51
|
Zhang D, Tu E, Kasagi S, Zanvit P, Chen Q, Chen W. Manipulating regulatory T cells: a promising strategy to treat autoimmunity. Immunotherapy 2015; 7:1201-11. [PMID: 26568117 DOI: 10.2217/imt.15.79] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CD4(+)CD25(+)Foxp3(+)regulatory T cells (Treg cells) are extremely important in maintaining immune tolerance. Manipulation of Treg cells, especially autoantigen-specific Treg cells is a promising approach for treatments of autoimmune disease since Treg cells may provide the advantage of antigen specificity without overall immune suppression. However, the clinical application of Treg cells has long been limited due to low numbers of Treg cells and the difficulty in identifying their antigen specificity. In this review, we summarize studies that demonstrate regression of autoimmune diseases using Treg cells as therapeutics. We also discuss approaches to generate polyclonal and autoantigen-specific Treg cells in vitro and in vivo. We also discuss our recent study that describes a novel approach of generating autoantigen-specific Treg cells in vivo and restoring immune tolerance by two steps apoptosis-antigen therapy.
Collapse
Affiliation(s)
- Dunfang Zhang
- Mucosal Immunology Section, OPCB, National Institute of Dental & Craniofacial Research, NIH, Bethesda, MD 20892, USA.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Eric Tu
- Mucosal Immunology Section, OPCB, National Institute of Dental & Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Shimpei Kasagi
- Mucosal Immunology Section, OPCB, National Institute of Dental & Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Peter Zanvit
- Mucosal Immunology Section, OPCB, National Institute of Dental & Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - WanJun Chen
- Mucosal Immunology Section, OPCB, National Institute of Dental & Craniofacial Research, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
52
|
Grimm AJ, Kontos S, Diaceri G, Quaglia-Thermes X, Hubbell JA. Memory of tolerance and induction of regulatory T cells by erythrocyte-targeted antigens. Sci Rep 2015; 5:15907. [PMID: 26511151 PMCID: PMC4625129 DOI: 10.1038/srep15907] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022] Open
Abstract
New approaches based on induction of antigen-specific immunological tolerance are being explored for treatment of autoimmunity and prevention of immunity to protein drugs. Antigens associated with apoptotic debris are known to be processed tolerogenically in vivo. Our group is exploring an approach toward antigen-specific tolerization using erythrocyte-binding antigens, based on the premise that as the erythrocytes circulate, age and are cleared, the erythrocyte surface-bound antigen payload will be cleared tolerogenically along with the eryptotic debris. Here, we characterized the phenotypic signatures of CD8+ T cells undergoing tolerance in response to soluble and erythrocyte-targeted antigen. Signaling through programmed death-1/programmed death ligand-1 (PD-1/PD-L1), but not through cytotoxic T lymphocyte antigen 4 (CTLA4), was shown to be required for antigen-specific T cell deletion, anergy and expression of regulatory markers. Generation of CD25+FOXP3+ regulatory T cells in response to erythrocyte-targeted antigens but not soluble antigen at an equimolar dose was observed, and these cells were required for long-term maintenance of immune tolerance in both the CD4+ and CD8+ T cell compartments. Evidence of infectious tolerance was observed, in that tolerance to a one antigenic epitope was able to regulate responses to other epitopes in the same protein antigen.
