51
|
Scheper W, Gründer C, Straetemans T, Sebestyen Z, Kuball J. Hunting for clinical translation with innate-like immune cells and their receptors. Leukemia 2013; 28:1181-90. [DOI: 10.1038/leu.2013.378] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022]
|
52
|
Brusilovsky M, Cordoba M, Rosental B, Hershkovitz O, Andrake MD, Pecherskaya A, Einarson MB, Zhou Y, Braiman A, Campbell KS, Porgador A. Genome-wide siRNA screen reveals a new cellular partner of NK cell receptor KIR2DL4: heparan sulfate directly modulates KIR2DL4-mediated responses. THE JOURNAL OF IMMUNOLOGY 2013; 191:5256-67. [PMID: 24127555 DOI: 10.4049/jimmunol.1302079] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
KIR2DL4 (CD158d) is a distinct member of the killer cell Ig-like receptor (KIR) family in human NK cells that can induce cytokine production and cytolytic activity in resting NK cells. Soluble HLA-G, normally expressed only by fetal-derived trophoblast cells, was reported to be a ligand for KIR2DL4; however, KIR2DL4 expression is not restricted to the placenta and can be found in CD56(high) subset of peripheral blood NK cells. We demonstrated that KIR2DL4 can interact with alternative ligand(s), expressed by cells of epithelial or fibroblast origin. A genome-wide high-throughput siRNA screen revealed that KIR2DL4 recognition of cell-surface ligand(s) is directly regulated by heparan sulfate (HS) glucosamine 3-O-sulfotransferase 3B1 (HS3ST3B1). KIR2DL4 was found to directly interact with HS/heparin, and the D0 domain of KIR2DL4 was essential for this interaction. Accordingly, exogenous HS/heparin can regulate cytokine production by KIR2DL4-expressing NK cells and HEK293T cells (HEK293T-2DL4), and induces differential localization of KIR2DL4 to rab5(+) and rab7(+) endosomes, thus leading to downregulation of cytokine production and degradation of the receptor. Furthermore, we showed that intimate interaction of syndecan-4 (SDC4) HS proteoglycan (HSPG) and KIR2DL4 directly affects receptor endocytosis and membrane trafficking.
Collapse
Affiliation(s)
- Michael Brusilovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Moti Cordoba
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Oren Hershkovitz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mark D Andrake
- The Research Institute of Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Anna Pecherskaya
- The Research Institute of Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Margret B Einarson
- The Research Institute of Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yan Zhou
- The Research Institute of Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Kerry S Campbell
- The Research Institute of Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
53
|
Lam RA, Chwee JY, Le Bert N, Sauer M, Pogge von Strandmann E, Gasser S. Regulation of self-ligands for activating natural killer cell receptors. Ann Med 2013; 45:384-94. [PMID: 23701136 DOI: 10.3109/07853890.2013.792495] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells are able to lyse infected and tumor cells while sparing healthy cells. Recognition of diseased cells by NK cells is governed by several activating and inhibitory receptors. We review numerous pathways that have been implicated in the regulation of self-ligands for activating receptors, including NKG2D, DNAM-1, LFA-1, NKp30, NKp44, NKp46, NKp65, and NKp80 found on NK cells and some T cells. Understanding how the regulation of self-encoded ligand expression is regulated may provide novel avenues for future therapeutic approaches to infections and cancer.
Collapse
Affiliation(s)
- Runyi A Lam
- Immunology Programme, Centre for Life Sciences, Department of Microbiology, National University of Singapore 117456, Singapore
| | | | | | | | | | | |
Collapse
|
54
|
Hudspeth K, Silva-Santos B, Mavilio D. Natural cytotoxicity receptors: broader expression patterns and functions in innate and adaptive immune cells. Front Immunol 2013; 4:69. [PMID: 23518691 PMCID: PMC3603285 DOI: 10.3389/fimmu.2013.00069] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/03/2013] [Indexed: 01/29/2023] Open
Abstract
Natural cytotoxicity receptors (NCRs) have been classically defined as activating receptors delivering potent signals to Natural Killer (NK) cells in order to lyze harmful cells and to produce inflammatory cytokines. Indeed, the elicitation of NK cell effector functions after engagement of NCRs with their ligands on tumor or virus infected cells without the need for prior antigen recognition is one of the main mechanisms that allow a rapid clearance of target cells. The three known NCRs, NKp46, NKp44, and NKp30, comprise a family of germ-line encoded Ig-like trans-membrane (TM) receptors. Until recently, NCRs were thought to be NK cell specific surface molecules, thus making it possible to easily distinguish NK cells from phenotypically similar cell types. Moreover, it has also been found that the surface expression of NKp46 is conserved on NK cells across mammalian species. This discovery allowed for the use of NKp46 as a reliable marker to identify NK cells in different animal models, a comparison that was not possible before due to the lack of a common and comprehensive receptor repertoire between different species. However, several studies over the recent few years indicated that NCR expression is not exclusively confined to NK cells, but is also present on populations of T as well as of NK-like lymphocytes. These insights raised the hypothesis that the induced expression of NCRs on certain T cell subsets is governed by defined mechanisms involving the engagement of the T cell receptor (TCR) and the action of pro-inflammatory cytokines. In turn, the acquisition of NCRs by T cell subsets is also associated with a functional independence of these Ig-like TM receptors from TCR signaling. Here, we review these novel findings with respect to NCR-mediated functions of NK cells and we also discuss the functional consequences of NCR expression on non-NK cells, with a particular focus on the T cell compartment.
