51
|
McCarthy DP, Bryant J, Galvin JP, Miller SD, Luo X. Tempering allorecognition to induce transplant tolerance with chemically modified apoptotic donor cells. Am J Transplant 2015; 15:1475-83. [PMID: 25807873 PMCID: PMC4439351 DOI: 10.1111/ajt.13237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/12/2015] [Accepted: 01/23/2015] [Indexed: 01/25/2023]
Abstract
The development of organ transplantation as a therapy for end-stage organ failure is among the most significant achievements of 20th century medicine, but chronic rejection remains a barrier to achieving long-term success. Current therapeutic regimens consist of immunosuppressive drugs that are efficient at delaying rejection but are associated with significant risks such as opportunistic infections, toxicity, and malignancy. Thus, the induction of specific immune tolerance to transplant antigens is the coveted aim of researchers. The use of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (ECDI)-treated, autoantigen-coupled syngeneic leukocytes has been developed as a specific immunotherapy in preclinical models of autoimmunity and is currently in a phase II clinical trial for the treatment of multiple sclerosis. In this review, we discuss the use of allogeneic ECDI-treated apoptotic donor leukocytes (allo-ECDI-SP) as a strategy for inducing antigen-specific tolerance in allogeneic transplantation. Allo-ECDI-SP therapy induces long-term systemic immune tolerance to transplant antigens by subverting alloimmune recognition and exploiting apoptotic cell uptake pathways to recapitulate innate mechanisms of peripheral tolerance. Lastly, we discuss potential indications and challenges for transitioning allo-ECDI-SP therapy into clinical practice.
Collapse
Affiliation(s)
- D. P. McCarthy
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - J. Bryant
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL
| | - J. P. Galvin
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL
| | - S. D. Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - X. Luo
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Evanston, IL
| |
Collapse
|
52
|
Copland IB, Qayed M, Garcia MA, Galipeau J, Waller EK. Bone Marrow Mesenchymal Stromal Cells from Patients with Acute and Chronic Graft-versus-Host Disease Deploy Normal Phenotype, Differentiation Plasticity, and Immune-Suppressive Activity. Biol Blood Marrow Transplant 2015; 21:934-40. [DOI: 10.1016/j.bbmt.2015.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/13/2015] [Indexed: 01/15/2023]
|
53
|
Cellular and molecular targeting for nanotherapeutics in transplantation tolerance. Clin Immunol 2015; 160:14-23. [PMID: 25805659 DOI: 10.1016/j.clim.2015.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 11/21/2022]
Abstract
The induction of donor-specific tolerance to transplanted cells and organs, while preserving immune function as a whole, remains a highly sought after and elusive strategy for overcoming transplant rejection. Tolerance necessitates modulating a diverse array of cell types that recognize and respond to alloantigens, including antigen presenting cells and T lymphocytes. Nanotherapeutic strategies that employ cellular and biomaterial engineering represent an emerging technology geared towards the goal of inducing transplant tolerance. Nanocarriers offer a platform for delivering antigens of interest to specific cell types in order to achieve tolerogenic antigen presentation. Furthermore, the technologies also provide an opportunity for local immunomodulation at the graft site. Nanocarriers delivering a combination of antigens and immunomodulating agents, such as rapamycin, provide a unique technology platform with the potential to enhance outcomes for the induction of transplant tolerance.
Collapse
|
54
|
Gracon ASA, Wilkes DS. Lung transplantation: chronic allograft dysfunction and establishing immune tolerance. Hum Immunol 2014; 75:887-94. [PMID: 24979671 PMCID: PMC4357397 DOI: 10.1016/j.humimm.2014.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
Despite significant medical advances since the advent of lung transplantation, improvements in long-term survival have been largely unrealized. Chronic lung allograft dysfunction, in particular obliterative bronchiolitis, is the primary limiting factor. The predominant etiology of obliterative bronchiolitis involves the recipient's innate and adaptive immune response to the transplanted allograft. Current therapeutic strategies have failed to provide a definitive treatment paradigm to improve long-term outcomes. Inducing immune tolerance is an emerging therapeutic strategy that abrogates allograft rejection, avoids immunosuppression, and improves long-term graft function. The aim of this review is to discuss the key immunologic components of obliterative bronchiolitis, describe the state of establishing immune tolerance in transplantation, and highlight those strategies being evaluated in lung transplantation.