Collapse
Affiliation(s)
- Alizée J. Grimm
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stephan Kontos
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Anokion SA, Ecublens, Switzerland
- Kanyos Bio, Inc., Cambridge, Massachusetts, USA
| | - Giacomo Diaceri
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xavier Quaglia-Thermes
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jeffrey A. Hubbell
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Anokion SA, Ecublens, Switzerland
- Kanyos Bio, Inc., Cambridge, Massachusetts, USA
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
53
|
Fox S, Ryan KA, Berger AH, Petro K, Das S, Crowe SE, Ernst PB. The role of C1q in recognition of apoptotic epithelial cells and inflammatory cytokine production by phagocytes during Helicobacter pylori infection. JOURNAL OF INFLAMMATION-LONDON 2015; 12:51. [PMID: 26357509 PMCID: PMC4563842 DOI: 10.1186/s12950-015-0098-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 08/28/2015] [Indexed: 12/11/2022]
Abstract
Background Gastric epithelial cells (GECs) undergo apoptosis during H. pylori infection and phagocytes within the mucosa engulf these cells. The recognition and clearance of apoptotic cells is a multifactorial process, enhanced by the presence of various bridging molecules and opsonins which are abundant in serum. However, it is not clear how recognition or clearance may differ in the context of H. pylori infection induced apoptosis. In addition, efferocytosis of sterile apoptotic cells is known to confer anti-inflammatory properties in the engulfing phagocyte, however it is unknown if this is maintained when phagocytes encounter H. pylori-infected cells. Thus, the ability of macrophages to bind and engulf gastric epithelial cells rendered apoptotic by H. pylori infection and the association of these interactions to the modulation of phagocyte inflammatory responses was investigated in the absence and presence of serum with a particular focus on the role of serum protein C1q. Methods Control (uninfected) or H. pylori-infected AGS cells were co-cultured with THP-1 macrophages in the presence or absence of serum or serum free conditions + C1q protein (40–80 μg/mL). Binding of AGS cells to THP-1 macrophages was assessed by microscopy and cytokine (IL-6 and TNF-α) release from LPS stimulated THP-1 macrophages was quantified by ELISA. Results We show that macrophages bound preferentially to cells undergoing apoptosis subsequent to infection with H. pylori. Binding of apoptotic AGS to THP-1 macrophages was significantly inhibited when studied in the absence of serum and reconstitution of serum-free medium with purified human C1q restored binding of macrophages to apoptotic cells. Co-culture of sterile apoptotic and H. pylori-infected AGS cells both attenuated LPS-stimulated cytokine production by THP-1 macrophages. Further, direct treatment of THP-1 macrophages with C1q attenuated LPS stimulated TNF-α production. Conclusions These studies suggest that C1q opsonizes GECs rendered apoptotic by H. pylori. No differences existed in the ability of infected or sterile apoptotic cells to attenuate macrophage cytokine production, however, there may be a direct role for C1q in modulating macrophage inflammatory cytokine production to infectious stimuli. Electronic supplementary material The online version of this article (doi:10.1186/s12950-015-0098-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Fox
- Department of Pathology, University of California, La Jolla, San Diego, CA USA
| | - Kieran A Ryan
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA ; National University Ireland, Galway, Ireland
| | - Alice H Berger
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA ; Broad Institute of MIT and Harvard, Boston, MA USA
| | - Katie Petro
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA ; Athersys, Inc, Cleveland, OH USA
| | - Soumita Das
- Department of Pathology, University of California, La Jolla, San Diego, CA USA ; Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA
| | - Sheila E Crowe
- Department of Pathology, University of California, La Jolla, San Diego, CA USA ; Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA
| | - Peter B Ernst
- Department of Pathology, University of California, La Jolla, San Diego, CA USA ; Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
54
|
Schuetz C, Markmann JF. Immunogenicity of β-cells for autologous transplantation in type 1 diabetes. Pharmacol Res 2015; 98:60-8. [DOI: 10.1016/j.phrs.2015.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 12/15/2022]
|
55
|
Kontos S, Grimm AJ, Hubbell JA. Engineering antigen-specific immunological tolerance. Curr Opin Immunol 2015; 35:80-8. [DOI: 10.1016/j.coi.2015.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/04/2015] [Accepted: 05/13/2015] [Indexed: 01/07/2023]
|
56
|
Verhagen J, Wegner A, Wraith DC. Extra-thymically induced T regulatory cell subsets: the optimal target for antigen-specific immunotherapy. Immunology 2015; 145:171-81. [PMID: 25716063 DOI: 10.1111/imm.12458] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 12/13/2022] Open
Abstract
Antigen-specific immunotherapy aims to selectively restore tolerance to innocuous antigens in cases of autoimmune or allergic disease, without the need for general immune suppression. Although the principle of antigen-specific immunotherapy was discovered more than a century ago, its clinical application to date is limited, particularly in the control of autoimmunity. This has resulted mainly from a lack of in-depth understanding of the underlying mechanism. More recently, the differentiation of extra-thymically induced T regulatory (Treg) cell subsets has been shown to be instrumental in peripheral tolerance induction. Two main types of inducible Treg cells, interleukin-10-secreting or Foxp3(+) , have now been described, each with distinct characteristics and methods of therapeutic induction. It is crucial, therefore, to identify the suitability of either subset in the control of specific immune disorders. This review explores their natural function, the known mechanisms of therapeutic differentiation of either subset as well as their in vivo functionality and discusses new developments that may aid their use in antigen-specific immunotherapy, with a focus on autoimmune disease.