Collapse
Affiliation(s)
- Kelly Hudspeth
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center Rozzano, Milan, Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan Milan, Italy
| | | | | |
Collapse
|
55
|
Desbois M, Rusakiewicz S, Locher C, Zitvogel L, Chaput N. Natural killer cells in non-hematopoietic malignancies. Front Immunol 2012; 3:395. [PMID: 23269924 PMCID: PMC3529393 DOI: 10.3389/fimmu.2012.00395] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/06/2012] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells belong to the innate immune system and were initially described functionallywise by their spontaneous cytotoxic potential against transformed or virus-infected cells. A delicate balance between activating and inhibiting receptors regulates NK cell tolerance. A better understanding of tissue resident NK cells, of NK cell maturation stages and migration patterns has evolved allowing a thoughtful evaluation of their modus operandi. While evidence has been brought up for their relevance as gate keepers in some hematopoietic malignancies, the role of NK cells against progression and dissemination of solid tumors remains questionable. Hence, many studies pointed out the functional defects of the rare NK cell infiltrates found in tumor beds and the lack of efficacy of adoptively transferred NK cells in patients. However, several preclinical evidences suggest their anti-metastatic role in a variety of mouse tumor models. In the present review, we discuss NK cell functions according to their maturation stage and environmental milieu, the receptor/ligand interactions dictating tumor cell recognition and recapitulate translational studies aimed at deciphering their prognostic or predictive role against human solid malignancies.
Collapse
Affiliation(s)
- Mélanie Desbois
- Institut de Cancérologie Gustave Roussy Villejuif, France ; Centre d'Investigation Clinique Biothérapie 507, Institut de cancérologie Gustave Roussy Villejuif, France ; Faculté de Médecine, Université Paris-Sud Le Kremlin-Bicȴtre, France xs
| | | | | | | | | |
Collapse
|
56
|
Lamas B, Vergnaud-Gauduchon J, Goncalves-Mendes N, Perche O, Rossary A, Vasson MP, Farges MC. Altered functions of natural killer cells in response to L-Arginine availability. Cell Immunol 2012; 280:182-90. [PMID: 23399839 DOI: 10.1016/j.cellimm.2012.11.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 10/03/2012] [Accepted: 11/29/2012] [Indexed: 01/09/2023]
Abstract
L-Arginine (L-Arg) availability is crucial in the regulation of immune response. Indeed, L-Arg deficiency induces T-cell dysfunction and could modulate the properties of natural killer (NK) cells involved in the early host defense against infections and tumors. We explored the impact of L-Arg depletion on NK cell functions using two models - an NK-92 cell line and isolated human blood NK cells. Below 5mg/L of L-Arg, NK-92 cell proliferation was decreased and a total L-Arg depletion reduced NK-92 cell viability. NK cell cytotoxicity was significantly inhibited in presence of low L-Arg concentration (2.5 mg/L). L-Arg depletion reduced the expression of NK-92 activating receptors, NKp46 and NKp30, the expression of NK ζ chain and the NK-92 intracellular production of IFN-γ. Whatever the L-Arg concentrations tested, no significant variation in the gene expression of transporters and enzymes involved in L-Arg metabolism was found. Thus, L-Arg availability modulates the phenotypic and functional properties of NK cells.
Collapse
Affiliation(s)
- Bruno Lamas
- Clermont Université, Université d'Auvergne, EA 4233, Nutrition Cancerogenèse et Thérapie anti-tumorale, CLARA, CRNH Auvergne, Clermont-Ferrand, France.
| | | | | | | | | | | | | |
Collapse
|
57
|
Seidel E, Glasner A, Mandelboim O. Virus-mediated inhibition of natural cytotoxicity receptor recognition. Cell Mol Life Sci 2012; 69:3911-20. [PMID: 22547090 PMCID: PMC11115132 DOI: 10.1007/s00018-012-1001-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 12/29/2022]
Abstract
Natural killer (NK) cells are a part of the innate immune system that functions mainly to kill transformed and infected cells. Their activity is controlled by signals derived from a panel of activating and inhibitory receptors. The natural cytotoxicity receptors (NCRs): NKp30, NKp44, and NKp46 (NCR1 in mice) are prominent among the activating NK cell receptors and they are, notably, the only NK-activating receptors that are able to recognize pathogen-derived ligands. In addition, the NCRs also recognize cellular ligands, the identity of which remains largely unknown. In this review, we summarize the current knowledge regarding viruses that are recognized by the NCRs, focusing on the diverse immune-evasion mechanisms employed by viruses to escape this detection. We also discuss the unique role the NCRs have in regulating NK cell activity with particular emphasis on the in vivo function of NKp46/NCR1.
Collapse
Affiliation(s)
- Einat Seidel
- The Department of Immunology and Cancer Research, The Lautenberg Center for General and Tumor Immunology, IMRIC, Hadassah Medical School, The Hebrew University, 91120 Jerusalem, Israel
| | - Ariella Glasner
- The Department of Immunology and Cancer Research, The Lautenberg Center for General and Tumor Immunology, IMRIC, Hadassah Medical School, The Hebrew University, 91120 Jerusalem, Israel
| | - Ofer Mandelboim
- The Department of Immunology and Cancer Research, The Lautenberg Center for General and Tumor Immunology, IMRIC, Hadassah Medical School, The Hebrew University, 91120 Jerusalem, Israel
| |
Collapse
|
58
|
NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat Med 2012. [PMID: 23178246 DOI: 10.1038/nm.3013] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of the immune response to oncolytic Herpes simplex viral (oHSV) therapy for glioblastoma is controversial because it might enhance or inhibit efficacy. We found that within hours of oHSV infection of glioblastomas in mice, activated natural killer (NK) cells are recruited to the site of infection. This response substantially diminished the efficacy of glioblastoma virotherapy. oHSV-activated NK cells coordinated macrophage and microglia activation within tumors. In vitro, human NK cells preferentially lysed oHSV-infected human glioblastoma cell lines. This enhanced killing depended on the NK cell natural cytotoxicity receptors (NCRs) NKp30 and NKp46, whose ligands are upregulated in oHSV-infected glioblastoma cells. We found that HSV titers and oHSV efficacy are increased in Ncr1(-/-) mice and a Ncr1(-/-) NK cell adoptive transfer model of glioma, respectively. These results demonstrate that glioblastoma virotherapy is limited partially by an antiviral NK cell response involving specific NCRs, uncovering new potential targets to enhance cancer virotherapy.
