51
|
Kourkounti S, Papaizos V, Leuow K, Kordosis T, Antoniou C. Hepatitis A Vaccination and Immunological Parameters in HIV-Infected Patients. Viral Immunol 2013; 26:357-63. [DOI: 10.1089/vim.2012.0100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sofia Kourkounti
- Department of Dermatology and Venereology (AIDS Unit), A. Sygros Hospital, Athens, Greece
| | - Vassilios Papaizos
- Department of Dermatology and Venereology (AIDS Unit), A. Sygros Hospital, Athens, Greece
| | - Kirsten Leuow
- Department of Dermatology and Venereology (AIDS Unit), A. Sygros Hospital, Athens, Greece
| | - Theodoros Kordosis
- Department of Pathophysiology (AIDS Unit), Laikon General Hospital, Athens, Greece
| | - Christina Antoniou
- Department of Dermatology and Venereology (AIDS Unit), A. Sygros Hospital, Athens, Greece
| |
Collapse
|
53
|
Abstract
Inflammatory bowel disease is characterized by a number of immunological alterations, not the least in the T-cell compartment. Numerous animal models of colitis have revealed aberrant thymocyte dynamics associated with skewed thymocyte development. The recent advancements in quantitative methods have proposed critical kinetic alterations in the thymocyte development during the progression of colitis. This review focuses on the aberrant thymocyte dynamics in Gαi2-deficient mice as this mouse model provides most quantitative data of the thymocyte development associated with colitis. Herein, we discuss several dynamic changes during the progression of colitis and propose a hypothesis for the underlying causes for the skewed proportions of the thymocyte populations seen in the Gαi2-deficient mice and in other mouse models of colitis.
Collapse
|
54
|
Patel V, Jalah R, Kulkarni V, Valentin A, Rosati M, Alicea C, von Gegerfelt A, Huang W, Guan Y, Keele BF, Bess JW, Piatak M, Lifson JD, Williams WT, Shen X, Tomaras GD, Amara RR, Robinson HL, Johnson W, Broderick KE, Sardesai NY, Venzon DJ, Hirsch VM, Felber BK, Pavlakis GN. DNA and virus particle vaccination protects against acquisition and confers control of viremia upon heterologous simian immunodeficiency virus challenge. Proc Natl Acad Sci U S A 2013; 110:2975-80. [PMID: 23359688 PMCID: PMC3581900 DOI: 10.1073/pnas.1215393110] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have previously shown that macaques vaccinated with DNA vectors expressing SIVmac239 antigens developed potent immune responses able to reduce viremia upon high-dose SIVmac251 challenge. To further improve vaccine-induced immunity and protection, we combined the SIVmac239 DNA vaccine with protein immunization using inactivated SIVmac239 viral particles as protein source. Twenty-six weeks after the last vaccination, the animals were challenged intrarectally at weekly intervals with a titrated dose of the heterologous SIVsmE660. Two of DNA-protein coimmunized macaques did not become infected after 14 challenges, but all controls were infected by 11 challenges. Vaccinated macaques showed modest protection from SIVsmE660 acquisition compared with naïve controls (P = 0.050; stratified for TRIM5α genotype). Vaccinees had significantly lower peak (1.6 log, P = 0.0048) and chronic phase viremia (P = 0.044), with 73% of the vaccinees suppressing viral replication to levels below assay detection during the 40-wk follow-up. Vaccine-induced immune responses associated significantly with virus control: binding antibody titers and the presence of rectal IgG to SIVsmE660 Env correlated with delayed SIVsmE660 acquisition; SIV-specific cytotoxic T cells, prechallenge CD4(+) effector memory, and postchallenge CD8(+) transitional memory cells correlated with control of viremia. Thus, SIVmac239 DNA and protein-based vaccine protocols were able to achieve high, persistent, broad, and effective cellular and humoral immune responses able to delay heterologous SIVsmE660 infection and to provide long-term control of viremia. These studies support a role of DNA and protein-based vaccines for development of an efficacious HIV/AIDS vaccine.
Collapse
Affiliation(s)
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | | | | | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | | | - Wensheng Huang
- Department of Microbiology, and Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Yongjun Guan
- Department of Microbiology, and Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Julian W. Bess
- AIDS and Cancer Virus Program, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Michael Piatak
- AIDS and Cancer Virus Program, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | | | | | | | - Rama R. Amara
- Yerkes National Primate Center, Emory University, Atlanta, GA 30329
| | | | | | | | | | - David J. Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20852; and
| | - Vanessa M. Hirsch
- Nonhuman Primate Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20814
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | | |
Collapse
|
55
|
Jalah R, Patel V, Kulkarni V, Rosati M, Alicea C, Ganneru B, von Gegerfelt A, Huang W, Guan Y, Broderick KE, Sardesai NY, LaBranche C, Montefiori DC, Pavlakis GN, Felber BK. IL-12 DNA as molecular vaccine adjuvant increases the cytotoxic T cell responses and breadth of humoral immune responses in SIV DNA vaccinated macaques. Hum Vaccin Immunother 2012; 8:1620-9. [PMID: 22894956 DOI: 10.4161/hv.21407] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Intramuscular injection of macaques with an IL-12 expression plasmid (0.1 or 0.4 mg DNA/animal) optimized for high level of expression and delivered using in vivo electroporation, resulted in the detection of systemic IL-12 cytokine in the plasma. Peak levels obtained by day 4-5 post injection were paralleled by a rapid increase of IFN-γ, indicating bioactivity of the IL-12 cytokine. Both plasma IL-12 and IFN-γ levels were reduced to basal levels by day 14, indicating a short presence of elevated levels of the bioactive IL-12. The effect of IL-12 as adjuvant together with an SIVmac239 DNA vaccine was further examined comparing two groups of rhesus macaques vaccinated in the presence or absence of IL-12 DNA. The IL-12 DNA-adjuvanted group developed significantly higher SIV-specific cellular immune responses, including IFN-γ (+) Granzyme B (+) T cells, demonstrating increased levels of vaccine-induced T cells with cytotoxic potential, and this difference persisted for 6 mo after the last vaccination. Coinjection of IL-12 DNA led to increases in Gag-specific CD4 (+) and CD4 (+) CD8 (+) double-positive memory T cell subsets, whereas the Env-specific increases were mainly mediated by the CD8 (+) and CD4 (+) CD8 (+) double-positive memory T cell subsets. The IL-12 DNA-adjuvanted vaccine group developed higher binding antibody titers to Gag and mac251 Env, and showed higher and more durable neutralizing antibodies to heterologous SIVsmE660. Therefore, co-delivery of IL-12 DNA with the SIV DNA vaccine enhanced the magnitude and breadth of immune responses in immunized rhesus macaques, and supports the inclusion of IL-12 DNA as vaccine adjuvant.
Collapse
Affiliation(s)
- Rashmi Jalah
- Human Retrovirus Pathogenesis Section; Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|