Collapse
Affiliation(s)
- Adam S A Gracon
- Department of Surgery and Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David S Wilkes
- Departments of Medicine, Microbiology and Immunology, Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
55
|
Bryant J, Hlavaty KA, Zhang X, Yap WT, Zhang L, Shea LD, Luo X. Nanoparticle delivery of donor antigens for transplant tolerance in allogeneic islet transplantation. Biomaterials 2014; 35:8887-8894. [PMID: 25066477 DOI: 10.1016/j.biomaterials.2014.06.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/22/2014] [Indexed: 12/24/2022]
Abstract
Human islet cell transplantation is a promising treatment for type 1 diabetes; however, long-term donor-specific tolerance to islet allografts remains a clinically unmet goal. We have previously shown that recipient infusions of apoptotic donor splenocytes chemically treated with 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide (donor ECDI-SP) can mediate long-term acceptance of full major histocompatibility complex (MHC)-mismatched murine islet allografts without the use of immunosuppression. In this report, we investigated the use of poly(lactide-co-glycolide) (PLG) particles in lieu of donor ECDI-SP as a synthetic, cell-free carrier for delivery of donor antigens for the induction of transplant tolerance in full MHC-mismatched murine allogeneic islet transplantation. Infusions of donor antigen-coupled PLG particles (PLG-dAg) mediated tolerance in ∼20% of recipient mice, and the distribution of cellular uptake of PLG-dAg within the spleen was similar to that of donor ECDI-SP. PLG-dAg mediated the contraction of indirectly activated T cells but did not modulate the direct pathway of allorecognition. Combination of PLG-dAg with a short course of low dose immunosuppressant rapamycin at the time of transplant significantly improved the tolerance efficacy to ∼60%. Furthermore, altering the timing of PLG-dAg administration to a schedule that is more feasible for clinical transplantation resulted in equal tolerance efficacy. Thus, the combination therapy of PLG-dAg infusions with peritransplant rapamycin represents a clinically attractive, biomaterials-based and cell-free method for inducing long-term donor-specific tolerance for allogeneic cell transplantation, such as for allogeneic islet transplantation.
Collapse
Affiliation(s)
- Jane Bryant
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kelan A Hlavaty
- The Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd/E310, Evanston, IL 60208, USA
| | - Xiaomin Zhang
- Department of Surgery, Division of Organ Transplantation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Woon-Teck Yap
- The Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd/E310, Evanston, IL 60208, USA
| | - Lei Zhang
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lonnie D Shea
- The Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL 60611, USA; Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd/E136, Evanston, IL 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA.
| | - Xunrong Luo
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Surgery, Division of Organ Transplantation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
56
|
Bryant J, Lerret NM, Wang JJ, Kang HK, Tasch J, Zhang Z, Luo X. Preemptive donor apoptotic cell infusions induce IFN-γ-producing myeloid-derived suppressor cells for cardiac allograft protection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:6092-101. [PMID: 24808363 PMCID: PMC4082999 DOI: 10.4049/jimmunol.1302771] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have previously shown that preemptive infusion of apoptotic donor splenocytes treated with the chemical cross-linker ethylcarbodiimide (ECDI-SPs) induces long-term allograft survival in full MHC-mismatched models of allogeneic islet and cardiac transplantation. The role of myeloid-derived suppressor cells (MDSCs) in the graft protection provided by ECDI-SPs is unclear. In this study, we demonstrate that infusions of ECDI-SPs increase two populations of CD11b(+) cells in the spleen that phenotypically resemble monocytic-like (CD11b(+)Ly6C(high)) and granulocytic-like (CD11b(+)Gr1(high)) MDSCs. Both populations suppress T cell proliferation in vitro and traffic to the cardiac allografts in vivo to mediate their protection via inhibition of local CD8 T cell accumulation and potentially also via induction and homing of regulatory T cells. Importantly, repeated treatments with ECDI-SPs induce the CD11b(+)Gr1(high) cells to produce a high level of IFN-γ and to exhibit an enhanced responsiveness to IFN-γ by expressing higher levels of downstream effector molecules ido and nos2. Consequently, neutralization of IFN-γ completely abolishes the suppressive capacity of this population. We conclude that donor ECDI-SPs induce the expansion of two populations of MDSCs important for allograft protection mediated in part by intrinsic IFN-γ-dependent mechanisms. This form of preemptive donor apoptotic cell infusions has significant potential for the therapeutic manipulation of MDSCs for transplant tolerance induction.
