)
- M H C Craenmehr
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands.
| | - C van der Keur
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands.
| | - J D H Anholts
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands.
| | - J M Kapsenberg
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands.
| | | | - C van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands.
| | - F H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands.
| | - S Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands.
| | - M Eikmans
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
92
|
Torrens C. The sins of the fathers: why we should care about paternal diet around conception. J Physiol 2019; 598:615-616. [PMID: 31867720 DOI: 10.1113/jp279036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Christopher Torrens
- Human Development & Physiology, Faculty of Medicine, Southampton, SO16 6YD, UK.,Institute of Life Sciences, University of Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
93
|
Kumar A, Sridharn TB, Rao KA. Role of Seminal Plasma Proteins in Effective Zygote Formation- A Success Road to Pregnancy. Protein Pept Lett 2019; 26:238-250. [PMID: 30734670 DOI: 10.2174/0929866526666190208112152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 10/31/2018] [Accepted: 01/15/2019] [Indexed: 02/08/2023]
Abstract
Seminal plasma proteins contributed by secretions of accessory glands plays a copious role in fertilization. Their role is overlooked for decades and even now, as Artificial Reproduction Techniques (ART) excludes the plasma components in the procedures. Recent evidences suggest the importance of these proteins starting from imparting fertility status to men, fertilization and till successful implantation of the conceptus in the female uterus. Seminal plasma is rich in diverse proteins, but a major part of the seminal plasma is constituted by very lesser number of proteins. This makes isolation and further research on non abundant protein a tough task. With the advent of much advanced proteomic techniques and bio informatics tools, studying the protein component of seminal plasma has become easy and promising. This review is focused on the role of seminal plasma proteins on various walks of fertilization process and thus, the possible exploitation of seminal plasma proteins for understanding the etiology of male related infertility issues. In addition, a compilation of seminal plasma proteins and their functions has been done.
Collapse
Affiliation(s)
- Archana Kumar
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - T B Sridharn
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - Kamini A Rao
- BACCMILANN Fertility Center Bangalore, Karnataka, India
| |
Collapse
|
94
|
Turkeltaub PC, Lockey RF, Holmes K, Friedmann E. Asthma and/or hay fever as predictors of fertility/impaired fecundity in U.S. women: National Survey of Family Growth. Sci Rep 2019; 9:18711. [PMID: 31822754 PMCID: PMC6904488 DOI: 10.1038/s41598-019-55259-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/26/2019] [Indexed: 01/25/2023] Open
Abstract
This study addresses whether asthma and/or hay fever predict fertility and impaired fecundity. The lifetime number of pregnancies (fertility) and spontaneous pregnancy losses (impaired fecundity) in 10,847 women representative of the U.S. population 15 to 44 years of age with histories of diagnosed asthma and/or hay fever are analyzed in the 1995 National Survey of Family Growth using multivariable Poisson regression with multiple covariates and adjustments for complex sampling. Smokers have significantly increased fertility compared to nonsmokers. Smokers with asthma only have significantly increased fertility compared to other smokers. Higher fertility is associated with impaired fecundity (ectopic pregnancy, miscarriage, stillbirth). Women with asthma (with and without hay fever) have significantly higher pregnancy losses than women without asthma. With increasing number of pregnancies, smokers have increased pregnancy losses compared to nonsmokers. Smokers, especially those with asthma only, have increased fertility and require special attention as to their family planning needs, reproductive health, and smoking cessation. Women with asthma, regardless of number of pregnancies, and smokers with higher numbers of pregnancies have high risk pregnancies that require optimal asthma/medical management prenatally and throughout pregnancy. Whether a proinflammatory asthma endotype underlies both the increased fertility and impaired fecundity associated with age and smoking is discussed.
