51
|
Tampe D, Hakroush S, Tampe B. Dissecting signalling pathways associated with intrarenal synthesis of complement components in lupus nephritis. RMD Open 2022; 8:rmdopen-2022-002517. [PMID: 35906025 PMCID: PMC9345095 DOI: 10.1136/rmdopen-2022-002517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Lupus nephritis is one of the most common and serious complications of systemic lupus erythematosus, attributed to increased morbidity and mortality. The in situ deposition of intrarenal immune complexes promote the accumulation of inflammatory cells and cause kidney injury in lupus nephritis. Among potential sources of intrarenal complement deposits, the concept of intrarenal complement synthesis has been described more than three decades ago in experimental lupus nephritis. By using transcriptome datasets, we here identified accelerated intrarenal synthesis of distinct classical and alternative complement pathway components, most associated with impaired kidney function. Contrasting to this, no such induction of intrarenal complement synthesis was observed in disease controls, further supporting relevance of intrarenal complement synthesis especially in human lupus nephritis. Gene set enrichment identified that glomerular complement synthesis predominantly associated with interferon signalling and signalling by interleukins in human lupus nephritis, whereas tubulointerstitial complement synthesis with aberrant T-cell receptor signalling. Because the pathomechanistic involvement of complement system activation contributed to recent advances in targeted therapy in lupus nephritis, this study provides additional insights into signalling pathways associated with intrarenal synthesis of complement components in lupus nephritis that might be also affected by targeted therapy of the complement system.
Collapse
Affiliation(s)
- Desiree Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Samy Hakroush
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
52
|
Xia M, Liu D, Liu H, Peng L, Yang D, Tang C, Chen G, Liu Y, Liu H. Identification of Hub Genes and Therapeutic Agents for IgA Nephropathy Through Bioinformatics Analysis and Experimental Validation. Front Med (Lausanne) 2022; 9:881322. [PMID: 35836957 PMCID: PMC9273898 DOI: 10.3389/fmed.2022.881322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
Background IgA nephropathy (IgAN) is the most common primary glomerular disease and the leading cause of the end-stage renal disease in the world. The pathogenesis of IgAN has not been well elucidated, and yet treatment is limited. High-throughput microarray has been applied for elucidating molecular biomarkers and potential mechanisms involved in IgAN. This study aimed to identify the potential key genes and therapeutics associated with IgAN using integrative bioinformatics and transcriptome-based computational drug repurposing approach. Methods Three datasets of mRNA expression profile were obtained from the gene expression omnibus database and differentially expressed genes (DEGs) between IgAN glomeruli and normal tissue were identified by integrated analysis. Gene ontology and pathway enrichment analyses of the DEGs were performed by R software, and protein-protein interaction networks were constructed using the STRING online search tool. External dataset and immunohistochemical assessment of kidney biopsy specimens were used for hub gene validation. Potential compounds for IgAN therapy were obtained by Connectivity Map (CMap) analysis and preliminarily verified in vitro. Stimulated human mesangial cells were collected for cell proliferation and cell cycle analysis using cell counting kit 8 and flow cytometry, respectively. Results 134 DEGs genes were differentially expressed across kidney transcriptomic data from IgAN patients and healthy living donors. Enrichment analysis showed that the glomerular compartments underwent a wide range of interesting pathological changes during kidney injury, focused on anion transmembrane transporter activity and protein digestion and absorption mostly. Hub genes (ITGB2, FCER1G, CSF1R) were identified and verified to be significantly upregulated in IgAN patients, and associated with severity of renal lesions. Computational drug repurposing with the CMap identified tetrandrine as a candidate treatment to reverse IgAN hub gene expression. Tetrandrine administration significantly reversed mesangial cell proliferation and cell cycle transition. Conclusion The identification of DEGs and related therapeutic strategies of IgAN through this integrated bioinformatics analysis provides a valuable resource of therapeutic targets and agents of IgAN. Especially, our findings suggest that tetrandrine might be beneficial for IgAN, which deserves future research.
Collapse
|
53
|
Wang W, Fan Y, Wang X. Lactobacillus: Friend or Foe for Systemic Lupus Erythematosus? Front Immunol 2022; 13:883747. [PMID: 35677055 PMCID: PMC9168270 DOI: 10.3389/fimmu.2022.883747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
The cause of Systemic Lupus Erythematosus (SLE) remains largely unknown, despite the fact that it is well understood that a complex interaction between genes and environment is required for disease development. Microbiota serve as activators and are essential to immune homeostasis. Lactobacillus is thought to be an environmental agent affecting the development of SLE. However, beneficial therapeutic and anti-inflammatory effects of Lactobacillus on SLE were also explored. The discovery of Lactobacillus involvement in SLE will shed light on how SLE develops, as well as finding microbiota-targeted biomarkers and novel therapies. In this review, we attempt to describe the two sides of Lactobacillus in the occurrence, development, treatment and prognosis of SLE. We also discuss the effect of different strains Lactobacillus on immune cells, murine lupus, and patients. Finally, we try to illustrate the potential immunological mechanisms of Lactobacillus on SLE and provide evidence for further microbiota-targeted therapies.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
54
|
Zhou M, Kang Y, Li J, Li R, Lu L. Omics-based integrated analysis identified IKZF2 as a biomarker associated with lupus nephritis. Sci Rep 2022; 12:9612. [PMID: 35688845 PMCID: PMC9187727 DOI: 10.1038/s41598-022-13336-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Lupus nephritis (LN) is a crucial complication of systemic lupus erythematosus (SLE). IKZF2 was identified as a lupus susceptibility locus, while its exact molecular function in LN is unknown. We aimed to explore the relationship between IKZF2 and LN based on multi-omics data. In our study, we carried out a meta-analysis of publicly available data, including not only tubulointerstitium, but also glomerulus tissue samples from LN patients and controls. Based on the common differentially expressed genes (co-DEGs) and previous researches, we selected IKZF2 for further analysis. Then, we analyzed potential molecular mechanisms of co-DEGs and IKZF2 in LN. To explore the possible targets of IKZF2, protein-protein interaction network (PPI) network and ceRNA network of IKZF2 were also constructed. Moreover, we performed immune infiltration analysis and evaluated clinical value of IKZF2. A total of 26 co-DEGs were observed in the integration of the above DEGs coming from the four sets of data, of which IKZF2 was selected for further analysis. Functional enrichment analysis from IKZF2 and related PPI network confirmed the tight relationship between IKZF2 and the immune reaction. Moreover, immune filtration analysis revealed the significant correlation between IKZF2 and naïve B cell, NK cell activation, NK cell rest and other immune cells. Receiver operating characteristic (ROC) analysis showed that the areas under the ROC curves were 0.721, 0.80, 0.682, and 0.859 for IKZF2 in four datasets, which demonstrated the clinical value of IKZF2. Our study revealed that IKZF2 may play an essential role in the molecular function and development of LN, and might be a potential biomarker for distinguishing LN patients and healthy ones.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Rheumatology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200001, China
| | - Yuening Kang
- Department of Rheumatology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200001, China
| | - Jun Li
- Department of Rheumatology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200001, China
| | - Rongxiu Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China.
| | - Liangjing Lu
- Department of Rheumatology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200001, China.
| |
Collapse
|
55
|
Tampe D, Kopp SB, Baier E, Hakroush S, Tampe B. Compartmentalization of Intrarenal Programmed Cell Death Protein 1-Ligand 1 and Its Receptor in Kidney Injury Related to Immune Checkpoint Inhibitor Nephrotoxicity. Front Med (Lausanne) 2022; 9:902256. [PMID: 35755033 PMCID: PMC9218249 DOI: 10.3389/fmed.2022.902256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Due to advances in cancer therapy, immune checkpoint inhibitors (ICIs) are new classes of drugs targeting programmed cell death protein 1-ligand 1 (PD-L1) or its receptor (PD-1) used in many cancer therapies. Acute interstitial nephritis (AIN) is a potential and deleterious immune-related adverse events (irAE) and the most common biopsy-proven diagnosis in ICI-related nephrotoxicity. AIN in patients receiving ICIs is was only seen in cases with tubular PD-L1 positivity, while PD-1 expression is limited to inflammatory cells and also observed in injured kidneys independent of ICI therapy. We have previously described that PD-L1 positivity can also be detected in glomerular and endothelial compartments. We here aimed to describe compartmentalization of renal PD-L1 expression specifically in injured kidneys with confirmed nephrotoxicity related to ICIs, its association with presence of PD-1, and clinical findings. Methods We included human kidney samples with AIN related to ICI therapy to describe PD-L1 and PD-1 expression localized to different renal compartments in association with clinical and laboratory parameters. Results We herein report compartmentalization of PD-L1 with tubular positivity in all cases, partially overlapping with glomerular and endothelial PD-L1 positivity. Furthermore, we provide evidence that tubular PD-L1 in ICI-related nephrotoxicity correlates with levels of C-reactive protein (CRP), while glomerular and endothelial PD-L1 positivity with lower serum levels of complement component C4. Interestingly, glomerular PD-L1 correlated with kidney function, while interstitial cell PD-1 positivity specifically with severity of kidney injury. Finally, we provide evidence for signaling pathways associated with intrarenal PD-L1/PD-1 expression. Conclusion Our findings implicate that that AIN related to ICI therapy requires presence of interstitial cells positive for PD-1, and that blocking PD-L1/PD-1 signaling may contribute to nephrotoxicity specifically related to these agents.
Collapse
Affiliation(s)
- Désirée Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Sarah Birgit Kopp
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Eva Baier
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Samy Hakroush
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
56
|
Li B, Li S, Fan Y, Diao H, Ye S, Peng H, Chen W. Computational Analysis Reveals the Characteristics of Immune Cells in Glomerular and Tubulointerstitial Compartments in IgA Nephropathy Patients. Front Genet 2022; 13:838863. [PMID: 35601494 PMCID: PMC9116531 DOI: 10.3389/fgene.2022.838863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/06/2022] [Indexed: 01/20/2023] Open
Abstract
Objective: The commonalities and differences regarding immune states between glomerular and tubulointerstitial compartments of IgA nephropathy (IgAN) remains largely undetermined. We aim to perform bioinformatic analysis for providing a comprehensive insight into the characteristics of immune cells and associated molecular mechanisms in IgAN. Materials and Methods: We performed integrated bioinformatic analyses by using IgAN-related datasets from the Gene Expression Omnibus database. First, the differentially expressed genes (DEGs) were identified and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Then, CIBERSORT was employed to determine the landscape of infiltrating immune cells in both glomerular and tubulointerstitial compartments of IgAN patients, followed by Pearson’s correlation analysis and principal component analysis (PCA). Finally, commonly shared DEGs between glomerular and tubulointerstitial entities were recognized, followed by correlation analyses to identify the dominant commonly shared DEGs associated with immune cell infiltration in IgAN. Results: GO and KEGG enrichment analyses showed apparently distinct biological processes in the glomerular and tubulointerstitial compartments of IgAN. In addition, CIBERSORT analyses revealed a clear trend of increasing proportions of M1 macrophage and M2 macrophage in the glomerular compartment while noticeably higher proportions of resting CD4+ memory T cells and M2 macrophages in the tubulointerstitial compartments. The PCA analyses showed that the varying composition of immune cells in both glomerular and tubulointerstitial entities was compelling to distinguish IgAN patients from healthy living controls. In addition, 21 commonly shared DEGs between glomerular and tubulointerstitial entities were recognized as key regulators in the pathogenesis of IgAN, among which the enhanced hemoglobin subunit beta (HBB) gene expression was found to be positively associated with M2 macrophage in the glomerular compartment and resting CD4+ memory T cells in the tubulointerstitial compartment. Most importantly, FBJ murine osteosarcoma viral oncogene homolog B (FOSB) gene deficiency was recognized as the dominant alteration in promoting M2 macrophage infiltration in the glomerular compartment of IgAN. Conclusion: The findings from our current study for the first time reveal commonalities and differences regarding immune states between glomerular and tubulointerstitial compartments, as well as decode the essential role of M2 macrophages and associated molecular patterns within the microenvironments of IgAN.