Collapse
Affiliation(s)
- Johan Verhagen
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
57
|
Colonic Insult Impairs Lymph Flow, Increases Cellular Content of the Lymph, Alters Local Lymphatic Microenvironment, and Leads to Sustained Inflammation in the Rat Ileum. Inflamm Bowel Dis 2015; 21:1553-63. [PMID: 25939039 PMCID: PMC4466086 DOI: 10.1097/mib.0000000000000402] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Lymphatic dysfunction has been linked to inflammation since the 1930s. Lymphatic function in the gut and mesentery is grossly underexplored in models of inflammatory bowel disease despite the use of lymphatic occlusion in early models of inflammatory bowel disease. Activation of the innate and adaptive immune system is a hallmark of TNBS-induced inflammation and is linked to disruption of the intrinsic lymph pump. Recent identification of crosstalk between lymphatic vessel resident immune cells and regulation of lymphatic vessel contractility underscore the importance of the timing of lymphatic dysfunction during tissue inflammation in response to TNBS. METHODS To evaluate lymphatic function in TNBS induced inflammation, lymph was collected and flow measured from mesenteric lymphatics. Cellularity and cytokine profile of the lymph was also measured. Histopathology was performed to determine severity of injury and immunofluorescent staining of the mesentery was done to evaluate changes in the population of immune cells that reside near and on gastro-intestinal collecting lymphatics. RESULTS Lymph transport fell 24 hours after TNBS administration and began recovering at 72 hours. Significant reduction of lymph flow preceded significant increase in histopathological score and occurred simultaneously with increased myeloperoxidase activity. These changes were preceded by increased MHCII cells surrounding mesenteric lymphatics leading to an altered lymphatic environment that would favor dysfunction. CONCLUSIONS Alterations in environmental factors that effect lymphatic function occur before the development of gross GI inflammation. Reduced lymphatic function in TNBS-mediated inflammation is likely an early factor in the development of injury and that recovery of function is associated with resolution of inflammation.
Collapse
|
58
|
Steinmetz M, Ponnuswamy P, Laurans L, Esposito B, Tedgui A, Mallat Z. The intravenous injection of oxidized LDL- or Apolipoprotein B100--Coupled splenocytes promotes Th1 polarization in wildtype and Apolipoprotein E--Deficient mice. Biochem Biophys Res Commun 2015; 464:306-11. [PMID: 26116775 DOI: 10.1016/j.bbrc.2015.06.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Th1 responses in atherosclerosis are mainly associated with the aggravation of atherosclerotic plaques, whereas Th2 responses lead to a less pronounced disease in mouse models. The fixation of antigens on cells by means of ethylene carbodiimide (ECDI), and subsequent injection of these antigen-coupled splenocytes (Ag-SP) to induce tolerance against the attached antigens, has been successfully used to treat murine type 1 diabetes or encephalomyelitis in. We analyzed this approach in a mouse model for atherosclerosis. METHODS AND RESULTS OTII-transgenic mice that were treated with a single dose of 5 × 10(7) OVA-coupled splenocytes (OVA-SP), had decreased splenocyte proliferation, and lower IFNγ production in vitro upon antigen recall. However, in vivo CD4 cell activation was increased. To try lipoprotein-derived, "atherosclerosis-associated" antigens, we first tested human oxidized LDL. In wild type mice, an increase of IFNγ production upon in vitro recall was detected in the oxLDL-SP group. In Apolipoprotein E - deficient (ApoE-/-) mice that received oxLDL-SP every 5 weeks for 20 weeks, we did not find any difference of atherosclerotic plaque burden, but again increased IFNγ production. To overcome xenogenous limitations, we then examined the effects of mouse Apolipoprotein B100 peptides P3 and P6. ApoB100-SP treatment again promoted a more IFNγ pronounced response upon in vitro recall. Flow cytometry analysis of cytokine secreting spleen cells revealed CD4 positive T cells to be mainly the source for IFNγ. In ApoE-/- mice that were administered ApoB100-SP during 20 weeks, the atherosclerotic plaque burden in aortic roots as well as total aorta was unchanged compared to PBS treated controls. Splenocyte proliferation upon antigen recall was not significantly altered in ApoB100-SP treated ApoE-/- mice. CONCLUSION Although we did not observe a relevant anti-atherosclerotic benefit, the treatment with antigen-coupled splenocytes in its present form already impacts the immune responses and deserves further exploration.