Collapse
Affiliation(s)
- Jane Bryant
- Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Nadine M Lerret
- Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Hee-Kap Kang
- Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - James Tasch
- Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Zheng Zhang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Xunrong Luo
- Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
57
|
Wang S, Zhang X, Zhang L, Bryant J, Kheradmand T, Hering BJ, Miller SD, Luo X. Preemptive Tolerogenic Delivery of Donor Antigens for Permanent Allogeneic Islet Graft Protection. Cell Transplant 2014; 24:1155-65. [PMID: 24759564 DOI: 10.3727/096368914x681027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have previously developed a robust regimen for tolerance induction in murine models of islet cell transplantation using pre- and posttransplant infusions of donor splenocytes (SPs) treated with a chemical cross-linker ethylcarbodiimide (ECDI). However, the requirement for large numbers of fresh donor SPs for ECDI coupling impairs its clinical feasibility, and additionally, the compatibility of this tolerance regimen with commonly used immunosuppressive drugs is largely unknown. In the current study, we demonstrate that equivalent tolerance efficacy for islet cell transplantation can be successfully achieved not only with a significantly lower dose of ECDI-SPs than originally established but also with culture-expanded donor B-cells or with soluble donor antigens in the form of donor cell lysate, which is ECDI coupled to recipient SPs. We further demonstrate that tolerance induced by donor ECDI-SPs is dependent on a favorable apoptotic-to-necrotic cell ratio post-ECDI coupling and is not affected by a transient course of conventional immunosuppressive drugs including tacrolimus and mycophenolate mofetil. While splenic antigen-presenting cells of the recipient play an important role in mediating the tolerogenic effects of donor ECDI-SPs, splenectomized recipients can be readily tolerized and appear to employ liver Kupffer cells for uptaking and processing of the ECDI-SPs. We conclude that infusion of donor ECDI-SPs is a versatile tolerance strategy that has a high potential for adaptation to clinically feasible regimens for tolerance trials for human islet cell transplantation.
Collapse
Affiliation(s)
- Shusen Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Wang S, Tasch J, Kheradmand T, Ulaszek J, Ely S, Zhang X, Hering BJ, Miller SD, Luo X. Transient B-cell depletion combined with apoptotic donor splenocytes induces xeno-specific T- and B-cell tolerance to islet xenografts. Diabetes 2013; 62:3143-50. [PMID: 23852699 PMCID: PMC3749362 DOI: 10.2337/db12-1678] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peritransplant infusion of apoptotic donor splenocytes cross-linked with ethylene carbodiimide (ECDI-SPs) has been demonstrated to effectively induce allogeneic donor-specific tolerance. The objective of the current study is to determine the effectiveness and additional requirements for tolerance induction for xenogeneic islet transplantation using donor ECDI-SPs. In a rat-to-mouse xenogeneic islet transplant model, we show that rat ECDI-SPs alone significantly prolonged islet xenograft survival but failed to induce tolerance. In contrast to allogeneic donor ECDI-SPs, xenogeneic donor ECDI-SPs induced production of xenodonor-specific antibodies partially responsible for the eventual islet xenograft rejection. Consequently, depletion of B cells prior to infusions of rat ECDI-SPs effectively prevented such antibody production and led to the indefinite survival of rat islet xenografts. In addition to controlling antibody responses, transient B-cell depletion combined with ECDI-SPs synergistically suppressed xenodonor-specific T-cell priming as well as memory T-cell generation. Reciprocally, after initial depletion, the recovered B cells in long-term tolerized mice exhibited xenodonor-specific hyporesponsiveness. We conclude that transient B-cell depletion combined with donor ECDI-SPs is a robust strategy for induction of xenodonor-specific T- and B-cell tolerance. This combinatorial therapy may be a promising strategy for tolerance induction for clinical xenogeneic islet transplantation.
Collapse
Affiliation(s)
- Shusen Wang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Surgery, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People's Republic of China
| | - James Tasch
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois the
| | - Taba Kheradmand
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois the
| | - Jodie Ulaszek
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois the
| | - Sora Ely
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois the
| | - Xiaomin Zhang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bernhard J. Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Stephen D. Miller
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xunrong Luo
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois the
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Corresponding author: Xunrong Luo,
| |
Collapse
|
59
|
O'Flynn L, Treacy O, Ryan AE, Morcos M, Cregg M, Gerlach J, Joshi L, Nosov M, Ritter T. Donor bone marrow-derived dendritic cells prolong corneal allograft survival and promote an intragraft immunoregulatory milieu. Mol Ther 2013; 21:2102-12. [PMID: 23863882 DOI: 10.1038/mt.2013.167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/10/2013] [Indexed: 12/13/2022] Open
Abstract
Investigations into cell therapies for application in organ transplantation have grown. Here, we describe the ex vivo generation of donor bone marrow-derived dendritic cells (BMDCs) and glucocorticoid-treated BMDCs with potent immunomodulatory properties for application in allogeneic transplantation. BMDCs were treated with dexamethasone (Dexa) to induce an immature, maturation-resistant phenotype. BMDC and Dexa BMDC phenotype, antigen presenting cell function, and immunomodulatory properties were fully characterized. Both populations display significant immunomodulatory properties, including, but not limited to, a significant increase in mRNA expression of programmed death-ligand 1 and indoleamine 2,3-dioxygenase. BMDCs and Dexa BMDCs display a profound impaired capacity to stimulate allogeneic lymphocytes. Moreover, in a fully MHC I/II mismatched rat corneal transplantation model, injection of donor-derived, untreated BMDC or Dexa BMDCs (1 × 10(6) cells, day -7) significantly prolonged corneal allograft survival without the need for additional immunosuppression. Although neovascularization was not reduced and evidence of donor-specific alloantibody response was detected, a significant reduction in allograft cellular infiltration combined with a significant increase in the ratio of intragraft FoxP3-expressing regulatory cells was observed. Our comprehensive analysis demonstrates the novel cellular therapeutic approach and significant effect of donor-derived, untreated BMDCs and Dexa BMDCs in preventing corneal allograft rejection.