Collapse
Affiliation(s)
- Bin Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University), Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Suchun Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University), Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yuting Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University), Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Hui Diao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University), Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Siyang Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University), Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Huajing Peng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University), Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University), Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
- *Correspondence: Wei Chen,
| |
Collapse
|
57
|
Qing J, Song W, Tian L, Samuel SB, Li Y. Potential Small Molecules for Therapy of Lupus Nephritis Based on Genetic Effect and Immune Infiltration. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2259164. [PMID: 35502341 PMCID: PMC9056222 DOI: 10.1155/2022/2259164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/09/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Lupus nephritis (LN) is the most common and significant complication of systemic lupus erythematosus (SLE) due to its poor prognosis and mortality rates in SLE patients. There is a critical need for new drugs as the pathogenesis of LN remains to be elucidated and immunosuppressive therapy comes with many deficiencies. In this study, 23 hub genes (IFI6, PLSCR1, XAF1, IFI16, IFI44, MX1, IFI44L, IFIT3, IFIT2, IFI27, DDX58, EIF2AK2, IFITM1, RTP4, IFITM3, TRIM22, PARP12, IFIH1, OAS1, HERC6, RSAD2, DDX60, and MX2) were identified through bioinformatics and network analysis and are closely related to interferon production and function. Interestingly, immune cell infiltration analysis and correlation analysis demonstrate a positive correlation between the expression of 23 hub genes and monocyte infiltration in glomeruli and M2 macrophage infiltration in the tubulointerstitium of LN patients. Additionally, the CTD database, DsigDB database, and DREIMT database were used to explore the bridging role of genes in chemicals and LN as well as the potential influence of these chemicals on immune cells. After comparison and discussion, six small molecules (Acetohexamide, Suloctidil, Terfenadine, Prochlorperazine, Mefloquine, and Triprolidine) were selected for their potential ability in treating lupus nephritis.
Collapse
Affiliation(s)
- Jianbo Qing
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wenzhu Song
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lingling Tian
- Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi 030000, China
| | - Sonia Biju Samuel
- Department of Medicine, Albany Medical Center. 43 New Scotland Ave, Albany, New York 12208, USA
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, Shanxi 030012, China
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, Shanxi 030012, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, Shanxi 030012, China
- Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, Shanxi 030000, China
| |
Collapse
|
58
|
Tang C, Fang M, Tan G, Zhang S, Yang B, Li Y, Zhang T, Saxena R, Mohan C, Wu T. Discovery of Novel Circulating Immune Complexes in Lupus Nephritis Using Immunoproteomics. Front Immunol 2022; 13:850015. [PMID: 35419005 PMCID: PMC8996714 DOI: 10.3389/fimmu.2022.850015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Objective The goal is to discover novel circulating immune complexes (ICx) in the serum of lupus nephritis (LN) as potential biomarkers. Methods Protein A/G magnetic beads or C1q-coated plates were used to capture ICx in the serum of LN, followed by the identification of immunoglobulin-binding proteins using liquid chromatography and tandem mass spectrometry (LC-MS/MS). Bioinformatic approaches and single-cell RNA sequencing (scRNA Seq) databases were used to select potential candidate ICx markers in LN. The selected ICx markers were further validated using ELISA. Results A total of 300 immunoglobulin-binding proteins were discovered in the screening, among which 77 proteins were detectable only in LN samples. Bioinformatics-assisted selection allowed us to further identify 10 potential immunoglobulin-binding proteins, which form ICx as potential biomarkers in LN. In a validation cohort of 62 LN patients and 21 healthy controls (HC), we found that prolyl 3-hydroxylase 1 (P3H1), phosphatase and actin regulator 4 (PHACTR4), and regulator of G-protein signaling 12 (RGS12) ICx exhibited discriminative capability in distinguishing LN from HC, with an area under the curve (AUC) values of 0.82, 0.99, and 0.90, respectively. Furthermore, a biomarker panel comprising CD14, CD34, cystatin A, myocyte enhancer factor 2C (MEF2C), RGS12, and ubiquitin C (UBC) ICx could distinguish active LN from inactive LN with an AUC value of 0.85, which is comparable to or better than pathological parameters such as renal activity index (AI) and renal chronicity index (CI). Conclusion Immunoproteomics-based discovery studies have enabled us to identify circulating immune complexes as potential biomarkers of LN.
Collapse
Affiliation(s)
- Chenling Tang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Min Fang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Gongjun Tan
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Shu Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Bowen Yang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Yaxi Li
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Ting Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Ramesh Saxena
- Division of Nephrology, University of Texas, Southwestern Medical Center, Dallas, TX, United States
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
59
|
Ryan H, Morel L, Moore E. Vascular Inflammation in Mouse Models of Systemic Lupus Erythematosus. Front Cardiovasc Med 2022; 9:767450. [PMID: 35419427 PMCID: PMC8996195 DOI: 10.3389/fcvm.2022.767450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/18/2022] [Indexed: 12/30/2022] Open
Abstract
Vascular inflammation mediated by overly activated immune cells is a significant cause of morbidity and mortality in systemic lupus erythematosus (SLE). Several mouse models to study the pathogenesis of SLE are currently in use, many of which have different mechanisms of pathogenesis. The diversity of these models allows interrogation of different aspects of the disease pathogenesis. To better determine the mechanisms by which vascular inflammation occurs in SLE, and to assist future researchers in choosing the most appropriate mouse models to study cardiovascular complications in SLE, we suggest that direct comparisons of vascular inflammation should be conducted among different murine SLE models. We also propose the use of in vitro vascular assays to further investigate vascular inflammation processes prevalent among different murine SLE models.
Collapse
Affiliation(s)
- Holly Ryan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Erika Moore
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
60
|
Clr-f expression regulates kidney immune and metabolic homeostasis. Sci Rep 2022; 12:4834. [PMID: 35318366 PMCID: PMC8940912 DOI: 10.1038/s41598-022-08547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
The C-type lectin-related protein, Clr-f, encoded by Clec2h in the mouse NK gene complex (NKC), is a member of a family of immune regulatory lectins that guide immune responses at distinct tissues of the body. Clr-f is highly expressed in the kidney; however, its activity in this organ is unknown. To assess the requirement for Clr-f in kidney health and function, we generated a Clr-f-deficient mouse (Clr-f−/−) by targeted deletions in the Clec2h gene. Mice lacking Clr-f exhibited glomerular and tubular lesions, immunoglobulin and C3 complement protein renal deposits, and significant abdominal and ectopic lipid accumulation. Whole kidney transcriptional profile analysis of Clr-f−/− mice at 7, 13, and 24 weeks of age revealed a dynamic dysregulation in lipid metabolic processes, stress responses, and inflammatory mediators. Examination of the immune contribution to the pathologies of Clr-f−/− mouse kidneys identified elevated IL-12 and IFNγ in cells of the tubulointerstitium, and an infiltrating population of neutrophils and T and B lymphocytes. The presence of these insults in a Rag1−/−Clr-f−/− background reveals that Clr-f−/− mice are susceptible to a T and B lymphocyte-independent renal pathogenesis. Our data reveal a role for Clr-f in the maintenance of kidney immune and metabolic homeostasis.
Collapse
|
61
|
Cheuk YC, Zhang P, Xu S, Wang J, Chen T, Mao Y, Jiang Y, Luo Y, Guo J, Wang W, Rong R. Bioinformatics analysis of pathways of renal infiltrating macrophages in different renal disease models. Transl Androl Urol 2022; 10:4333-4343. [PMID: 35070815 PMCID: PMC8749068 DOI: 10.21037/tau-21-761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background Recent studies have suggested that macrophages are significantly involved in different renal diseases. However, the role of these renal infiltrating macrophages has not been entirely uncovered. To further clarify the underlying mechanism and identify therapeutic targets, a bioinformatic analysis based on transcriptome profiles was performed. Methods Three transcription profiling datasets, GSE27045, GSE51466 and GSE75808, were obtained from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were assessed by Gene Ontology (GO) functional annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and gene set enrichment analysis (GSEA). Results The classic signaling pathways and metabolic pathways of macrophages infiltrating the kidney in different pathophysiological processes, including lupus nephritis (LN), renal crystal formation and renal ischemia-reperfusion injury (IRI), were analysed. Furthermore, the common classical pathways significantly altered in the three renal disorders were the oxidative phosphorylation, VEGF signaling and JAK/STAT signaling pathways, while the renin-angiotensin system was uniquely altered in LN, the glycolysis and gluconeogenesis pathways were uniquely altered in models of renal crystal formation, and the calcium signaling pathway was specific to renal IRI. Conclusions Via bioinformatics analysis, this study revealed the transcriptional features of macrophages in murine LN, renal crystal formation and IRI models, which may serve as promising targets for mechanistic research and the clinical treatment of multiple renal diseases.
Collapse
Affiliation(s)
- Yin Celeste Cheuk
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Pingbao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Shihao Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jiyan Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tian Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yongxin Mao
- Department of Urology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yamei Jiang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yongsheng Luo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jingjing Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Weixi Wang
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
62
|
Li S, Jiang S, Zhang Q, Jin B, Lv D, Li W, Zhao M, Jiang C, Dai C, Liu Z. Integrin β3 Induction Promotes Tubular Cell Senescence and Kidney Fibrosis. Front Cell Dev Biol 2021; 9:733831. [PMID: 34805144 PMCID: PMC8602096 DOI: 10.3389/fcell.2021.733831] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 01/15/2023] Open
Abstract
Tubular cell senescence is a common biologic process and contributes to the progression of chronic kidney disease (CKD); however, the molecular mechanisms regulating tubular cell senescence are poorly understood. Here, we report that integrin β3 (ITGB3) expression was increased in tubular cells and positively correlated with fibrosis degree in CKD patients. ITGB3 overexpression could induce p53 pathway activation and the secretion of TGF-β, which, in turn, resulted in senescent and profibrotic phenotype change in cultured tubular cells. Moreover, according to the CMAP database, we identified isoliquiritigenin (ISL) as an agent to inhibit ITGB3. ISL treatment could suppress Itgb3 expression, attenuate cellular senescence, and prevent renal fibrosis in mice. These results reveal a crucial role for integrin signaling in cellular senescence, potentially identifying a new therapeutic direction for kidney fibrosis.
Collapse
Affiliation(s)
- Shen Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University Medical School, Nanjing, China.,Department of Nephrology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| | - Qingyan Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Bo Jin
- Department of Nephrology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Daoyuan Lv
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| | - Wenju Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| | - Min Zhao
- Department of Nephrology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Chunming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Chunsun Dai
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Clinical Genetics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
63
|
Shen L, Lan L, Zhu T, Chen H, Gu H, Wang C, Chen Y, Wang M, Tu H, Enghard P, Jiang H, Chen J. Identification and Validation of IFI44 as Key Biomarker in Lupus Nephritis. Front Med (Lausanne) 2021; 8:762848. [PMID: 34760904 PMCID: PMC8574154 DOI: 10.3389/fmed.2021.762848] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Lupus nephritis (LN) is a common and severe organ manifestation of systemic lupus erythematosus (SLE) and is a major cause of SLE related deaths. Early diagnosis is essential to improve the prognosis of patients with LN. To screen the potential biomarkers associated with LN, we downloaded the gene expression profile of GSE99967 from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was utilized to construct a gene co-expression network and identify gene modules associated with LN. Gene Ontology (GO) analysis was also applied to explore the biological function of genes and identify the key module. Differentially expressed genes (DEGs) were identified and Maximal Clique Centrality (MCC) values were calculated to screen hub genes. Furthermore, we selected promising biomarkers for real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) validation in independent cohorts. Our results indicated that five hub genes, including IFI44, IFIT3, HERC5, RSAD2, and DDX60 play vital roles in the pathogenesis of LN. Importantly, IFI44 may considered as a key biomarker in LN for its diagnostic capabilities, which is also a promising therapeutic target in the future.