Collapse
|
59
|
Grave L, Tůmová L, Mrázek H, Kavan D, Chmelík J, Vaněk O, Novák P, Bezouška K. Preparation of soluble isotopically labeled NKp30, a human natural cytotoxicity receptor, for structural studies using NMR. Protein Expr Purif 2012; 86:142-50. [PMID: 23059620 DOI: 10.1016/j.pep.2012.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 02/07/2023]
Abstract
Using a codon-optimized gene fragment, we report remarkable yields for extracellular domain of human NK cell receptor (NKp30ex) when produced on M9 minimal medium, even with low (2g/L) glucose concentration. The yields were identical using media containing (15)NH(4)Cl or (15)NH(4)Cl in combination with all-(13)C-d-glucose allowing to produce homogenous soluble monomeric NKp30 in several formats needed for advanced NMR studies. Our optimized protocol now allows to produce routinely 10mg batches of these NKp30ex proteins per 1L of M9 production medium in four working days. The purity and identity of the produced proteins were checked by SDS-PAGE, MALDI MS peptide mapping, and high resolution ion cyclotron resonance MS. Analytical ultracentrifugation confirmed the monomeric status of the produced proteins. Long-term stability of the produced protein proved to be very good allowing its use for NMR studies using elevated temperatures. These studies should reveal further details of the interaction of NKp30 with several of its ligands including target cell surface proteins and heparin-derived oligosaccharides.
Collapse
Affiliation(s)
- Lena Grave
- Department of Biochemistry, Charles University Prague, Praha, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Jost S, Altfeld M. Evasion from NK cell-mediated immune responses by HIV-1. Microbes Infect 2012; 14:904-15. [PMID: 22626930 PMCID: PMC3432664 DOI: 10.1016/j.micinf.2012.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/02/2012] [Accepted: 05/08/2012] [Indexed: 11/17/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) mostly owes its success to its ability to evade host immune responses. Understanding viral immune escape mechanisms is a prerequisite to improve future HIV-1 vaccine design. This review focuses on the strategies that HIV-1 has evolved to evade recognition by natural killer (NK) cells.
Collapse
Affiliation(s)
- Stephanie Jost
- Ragon Institute of MGH, MIT and Harvard, Bldg. 149, 13th Street, 6th Floor, Charlestown, MA 02129, USA
| | | |
Collapse
|
61
|
Zhang T, Wu MR, Sentman CL. An NKp30-based chimeric antigen receptor promotes T cell effector functions and antitumor efficacy in vivo. THE JOURNAL OF IMMUNOLOGY 2012; 189:2290-9. [PMID: 22851709 DOI: 10.4049/jimmunol.1103495] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NKp30 is a natural cytotoxicity receptor that is expressed on NK cells and recognizes B7-H6, which is expressed on several types of tumors but few normal cells. To target effector T cells against B7-H6+ tumors, we developed several chimeric AgRs (CARs) based on NKp30, which contain the CD28- and/or CD3ζ-signaling domains with the transmembrane domains from CD3ζ, CD28, or CD8α. The data show that chimeric NKp30-expressing T cells responded to B7-H6+ tumor cells. The NKp30 CAR-expressing T cells produced IFN-γ and killed B7-H6 ligand-expressing tumor cells; this response was dependent upon ligand expression on target cells but not on MHC expression. PBMC-derived dendritic cells also express NKp30 ligands, including immature dendritic cells, and they can stimulate NKp30 CAR-bearing T cells to produce IFN-γ, but to a lesser extent. The addition of a CD28-signaling domain significantly enhanced the activity of the NKp30 CAR in a PI3K-dependent manner. Adoptive transfer of T cells expressing a chimeric NKp30 receptor containing a CD28-signaling domain inhibited the growth of a B7-H6-expressing murine lymphoma (RMA/B7-H6) in vivo. Moreover, mice that remained tumor-free were resistant to a subsequent challenge with the wild-type RMA tumor cells, suggesting the generation of immunity against other tumor Ags. Overall, this study demonstrates the specificity and therapeutic potential of adoptive immunotherapy with NKp30 CAR-expressing T cells against B7-H6+ tumor cells in vivo.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
62
|
Hartmann J, Tran TV, Kaudeer J, Oberle K, Herrmann J, Quagliano I, Abel T, Cohnen A, Gatterdam V, Jacobs A, Wollscheid B, Tampé R, Watzl C, Diefenbach A, Koch J. The stalk domain and the glycosylation status of the activating natural killer cell receptor NKp30 are important for ligand binding. J Biol Chem 2012; 287:31527-39. [PMID: 22807449 DOI: 10.1074/jbc.m111.304238] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The natural cytotoxicity receptors are a unique set of activating proteins expressed mainly on the surface of natural killer (NK) cells. The human natural cytotoxicity receptor family comprises the three type I membrane proteins NKp30, NKp44, and NKp46. Especially NKp30 is critical for the cytotoxicity of NK cells against different targets including tumor, virus-infected, and immature dendritic cells. Although the crystal structure of NKp30 was recently solved (Li, Y., Wang, Q., and Mariuzza, R. A. (2011) J. Exp. Med. 208, 703-714; Joyce, M. G., Tran, P., Zhuravleva, M. A., Jaw, J., Colonna, M., and Sun, P. D. (2011) Proc. Natl. Acad. Sci. U.S.A. 108, 6223-6228), a key question, how NKp30 recognizes several non-related ligands, remains unclear. Therefore, we investigated the parameters that impact ligand recognition of NKp30. Based on various NKp30-hIgG1-Fc fusion proteins, which were optimized for minimal background binding to cellular Fcγ receptors, we identified the flexible stalk region of NKp30 as an important but so far neglected module for ligand recognition and related signaling of the corresponding full-length receptor proteins. Moreover, we found that the ectodomain of NKp30 is N-linked glycosylated at three different sites. Mutational analyses revealed differential binding affinities and signaling capacities of mono-, di-, or triglycosylated NKp30, suggesting that the degree of glycosylation could provide a switch to modulate the ligand binding properties of NKp30 and NK cell cytotoxicity.