Collapse
Affiliation(s)
- Lisa O'Flynn
- College of Medicine, Nursing and Health Sciences, Regenerative Medicine Institute, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Prasad S, Xu D, Miller SD. Tolerance strategies employing antigen-coupled apoptotic cells and carboxylated PLG nanoparticles for the treatment of type 1 diabetes. Rev Diabet Stud 2012; 9:319-27. [PMID: 23804269 DOI: 10.1900/rds.2012.9.319] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The development of therapies that specifically target autoreactive immune cells for the prevention and treatment of type 1 diabetes (T1D) without inducing generalized immunosuppression that often compromises the host's ability to clear non-self antigen is highly desired. This review discusses the mechanisms and potential therapeutic applications of antigen-specific T cell tolerance techniques using syngeneic apoptotic cellular carriers and synthetic nanoparticles that are covalently cross-linked to diabetogenic peptides or proteins through ethylene carbodiimide (ECDI) to prevent and treat T1D. Experimental models have demonstrated that intravenous injection of autoantigen decorated splenocytes and biodegradable nanoparticles through ECDI fixation effectively induce and maintain antigen-specific T cell abortive activation and anergy by T cell intrinsic and extrinsic mechanisms. The putative mechanisms include, but are not limited to, the uptake and processing of antigen-coupled nanoparticles or apoptotic cellular carriers for tolerogenic presentation by host splenic antigen-presenting cells, the induction of regulatory T cells, and the secretion of immune-suppressive cytokines, such as IL-10 and TGF-β. The safety profile and efficacy of this approach in preclinical animal models of T1D, including non-obese diabetic (NOD), BDC2.5 transgenic, and humanized mice, have been extensively investigated, and will be the focus of this review. Translation of this approach to clinical trials of T1D and other T cell-mediated autoimmune diseases will also be reviewed in this chapter.
Collapse
Affiliation(s)
- Suchitra Prasad
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
61
|
Chen G, Kheradmand T, Bryant J, Wang S, Tasch J, Wang JJ, Zhang Z, Luo X. Intragraft CD11b(+) IDO(+) cells mediate cardiac allograft tolerance by ECDI-fixed donor splenocyte infusions. Am J Transplant 2012; 12:2920-9. [PMID: 22883222 PMCID: PMC3484208 DOI: 10.1111/j.1600-6143.2012.04203.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have previously shown that pre- and post-transplant infusions of donor splenocytes treated with 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide (ECDI-SPs) provide permanent donor-specific protection of islet allografts. The efficacy of donor ECDI-SPs in protecting vascularized cardiac allografts and mechanism(s) of protection are unknown. In this study, we show that infusions of ECDI-SPs significantly prolong cardiac allograft survival concomitant with an impressive accumulation of CD11b(+) IDO(+) cells in the cardiac allograft, and that the presence of this population is dependent on Gr1(+) cells. Consequently, depletion of Gr1(+) cells or inhibition of indoleamine 2,3 dioxygenase (IDO) activity abrogates graft protection by ECDI-SPs infusions. In addition, T cells from ECDI-SPs treated recipients secrete high levels of interleukin 10 and interleukin 13 upon in vitro restimulation, which are also dampened in recipients treated with the IDO inhibitor. Furthermore, combination of donor ECDI-SPs with a short course of rapamycin provides indefinite cardiac allograft survival in 100% of the recipients. These findings reveal a novel mechanism of donor ECDI-SPs in inducing cardiac transplant tolerance and provide several targets that are amenable to therapeutic manipulations for tolerance induction for cardiac transplantation.
Collapse
Affiliation(s)
- Guodong Chen
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Taba Kheradmand
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Jane Bryant
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Sheng Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China, 430030
| | - James Tasch
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Jiao-jing Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Zheng Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Xunrong Luo
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| |
Collapse
|