Collapse
Affiliation(s)
- Lingling Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Lan Lan
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Tingting Zhu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Hongjun Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Haifeng Gu
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Cuili Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Ying Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Minmin Wang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Haiyan Tu
- Department of Nephrology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| |
Collapse
|
64
|
Latt KZ, Heymann J, Yoshida T, Kopp JB. Glomerular Kidney Diseases in the Single-Cell Era. Front Med (Lausanne) 2021; 8:761996. [PMID: 34778322 PMCID: PMC8585743 DOI: 10.3389/fmed.2021.761996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022] Open
Abstract
Recent advances in single-cell technology have enabled investigation of genomic profiles and molecular crosstalk among individual cells obtained from tissues and biofluids at unprecedented resolution. Glomerular diseases, either primary or secondary to systemic diseases, often manifest elements of inflammation and of innate and adaptive immune responses. Application of single-cell methods have revealed cellular signatures of inflammation, cellular injury, and fibrosis. From these signatures, potential therapeutic targets can be inferred and in theory, this approach might facilitate identification of precision therapeutics for these diseases. Single-cell analyses of urine samples and skin lesions from patients with lupus nephritis and of urine samples from patients with diabetic nephropathy and focal segmental glomerulosclerosis have presented potential novel approaches for the diagnosis and monitoring of disease activity. These single-cell approaches, in contrast to kidney biopsy, are non-invasive and could be repeated multiple times as needed.
Collapse
Affiliation(s)
- Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | | | | |
Collapse
|
65
|
Chen Z, Lan R, Ye K, Chen H, Chen C, Xu Y. Prioritization of Diagnostic and Prognostic Biomarkers for Lupus Nephritis Based on Integrated Bioinformatics Analyses. Front Bioeng Biotechnol 2021; 9:717234. [PMID: 34692653 PMCID: PMC8531593 DOI: 10.3389/fbioe.2021.717234] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022] Open
Abstract
Lupus nephritis (LN) is an important driver of end-stage renal disease (ESRD). However, few biomarkers are available for evaluating the diagnosis and prognosis of LN. For this study, we downloaded microarray data of multiple LN expression profiles from the GEO database. We used the WGCNA and R limma packages to identify LN hub genes and differentially-expressed genes (DEGs). We identified nine co-DEGs in the intersection with LN-related genes from the Genecards database. We found DEGs that are primarily associated with immune-related functions and pathways (including with the complement pathway, primary immunodeficiency markers, and MHC-like protein complexes) through our comprehensive GSEA, GO, and KEGG enrichment analyses. We used other LN and SLE validation datasets and discovered six explicitly expressed co-DEGs: HLA-DMA, HLA-DPA1, HLA-DPB1, HLA-DRA, IL10RA, and IRF8 in the LN set; ROC and Precision-Recall curve analyses revealed that these six genes have a good diagnostic efficacy. The correlation analysis with prognostic data from the Nephroseq database indicates that the differential expression of these co-DEGs is associated with a low glomerular filtration rate in that cohort. Additionally, we used a single-cell LN database of immune cells (for the first time) and discovered these co-DEGs to be predominantly distributed in different types of macrophages and B cells. In conclusion, by integrating multiple approaches for DEGs discovery, we identified six valuable biomarkers that are strongly correlated with the diagnosis and prognosis of LN. These markers can help clarify the pathogenesis and improve the clinical management of LN.
Collapse
Affiliation(s)
- Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ruilong Lan
- Central Laboratory, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Keng Ye
- Department of Nephrology, Blood Purification Research Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hong Chen
- Department of Pathology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Caiming Chen
- Department of Nephrology, Blood Purification Research Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
66
|
Zhao H, Pan S, Duan J, Liu F, Li G, Liu D, Liu Z. Integrative Analysis of m 6A Regulator-Mediated RNA Methylation Modification Patterns and Immune Characteristics in Lupus Nephritis. Front Cell Dev Biol 2021; 9:724837. [PMID: 34557492 PMCID: PMC8454410 DOI: 10.3389/fcell.2021.724837] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022] Open
Abstract
Background There is growing evidence to demonstrate that the epigenetic regulation of immune characteristics, especially for N6-methyladenosine (m6A) RNA methylation. However, how m6A methylation is involved in lupus nephritis (LN) is still unclear. This study aimed to determine the role of m6A RNA methylation and their association with the immune microenvironment in LN. Methods In total, 87 glomeruli (73 LN, 14 living healthy donors), 110 tubulointerstitium (95 LN, 15 living healthy donors), and 21 kidney whole tissue samples (14 LN, 7 controls) were included in our research to evaluate the expression levels of m6A regulators. CIBERSORT was used to assess the abundance of infiltrating immunocytes. The m6A regulator gene signature for LN was identified using LASSO-logistic regression and verified with external data. Consensus clustering algorithms were used for the unsupervised cluster analysis of m6A modification patterns in LN. Single-sample gene-set enrichment analysis and gene set variation analysis algorithms were employed to assess the activity of immune responses and other functional pathways. Weighted gene co-expression network analysis and protein-protein interaction networks were used to identify m6A methylation markers. Lastly, the Nephroseq V5 tool was used to analyze the correlation between m6A markers and renal function. Results We found that the expression of m6A regulators was more significantly different in the glomeruli in LN compared with tubulointerstitium and whole kidney tissue. We established an m6A regulator signature, comprised of METTL3, WTAP, YTHDC2, YTHDF1, FMR1, and FTO, that can easily distinguish LN and healthy individuals. Two distinct m6A modification patterns based on 18 m6A regulators were determined, with significant differences in m6A regulator expression, immune microenvironment, biological functional pathways, and clinical characteristics. Activated NK cells, most immune responses, and HLA genes had strong correlations with m6A regulators. Seven m6A markers were identified and demonstrated a meaningful correlation with GFR, indicating that they are potential prognostic biomarkers. Conclusion This study emphasized that m6A RNA methylation and the immune microenvironment are closely linked in LN. A better understanding of m6A modification patterns provide a basis for the development of novel therapeutic options for LN.
Collapse
Affiliation(s)
- Huanhuan Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Research Center for Kidney Disease, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Research Center for Kidney Disease, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| | - Jiayu Duan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Research Center for Kidney Disease, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| | - Fengxun Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Research Center for Kidney Disease, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| | - Guangpu Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Research Center for Kidney Disease, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Research Center for Kidney Disease, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Research Center for Kidney Disease, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| |
Collapse
|
67
|
Mishra R, Bethunaickan R, Berthier CC, Yi Z, Strohl JJ, Huerta PT, Zhang W, Davidson A. Reversible dysregulation of renal circadian rhythm in lupus nephritis. Mol Med 2021; 27:99. [PMID: 34488619 PMCID: PMC8419890 DOI: 10.1186/s10020-021-00361-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/23/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND We have found disruption of expression of major transcriptional regulators of circadian rhythm in the kidneys of several mouse models of lupus nephritis. Here we define the consequence of this disturbance with respect to circadian gene expression and renal homeostatic function in a mouse model of lupus nephritis. METHODS Molecular profiling of kidneys from 47 young and 41 nephritic female NZB/W F1 mice was performed at 4 hourly intervals over a 24 h period. Disruption of major circadian transcriptional regulators was confirmed by qPCR. Molecular data was normalized and analyzed for rhythmicity using RAIN analysis. Serum aldosterone and glucose and urine sodium and potassium were measured at 4 hourly intervals in pre-nephritic and nephritic mice and blood pressure was measured every 4 h. Analyses were repeated after induction of complete remission of nephritis using combination cyclophosphamide and costimulatory blockade. RESULTS We show a profound alteration of renal circadian rhythms in mice with lupus nephritis affecting multiple renal pathways. Using Cosinor analysis we identified consequent alterations of renal homeostasis and metabolism as well as blood pressure dipper status. This circadian dysregulation was partially reversed by remission induction therapy. CONCLUSIONS Our studies indicate the role of inflammation in causing the circadian disruption and suggest that screening for loss of normal blood pressure dipping should be incorporated into LN management. The data also suggest a potential role for circadian agonists in the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Rakesh Mishra
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Ramalingam Bethunaickan
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Celine C Berthier
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhengzi Yi
- Department of Medicine, Mount Sinai Medical Center, One Gustave L. Levy Place, P.O. Box 1243, New York, NY, 10029, USA
| | - Joshua J Strohl
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Patricio T Huerta
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Weijia Zhang
- Department of Medicine, Mount Sinai Medical Center, One Gustave L. Levy Place, P.O. Box 1243, New York, NY, 10029, USA.
| | - Anne Davidson
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
68
|
Pace JA, Bronstein R, Guo Y, Yang Y, Estrada CC, Gujarati N, Salant DJ, Haley J, Bialkowska AB, Yang VW, He JC, Mallipattu SK. Podocyte-specific KLF4 is required to maintain parietal epithelial cell quiescence in the kidney. SCIENCE ADVANCES 2021; 7:eabg6600. [PMID: 34516901 PMCID: PMC8442927 DOI: 10.1126/sciadv.abg6600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/13/2021] [Indexed: 06/06/2023]
Abstract
Podocyte loss triggering aberrant activation and proliferation of parietal epithelial cells (PECs) is a central pathogenic event in proliferative glomerulopathies. Podocyte-specific Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor, is essential for maintaining podocyte homeostasis and PEC quiescence. Using mice with podocyte-specific knockdown of Klf4, we conducted glomerular RNA-sequencing, tandem mass spectrometry, and single-nucleus RNA-sequencing to identify cell-specific transcriptional changes that trigger PEC activation due to podocyte loss. Integration with in silico chromatin immunoprecipitation identified key ligand-receptor interactions, such as fibronectin 1 (FN1)–αVβ6, between podocytes and PECs dependent on KLF4 and downstream signal transducer and activator of transcription 3 (STAT3) signaling. Knockdown of Itgb6 in PECs attenuated PEC activation. Additionally, podocyte-specific induction of human KLF4 or pharmacological inhibition of downstream STAT3 activation reduced FN1 and integrin β 6 (ITGB6) expression and mitigated podocyte loss and PEC activation in mice. Targeting podocyte-PEC crosstalk might be a critical therapeutic strategy in proliferative glomerulopathies.
Collapse
Affiliation(s)
- Jesse A. Pace
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Robert Bronstein
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yiqing Guo
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yaqi Yang
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Chelsea C. Estrada
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Nehaben Gujarati
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - David J. Salant
- Division of Nephrology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - John Haley
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Agnieszka B. Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Vincent W. Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - John C. He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandeep K. Mallipattu
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
- Renal Section, Northport VA Medical Center, Northport, NY, USA
| |
Collapse
|
69
|
Abstract
Over the course of the last decade, the biopharmaceutical industry has slowly adopted human inducible pluripotent stem cell (hiPSC) technology to enable the development of humanized model systems to test new therapeutic molecules and drug modalities. The adoption of hiPSC-based models by the industry has increased appreciably in the past 3-5 years. This increase has paralleled the explosion in availability of high-quality human genetic data to mine for new drug targets and the emergence of human-specific therapeutic modalities.
Collapse
|
70
|
Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021; 135:1999-2029. [PMID: 34427291 DOI: 10.1042/cs20201016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.
Collapse
|
71
|
Liu T, Yang M, Xia Y, Jiang C, Li C, Jiang Z, Wang X. Microarray-based analysis of renal complement components reveals a therapeutic target for lupus nephritis. Arthritis Res Ther 2021; 23:223. [PMID: 34433493 PMCID: PMC8385907 DOI: 10.1186/s13075-021-02605-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background Screening abnormal pathways and complement components in the kidneys of patients with lupus nephritis (LN) and NZB/W mice may help to identify complement-related therapeutic targets for LN. Methods KEGG and GO enrichment assays were used to analyze kidney microarray data of LN patients and NZB/W mice. Immunohistochemistry and immunofluorescence assays were used to measure renal expression of complement-related proteins and TGFβ1. Cytokines were measured using RT-qPCR and ELISA. Results We screened the renal pathogenic pathways present in LN patients and NZB/W mice and selected the complement activation pathway for further study. The results indicated greater renal expression of C1qa, C1qb, C3, C3aR1, and C5aR1 at the mRNA and protein levels. C3 appeared to be a key factor in LN and the renal signaling downstream of C1 was inhibited. There were significant correlations between the expression of TGFβ1 and C3. Analysis of primary cell cultures indicated that TGFβ1 promoted the expression of C3 and that a TGFβ1 antagonist decreased the levels of C3 and C3aR. TGFβ1 inhibition significantly inhibited the deposition of complement-related factors in the kidneys of NZB/W mice. Conclusions At the onset of LN, there are significant increases in the renal levels of C3 and other complement pathway-related factors in patients with LN and NZB/W mice. C3 may lead to albuminuria and participate in the pathogenesis of LN. TGFβ1 promotes C3 synthesis, and TGFβ1 inhibition may block the progression of LN by inhibiting the synthesis of C3 and other complement components. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02605-9.