Collapse
Affiliation(s)
- Jessica Hartmann
- Georg-Speyer-Haus, Institute of Biomedical Research, D-60596 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Jaron-Mendelson M, Yossef R, Appel MY, Zilka A, Hadad U, Afergan F, Rosental B, Engel S, Nedvetzki S, Braiman A, Porgador A. Dimerization of NKp46 Receptor Is Essential for NKp46-Mediated Lysis: Characterization of the Dimerization Site by Epitope Mapping. THE JOURNAL OF IMMUNOLOGY 2012; 188:6165-74. [DOI: 10.4049/jimmunol.1102496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
64
|
Brusilovsky M, Rosental B, Shemesh A, Appel MY, Porgador A. Human NK cell recognition of target cells in the prism of natural cytotoxicity receptors and their ligands. J Immunotoxicol 2012; 9:267-74. [PMID: 22524686 DOI: 10.3109/1547691x.2012.675366] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The matter of the pathogen- and cancer-associated ligands recognized by the Natural Cytotoxicity Receptors (NCRs) has been a subject of intense research ever since the identification of the NCRs more than 12 years ago by Alessandro and Lorenzo Moretta: NKp46 in 1997, NKp44 in 1998, and finally NKp30 in 1999. Expression patterns recognized by NCRs include pathogen-derived, pathogen-induced, and cancer-associated cellular 'self' ligands. Pathogen-exposed cells may exhibit both types of pathogen-associated ligands. Transformed cells, in contrast, exhibit only 'self' ligands which are derived from both the intracellular- and membrane-associated milieu of self molecules. These expression patterns allow for NCR-based NK cell discrimination between healthy and affected cells, in the realms of both pathogenic infection and potential tumorigenesis. The focus of this review is on the current knowledge regarding the identities of NCR ligands and the type of target cells expressing these ligands.
Collapse
Affiliation(s)
- Michael Brusilovsky
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | |
Collapse
|
65
|
Noronha LE, Harman RM, Wagner B, Antczak DF. Generation and characterization of monoclonal antibodies to equine NKp46. Vet Immunol Immunopathol 2012; 147:60-8. [PMID: 22551980 DOI: 10.1016/j.vetimm.2012.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 04/02/2012] [Indexed: 01/27/2023]
Abstract
The immunoreceptor NKp46 is considered to be the most consistent marker of NK cells across mammalian species. Here, we use a recombinant NKp46 protein to generate a panel of monoclonal antibodies that recognize equine NKp46. The extracellular region of equine NKp46 was expressed with equine IL-4 as a recombinant fusion protein (rIL-4/NKp46) and used as an immunogen to generate mouse monoclonal antibodies (mAbs). MAbs were first screened by ELISA for an ability to recognize NKp46, but not IL-4, or the structurally related immunoreceptor CD16. Nine mAbs were selected and were shown to recognize full-length NKp46 expressed on the surface of transfected CHO cells as a GFP fusion protein. The mAbs recognized a population of lymphocytes by flow cytometric analysis that was morphologically similar to NKp46+ cells in humans and cattle. In a study using nine horses, representative mAb 4F2 labeled 0.8-2.1% PBL with a mean fluorescence intensity consistent with gene expression data. MAb 4F2+ PBL were enriched by magnetic cell sorting and were found to express higher levels of NKP46 mRNA than 4F2- cells by quantitative RT-PCR. CD3-depleted PBL from five horses contained a higher percentage of 4F2+ cells than unsorted PBL. Using ELISA, we determined that the nine mAbs recognize three different epitopes. These mAbs will be useful tools in better understanding the largely uncharacterized equine NK cell population.
Collapse
Affiliation(s)
- Leela E Noronha
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | | | | | | |
Collapse
|
66
|
Langers I, Renoux VM, Thiry M, Delvenne P, Jacobs N. Natural killer cells: role in local tumor growth and metastasis. Biologics 2012; 6:73-82. [PMID: 22532775 PMCID: PMC3333822 DOI: 10.2147/btt.s23976] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Historically, the name of natural killer (NK) cells came from their natural ability to kill tumor cells in vitro. From the 1970s to date, accumulating data highlighted the importance of NK cells in host immune response against cancer and in therapy-induced antitumor response. The recognition and the lysis of tumor cells by NK cells are regulated by a complex balance of inhibitory and activating signals. This review summarizes NK cell mechanisms to kill cancer cells, their role in host immune responses against tumor growth or metastasis, and their implications in antitumor immunotherapies via cytokines, antibodies, or in combination with other therapies. The regulatory role of NK cells in autoimmunity is also discussed.
Collapse
Affiliation(s)
- Inge Langers
- Laboratory of Experimental Pathology, GIGA-I3/GIGA-Cancer, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
67
|
Afratis N, Gialeli C, Nikitovic D, Tsegenidis T, Karousou E, Theocharis AD, Pavão MS, Tzanakakis GN, Karamanos NK. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J 2012; 279:1177-97. [DOI: 10.1111/j.1742-4658.2012.08529.x] [Citation(s) in RCA: 380] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
68
|
Deciphering the Multifaceted Relationship between Oncolytic Viruses and Natural Killer Cells. Adv Virol 2011; 2012:702839. [PMID: 22312364 PMCID: PMC3263705 DOI: 10.1155/2012/702839] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/14/2011] [Indexed: 12/23/2022] Open
Abstract
Despite active research in virotherapy, this apparently safe modality has not achieved widespread success. The immune response to viral infection appears to be an essential factor that determines the efficacy of oncolytic viral therapy. The challenge is determining whether the viral-elicited immune response is a hindrance or a tool for viral treatment. NK cells are a key component of innate immunity that mediates antiviral immunity while also coordinating tumor clearance. Various reports have suggested that the NK response to oncolytic viral therapy is a critical factor in premature viral clearance while also mediating downstream antitumor immunity. As a result, particular attention should be given to the NK cell response to various oncolytic viral vectors and how their antiviral properties can be suppressed while maintaining tumor clearance. In this review we discuss the current literature on the NK response to oncolytic viral infection and how future studies clarify this intricate response.