Collapse
Affiliation(s)
- Martin Steinmetz
- INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris, France; Internal Medicine II, University Hospital Bonn, 53105 Bonn, Germany.
| | | | - Ludivine Laurans
- INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Bruno Esposito
- INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Alain Tedgui
- INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Ziad Mallat
- INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris, France; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| |
Collapse
|
59
|
Getts DR, Shea LD, Miller SD, King NJC. Harnessing nanoparticles for immune modulation. Trends Immunol 2015; 36:419-27. [PMID: 26088391 PMCID: PMC4603374 DOI: 10.1016/j.it.2015.05.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 01/18/2023]
Abstract
NPs can be generated from numerous biocompatible compounds. Specific physiochemical characteristics can be manipulated to modulate the immune response. Severe inflammation can be treated using NP-based approaches. Antigen delivery via NPs can restore peripheral immune tolerance.
Recent approaches using nanoparticles engineered for immune regulation have yielded promising results in preclinical models of disease. The number of nanoparticle therapies is growing, fueled by innovations in nanotechnology and advances in understanding of the underlying pathogenesis of immune-mediated diseases. In particular, recent mechanistic insight into the ways in which nanoparticles interact with the mononuclear phagocyte system and impact its function during homeostasis and inflammation have highlighted the potential of nanoparticle-based therapies for controlling severe inflammation while concurrently restoring peripheral immune tolerance in autoimmune disease. Here we review recent advances in nanoparticle-based approaches aimed at immune-modulation, and discuss these in the context of concepts in polymeric nanoparticle development, including particle modification, delivery and the factors associated with successful clinical deployment.
Collapse
Affiliation(s)
- Daniel R Getts
- The Discipline of Pathology, School of Medical Sciences, Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Cour Pharmaceutical Development Company, Elmhurst, IL, USA.
| | - Lonnie D Shea
- Department of Chemical and Biomedical Engineering, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nicholas J C King
- The Discipline of Pathology, School of Medical Sciences, Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
60
|
McCarthy DP, Bryant J, Galvin JP, Miller SD, Luo X. Tempering allorecognition to induce transplant tolerance with chemically modified apoptotic donor cells. Am J Transplant 2015; 15:1475-83. [PMID: 25807873 PMCID: PMC4439351 DOI: 10.1111/ajt.13237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/12/2015] [Accepted: 01/23/2015] [Indexed: 01/25/2023]
Abstract
The development of organ transplantation as a therapy for end-stage organ failure is among the most significant achievements of 20th century medicine, but chronic rejection remains a barrier to achieving long-term success. Current therapeutic regimens consist of immunosuppressive drugs that are efficient at delaying rejection but are associated with significant risks such as opportunistic infections, toxicity, and malignancy. Thus, the induction of specific immune tolerance to transplant antigens is the coveted aim of researchers. The use of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (ECDI)-treated, autoantigen-coupled syngeneic leukocytes has been developed as a specific immunotherapy in preclinical models of autoimmunity and is currently in a phase II clinical trial for the treatment of multiple sclerosis. In this review, we discuss the use of allogeneic ECDI-treated apoptotic donor leukocytes (allo-ECDI-SP) as a strategy for inducing antigen-specific tolerance in allogeneic transplantation. Allo-ECDI-SP therapy induces long-term systemic immune tolerance to transplant antigens by subverting alloimmune recognition and exploiting apoptotic cell uptake pathways to recapitulate innate mechanisms of peripheral tolerance. Lastly, we discuss potential indications and challenges for transitioning allo-ECDI-SP therapy into clinical practice.