Collapse
Affiliation(s)
- Tao Liu
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mingyue Yang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Ying Xia
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chuan Jiang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chenxu Li
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhenyu Jiang
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Xiaosong Wang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
72
|
You S, Xu J, Wu B, Wu S, Zhang Y, Sun Y, Zhang N. Comprehensive Bioinformatics Analysis Identifies POLR2I as a Key Gene in the Pathogenesis of Hypertensive Nephropathy. Front Genet 2021; 12:698570. [PMID: 34422001 PMCID: PMC8375388 DOI: 10.3389/fgene.2021.698570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Hypertensive nephropathy (HN), mainly caused by chronic hypertension, is one of the major causes of end-stage renal disease. However, the pathogenesis of HN remains unclarified, and there is an urgent need for improved treatments. Gene expression profiles for HN and normal tissue were obtained from the Gene Expression Omnibus database. A total of 229 differentially co-expressed genes were identified by weighted gene co-expression network analysis and differential gene expression analysis. These genes were used to construct protein–protein interaction networks to search for hub genes. Following validation in an independent external dataset and in a clinical database, POLR2I, one of the hub genes, was identified as a key gene related to the pathogenesis of HN. The expression level of POLR2I is upregulated in HN, and the up-regulation of POLR2I is positively correlated with renal function in HN. Finally, we verified the protein levels of POLR2I in vivo to confirm the accuracy of our analysis. In conclusion, our study identified POLR2I as a key gene related to the pathogenesis of HN, providing new insights into the molecular mechanisms underlying HN.
Collapse
Affiliation(s)
- Shilong You
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Jiaqi Xu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Boquan Wu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Shaojun Wu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
73
|
Kingsmore KM, Bachali P, Catalina MD, Daamen AR, Heuer SE, Robl RD, Grammer AC, Lipsky PE. Altered expression of genes controlling metabolism characterizes the tissue response to immune injury in lupus. Sci Rep 2021; 11:14789. [PMID: 34285256 PMCID: PMC8292402 DOI: 10.1038/s41598-021-93034-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
To compare lupus pathogenesis in disparate tissues, we analyzed gene expression profiles of human discoid lupus erythematosus (DLE) and lupus nephritis (LN). We found common increases in myeloid cell-defining gene sets and decreases in genes controlling glucose and lipid metabolism in lupus-affected skin and kidney. Regression models in DLE indicated increased glycolysis was correlated with keratinocyte, endothelial, and inflammatory cell transcripts, and decreased tricarboxylic (TCA) cycle genes were correlated with the keratinocyte signature. In LN, regression models demonstrated decreased glycolysis and TCA cycle genes were correlated with increased endothelial or decreased kidney cell transcripts, respectively. Less severe glomerular LN exhibited similar alterations in metabolism and tissue cell transcripts before monocyte/myeloid cell infiltration in some patients. Additionally, changes to mitochondrial and peroxisomal transcripts were associated with specific cells rather than global signal changes. Examination of murine LN gene expression demonstrated metabolic changes were not driven by acute exposure to type I interferon and could be restored after immunosuppression. Finally, expression of HAVCR1, a tubule damage marker, was negatively correlated with the TCA cycle signature in LN models. These results indicate that altered metabolic dysfunction is a common, reversible change in lupus-affected tissues and appears to reflect damage downstream of immunologic processes.
Collapse
Affiliation(s)
- Kathryn M Kingsmore
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA, USA.
| | - Prathyusha Bachali
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA, USA
| | - Michelle D Catalina
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA, USA
- EMD Serono Research & Development Institute, 45 A Middlesex Turnpike, Billerica, MA, 01821, USA
| | - Andrea R Daamen
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA, USA
| | - Sarah E Heuer
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA, USA
- The Jackson Laboratory, Tufts Graduate School of Biomedical Sciences, 600 Main Street Bar, Harbor, ME, 04609, USA
| | - Robert D Robl
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA, USA
| | - Amrie C Grammer
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA, USA
| | - Peter E Lipsky
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA, USA
| |
Collapse
|
74
|
Randles MJ, Lausecker F, Kong Q, Suleiman H, Reid G, Kolatsi-Joannou M, Davenport B, Tian P, Falcone S, Potter P, Van Agtmael T, Norman JT, Long DA, Humphries MJ, Miner JH, Lennon R. Identification of an Altered Matrix Signature in Kidney Aging and Disease. J Am Soc Nephrol 2021; 32:1713-1732. [PMID: 34049963 PMCID: PMC8425653 DOI: 10.1681/asn.2020101442] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Accumulation of extracellular matrix in organs and tissues is a feature of both aging and disease. In the kidney, glomerulosclerosis and tubulointerstitial fibrosis accompany the decline in function, which current therapies cannot address, leading to organ failure. Although histologic and ultrastructural patterns of excess matrix form the basis of human disease classifications, a comprehensive molecular resolution of abnormal matrix is lacking. METHODS Using mass spectrometry-based proteomics, we resolved matrix composition over age in mouse models of kidney disease. We compared the changes in mice with a global characterization of human kidneymatrix during aging and to existing kidney disease datasets to identify common molecular features. RESULTS Ultrastructural changes in basement membranes are associated with altered cell adhesion and metabolic processes and with distinct matrix proteomes during aging and kidney disease progression in mice. Within the altered matrix, basement membrane components (laminins, type IV collagen, type XVIII collagen) were reduced and interstitial matrix proteins (collagens I, III, VI, and XV; fibrinogens; and nephronectin) were increased, a pattern also seen in human kidney aging. Indeed, this signature of matrix proteins was consistently modulated across all age and disease comparisons, and the increase in interstitial matrix was also observed in human kidney disease datasets. CONCLUSIONS This study provides deep molecular resolution of matrix accumulation in kidney aging and disease, and identifies a common signature of proteins that provides insight into mechanisms of response to kidney injury and repair.
Collapse
Affiliation(s)
- Michael J. Randles
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Qingyang Kong
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Hani Suleiman
- Renal Division, Washington University School of Medicine, Saint Louis, Missouri
| | - Graeme Reid
- Department of Histopathology, Manchester Royal Infirmary, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Programme, Great Ormond Institute of Child Health, University College London, London, United Kingdom
| | - Bernard Davenport
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sara Falcone
- Centre for Cellular and Molecular Physiology, University of Oxford, Oxford, United Kingdom
| | - Paul Potter
- Department Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jill T. Norman
- Department of Renal Medicine, University College London, London, United Kingdom
| | - David A. Long
- Developmental Biology and Cancer Programme, Great Ormond Institute of Child Health, University College London, London, United Kingdom
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jeffrey H. Miner
- Renal Division, Washington University School of Medicine, Saint Louis, Missouri
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
75
|
Yao X, Shen H, Cao F, He H, Li B, Zhang H, Zhang X, Li Z. Bioinformatics Analysis Reveals Crosstalk Among Platelets, Immune Cells, and the Glomerulus That May Play an Important Role in the Development of Diabetic Nephropathy. Front Med (Lausanne) 2021; 8:657918. [PMID: 34249963 PMCID: PMC8264258 DOI: 10.3389/fmed.2021.657918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/28/2021] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end stage renal disease (ESRD). Glomerulus damage is one of the primary pathological changes in DN. To reveal the gene expression alteration in the glomerulus involved in DN development, we screened the Gene Expression Omnibus (GEO) database up to December 2020. Eleven gene expression datasets about gene expression of the human DN glomerulus and its control were downloaded for further bioinformatics analysis. By using R language, all expression data were extracted and were further cross-platform normalized by Shambhala. Differentially expressed genes (DEGs) were identified by Student's t-test coupled with false discovery rate (FDR) (P < 0.05) and fold change (FC) ≥1.5. DEGs were further analyzed by the Database for Annotation, Visualization, and Integrated Discovery (DAVID) to enrich the Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. We further constructed a protein-protein interaction (PPI) network of DEGs to identify the core genes. We used digital cytometry software CIBERSORTx to analyze the infiltration of immune cells in DN. A total of 578 genes were identified as DEGs in this study. Thirteen were identified as core genes, in which LYZ, LUM, and THBS2 were seldom linked with DN. Based on the result of GO, KEGG enrichment, and CIBERSORTx immune cells infiltration analysis, we hypothesize that positive feedback may form among the glomerulus, platelets, and immune cells. This vicious cycle may damage the glomerulus persistently even after the initial high glucose damage was removed. Studying the genes and pathway reported in this study may shed light on new knowledge of DN pathogenesis.
Collapse
Affiliation(s)
- Xinyue Yao
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Hong Shen
- Department of Modern Technology and Education Center, North China University of Science and Technology, Tangshan, China
| | - Fukai Cao
- Department of Jitang College, North China University of Science and Technology, Tangshan, China
| | - Hailan He
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Boyu Li
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Xinduo Zhang
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Zhiguo Li
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
76
|
Möller-Hackbarth K, Dabaghie D, Charrin E, Zambrano S, Genové G, Li X, Wernerson A, Lal M, Patrakka J. Retinoic acid receptor responder1 promotes development of glomerular diseases via the Nuclear Factor-κB signaling pathway. Kidney Int 2021; 100:809-823. [PMID: 34147551 DOI: 10.1016/j.kint.2021.05.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022]
Abstract
Inflammatory pathways are activated in most glomerular diseases but molecular mechanisms driving them in kidney tissue are poorly known. We identified retinoic acid receptor responder 1 (Rarres1) as a highly podocyte-enriched protein in healthy kidneys. Studies in podocyte-specific knockout animals indicated that Rarres1 was not needed for the normal development or maintenance of the glomerulus filtration barrier and did not modulate the outcome of kidney disease in a model of glomerulonephritis. Interestingly, we detected an induction of Rarres1 expression in glomerular and peritubular capillary endothelial cells in IgA and diabetic kidney disease, as well as in ANCA-associated vasculitis. Analysis of publicly available RNA data sets showed that the induction of Rarres1 expression was a common molecular mechanism in chronic kidney diseases. A conditional knock-in mouse line, overexpressing Rarres1 specifically in endothelial cells, did not show any obvious kidney phenotype. However, the overexpression promoted the progression of kidney damage in a model of glomerulonephritis. In line with this, conditional knock-out mice, lacking Rarres1 in endothelial cells, were partially protected in the disease model. Mechanistically, Rarres1 promoted inflammation and fibrosis via transcription factor Nuclear Factor-κB signaling pathway by activating receptor tyrosine kinase Axl. Thus, induction of Rarres1 expression in endothelial cells is a prevalent molecular mechanism in human glomerulopathies and this seems to have a pathogenic role in driving inflammation and fibrosis via the Nuclear Factor-κB signaling pathway.
Collapse
Affiliation(s)
- Katja Möller-Hackbarth
- KI/AZ Integrated Cardio Metabolic Centre, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden; Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Dina Dabaghie
- KI/AZ Integrated Cardio Metabolic Centre, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden; Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Emmanuelle Charrin
- KI/AZ Integrated Cardio Metabolic Centre, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden; Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Sonia Zambrano
- KI/AZ Integrated Cardio Metabolic Centre, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden; Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Guillem Genové
- KI/AZ Integrated Cardio Metabolic Centre, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden; Department of Medicine Huddinge, Division of Pathology, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Xidan Li
- KI/AZ Integrated Cardio Metabolic Centre, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden; Department of Medicine Huddinge, Division of Pathology, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Annika Wernerson
- Department of Clinical Sciences, Division of Renal Medicine, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Mark Lal
- Bioscience Renal, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Jaakko Patrakka
- KI/AZ Integrated Cardio Metabolic Centre, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden; Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
77
|
Davidson A. Renal Mononuclear Phagocytes in Lupus Nephritis. ACR Open Rheumatol 2021; 3:442-450. [PMID: 34060247 PMCID: PMC8280821 DOI: 10.1002/acr2.11269] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 01/16/2023] Open
Abstract
Renal mononuclear phagocytes are a highly pleiotropic group of immune cells of myeloid origin that play multiple protective and pathogenic roles in tissue homeostasis, inflammation, repair, and fibrosis. Infiltration of kidneys with these cells is a hallmark of lupus nephritis and is associated with more severe disease and with increased risk of progression to end‐stage renal disease. This review presents current knowledge of the diversity of these cells and their involvement in kidney inflammation and resolution and describes how they contribute to the chronic inflammation of lupus nephritis. A better understanding of the subset heterogeneity and diverse functions of mononuclear phagocytes in the lupus nephritis kidney should provide fertile ground for the development of new therapeutic approaches that promote the differentiation and survival of protective subsets while targeting pathogenic cell subsets that cause inflammation and fibrosis.