Collapse
|
69
|
Rosental B, Brusilovsky M, Hadad U, Oz D, Appel MY, Afergan F, Yossef R, Rosenberg LA, Aharoni A, Cerwenka A, Campbell KS, Braiman A, Porgador A. Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural cytotoxicity receptor NKp44. THE JOURNAL OF IMMUNOLOGY 2011; 187:5693-702. [PMID: 22021614 DOI: 10.4049/jimmunol.1102267] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells play an important role in the early immune response to cancer. The NKp44 activating receptor is the only natural cytotoxicity receptor that is expressed exclusively by primate NK cells, yet its cellular ligands remain largely unknown. Proliferating cell nuclear Ag (PCNA) is overexpressed in cancer cells. In this study, we show that the NKp44 receptor recognizes PCNA. Their interaction inhibits NK cell function through NKp44/ITIM. The physical interaction of NKp44 and PCNA is enabled by recruitment of target cell PCNA to the NK immunological synapse. We demonstrate that PCNA promotes cancer survival by immune evasion through inhibition of NKp44-mediated NK cell attack.
Collapse
Affiliation(s)
- Benyamin Rosental
- Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Modulation of NKp30- and NKp46-mediated natural killer cell responses by poxviral hemagglutinin. PLoS Pathog 2011; 7:e1002195. [PMID: 21901096 PMCID: PMC3161980 DOI: 10.1371/journal.ppat.1002195] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/22/2011] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK) cells are an important element in the immune defense against the orthopox family members vaccinia virus (VV) and ectromelia virus (ECTV). NK cells are regulated through inhibitory and activating signaling receptors, the latter involving NKG2D and the natural cytotoxicity receptors (NCR), NKp46, NKp44 and NKp30. Here we report that VV infection results in an upregulation of ligand structures for NKp30 and NKp46 on infected cells, whereas the binding of NKp44 and NKG2D was not significantly affected. Likewise, infection with ectromelia virus (ECTV), the mousepox agent, enhanced binding of NKp30 and, to a lesser extent, NKp46. The hemagglutinin (HA) molecules from VV and ECTV, which are known virulence factors, were identified as novel ligands for NKp30 and NKp46. Using NK cells with selectively silenced NCR expression and NCR-CD3ζ reporter cells, we observed that HA present on the surface of VV-infected cells, or in the form of recombinant soluble protein, was able to block NKp30-triggered activation, whereas it stimulated the activation through NKp46. The net effect of this complex influence on NK cell activity resulted in a decreased NK lysis susceptibility of infected cells at late time points of VV infection when HA was expression was pronounced. We conclude that poxviral HA represents a conserved ligand of NCR, exerting a novel immune escape mechanism through its blocking effect on NKp30-mediated activation at a late stage of infection.
Collapse
|
71
|
Wang H, Zheng X, Wei H, Tian Z, Sun R. Preparation and functional identification of a monoclonal antibody against the recombinant soluble human NKp30 receptor. Int Immunopharmacol 2011; 11:1732-9. [PMID: 21718806 DOI: 10.1016/j.intimp.2011.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/05/2011] [Accepted: 06/10/2011] [Indexed: 01/28/2023]
Abstract
NKp30 is an important activating receptor of human natural killer (NK) cells that participates in NK cell activation and cytotoxicity against tumor and infected cells. To study the function of NKp30, anti-human NKp30 monoclonal antibody was prepared. The human NKp30 ectodomain (rhNKp30) was expressed in Escherichia coli as inclusion bodies and refolded using the dilution method. The refolded rhNKp30 was purified by immobilized metal affinity chromatography. The activity of soluble rhNKp30 was confirmed by flow cytometry and NK cytotoxicity assays. Four hybridoma cell lines producing monoclonal antibodies against rhNKp30 were obtained. One of the monoclonal antibodies, designated as "3G5", was highly specific and could be used in western blotting, immunoprecipitation, ELISA, and flow cytometry assays. The preparation of soluble rhNKp30 and a monoclonal antibody against NKp30 may provide useful tools for further functional studies of human NKp30.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | |
Collapse
|
72
|
Krueger PD, Lassen MG, Qiao H, Hahn YS. Regulation of NK cell repertoire and function in the liver. Crit Rev Immunol 2011; 31:43-52. [PMID: 21395510 DOI: 10.1615/critrevimmunol.v31.i1.40] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
NK cells represent a large proportion of the lymphocyte population in the liver and are involved in early innate immunity to pathogen infection. As a result of liver endothelial cell fenestrations, parenchymal cells are not separated by a basal membrane, and thereby pathogen-infected hepatocytes are extensively capable of interacting with innate immune cells including NK cells. In addition, hepatic NK cells interact with surrounding DC and alter their differentiation and function. Recent studies reveal that NK cells exhibit a regulatory function that modulates T cell responses through their interaction with DC and/or direct effect on T cells. Thus, NK cells play a central role, not only in innate immunity, but also in shaping the adaptive immune response. During pathogen infection, there is a remarkable increase of hepatic NK cells, possibly due to the expansion of resident liver NK cells and/or recruitement of NK cells from the blood. The liver microenvironment is believed to modulate hepatic NK cell function through the induction of activating/inhibitory receptor expression and inflammatory cytokine secretion. Particularly, the liver maintains intrahepatic NK cells in a functionally hyporesponsive state compared to splenic NK cells: liver NK cells displayed a dampened IFN-γ response to IL-12/IL-18 stimulation. Notably, the liver contains a significant population of functionally hyporesponsive NK cells that express high levels of the inhibitory receptor NKG2A and lack expression of MHC class I-binding Ly49 receptors. Importantly, adoptively transferred splenic NK cells that migrate to the liver displayed phenotypic and functional changes, supporting a view that the liver environment modifies NK cell receptor expression and functional responsiveness. In this article, we will review studies on the regulation of NK cell repertoire and function in the hepatic environment and the impact of liver NK cell immunoregulatory function on influencing adaptive immunity.