Collapse
Affiliation(s)
- D. P. McCarthy
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - J. Bryant
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL
| | - J. P. Galvin
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL
| | - S. D. Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - X. Luo
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Evanston, IL
| |
Collapse
|
61
|
Mari ER, Moore JN, Zhang GX, Rostami A. Mechanisms of immunological tolerance in central nervous system inflammatory demyelination. ACTA ACUST UNITED AC 2015; 6:264-274. [PMID: 26425145 DOI: 10.1111/cen3.12196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Multiple sclerosis is a complex autoimmune disease of the central nervous system that results in a disruption of the balance between pro-inflammatory and anti-inflammatory signals in the immune system. Given that central nervous system inflammation can be suppressed by various immunological tolerance mechanisms, immune tolerance has become a focus of research in the attempt to induce long-lasting immune suppression of pathogenic T cells. Mechanisms underlying this tolerance induction include induction of regulatory T cell populations, anergy and the induction of tolerogenic antigen-presenting cells. The intravenous administration of encephalitogenic peptides has been shown to suppress experimental autoimmune encephalomyelitis and induce tolerance by promoting the generation of regulatory T cells and inducing apoptosis of pathogenic T cells. Safe and effective methods of inducing long-lasting immune tolerance are essential for the treatment of multiple sclerosis. By exploring tolerogenic mechanisms, new strategies can be devised to strengthen the regulatory, anti-inflammatory cell populations thereby weakening the pathogenic, pro-inflammatory cell populations.
Collapse
Affiliation(s)
- Elisabeth R Mari
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jason N Moore
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
62
|
Cellular and molecular targeting for nanotherapeutics in transplantation tolerance. Clin Immunol 2015; 160:14-23. [PMID: 25805659 DOI: 10.1016/j.clim.2015.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 11/21/2022]
Abstract
The induction of donor-specific tolerance to transplanted cells and organs, while preserving immune function as a whole, remains a highly sought after and elusive strategy for overcoming transplant rejection. Tolerance necessitates modulating a diverse array of cell types that recognize and respond to alloantigens, including antigen presenting cells and T lymphocytes. Nanotherapeutic strategies that employ cellular and biomaterial engineering represent an emerging technology geared towards the goal of inducing transplant tolerance. Nanocarriers offer a platform for delivering antigens of interest to specific cell types in order to achieve tolerogenic antigen presentation. Furthermore, the technologies also provide an opportunity for local immunomodulation at the graft site. Nanocarriers delivering a combination of antigens and immunomodulating agents, such as rapamycin, provide a unique technology platform with the potential to enhance outcomes for the induction of transplant tolerance.
Collapse
|
63
|
Serra P, Santamaria P. Nanoparticle-based autoimmune disease therapy. Clin Immunol 2015; 160:3-13. [PMID: 25704658 DOI: 10.1016/j.clim.2015.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/10/2023]
Abstract
The goal of immunotherapy against autoimmunity is to block pathogenic inflammation without impairing immunity against infections and tumours. Regulatory T-cells (Tregs) play a central role in maintaining immune homeostasis, and autoimmune inflammation is frequently associated with decreased numbers and/or function of these T-cells. Therapies harnessing Tregs to treat autoimmune inflammation remain under-developed with caveats ranging from the lack of antigenic and disease specificity to the potential phenotypic and functional instability of in vitro-expanded Treg cells in vivo. Here, we review nanotechnology-based approaches designed to promote immune tolerance through various mechanisms, ranging from systemic or local suppression of antigen-presenting cells and deletion of antigen-specific T-cells, to the systemic expansion of antigen- and disease-specific Treg cells in vivo.