Collapse
Affiliation(s)
- Anne Davidson
- Feinstein Institutes for Medical Research, Manhasset, New York
| |
Collapse
|
78
|
Li M, Yu D, Wang Y, Luo N, Han G, Yang B. Interferon-α activates interleukin-1 receptor-associated kinase 1 to induce regulatory T-cell apoptosis in patients with systemic lupus erythematosus. J Dermatol 2021; 48:1172-1185. [PMID: 33882150 DOI: 10.1111/1346-8138.15899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
Impaired regulatory T-cell (Treg) responses and upregulated interleukin-1 receptor-associated kinase 1 (IRAK1) expression are associated with the development of human systemic lupus erythematosus (SLE). Here, we show that the levels of upregulated IRAK1 expression in circulating Tregs are correlated with the percentages of apoptotic Tregs, Systemic Lupus Erythematosus Disease Activity Index scores, and serum complement C3 levels in SLE patients. High levels of plasma interferon (IFN)-α in SLE patients induced IRAK1 phosphorylation to trigger Treg apoptosis, which was mitigated by IRAK1 inhibitor (IRAK-Inh) treatment. Bioinformatics indicated that IRAK1 activation was related to the IFN-α/β and mitogen-activated protein kinase (MAPK) signaling in Tregs and IFN-α treatment induced the p38 and MAPK/ERK kinase 3/6 phosphorylation, which was attenuated by IRAK-Inh in Tregs. Treatment with IRAK-Inh effectively alleviated renal injury and promoted the survival of lupus-prone B6.MRL-Faslpr /Nju mice. Therefore, IFN-α induced IRAK1 activation to promote Treg apoptosis, contributing to the pathogenesis of SLE and IFN-α/IRAK1 may be therapeutic targets for SLE.
Collapse
Affiliation(s)
- Mingfang Li
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Datang Yu
- Department of Urology, The PLA 74th Group Army Hospital, Guangzhou, China
| | - Yu Wang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Na Luo
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Guangming Han
- Department of Rheumatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
79
|
Zhou LT, Zhang ZJ, Cao JY, Chen H, Zhu YS, Wu X, Nawabi AQ, Liu X, Shan W, Zhang Y, Zhang XR, Xue J, Hu L, Wang SS, Wang L, Sun ZX. The unique molecular mechanism of diabetic nephropathy: a bioinformatics analysis of over 250 microarray datasets. Clin Kidney J 2021; 14:1626-1638. [PMID: 34084458 PMCID: PMC8162860 DOI: 10.1093/ckj/sfaa190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/20/2020] [Indexed: 11/18/2022] Open
Abstract
Background/Aims Diabetic nephropathy (DN) is one of the main causes of end-stage kidney disease worldwide. Emerging studies have suggested that its pathogenesis is distinct from nondiabetic renal diseases in many aspects. However, it still lacks a comprehensive understanding of the unique molecular mechanism of DN. Methods A total of 255 Affymetrix U133 microarray datasets (Affymetrix, Santa Calra, CA, USA) of human glomerular and tubulointerstitial tissues were collected. The 22 215 Affymetrix identifiers shared by the Human Genome U133 Plus 2.0 and U133A Array were extracted to facilitate dataset pooling. Next, a linear model was constructed and the empirical Bayes method was used to select the differentially expressed genes (DEGs) of each kidney disease. Based on these DEG sets, the unique DEGs of DN were identified and further analyzed using gene ontology and pathway enrichment analysis. Finally, the protein–protein interaction networks (PINs) were constructed and hub genes were selected to further refine the results. Results A total of 129 and 1251 unique DEGs were identified in the diabetic glomerulus (upregulated n = 83 and downregulated n = 203) and the diabetic tubulointerstitium (upregulated n = 399 and downregulated n = 874), respectively. Enrichment analysis revealed that the DEGs in the diabetic glomerulus were significantly associated with the extracellular matrix, cell growth, regulation of blood coagulation, cholesterol homeostasis, intrinsic apoptotic signaling pathway and renal filtration cell differentiation. In the diabetic tubulointerstitium, the significantly enriched biological processes and pathways included metabolism, the advanced glycation end products–receptor for advanced glycation end products signaling pathway in diabetic complications, the epidermal growth factor receptor (EGFR) signaling pathway, the FoxO signaling pathway, autophagy and ferroptosis. By constructing PINs, several nodes, such as AGR2, CSNK2A1, EGFR and HSPD1, were identified as hub genes, which might play key roles in regulating the development of DN. Conclusions Our study not only reveals the unique molecular mechanism of DN but also provides a valuable resource for biomarker and therapeutic target discovery. Some of our findings are promising and should be explored in future work.
Collapse
Affiliation(s)
- Le-Ting Zhou
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Zhi-Jian Zhang
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Jing-Yuan Cao
- Nephrology Department, Taizhou People's Hospital, Fifth Affiliated Hospital to Nantong University, Taizhou, Jiangsu, China
| | - Hanzhi Chen
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Yu-Shan Zhu
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Xi Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Abdul Qadir Nawabi
- School of Medicine, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Xiaobin Liu
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Weiwei Shan
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Yue Zhang
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Xi-Ran Zhang
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Jing Xue
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Ling Hu
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Si-Si Wang
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Liang Wang
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Zhu-Xing Sun
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| |
Collapse
|
80
|
Moldoveanu Z, Suzuki H, Reily C, Satake K, Novak L, Xu N, Huang ZQ, Knoppova B, Khan A, Hall S, Yanagawa H, Brown R, Winstead CJ, O'Quinn DB, Weinmann A, Gharavi AG, Kiryluk K, Julian BA, Weaver CT, Suzuki Y, Novak J. Experimental evidence of pathogenic role of IgG autoantibodies in IgA nephropathy. J Autoimmun 2021; 118:102593. [PMID: 33508637 DOI: 10.1016/j.jaut.2021.102593] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND IgA nephropathy is thought to be an autoimmune disease wherein galactose-deficient IgA1 (Gd-IgA1) is recognized by IgG autoantibodies, resulting in formation and renal accumulation of nephritogenic immune complexes. Although this hypothesis is supported by recent findings that, in renal immunodeposits of IgA nephropathy patients, IgG is enriched for Gd-IgA1-specific autoantibodies, experimental proof is still lacking. METHODS IgG isolated from sera of IgA nephropathy patients or produced as a recombinant IgG (rIgG) was mixed with human Gd-IgA1 to form immune complexes. IgG from healthy individuals served as a control. Nude and SCID mice were injected with human IgG and Gd-IgA1, in immune complexes or individually, and their presence in kidneys was ascertained by immunofluorescence. Pathologic changes in the glomeruli were evaluated by quantitative morphometry and exploratory transcriptomic profiling was performed by RNA-Seq. RESULTS Immunodeficient mice injected with Gd-IgA1 mixed with IgG autoantibodies from patients with IgA nephropathy, but not Gd-IgA1 mixed with IgG from healthy individuals, displayed IgA, IgG, and mouse complement C3 glomerular deposits and mesangioproliferative glomerular injury with hematuria and proteinuria. Un-complexed Gd-IgA1 or IgG did not induce pathological changes. Moreover, Gd-IgA1-rIgG immune complexes injected into immunodeficient mice induced histopathological changes characteristic of human disease. Exploratory transcriptome profiling of mouse kidney tissues indicated that these immune complexes altered gene expression of multiple pathways, in concordance with the changes observed in kidney biopsies of patients with IgA nephropathy. CONCLUSIONS This study provides the first in vivo evidence for a pathogenic role of IgG autoantibodies specific for Gd-IgA1 in the pathogenesis of IgA nephropathy.
Collapse
Affiliation(s)
| | - Hitoshi Suzuki
- University of Alabama at Birmingham, Birmingham, AL, USA; Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Colin Reily
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenji Satake
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Lea Novak
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nuo Xu
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Atlas Khan
- Department of Medicine, Division of Nephrology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Stacy Hall
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hiroyuki Yanagawa
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Rhubell Brown
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Amy Weinmann
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ali G Gharavi
- Department of Medicine, Division of Nephrology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Krzysztof Kiryluk
- Department of Medicine, Division of Nephrology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Bruce A Julian
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey T Weaver
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jan Novak
- University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
81
|
Zhang L, Zhang M, Chen X, He Y, Chen R, Zhang J, Huang J, Ouyang C, Shi G. Identification of the tubulointerstitial infiltrating immune cell landscape and immune marker related molecular patterns in lupus nephritis using bioinformatics analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 8:1596. [PMID: 33437795 PMCID: PMC7791250 DOI: 10.21037/atm-20-7507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease that commonly affects the kidneys. Research into markers that can predict the prognosis of tubulointerstitial lupus nephritis (LN) has been impeded by the lack of well-designed studies. Methods In this study, we selected and merged 3 sets of renal biopsy tubulointerstitial data from GSE32591, GSE69438, and GSE127797, including 95 LN and 15 living healthy donors. CIBERSORTx was utilized for differentially infiltrating immune cell (DIIC) analysis. Weighted Gene Co-Expression network analysis (WGCNA) was employed to explore differentially expressed gene (DEG) related modules. Combined WGCNA hub genes and protein-protein interaction (PPI) validation was used for immune marker identification. Lastly, unsupervised clustering was carried out to validate the correlation between these markers and clinical characteristics. Results Our findings unveiled TYROBP, C1QB, LAPTM5, CTSS, PTPRC as the 5 immune markers, which were negatively correlated with glomerular filtration rate (GFR). Specifically, the expression levels of TYROBP and C1QB were significantly different between proliferative LN (PLN) and membranous LN (MLN). Unsupervised clustering could aggregate LN by these immune marker expression spectrums. Conclusions This study is the first to identify infiltrating immune cells and associated molecular patterns in the tubulointerstitium of LN by utilizing bioinformatics methods. These findings contribute to a better understanding of the mechanisms behind LN, and promote more precise diagnosis.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Fifth Hospital of Xiamen, Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Mengqin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xing Chen
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Fifth Hospital of Xiamen, Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yan He
- Department of Rheumatology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Rongjuan Chen
- Department of Rheumatology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jun Zhang
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Fifth Hospital of Xiamen, Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiyi Huang
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Fifth Hospital of Xiamen, Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chun Ouyang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guixiu Shi
- Department of Rheumatology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
82
|
Katewa A, Suto E, Hui J, Heredia J, Liang J, Hackney J, Anderson K, Alcantar TM, Bacarro N, Dunlap D, Eastham J, Paler-Martinez A, Rairdan XY, Modrusan Z, Lee WP, Austin CD, Lafkas D, Ghilardi N. The peptide symporter SLC15a4 is essential for the development of systemic lupus erythematosus in murine models. PLoS One 2021; 16:e0244439. [PMID: 33444326 PMCID: PMC7808665 DOI: 10.1371/journal.pone.0244439] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease representing a serious unmet medical need. The disease is associated with the loss of self-tolerance and exaggerated B cell activation, resulting in autoantibody production and the formation of immune complexes that accumulate in the kidney, causing glomerulonephritis. TLR7, an important mediator of the innate immune response, drives the expression of type-1 interferon (IFN), which leads to expression of type-1 IFN induced genes and aggravates lupus pathology. Because the lysosomal peptide symporter slc15a4 is critically required for type-1 interferon production by pDC, and for certain B cell functions in response to TLR7 and TLR9 signals, we considered it as a potential target for pharmacological intervention in SLE. We deleted the slc15a4 gene in C57BL/6, NZB, and NZW mice and found that pristane-challenged slc15a4-/- mice in the C57BL/6 background and lupus prone slc15a4-/- NZB/W F1 mice were both completely protected from lupus like disease. In the NZB/W F1 model, protection persisted even when disease development was accelerated with an adenovirus encoding IFNα, emphasizing a broad role of slc15a4 in disease initiation. Our results establish a non-redundant function of slc15a4 in regulating both innate and adaptive components of the immune response in SLE pathobiology and suggest that it may be an attractive drug target.