Collapse
Affiliation(s)
- Peter D Krueger
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville, 22908, USA
| | | | | | | |
Collapse
|
73
|
Ito K, Higai K, Sakurai M, Shinoda C, Yanai K, Azuma Y, Matsumoto K. Binding of natural cytotoxicity receptor NKp46 to sulfate- and α2,3-NeuAc-containing glycans and its mutagenesis. Biochem Biophys Res Commun 2011; 406:377-82. [PMID: 21329668 DOI: 10.1016/j.bbrc.2011.02.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 02/11/2011] [Indexed: 01/31/2023]
Abstract
Natural cytotoxicity receptor 1 (NCR1, NKp46) binds to heparin and heparan sulfate; however, other natural ligands for NKp46 have yet to be elucidated. Using the recombinant extracellular region (coding for AA 22-258) of NKp46 tagged with 6× His (NKp46-H6), and mutants K136Q, R139Q, H142Q, R145Q, and K149Q, we determined their binding affinities to sulfate- and NeuAc-containing glycans-coated plates. NKp46-H6 directly bound to plates coated with heparin- and heparan sulfate-conjugated bovine serum albumin with K(d) values of 770 and 850 nM, respectively. The binding of NKp46-H6 to heparin-BSA was suppressed by soluble heparin, herparan sulfate, fucoidan, λ-carrageenan, and dextran sulfate, but not by 2-O-, 6-O-, and N-desulfated heparin. NKp46-H6 also bound to multimeric sialyl Lewis X expressing transferrin secreted by human hepatoma HepG2 cells (HepTF) with a K(d) value of 530 nM, but not to desialylated HepTF, commercially available TF, or 1-acid glycoprotein. Moreover, mutants R139Q, R145Q, and K149Q had significantly reduced binding to these sulfate-containing glycans, and K136Q and K149Q to HepTF, indicating that NKp46 binds to sulfate- and 2,3-NeuAc-containing glycans mainly via ionic interactions. However, the binding sites of NKp46 were different.
Collapse
Affiliation(s)
- Kenichiro Ito
- Department of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 247-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
74
|
Wai LE, Garcia JA, Martinez OM, Krams SM. Distinct roles for the NK cell-activating receptors in mediating interactions with dendritic cells and tumor cells. THE JOURNAL OF IMMUNOLOGY 2010; 186:222-9. [PMID: 21106845 DOI: 10.4049/jimmunol.1002597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells are innate immune cells that are important in tumor immunity, but also have the ability to modulate the adaptive immune system through cytokine production or direct cell-cell interactions. This study investigates the interaction of NK cells with dendritic cells (DCs) and tumor cells, and the role of specific NK cell-activating receptors in this process. Primary rat NK cells and an NK cell line produced IFN-γ when cocultured with either DCs or the rat hepatoma cell line McA-RH7777 (McA). This NK cell activation by DCs and McA required cell-cell contact and was dependent on distinct NK-activating receptors. Silencing NK cell expression of NKp46 and NKp30 significantly diminished DC- and McA-mediated NK cell IFN-γ production, respectively. NK cells killed immature and mature DCs independently of NKp46, NKp30, and NKG2D; however, cytotoxicity against McA cells was dependent on NKp30 and NKG2D. Thus, we have shown in this study that NKp30 plays dual activating roles in NK-McA tumor interactions by mediating cytokine production and cytotoxicity. More importantly, NK cells are activated by both DCs and hepatoma cells to produce IFN-γ, but require distinct NK cell-activating receptors, NKp46 and NKp30, respectively. Our data suggest that therapeutics could be developed specifically to target NK-DC interactions without compromising NK tumor immunity.
Collapse
Affiliation(s)
- Lu-En Wai
- Division of Transplantation and Program in Immunology, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
75
|
Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK. Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J 2010; 277:3904-23. [PMID: 20840587 DOI: 10.1111/j.1742-4658.2010.07800.x] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The expression of proteoglycans (PGs), essential macromolecules of the tumor microenvironment, is markedly altered during malignant transformation and tumor progression. Synthesis of stromal PGs is affected by factors secreted by cancer cells and the unique tumor-modified extracellular matrix may either facilitate or counteract the growth of solid tumors. The emerging theme is that this dual activity has intrinsic tissue specificity. Matrix-accumulated PGs, such as versican, perlecan and small leucine-rich PGs, affect cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Furthermore, expression of cell-surface-associated PGs, such as syndecans and glypicans, is also modulated in both tumor and stromal cells. Cell-surface-associated PGs bind various factors that are involved in cell signaling, thereby affecting cell proliferation, adhesion and motility. An important mechanism of action is offered by a proteolytic processing of cell-surface PGs known as ectodomain shedding of syndecans; this facilitates cancer and endothelial cell motility, protects matrix proteases and provides a chemotactic gradient of mitogens. However, syndecans on stromal cells may be important for stromal cell/cancer cell interplay and may promote stromal cell proliferation, migration and angiogenesis. Finally, abnormal PG expression in cancer and stromal cells may serve as a biomarker for tumor progression and patient survival. Enhanced understanding of the regulation of PG metabolism and the involvement of PGs in cancer may offer a novel approach to cancer therapy by targeting the tumor microenvironment. In this minireview, the implication of PGs in cancer development and progression, as well as their pharmacological targeting in malignancy, are presented and discussed.
Collapse
|
76
|
Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH. Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 2010; 89:216-24. [PMID: 20567250 DOI: 10.1038/icb.2010.78] [Citation(s) in RCA: 375] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Natural killer (NK) cells are potent immune effector cells that can respond to infection and cancer, as well as allowing maternal adaptation to pregnancy. In response to malignant transformation or pathogenic invasion, NK cells can secrete cytokine and may be directly cytolytic, as well as exerting effects indirectly through other cells of the immune system. To recognize and respond to inflamed or infected tissues, NK cells express a variety of activating and inhibitory receptors including NKG2D, Ly49 or KIR, CD94-NKG2 heterodimers and natural cytotoxicity receptors, as well as co-stimulatory receptors. These receptors recognize cellular stress ligands as well as major histocompatibility complex class I and related molecules, which can lead to NK cell responses. Importantly, NK cells must remain tolerant of healthy tissue, and some of these receptors can also prevent activation of NK cells. In this review, we describe the expression of prominent NK cell receptors, as well as expression of their ligands and their role in immune responses. In addition, we describe the main signaling pathways used by NK cell receptors. Although we now appreciate that NK cell biology is more complicated than first thought, there are still facets of their biology that remain unclear. These will be highlighted and discussed in this review.