Collapse
Affiliation(s)
- Pau Serra
- Institut D'Investigacions Biomediques August Pi i Sunyer, Barcelona 08036, Spain.
| | - Pere Santamaria
- Institut D'Investigacions Biomediques August Pi i Sunyer, Barcelona 08036, Spain; Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cummings School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
64
|
Gracon ASA, Wilkes DS. Lung transplantation: chronic allograft dysfunction and establishing immune tolerance. Hum Immunol 2014; 75:887-94. [PMID: 24979671 PMCID: PMC4357397 DOI: 10.1016/j.humimm.2014.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
Despite significant medical advances since the advent of lung transplantation, improvements in long-term survival have been largely unrealized. Chronic lung allograft dysfunction, in particular obliterative bronchiolitis, is the primary limiting factor. The predominant etiology of obliterative bronchiolitis involves the recipient's innate and adaptive immune response to the transplanted allograft. Current therapeutic strategies have failed to provide a definitive treatment paradigm to improve long-term outcomes. Inducing immune tolerance is an emerging therapeutic strategy that abrogates allograft rejection, avoids immunosuppression, and improves long-term graft function. The aim of this review is to discuss the key immunologic components of obliterative bronchiolitis, describe the state of establishing immune tolerance in transplantation, and highlight those strategies being evaluated in lung transplantation.
Collapse
Affiliation(s)
- Adam S A Gracon
- Department of Surgery and Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David S Wilkes
- Departments of Medicine, Microbiology and Immunology, Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
65
|
Chirumbolo S. Immunotherapy in allergy and cellular tests: state of art. Hum Vaccin Immunother 2014; 10:1595-610. [PMID: 24717453 PMCID: PMC5396242 DOI: 10.4161/hv.28592] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/10/2014] [Accepted: 03/18/2014] [Indexed: 12/13/2022] Open
Abstract
The basophil activation test (BAT) is an in vitro assay where the activation of basophils upon exposure to various IgE-challenging molecules is measured by flow cytometry. It is a cellular test able to investigate basophil behavior during allergy and allergy immunotherapy. A panoply of critical issues and suggestive advances have rendered this assay a promising yet puzzling tool to endeavor a full comprehension of innate immunity of allergy desensitization and manage allergen or monoclonal anti-IgE therapy. In this review a brief state of art of BAT in immunotherapy is described focusing onto the analytical issue pertaining BAT performance in allergy specific therapy.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Medicine; University of Verona; Verona, Italy
- Laboratory of Physiopathology of Obesity; Depertment of Medicine-University of Verona; LURM Est Policlinico GB Rossi; Verona, Italy
| |
Collapse
|
66
|
McCarthy DP, Hunter ZN, Chackerian B, Shea LD, Miller SD. Targeted immunomodulation using antigen-conjugated nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:298-315. [PMID: 24616452 DOI: 10.1002/wnan.1263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/23/2014] [Accepted: 02/01/2014] [Indexed: 12/20/2022]
Abstract
The growing prevalence of nanotechnology in the fields of biology, medicine, and the pharmaceutical industry is confounded by the relatively small amount of data on the impact of these materials on the immune system. In addition to concerns surrounding the potential toxicity of nanoparticle (NP)-based delivery systems, there is also a demand for a better understanding of the mechanisms governing interactions of NPs with the immune system. Nanoparticles can be tailored to suppress, enhance, or subvert recognition by the immune system. This 'targeted immunomodulation' can be achieved by delivery of unmodified particles, or by modifying particles to deliver drugs, proteins/peptides, or genes to a specific site. In order to elicit the desired, beneficial immune response, considerations should be made at every step of the design process: the NP platform itself, ligands, and other modifiers, the delivery route, and the immune cells that will encounter the conjugated NPs can all impact host immune responses.
Collapse
Affiliation(s)
- Derrick P McCarthy
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | |
Collapse
|