Collapse
Affiliation(s)
- Arna Katewa
- Dept. Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, United States of America
| | - Eric Suto
- Dept. Translational Immunology, Genentech, South San Francisco, CA, United States of America
| | - Jessica Hui
- Evercore ISI, New York, NY, United States of America
| | - Jose Heredia
- Dept. Immunology, Genentech, South San Francisco, CA, United States of America
| | - Jie Liang
- Dept. Molecular Oncology, Genentech, South San Francisco, CA, United States of America
| | - Jason Hackney
- Dept. Bioinformatics, Genentech, South San Francisco, CA, United States of America
| | - Keith Anderson
- Dept. Molecular Biology, Genentech, South San Francisco, CA, United States of America
| | - Tuija M. Alcantar
- Dept. Molecular Biology, Genentech, South San Francisco, CA, United States of America
| | - Natasha Bacarro
- Dept. Molecular Biology, Genentech, South San Francisco, CA, United States of America
| | - Debra Dunlap
- Dept. Pathology, Genentech, South San Francisco, CA, United States of America
| | - Jeffrey Eastham
- Dept. Pathology, Genentech, South San Francisco, CA, United States of America
| | - Andres Paler-Martinez
- Dept. Translational Immunology, Genentech, South San Francisco, CA, United States of America
| | - Xin Y. Rairdan
- gRED Animal Resources, South San Francisco, CA, United States of America
| | - Zora Modrusan
- Dept. Microchemistry, Proteomics, & Lipidomics, Genentech, South San Francisco, CA, United States of America
| | - Wyne P. Lee
- Dept. Translational Immunology, Genentech, South San Francisco, CA, United States of America
| | - Cary D. Austin
- Dept. Pathology, Genentech, South San Francisco, CA, United States of America
| | - Daniel Lafkas
- Dept. Immunology, Genentech, South San Francisco, CA, United States of America
| | - Nico Ghilardi
- DiCE Molecules, South San Francisco, CA, United States of America
| |
Collapse
|
83
|
Wang G, Wu L, Su H, Feng X, Shi M, Jin L, Yang M, Zhou Z, Su C, Yang B, Li Y, Cao W. Association of Urinary Matrix Metalloproteinase 7 Levels With Incident Renal Flare in Lupus Nephritis. Arthritis Rheumatol 2021; 73:265-275. [PMID: 32892475 DOI: 10.1002/art.41506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/03/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Flares of lupus nephritis (LN) are frequent and associated with impaired renal prognosis. One major management obstacle in LN flare is the lack of effective methods to identify at-risk patients earlier in their disease course. This study was undertaken to test the utility of measurement of urinary matrix metalloproteinase 7 (MMP-7) for the dynamic surveillance of renal disease activity and prediction of renal flares in LN. METHODS A prospective, 2-stage cohort study was performed in patients with LN. Urinary MMP-7 levels at the time of biopsy were evaluated in 154 patients with newly diagnosed LN in 2 independent cohorts. Urinary MMP-7 levels were assessed for correlation with renal histologic activity. Furthermore, after a minimum period of 12 months of renal disease remission, urinary MMP-7 levels were monitored bimonthly for 2 years in 65 patients with LN. The association between urinary MMP-7 levels and development of LN flare was analyzed. RESULTS Urinary MMP-7 levels were elevated in patients with LN. A higher urinary MMP-7 level in LN was associated with greater renal histologic activity. As a marker for identifying LN patients with more severe renal histologic activity (i.e., a histologic activity index of ≥7), the level of urinary MMP-7 outperformed other clinical markers and improved their predictive performance, thus linking urinary MMP-7 levels to renal disease activity. Furthermore, among patients who had follow-up measurements of urinary MMP-7 after achievement of long-term remission of renal disease activity, an elevated urinary MMP-7 level during follow-up was independently associated with an increased risk of LN flare. This elevation in the urinary MMP-7 level hinted at the risk of an LN flare at an earlier time point prior to indications using conventional laboratory measures. Thus, use of the urinary MMP-7 level in conjunction with other clinical measures improved the prognostic value for prediction of an LN flare. CONCLUSION Urinary MMP-7 levels in LN are correlated with renal histologic activity. An elevated urinary MMP-7 level detected after achievement of long-term renal disease remission is associated with a higher risk of incident renal flare in patients with LN.
Collapse
Affiliation(s)
- Guobao Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liling Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, China, and Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Huanjuan Su
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaodan Feng
- Guangzhou Development District Hospital, Guangzhou, China
| | - Meng Shi
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingwei Jin
- The 2nd Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Manqiu Yang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhanmei Zhou
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cailing Su
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bihui Yang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yajing Li
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Cao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
84
|
Wu J, Lin Q, Li S, Shao X, Zhu X, Zhang M, Zhou W, Ni Z. Periostin Contributes to Immunoglobulin a Nephropathy by Promoting the Proliferation of Mesangial Cells: A Weighted Gene Correlation Network Analysis. Front Genet 2021; 11:595757. [PMID: 33488671 PMCID: PMC7817997 DOI: 10.3389/fgene.2020.595757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is a known cause of end-stage kidney disease, but the pathogenesis and factors affecting prognosis are not fully understood. In the present study, we carried out weighted gene correlation network analysis (WGCNA) to identify hub genes related to the occurrence of IgAN and validated candidate genes in experiments using mouse mesangial cells (MMCs) and clinical specimens (kidney tissue from IgAN patients and healthy controls). We screened the GSE37460 and GSE104948 differentially expressed genes common to both datasets and identified periostin (POSTN) as one of the five key genes using the cytoHubba plugin of Cytoscape software and by receiver-operating characteristic curve analysis. The top 25% of genes in the GSE93798 dataset showing variable expression between IgAN and healthy tissue were assessed by WGCNA. The royalblue module in WGCNA was closely related to creatinine and estimated glomerular filtration rate (eGFR) in IgAN patients. POSTN had very high module membership and gene significance values for creatinine (0.82 and 0.66, respectively) and eGFR (0.82 and -0.67, respectively), indicating that it is a co-hub gene. In MMCs, POSTN was upregulated by transforming growth factor β1, and stimulation of MMCs with recombinant POSTN protein resulted in an increase in the level of proliferating cell nuclear antigen (PCNA) and a decrease in that of B cell lymphoma-associated X protein, which were accompanied by enhanced MMC proliferation. POSTN gene knockdown had the opposite effects. Immunohistochemical analysis of kidney tissue specimens showed that POSTN and PCNA levels were elevated, whereas the rate of apoptosis was reduced in IgAN patients relative to healthy controls. POSTN level in the kidney tissue of IgAN patients was positively correlated with creatinine level and negatively correlated with eGFR. Thus, POSTN promotes the proliferation of MCs to promote renal dysfunction in IgAN.
Collapse
Affiliation(s)
- Jingkui Wu
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qisheng Lin
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Li
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xinghua Shao
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuying Zhu
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Minfang Zhang
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyan Zhou
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
85
|
Yao M, Gao C, Zhang C, Di X, Liang W, Sun W, Wang Q, Zheng Z. Identification of Molecular Markers Associated With the Pathophysiology and Treatment of Lupus Nephritis Based on Integrated Transcriptome Analysis. Front Genet 2020; 11:583629. [PMID: 33384713 PMCID: PMC7770169 DOI: 10.3389/fgene.2020.583629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Lupus nephritis (LN) is a well-known complication of systemic lupus erythematosus and is its leading cause of morbidity and mortality. Our study aimed to identify the molecular markers associated with the pathophysiology and treatment of LN. The renal tissue gene expression profiles of LN patients in the GSE32591 dataset were downloaded as a discovery cohort from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified; weighted gene co-expression network analysis (WGCNA) was used to identify the co-expression modules of DEGs; and gene function enrichment analysis, molecular crosstalk analysis, and immune cell infiltration analysis were performed to explore the pathophysiological changes in glomeruli and tubulointerstitia of LN patients. The crosstalk genes were validated in another RNA-sequencing cohort. DEGs common in RNA-sequencing dataset and GSE32591 were uploaded to the Connectivity Map (CMap) database to find prospective LN-related drugs. Molecular docking was used to verify the targeting association between candidate small molecular compounds and the potential target. In all, 420 DEGs were identified; five modules and two modules associated with LN were extracted in glomeruli and tubulointerstitia, respectively. Functional enrichment analysis showed that type I interferon (IFN) response was highly active, and some biological processes such as metabolism, detoxification, and ion transport were impaired in LN. Gene transcription in glomeruli and tubulointerstitia might affect each other, and some crosstalk genes, such as IRF7, HLA-DRA, ISG15, PSMB8, and IFITM3, play important roles in this process. Immune cell infiltration analysis revealed that monocytes and macrophages were increased in glomeruli and tubulointerstitia, respectively. CMap analysis identified proscillaridin as a possible drug to treat LN. Molecular docking showed proscillaridin forms four hydrogen bonds with the SH2 domain of signal transducer and activator of transcription 1 (STAT1). The findings of our study may shed light on the pathophysiology of LN and provide potential therapeutic targets for LN.
Collapse
Affiliation(s)
- Menghui Yao
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Congcong Gao
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunyi Zhang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueqi Di
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenfang Liang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbo Sun
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qianqian Wang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaohui Zheng
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
86
|
Tesch S, Abdirama D, Grießbach AS, Brand HA, Goerlich N, Humrich JY, Bacher P, Hiepe F, Riemekasten G, Enghard P. Identification and characterization of antigen-specific CD4 + T cells targeting renally expressed antigens in human lupus nephritis with two independent methods. Sci Rep 2020; 10:21312. [PMID: 33277543 PMCID: PMC7718878 DOI: 10.1038/s41598-020-78223-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 11/17/2020] [Indexed: 12/02/2022] Open
Abstract
In the search for anti-renal autoreactivity in human lupus nephritis, we stimulated blood-derived CD4+ T cells from patients with systemic lupus erythematosus with various kidney lysates. Although only minor responses were detectable, these experiments led to the development of a search algorithm that combined autoantibody association with human lupus nephritis and target gene expression in inflamed kidneys. Applying this algorithm, five potential T cell antigens were identified. Blood-derived CD4+ T cells were then stimulated with these antigens. The cells were magnetically enriched prior to measurement with flow cytometry to facilitate the detection of very rare autoantigen-specific cells. The detected responses were dominated by IFN-γ-producing CD4+ T cells. Additionally, IL-10-producing CD4+ T cells were found. In a next step, T cell reactivity to each single antigen was independently evaluated with T cell libraries and [3H]-thymidine incorporation assays. Here, Vimentin and Annexin A2 were identified as the main T cell targets. Finally, Vimentin reactive T cells were also found in the urine of three patients with active disease. Overall, our experiments show that antigen-specific CD4+ T cells targeting renally expressed antigens arise in human lupus nephritis and correlate with disease activity and are mainly of the Th1 subset.