Collapse
Affiliation(s)
- Hollie J Pegram
- Cancer Immunology Research Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
77
|
NKp46 O-glycan sequences that are involved in the interaction with hemagglutinin type 1 of influenza virus. J Virol 2010; 84:3789-97. [PMID: 20147410 DOI: 10.1128/jvi.01815-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cells serve as a crucial first-line defense against tumors and virus-infected cells. We previously showed that lysis of influenza virus (IV)-infected cells is mediated by the interaction between the NK receptor, NKp46, and the IV hemagglutinin (HA) type 1 expressed by the infected cells. This interaction requires the presence of sialyl groups on the NKp46-T225 O-glycoforms. In the current study, we analyzed the O-glycan sequences that are imperative for the interaction between recombinant NKp46 (rNKp46) and IV H1N1 strains. We first showed that rNKp46 binding to IV H1N1 is not mediated by a glycoform unique to the Thr225 site. We then characterized the O-glycan sequences that mediate the interaction of rNKp46 and IV H1N1; we employed rNKp46s with dissimilar glycosylation patterns and IV H1N1 strains with different sialic acid alpha2,3 and alpha2,6 linkage preferences. The branched alpha2,3-sialylated O-glycoform Neu5NAcalpha2,3-Galbeta1,4-GlcNAcbeta1,6[Neu5NAcalpha2,3-Galbeta1,3]GalNAc competently mediated the interaction of rNKp46 with IV H1N1, manifesting a preference for alpha2,3 linkage. In contrast, the linear alpha2,3-sialylated O-glycoform Neu5NAcalpha2,3-Galbeta1,3-GalNAc was not correlated with enhanced interaction between rNKp46 and IV H1N1 or a preference for alpha2,3 linkage. The branched alpha2,3- and alpha2,6-sialylated O-glycoform Neu5NAcalpha2,3-Galbeta1,3[Neu5NAcalpha2,6]GalNAc competently mediated the interaction of rNKp46 with IV H1N1, manifesting a preference for alpha2,6 linkage. Previous viral HA-binding-specificity studies were performed with glycopolymer conjugates, free synthetic sialyl oligosaccharides, and sialidase-treated cells. This study shed light on the O-glycan sequences involved in the interaction of glycoprotein and viral hemagglutinins and may help in the design of agents inhibitory to hemagglutinin for influenza treatment.
Collapse
|
78
|
Generating NK cell receptor-Fc chimera proteins from 293T cells and considerations of appropriate glycosylation. Methods Mol Biol 2010; 612:275-83. [PMID: 20033647 DOI: 10.1007/978-1-60761-362-6_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The use of recombinant receptors as a scientific tool has become widespread in many research fields. Of particular interest are the natural killer (NK) receptors that play a major role in the immune response against tumors and virus-infected cells. We present here (i) a detailed protocol for the production and purification of soluble recombinant NK cell receptors tagged with human IgG1-Fc (thus termed receptor-Fc chimera or receptor-Ig fusion protein) and (ii) a protocol for cell staining with these recombinant receptor-Fc chimeras. As these recombinant proteins are produced in eukaryotic cells, we further discuss the glycosylation pattern of these receptors that might interfere with their ligand-binding phenotype.
Collapse
|
79
|
Abstract
Heparan sulfate proteoglycans (HSPGs) play vital roles in every step of tumor progression allowing cancer cells to proliferate, escape from immune response, invade neighboring tissues, and metastasize to distal sites away from the primary site. Several cancers including breast, lung, brain, pancreatic, skin, and colorectal cancers show aberrant modulation of several key HS biosynthetic enzymes such as 3-O Sulfotransferase and 6-O Sulfotransferase, and also catabolic enzymes such as HSulf-1, HSulf-2 and heparanase. The resulting tumor specific HS fine structures assist cancer cells to breakdown ECM to spread, misregulate signaling pathways to facilitate their proliferation, promote angiogenesis to receive nutrients, and protect themselves against natural killer cells. This review focuses on the changes in the expression of HS biosynthetic and catabolic enzymes in several cancers, the resulting changes in HS fine structures, and the effects of these tumor specific HS signatures on promoting invasion, proliferation, and metastasis. It is possible to retard tumor progression by modulating the deregulated biosynthetic and catabolic pathways of HS chains through novel chemical biology approaches.
Collapse
Affiliation(s)
- Karthik Raman
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Balagurunathan Kuberan
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
- Graduate Program in Neuroscience, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
80
|
Yang ZR. Predicting sulfotyrosine sites using the random forest algorithm with significantly improved prediction accuracy. BMC Bioinformatics 2009; 10:361. [PMID: 19874585 PMCID: PMC2777180 DOI: 10.1186/1471-2105-10-361] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 10/29/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tyrosine sulfation is one of the most important posttranslational modifications. Due to its relevance to various disease developments, tyrosine sulfation has become the target for drug design. In order to facilitate efficient drug design, accurate prediction of sulfotyrosine sites is desirable. A predictor published seven years ago has been very successful with claimed prediction accuracy of 98%. However, it has a particularly low sensitivity when predicting sulfotyrosine sites in some newly sequenced proteins. RESULTS A new approach has been developed for predicting sulfotyrosine sites using the random forest algorithm after a careful evaluation of seven machine learning algorithms. Peptides are formed by consecutive residues symmetrically flanking tyrosine sites. They are then encoded using an amino acid hydrophobicity scale. This new approach has increased the sensitivity by 22%, the specificity by 3%, and the total prediction accuracy by 10% compared with the previous predictor using the same blind data. Meanwhile, both negative and positive predictive powers have been increased by 9%. In addition, the random forest model has an excellent feature for ranking the residues flanking tyrosine sites, hence providing more information for further investigating the tyrosine sulfation mechanism. A web tool has been implemented at http://ecsb.ex.ac.uk/sulfotyrosine for public use. CONCLUSION The random forest algorithm is able to deliver a better model compared with the Hidden Markov Model, the support vector machine, artificial neural networks, and others for predicting sulfotyrosine sites. The success shows that the random forest algorithm together with an amino acid hydrophobicity scale encoding can be a good candidate for peptide classification.