Collapse
Affiliation(s)
| | - Richard F Lockey
- Division of Allergy & Immunology, University of South Florida College of Medicine, 13000 Bruce B. Downs Blvd, Tampa, Florida, 33613, USA
| | - Katie Holmes
- Organizational Systems and Adult Health, University of Maryland School of Nursing, 655 W. Lombard St., Baltimore, Maryland, 21201, USA
- The Hilltop Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland, 21250, USA
| | - Erika Friedmann
- Organizational Systems and Adult Health, University of Maryland School of Nursing, 655 W. Lombard St., Baltimore, Maryland, 21201, USA
| |
Collapse
|
95
|
Nilsson LL, Hornstrup MB, Perin TL, Lindhard A, Funck T, Bjerrum PJ, Mule HT, Scheike T, Nielsen HS, Hviid TVF. Soluble HLA-G and TGF-β in couples attending assisted reproduction - A possible role of TGF-β isoforms in semen? J Reprod Immunol 2019; 137:102857. [PMID: 31837543 DOI: 10.1016/j.jri.2019.102857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/17/2019] [Accepted: 11/26/2019] [Indexed: 12/01/2022]
Abstract
Soluble isoforms of the non-classical Human Leukocyte Antigen (HLA)-G as well as Transforming Growth Factor (TGF)-β is expressed in seminal plasma possibly influencing the pregnancy potential. We wanted to examine the association of seminal plasma sHLA-G, TGF-β1, TGF-β2 and TGFβ3 with pregnancy success in a cohort of 127 couples and 4 single women attending fertility treatment with the use of assisted reproduction technologies (ART). Soluble HLA-G, TGF-β1, TGF-β2 and TGF-β3 in seminal plasma did not fluctuate significantly over time. We did not find any impact of seminal plasma sHLA-G, TGF-β1, TGF-β2 and TGF-β3 on time-to-pregnancy measured as number of treatment cycles. There was a significant association between concentrations of seminal plasma sHLA-G and HLA-G variations in the 3'untranslated region (3'UTR) of the HLA-G gene, supporting and extending previous findings. Furthermore, by comparing seminal plasma concentrations of sHLA-G, TGF-β1, TGF-β2 and TGF-β3 in male subjects with reduced semen quality, male subjects with normal semen quality, and sperm donors, we found that TGF-β2 was significantly lower, and TGF-β3 was significantly higher, in seminal plasma from sperm donors. These findings suggest that TGF-β isoforms may influence semen quality and fertility.
Collapse
Affiliation(s)
- Line Lynge Nilsson
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), Dept. of Clinical Biochemistry, The ReproHealth Research Consortium ZUH, Zealand University Hospital, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Micha B Hornstrup
- The Fertility Clinic, Department of Obstetrics and Gynecology, The ReproHealth Research Consortium ZUH, Zealand University Hospital, Denmark
| | - Trine L Perin
- The Fertility Clinic, Department of Obstetrics and Gynecology, The ReproHealth Research Consortium ZUH, Zealand University Hospital, Denmark
| | - Anette Lindhard
- The Fertility Clinic, Department of Obstetrics and Gynecology, The ReproHealth Research Consortium ZUH, Zealand University Hospital, Denmark
| | - Tina Funck
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), Dept. of Clinical Biochemistry, The ReproHealth Research Consortium ZUH, Zealand University Hospital, Denmark
| | - Poul J Bjerrum
- Department of Clinical Biochemistry, Holbæk Hospital, Region Zealand, Denmark
| | | | - Thomas Scheike
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Denmark
| | - Henriette Svarre Nielsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; The Fertility Clinic, Rigshospitalet, Denmark
| | - Thomas Vauvert F Hviid
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), Dept. of Clinical Biochemistry, The ReproHealth Research Consortium ZUH, Zealand University Hospital, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
96
|
Fernandez-Fuertes B, Sánchez JM, Bagés-Arnal S, McDonald M, Yeste M, Lonergan P. Species-specific and collection method-dependent differences in endometrial susceptibility to seminal plasma-induced RNA degradation. Sci Rep 2019; 9:15072. [PMID: 31636362 PMCID: PMC6803643 DOI: 10.1038/s41598-019-51413-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
This study aimed to determine the effect of bull seminal plasma (SP) and sperm on endometrial function. Bovine endometrial explants were incubated with: ejaculated sperm with or without SP, epididymal sperm, or SP alone. Neither ejaculated nor epididymal sperm induced differential expression of IL1A, IL1B, IL6, IL8, PTGES2, TNFA, and LIF. Interestingly, SP had a detrimental effect on endometrial RNA integrity. Addition of an RNase inactivation reagent to SP blocked this effect, evidencing a role for a SP-RNase. Because bulls deposit the ejaculate in the vagina, we hypothesized that the bovine endometrium is more sensitive to SP-RNase than vaginal and cervical tissues (which come into contact with SP during mating), or to endometrium from intrauterine ejaculators (such as the horse). In addition, due to differences in SP-RNase abundance depending on SP collection method (i.e., with an artificial vagina, AV, or by electroejaculation, EE), this effect was also tested. Bull SP, collected by AV, degrades RNA of mare endometrium, and bovine vagina, cervix and endometrium. However, stallion SP or bull SP collected by EE did not elicit this effect. Thus, results do not support a role for SP in modulating endometrial function to establish pregnancy in cattle.