Collapse
Affiliation(s)
- Sebastian Tesch
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany
| | - Dimas Abdirama
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Anna-Sophie Grießbach
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Hannah Antonia Brand
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany
| | - Nina Goerlich
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany
| | - Jens Y Humrich
- Department of Rheumatology and Clinical Immunology, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Petra Bacher
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,Institute of Immunology, Christian-Albrechts Universität zu Kiel and Universitätsklinik Schleswig-Holstein, Kiel, Germany.,Institute of Clinical Molecular Biology, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Falk Hiepe
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany. .,Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany.
| |
Collapse
|
87
|
Li B, Tang Y, Ni X, Chen W. Immune Cell Landscape Identification Associates Intrarenal Mononuclear Phagocytes With Onset and Remission of Lupus Nephritis in NZB/W Mice. Front Genet 2020; 11:577040. [PMID: 33304383 PMCID: PMC7693546 DOI: 10.3389/fgene.2020.577040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Objective A challenging issue in the clinical management of lupus nephritis (LN) is the resistance to immunosuppressive therapy. We postulated that perturbed intrarenal immune cell landscape affected LN onset and remission induction, and shedding light on the characteristics of intrarenal immune cell infiltration could cultivate more efficient treatment regimens. Materials and Methods Genome-wide expression profiles of microarray datasets were downloaded from the Gene Expression Omnibus database. The CIBERSORT algorithm was used to analyze the intrarenal immune cell landscape, followed by Pearson correlation analysis and principal component analysis. The differentially expressed genes were identified and subjected to Gene Ontology (GO) enrichment analyses and protein-protein interaction network establishment, being visualized by Cytoscape and further analyzed by CytoHubba to extract hub genes. Hub genes were also validated in the genomic dataset from kidney biopsy-proven LN patients. Results In addition to memory B cells, monocytes and M1 macrophages were identified as two predominantly increased intrarenal immune cell types in LN-prone NZB/W mice upon nephritis onset. Most interestingly, apart from memory B cells, monocytes and M1 macrophages proportions in kidney tissue were significantly lower in early remission mice compared with late remission mice. Furthermore, GO analysis showed that intrarenal mononuclear phagocytes triggered nephritis onset mainly via the initiation of adaptive immune response and inflammatory reaction, but this functional involvement was mitigated upon remission induction. Hub genes related to LN onset in NZB/W mice were validated in the genomic dataset from kidney biopsy-proven LN patients. Conclusion LN characterizes aberrant mononuclear phagocytes abundance and signature upon disease onset, of which the reversal is associated with early remission induction in LN-prone NZB/W mice. Mononuclear phagocytes might be an adjunctive histology marker for monitoring disease onset and stratifying LN patients in terms of response to remission induction therapy.
Collapse
Affiliation(s)
- Bin Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Yanlai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuhao Ni
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| |
Collapse
|
88
|
Dorraji SE, Kanapathippillai P, Hovd AMK, Stenersrød MR, Horvei KD, Ursvik A, Figenschau SL, Thiyagarajan D, Fenton CG, Pedersen HL, Fenton KA. Kidney Tertiary Lymphoid Structures in Lupus Nephritis Develop into Large Interconnected Networks and Resemble Lymph Nodes in Gene Signature. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2203-2225. [PMID: 32818496 DOI: 10.1016/j.ajpath.2020.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
Immune aggregates organized as tertiary lymphoid structures (TLS) are observed within the kidneys of patients with systemic lupus erythematosus and lupus nephritis (LN). Renal TLS was characterized in lupus-prone New Zealand black × New Zealand white F1 mice analyzing cell composition and vessel formation. RNA sequencing was performed on transcriptomes isolated from lymph nodes, macrodissected TLS from kidneys, and total kidneys of mice at different disease stages by using a personal genome machine and RNA sequencing. Formation of TLS was found in anti-double-stranded DNA antibody-positive mice, and the structures were organized as interconnected large networks with distinct T/B cell zones with adjacent dendritic cells, macrophages, plasma cells, high endothelial venules, supporting follicular dendritic cells network, and functional germinal centers. Comparison of gene profiles of whole kidney, renal TLS, and lymph nodes revealed a similar gene signature of TLS and lymph nodes. The up-regulated genes within the kidneys of lupus-prone mice during LN development reflected TLS formation, whereas the down-regulated genes were involved in metabolic processes of the kidney cells. A comparison with human LN gene expression revealed similar up-regulated genes as observed during the development of murine LN and TLS. In conclusion, kidney TLS have a similar cell composition, structure, and gene signature as lymph nodes and therefore may function as a kidney-specific type of lymph node.
Collapse
Affiliation(s)
- Seyed Esmaeil Dorraji
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Premasany Kanapathippillai
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Aud-Malin Karlsson Hovd
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Mikael Ryan Stenersrød
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Kjersti Daae Horvei
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Anita Ursvik
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Stine Linn Figenschau
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Dhivya Thiyagarajan
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Christopher Graham Fenton
- Genomic Support Center, Department of Clinical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromso, Norway
| | - Hege Lynum Pedersen
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Kristin Andreassen Fenton
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
89
|
Identification of Key Genes of Human Advanced Diabetic Nephropathy Independent of Proteinuria by Transcriptome Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7283581. [PMID: 32685522 PMCID: PMC7336202 DOI: 10.1155/2020/7283581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/15/2023]
Abstract
Background Diabetic nephropathy (DN) is the leading cause of ESRD. Emerging evidence indicated that proteinuria may not be the determinant of renal survival in DN. The aim of the current study was to provide molecular signatures apart from proteinuria in DN by an integrative bioinformatics approach. Method Affymetrix microarray datasets from microdissected glomerular and tubulointerstitial compartments of DN, healthy controls, and proteinuric disease controls including minimal change disease and membranous nephropathy were extracted from open-access database. Differentially expressed genes (DEGs) in DN versus both healthy and proteinuric controls were identified by limma package, and further defined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Hub genes were checked by protein-protein interaction networks. Results A total of 566 glomerular and 581 tubulointerstitial DEGs were identified in DN, which were commonly differentially expressed compared to normal controls and proteinuric disease controls. The upregulated DEGs in both compartments were significantly enriched in GO biological process associated with fibrosis, inflammation, and platelet dysfunction, and largely located in extracellular space, including matrix and extracellular vesicles. Pathway analysis highlighted immune system regulation. Hub genes of the upregulated DEGs negatively correlated with estimated glomerular filtration rate (eGFR). While the downregulated DEGs and their hub genes in tubulointerstitium were enriched in pathways associated with lipid metabolism and oxidation, which positively correlated with eGFR. Conclusions Our study identified pathways including fibrosis, inflammation, lipid metabolism, and oxidative stress contributing to the progression of DN independent of proteinuria. These genes may serve as biomarkers and therapeutic targets.
Collapse
|
90
|
Yang Q, Hu J, Yang Y, Chen Z, Feng J, Zhu Z, Wang H, Yang D, Liang W, Ding G. Sirt6 deficiency aggravates angiotensin II-induced cholesterol accumulation and injury in podocytes. Theranostics 2020; 10:7465-7479. [PMID: 32642006 PMCID: PMC7330847 DOI: 10.7150/thno.45003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Disturbed renal lipid metabolism, especially cholesterol dysregulation plays a crucial role in the pathogenesis of chronic kidney disease (CKD). We recently reported that angiotensin (Ang) II could induce cholesterol accumulation and injury in podocytes. However, the underlying mechanisms for these alterations remain unknown. Methods: Bioinformatics analysis of renal biopsy specimens from patients with hypertensive nephropathy (HN) suggests the involvement of Sirtuin 6 (Sirt6) in Ang II-induced dysregulation of glomerular cholesterol. Using a podocyte-specific Sirt6 knockout mouse model, the effects of Sirt6 on Ang II-induced cholesterol accumulation in podocytes and the therapeutic efficacies of cholesterol-lowering agents were evaluated. Results: Cholesterol accumulation was detected in the podocytes of Ang II-infused mice, whereas selective deletion of Sirt6 in podocytes not only increased cholesterol accumulation in these cells but also exacerbated Ang II-induced kidney injury. Deletion of Sirt6 also attenuated the protective effect of cyclodextrin (CD) on Ang II-induced urinary albumin excretion, glomerulosclerosis and podocyte injury. In addition, we demonstrated that Sirt6 affected cholesterol efflux in podocytes by regulating the expression of ATP-binding cassette transporter G1 (ABCG1). Conclusions: These findings provide evidence that Sirt6 is a potential target for renin-angiotensin system (RAS)-associated podocyte injury and provide a rationale for the application of cholesterol-lowering agents in patients with CKD.
Collapse
|
91
|
Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol 2020; 21:605-614. [PMID: 32367037 PMCID: PMC8135909 DOI: 10.1038/s41590-020-0677-6] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 01/07/2023]
Abstract
Impressive progress has been made over the last several years toward understanding how almost every aspect of the immune system contributes to the expression of systemic autoimmunity. In parallel, studies have shed light on the mechanisms that contribute to organ inflammation and damage. New approaches that address the complicated interaction between genetic variants, epigenetic processes, sex and the environment promise to enlighten the multitude of pathways that lead to what is clinically defined as systemic lupus erythematosus. It is expected that each patient owns a unique 'interactome', which will dictate specific treatment.
Collapse
Affiliation(s)
- George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| |
Collapse
|
92
|
Brant EJ, Rietman EA, Klement GL, Cavaglia M, Tuszynski JA. Personalized therapy design for systemic lupus erythematosus based on the analysis of protein-protein interaction networks. PLoS One 2020; 15:e0226883. [PMID: 32191711 PMCID: PMC7081981 DOI: 10.1371/journal.pone.0226883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 12/08/2019] [Indexed: 12/26/2022] Open
Abstract
We analyzed protein expression data for Lupus patients, which have been obtained from publicly available databases. A combination of systems biology and statistical thermodynamics approaches was used to extract topological properties of the associated protein-protein interaction networks for each of the 291 patients whose samples were used to provide the molecular data. We have concluded that among the many proteins that appear to play critical roles in this pathology, most of them are either ribosomal proteins, ubiquitination pathway proteins or heat shock proteins. We propose some of the proteins identified in this study to be considered for drug targeting.
Collapse
Affiliation(s)
- Elizabeth J. Brant
- Nephrology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| | - Edward A. Rietman
- BINDS lab, College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Department of Mechanical and Industrial Engineering, University of Mass, Amherst, Massachusetts, United States of America
| | | | | | - Jack A. Tuszynski
- DIMEAS, Politecnico di Torino, Torino, Italy
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
93
|
Protecting the kidney in systemic lupus erythematosus: from diagnosis to therapy. Nat Rev Rheumatol 2020; 16:255-267. [PMID: 32203285 DOI: 10.1038/s41584-020-0401-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 12/20/2022]
Abstract
Lupus nephritis (LN) is a common manifestation of systemic lupus erythematosus that can lead to irreversible renal impairment. Although the prognosis of LN has improved substantially over the past 50 years, outcomes have plateaued in the USA in the past 20 years as immunosuppressive therapies have failed to reverse disease in more than half of treated patients. This failure might reflect disease complexity and heterogeneity, as well as social and economic barriers to health-care access that can delay intervention until after damage has already occurred. LN progression is still poorly understood and involves multiple cell types and both immune and non-immune mechanisms. Single-cell analysis of intrinsic renal cells and infiltrating cells from patients with LN is a new approach that will help to define the pathways of renal injury at a cellular level. Although many new immune-modulating therapies are being tested in the clinic, the development of therapies to improve regeneration of the injured kidney and to prevent fibrosis requires a better understanding of the mechanisms of LN progression. This mechanistic understanding, together with the development of clinical measures to evaluate risk and detect early disease and better access to expert health-care providers, should improve outcomes for patients with LN.
Collapse
|
94
|
Haynes WA, Haddon DJ, Diep VK, Khatri A, Bongen E, Yiu G, Balboni I, Bolen CR, Mao R, Utz PJ, Khatri P. Integrated, multicohort analysis reveals unified signature of systemic lupus erythematosus. JCI Insight 2020; 5:122312. [PMID: 31971918 DOI: 10.1172/jci.insight.122312] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/17/2020] [Indexed: 12/27/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that follows an unpredictable disease course and affects multiple organs and tissues. We performed an integrated, multicohort analysis of 7,471 transcriptomic profiles from 40 independent studies to identify robust gene expression changes associated with SLE. We identified a 93-gene signature (SLE MetaSignature) that is differentially expressed in the blood of patients with SLE compared with healthy volunteers; distinguishes SLE from other autoimmune, inflammatory, and infectious diseases; and persists across diverse tissues and cell types. The SLE MetaSignature correlated significantly with disease activity and other clinical measures of inflammation. We prospectively validated the SLE MetaSignature in an independent cohort of pediatric patients with SLE using a microfluidic quantitative PCR (qPCR) array. We found that 14 of the 93 genes in the SLE MetaSignature were independent of IFN-induced and neutrophil-related transcriptional profiles that have previously been associated with SLE. Pathway analysis revealed dysregulation associated with nucleic acid biosynthesis and immunometabolism in SLE. We further refined a neutropoiesis signature and identified underappreciated transcripts related to immune cells and oxidative stress. In our multicohort, transcriptomic analysis has uncovered underappreciated genes and pathways associated with SLE pathogenesis, with the potential to advance clinical diagnosis, biomarker development, and targeted therapeutics for SLE.
Collapse
Affiliation(s)
- Winston A Haynes
- Institute for Immunity, Transplantation and Infection.,Division of Biomedical Informatics Research
| | - D James Haddon
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Vivian K Diep
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Avani Khatri
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Erika Bongen
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Gloria Yiu
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Imelda Balboni
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | | | - Rong Mao
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Paul J Utz
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection.,Division of Biomedical Informatics Research
| |
Collapse
|
95
|
Rao DA, Arazi A, Wofsy D, Diamond B. Design and application of single-cell RNA sequencing to study kidney immune cells in lupus nephritis. Nat Rev Nephrol 2019; 16:238-250. [PMID: 31853010 DOI: 10.1038/s41581-019-0232-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2019] [Indexed: 11/09/2022]
Abstract
The immune mechanisms that cause tissue injury in lupus nephritis have been challenging to define. The advent of high-dimensional cellular analyses, such as single-cell RNA sequencing, has enabled detailed characterization of the cell populations present in small biopsy samples of kidney tissue. In parallel, the development of methods that cryopreserve kidney biopsy specimens in a manner that preserves intact, viable cells, has enabled the uniform analysis of tissue samples collected at multiple sites and across many geographic areas and demographic cohorts with high-dimensional platforms. The application of these methods to kidney biopsy samples from patients with lupus nephritis has begun to define the phenotypes of both infiltrating and resident immune cells, as well as parenchymal cells, present in nephritic kidneys. The detection of similar immune cell populations in urine suggests that it might be possible to non-invasively monitor immune activation in kidneys. Once applied to large patient cohorts, these high-dimensional studies might enable patient stratification according to patterns of immune cell activation in the kidney or identify disease features that can be used as surrogate measures of efficacy in clinical trials. Applied broadly across multiple inflammatory kidney diseases, these studies promise to enormously expand our understanding of renal inflammation in the next decade.
Collapse
Affiliation(s)
- Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arnon Arazi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Wofsy
- Rheumatology Division and Russell/Engleman Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
96
|
The pathogenesis of systemic lupus erythematosus: Harnessing big data to understand the molecular basis of lupus. J Autoimmun 2019; 110:102359. [PMID: 31806421 DOI: 10.1016/j.jaut.2019.102359] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic, systemic autoimmune disease that causes damage to multiple organ systems. Despite decades of research and available murine models that capture some aspects of the human disease, new treatments for SLE lag behind other autoimmune diseases such as Rheumatoid Arthritis and Crohn's disease. Big data genomic assays have transformed our understanding of SLE by providing important insights into the molecular heterogeneity of this multigenic disease. Gene wide association studies have demonstrated more than 100 risk loci, supporting a model of multiple genetic hits increasing SLE risk in a non-linear fashion, and providing evidence of ancestral diversity in susceptibility loci. Epigenetic studies to determine the role of methylation, acetylation and non-coding RNAs have provided new understanding of the modulation of gene expression in SLE patients and identified new drug targets and biomarkers for SLE. Gene expression profiling has led to a greater understanding of the role of myeloid cells in the pathogenesis of SLE, confirmed roles for T and B cells in SLE, promoted clinical trials based on the prominent interferon signature found in SLE patients, and identified candidate biomarkers and cellular signatures to further drug development and drug repurposing. Gene expression studies are advancing our understanding of the underlying molecular heterogeneity in SLE and providing hope that patient stratification will expedite new therapies based on personal molecular signatures. Although big data analyses present unique interpretation challenges, both computationally and biologically, advances in machine learning applications may facilitate the ability to predict changes in SLE disease activity and optimize therapeutic strategies.
Collapse
|
97
|
Tajti F, Kuppe C, Antoranz A, Ibrahim MM, Kim H, Ceccarelli F, Holland CH, Olauson H, Floege J, Alexopoulos LG, Kramann R, Saez-Rodriguez J. A Functional Landscape of CKD Entities From Public Transcriptomic Data. Kidney Int Rep 2019; 5:211-224. [PMID: 32043035 PMCID: PMC7000845 DOI: 10.1016/j.ekir.2019.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/09/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction To develop effective therapies and identify novel early biomarkers for chronic kidney disease, an understanding of the molecular mechanisms orchestrating it is essential. We here set out to understand how differences in chronic kidney disease (CKD) origin are reflected in gene expression. To this end, we integrated publicly available human glomerular microarray gene expression data for 9 kidney disease entities that account for most of CKD worldwide. Our primary goal was to demonstrate the possibilities and potential on data analysis and integration to the nephrology community. Methods We integrated data from 5 publicly available studies and compared glomerular gene expression profiles of disease with that of controls from nontumor parts of kidney cancer nephrectomy tissues. A major challenge was the integration of the data from different sources, platforms, and conditions that we mitigated with a bespoke stringent procedure. Results We performed a global transcriptome-based delineation of different kidney disease entities, obtaining a transcriptomic diffusion map of their similarities and differences based on the genes that acquire a consistent differential expression between each kidney disease entity and nephrectomy tissue. We derived functional insights by inferring the activity of signaling pathways and transcription factors from the collected gene expression data and identified potential drug candidates based on expression signature matching. We validated representative findings by immunostaining in human kidney biopsies indicating, for example, that the transcription factor FOXM1 is significantly and specifically expressed in parietal epithelial cells in rapidly progressive glomerulonephritis (RPGN) whereas not expressed in control kidney tissue. Furthermore, we found drug candidates by matching the signature on expression of drugs to that of the CKD entities, in particular, the Food and Drug Administration-approved drug nilotinib. Conclusion These results provide a foundation to comprehend the specific molecular mechanisms underlying different kidney disease entities that can pave the way to identify biomarkers and potential therapeutic targets. To facilitate further use, we provide our results as a free interactive Web application: https://saezlab.shinyapps.io/ckd_landscape/. However, because of the limitations of the data and the difficulties in its integration, any specific result should be considered with caution. Indeed, we consider this study rather an illustration of the value of functional genomics and integration of existing data.
Collapse
Affiliation(s)
- Ferenc Tajti
- Faculty of Medicine, RWTH Aachen University, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Christoph Kuppe
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Asier Antoranz
- Department of Mechanical Engineering, National Technical University of Athens, Athens, Greece.,Department of Testing Services, ProtATonce Ltd., Athens, Greece
| | - Mahmoud M Ibrahim
- Faculty of Medicine, RWTH Aachen University, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Hyojin Kim
- Faculty of Medicine, RWTH Aachen University, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany
| | - Francesco Ceccarelli
- Faculty of Medicine, RWTH Aachen University, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany
| | - Christian H Holland
- Faculty of Medicine, RWTH Aachen University, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany.,Institute for Computational Biomedicine, Heidelberg University, Bioquant, Heidelberg, Germany
| | - Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Leonidas G Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, Athens, Greece.,Department of Testing Services, ProtATonce Ltd., Athens, Greece
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, RWTH Aachen University, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany.,Institute for Computational Biomedicine, Heidelberg University, Bioquant, Heidelberg, Germany
| |
Collapse
|
98
|
Liu A, Trairatphisan P, Gjerga E, Didangelos A, Barratt J, Saez-Rodriguez J. From expression footprints to causal pathways: contextualizing large signaling networks with CARNIVAL. NPJ Syst Biol Appl 2019; 5:40. [PMID: 31728204 PMCID: PMC6848167 DOI: 10.1038/s41540-019-0118-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022] Open
Abstract
While gene expression profiling is commonly used to gain an overview of cellular processes, the identification of upstream processes that drive expression changes remains a challenge. To address this issue, we introduce CARNIVAL, a causal network contextualization tool which derives network architectures from gene expression footprints. CARNIVAL (CAusal Reasoning pipeline for Network identification using Integer VALue programming) integrates different sources of prior knowledge including signed and directed protein-protein interactions, transcription factor targets, and pathway signatures. The use of prior knowledge in CARNIVAL enables capturing a broad set of upstream cellular processes and regulators, leading to a higher accuracy when benchmarked against related tools. Implementation as an integer linear programming (ILP) problem guarantees efficient computation. As a case study, we applied CARNIVAL to contextualize signaling networks from gene expression data in IgA nephropathy (IgAN), a condition that can lead to chronic kidney disease. CARNIVAL identified specific signaling pathways and associated mediators dysregulated in IgAN including Wnt and TGF-β, which we subsequently validated experimentally. These results demonstrated how CARNIVAL generates hypotheses on potential upstream alterations that propagate through signaling networks, providing insights into diseases.
Collapse
Affiliation(s)
- Anika Liu
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute of Computational Biomedicine, Bioquant, 69120 Heidelberg, Germany
- 2RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), 52074 Aachen, Germany
| | - Panuwat Trairatphisan
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute of Computational Biomedicine, Bioquant, 69120 Heidelberg, Germany
| | - Enio Gjerga
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute of Computational Biomedicine, Bioquant, 69120 Heidelberg, Germany
- 2RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), 52074 Aachen, Germany
| | - Athanasios Didangelos
- 3Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- 3Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute of Computational Biomedicine, Bioquant, 69120 Heidelberg, Germany
- 2RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), 52074 Aachen, Germany
| |
Collapse
|
99
|
Wang L, Law HKW. Immune Complexes Impaired Glomerular Endothelial Cell Functions in Lupus Nephritis. Int J Mol Sci 2019; 20:ijms20215281. [PMID: 31652980 PMCID: PMC6862593 DOI: 10.3390/ijms20215281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/05/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Lupus nephritis (LN) is one of the most common and severe complications of lupus. However, the mechanisms for renal damage have not been well elucidated. There are evidences show that glomerular endothelial cells (GECs) are damaged in LN. Immune complexes can deposit in subendothelial area and could affect GEC functions. In the present study, we used heat-aggregated gamma globulin (HAGG) to simulate immune complexes and investigated their effects on GEC functions. Our results revealed that HAGG impaired different aspect of the GEC functions. HAGG changed cell morphology, upregulated the expression of active caspase-3, inhibited angiogenesis, and increased NO production in GECs. These results provide new clues for the mechanisms of renal damage and the pathology of LN.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Helen Ka Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
100
|
Smith MA, Henault J, Karnell JL, Parker ML, Riggs JM, Sinibaldi D, Taylor DK, Ettinger R, Grant EP, Sanjuan MA, Kolbeck R, Petri MA, Casey KA. SLE Plasma Profiling Identifies Unique Signatures of Lupus Nephritis and Discoid Lupus. Sci Rep 2019; 9:14433. [PMID: 31594956 PMCID: PMC6783423 DOI: 10.1038/s41598-019-50231-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) impacts multiple organ systems, although the causes of many individual SLE pathologies are poorly understood. This study was designed to elucidate organ-specific inflammation by identifying proteins that correlate with SLE organ involvement and to evaluate established biomarkers of disease activity across a diverse patient cohort. Plasma proteins and autoantibodies were measured across seven SLE manifestations. Comparative analyses between pathologies and correlation with the SLE Disease Activity Index (SLEDAI) were used to identify proteins associated with organ-specific and composite disease activity. Established biomarkers of composite disease activity, SLE-associated antibodies, type I interferon (IFN), and complement C3, correlated with composite SLEDAI, but did not significantly associate with many individual SLE pathologies. Two clusters of proteins were associated with renal disease in lupus nephritis samples. One cluster included markers of infiltrating leukocytes and the second cluster included markers of tissue remodelling. In patients with discoid lupus, a distinct signature consisting of elevated immunoglobulin A autoantibodies and interleukin-23 was observed. Our findings indicate that proteins from blood samples can be used to identify protein signatures that are distinct from established SLE biomarkers and SLEDAI and could be used to conveniently monitor multiple inflammatory pathways present in different organ systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Michelle A Petri
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Kerry A Casey
- AstraZeneca, Gaithersburg, MD, USA.
- Allen Institute for Immunology, 615 Westlake Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|