Collapse
Affiliation(s)
- Beatriz Fernandez-Fuertes
- Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.
| | - José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Sandra Bagés-Arnal
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Marc Yeste
- Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
97
|
Vojtech L, Zhang M, Davé V, Levy C, Hughes SM, Wang R, Calienes F, Prlic M, Nance E, Hladik F. Extracellular vesicles in human semen modulate antigen-presenting cell function and decrease downstream antiviral T cell responses. PLoS One 2019; 14:e0223901. [PMID: 31622420 PMCID: PMC6797208 DOI: 10.1371/journal.pone.0223901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
Human semen contains trillions of extracellular vesicles (SEV) similar in size to sexually transmitted viruses and loaded with potentially bioactive miRNAs, proteins and lipids. SEV were shown to inhibit HIV and Zika virus infectivity, but whether SEV are able also to affect subsequent immune responses is unknown. We found that SEV efficiently bound to and entered antigen-presenting cells (APC) and thus we set out to further dissect the impact of SEV on APC function and the impact on downstream T cell responses. In an APC–T cell co-culture system, SEV exposure to APC alone markedly reduced antigen-specific cytokine production, degranulation and cytotoxicity by antigen-specific memory CD8+ T cells. In contrast, inhibition of CD4+ T cell responses required both APC and T cell exposure to SEV. Surprisingly, SEV did not alter MHC or co-stimulatory receptor expression on APCs, but caused APCs to upregulate indoleamine 2,3 deoxygenase, an enzyme known to indirectly inhibit T cells. Thus, SEV reduce the ability of APCs to activate T cells. We propose here that these immune-inhibitory properties of SEV may be intended to prevent immune responses against semen-derived antigens, but can be hi-jacked by genitally acquired viral infections to compromise adaptive cellular immunity.
Collapse
Affiliation(s)
- Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (LV); (FH)
| | - Mengying Zhang
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington, United States of America
| | - Veronica Davé
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Claire Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Sean M. Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Ruofan Wang
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Fernanda Calienes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth Nance
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington, United States of America
- Department of Chemical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- * E-mail: (LV); (FH)
| |
Collapse
|
98
|
Morgan HL, Paganopoulou P, Akhtar S, Urquhart N, Philomin R, Dickinson Y, Watkins AJ. Paternal diet impairs F1 and F2 offspring vascular function through sperm and seminal plasma specific mechanisms in mice. J Physiol 2019; 598:699-715. [PMID: 31617219 DOI: 10.1113/jp278270] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS A low protein diet had minimal effects on paternal cardiovascular function or renin-angiotensin system activity. Paternal low protein diet modified F1 neonatal and adult offspring renin-angiotensin system activity and cardiovascular function in a sperm and/or seminal plasma specific manner. Paternal low protein diet modified F1 male offspring testicular expression of central epigenetic regulators. Significant changes in F2 neonatal offspring growth and tissue angiotensin-converting enzyme activity were programmed by paternal low protein diet in a sperm and/or seminal plasma specific manner. ABSTRACT Although the impact of maternal diet on adult offspring health is well characterized, the role that a father's diet has on his offspring's health remains poorly defined. We establish the significance of a sup-optimal paternal low protein diet for offspring vascular homeostasis and define the sperm and seminal plasma specific programming effects on cardiovascular health. Male C57BL6 mice were fed either a control normal protein diet (NPD; 18% protein) or an isocaloric low protein diet (LPD; 9% protein) for a minimum of 7 weeks. Using artificial insemination, in combination with vasectomized male mating, we generated offspring derived from either NPD or LPD sperm (devoid of seminal plasma) but in the presence of NPD or LPD seminal plasma (devoid of sperm). We observed that either LPD sperm or seminal fluid at conception impaired adult offspring vascular function in response to both vasoconstrictors and dilators. Underlying these changes in vascular function were significant changes in serum, lung and kidney angiotensin-converting enzyme (ACE) activity, established in F1 offspring from 3 weeks of age, maintained into adulthood and present also within juvenile F2 offspring. Furthermore, we observed differential expression of multiple central renin-angiotensin system regulators in adult offspring kidneys. Finally, paternal diet modified the expression profiles of central epigenetic regulators of DNA methylation, histone modifications and RNA methylation in adult F1 male testes. These novel data reveal the impact of sub-optimal paternal nutrition on offspring cardiovascular well-being, programming offspring cardiovascular function through both sperm and seminal plasma specific mechanisms over successive generations.
Collapse
Affiliation(s)
- Hannah L Morgan
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK
| | - Panaigota Paganopoulou
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK
| | - Sofia Akhtar
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Natalie Urquhart
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Ranmini Philomin
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Yasmin Dickinson
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Adam J Watkins
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK.,School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
99
|
Martin JW, Chen JC, Neidleman J, Tatsumi K, Hu J, Giudice LC, Greene WC, Roan NR. Potent and rapid activation of tropomyosin-receptor kinase A in endometrial stromal fibroblasts by seminal plasma. Biol Reprod 2019. [PMID: 29518187 DOI: 10.1093/biolre/ioy056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Seminal plasma (SP), the liquid fraction of semen, is not mandatory for conception, but clinical studies suggest that SP improves implantation rates. Prior in vitro studies examining the effects of SP on the endometrium, the site of implantation, surprisingly revealed that SP induces transcriptional profiles associated with neurogenesis. We investigated the presence and activity of neurogenesis pathways in the endometrium, focusing on TrkA, one of the canonical receptors associated with neurotrophic signaling. We demonstrate that TrkA is expressed in the endometrium. To determine if SP activates TrkA signaling, we isolated the two most abundant endometrial cell types-endometrial epithelial cells (eEC) and endometrial stromal fibroblasts (eSF)-and examined TrkA activity in these cells after SP exposure. While SP only moderately activated TrkA in eEC, it potently and rapidly activated TrkA in eSF. This activation occurred in both non-decidualized and decidualized eSF. Blocking this pathway resulted in dysregulation of SP-induced cytokine production by eSF. Surprisingly, while the canonical TrkA agonist nerve growth factor was detected in SP, TrkA activation was principally induced by a 30-100-kDa protein whose identity remains to be established. Our results show that TrkA signaling is highly active in eSF and is rapidly induced by SP.
Collapse
Affiliation(s)
- Jeremy W Martin
- Department of Urology, UCSF, San Francisco, California, USA.,Gladstone Institute of Virology and Immunology, UCSF, San Francisco, California, USA
| | - Joseph C Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences, UCSF, San Francisco, California, USA
| | - Jason Neidleman
- Department of Urology, UCSF, San Francisco, California, USA.,Gladstone Institute of Virology and Immunology, UCSF, San Francisco, California, USA
| | - Keiji Tatsumi
- Department of Obstetrics, Gynecology and Reproductive Sciences, UCSF, San Francisco, California, USA.,Department of Gynecology and Obstetrics, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - James Hu
- Gladstone Institute of Virology and Immunology, UCSF, San Francisco, California, USA
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, UCSF, San Francisco, California, USA
| | - Warner C Greene
- Gladstone Institute of Virology and Immunology, UCSF, San Francisco, California, USA.,Department of Medicine, Microbiology and Immunology, UCSF, San Francisco, California, USA
| | - Nadia R Roan
- Department of Urology, UCSF, San Francisco, California, USA.,Gladstone Institute of Virology and Immunology, UCSF, San Francisco, California, USA
| |
Collapse
|
100
|
Sharkey DJ, Glynn DJ, Schjenken JE, Tremellen KP, Robertson SA. Interferon-gamma inhibits seminal plasma induction of colony-stimulating factor 2 in mouse and human reproductive tract epithelial cells. Biol Reprod 2019; 99:514-526. [PMID: 29596569 DOI: 10.1093/biolre/ioy071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/26/2018] [Indexed: 12/26/2022] Open
Abstract
Seminal fluid interacts with the female reproductive tract to initiate a permissive immune response that facilitates embryo implantation and pregnancy success. The immune-regulatory cytokine interferon-γ (IFNG), which can be elevated in seminal plasma, is associated with reduced fertility. Here, we investigated how IFNG influences the female immune response to seminal fluid. In human Ect1 cervical epithelial cells, IFNG added at physiologically relevant concentrations substantially impaired seminal plasma-induced synthesis of key cytokines colony-stimulating factor 2 (CSF2) and interleukin-6 (IL6). Seminal fluid-induced CSF2 synthesis was also suppressed in the uterus of mice in vivo, when IFNG was delivered transcervically 12 h after mating. Transforming growth factor B1 (TGFB1) is the major seminal fluid signaling factor which elicits CSF2 induction, and IFNG exhibited potent dose-dependent suppression of CSF2 synthesis induced by TGFB1 in murine uterine epithelial cells in vitro. Similarly, IFNG suppressed TGFB1-mediated CSF2 induction in Ect1 cells and human primary cervical epithelial cells; however, IL6 regulation by IFNG was independent of TGFB1. Quantitative PCR confirmed that CSF2 regulation by IFNG in Ect1 cells occurs at the gene transcription level, secondary to IFNG suppression of TGFBR2 encoding TGFB receptor 2. Conversely, TGFB1 suppressed IFNG receptor 1 and 2 genes IFNGR1 and IFNGR2. These data identify IFNG as a potent inhibitor of the TGFB-mediated seminal fluid interaction with relevant reproductive tract epithelia in mice and human. These findings raise the prospect that IFNG in the male partner's seminal fluid impairs immune adaptation for pregnancy following coitus in women.
Collapse
Affiliation(s)
- David J Sharkey
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Danielle J Glynn
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - John E Schjenken
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kelton P Tremellen
- Repromed Pty Ltd, Dulwich, South Australia, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, South Australia, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|