Collapse
Affiliation(s)
- Zheng Rong Yang
- School of Biosciences, University of Exeter, Exeter EX4 5DE, UK.
| |
Collapse
|
81
|
Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol 2009; 9:568-80. [PMID: 19629084 DOI: 10.1038/nri2604] [Citation(s) in RCA: 299] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A growing body of research is addressing how pathways that are dysregulated during tumorigenesis are linked to innate immune responses, which can contribute to immune surveillance of cancer. Components of the innate immune system that are localized in tissues are thought to eliminate early neoplastic cells, thereby preventing or delaying the establishment of advanced tumours. This Review addresses our current understanding of the mechanisms that detect cellular stresses that are associated with tumorigenesis and that culminate in the recognition and, in some cases, the elimination of the tumour cells by natural killer cells and other lymphocytes that express natural killer cell receptors.
Collapse
|
82
|
Hershkovitz O, Rosental B, Rosenberg LA, Navarro-Sanchez ME, Jivov S, Zilka A, Gershoni-Yahalom O, Brient-Litzler E, Bedouelle H, Ho JW, Campbell KS, Rager-Zisman B, Despres P, Porgador A. NKp44 receptor mediates interaction of the envelope glycoproteins from the West Nile and dengue viruses with NK cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:2610-21. [PMID: 19635919 DOI: 10.4049/jimmunol.0802806] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dengue virus (DV) and West Nile virus (WNV) have become a global concern due to their widespread distribution and their ability to cause a variety of human diseases. Antiviral immune defenses involve NK cells. In the present study, we investigated the interaction between NK cells and these two flaviviruses. We show that the NK-activating receptor NKp44 is involved in virally mediated NK activation through direct interaction with the flavivirus envelope protein. Recombinant NKp44 directly binds to purified DV and WNV envelope proteins and specifically to domain III of WNV envelope protein; it also binds to WNV virus-like particles. These WNV-virus-like particles and WNV-domain III of WNV envelope protein directly bind NK cells expressing high levels of NKp44. Functionally, interaction of NK cells with infective and inactivated WNV results in NKp44-mediated NK degranulation. Finally, WNV infection of cells results in increased binding of rNKp44 that is specifically inhibited by anti-WNV serum. WNV-infected target cells induce IFN-gamma secretion and augmented lysis by NKp44-expressing primary NK cells that are blocked by anti-NKp44 Abs. Our findings show that triggering of NK cells by flavivirus is mediated by interaction of NKp44 with the flavivirus envelope protein.
Collapse
Affiliation(s)
- Oren Hershkovitz
- Shraga Segal Department of Microbiology and Immunology and National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
NKG2D and CD94 bind to heparin and sulfate-containing polysaccharides. Biochem Biophys Res Commun 2009; 386:709-14. [PMID: 19555665 DOI: 10.1016/j.bbrc.2009.06.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 06/17/2009] [Indexed: 01/17/2023]
Abstract
Killer lectin-like receptors NKG2D and CD94 on natural killer cells trigger cytotoxicity through binding of glycans on target cells including sialyl Lewis X antigen. We previously reported that NKG2D and CD94 recognize alpha2,3-linked NeuAc on multi-antennary N-glycans. Here we further investigated polysaccharide binding by these receptors, using glutathione-S-transferase-fused extracellular domains of NKG2D AA 73-216 (rNKG2Dlec) and CD94 AA 68-179 (rCD94lec). We found that rNKG2Dlec and rCD94lec bind in a dose-dependent manner to plates coated with heparin-conjugated bovine serum albumin (heparin-BSA). Binding to heparin-BSA was suppressed by soluble sulfate-containing polysaccharides, but minimally impacted by 2-O-, 6-O-, and 2-N-desulfated heparin. Mutagenesis revealed that (152)Y and (199)Y of NKG2D and (144)F, (160)N, and (166)C of CD94 were critical for binding to heparin-BSA. The present manuscript provides the first evidence that NKG2D and CD94 bind to heparin and sulfate-containing polysaccharides.
Collapse
|
84
|
Activation of natural killer cells by newcastle disease virus hemagglutinin-neuraminidase. J Virol 2009; 83:8108-21. [PMID: 19515783 DOI: 10.1128/jvi.00211-09] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The avian paramyxovirus Newcastle disease virus (NDV) selectively replicates in tumor cells and is known to stimulate T-cell-, macrophage-, and NK cell-mediated responses. The mechanisms of NK cell activation by NDV are poorly understood so far. We studied the expression of ligand structures for activating NK cell receptors on NDV-infected tumor cells. Upon infection with the nonlytic NDV strain Ulster and the lytic strain MTH-68/H, human carcinoma and melanoma cells showed enhanced expression of ligands for the natural cytotoxicity receptors NKp44 and NKp46, but not NKp30. Ligands for the activating receptor NKG2D were partially downregulated. Soluble NKp44-Fc and NKp46-Fc, but not NKp30-Fc, chimeric proteins bound specifically to NDV-infected tumor cells and to NDV particle-coated plates. Hemagglutinin-neuraminidase (HN) of the virus serves as a ligand structure for NKp44 and NKp46, as indicated by the blockade of binding to NDV-infected cells and viral particles in the presence of anti-HN antibodies and by binding to cells transfected with HN cDNA. Consistent with the recognition of sialic acid moieties by the viral lectin HN, the binding of NKp44-Fc and NKp46-Fc was lost after desialylation. NKp44- and NKp46-CD3zeta lacZ-inducible reporter cells were activated by NDV-infected cells. NDV-infected tumor cells stimulated NK cells to produce increased amounts of the effector lymphokines gamma interferon and tumor necrosis factor alpha. Primary NK cells and the NK line NK-92 lysed NDV-infected tumor cells with enhanced efficiency, an effect that was eliminated by the treatment of target cells with the neuraminidase inhibitor Neu5Ac2en. These results suggest that direct activation of NK cells contributes to the antitumor effects of NDV.
Collapse
|
85
|
Hecht ML, Rosental B, Horlacher T, Hershkovitz O, De Paz JL, Noti C, Schauer S, Porgador A, Seeberger PH. Natural cytotoxicity receptors NKp30, NKp44 and NKp46 bind to different heparan sulfate/heparin sequences. J Proteome Res 2009; 8:712-20. [PMID: 19196184 DOI: 10.1021/pr800747c] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural Killer (NK) cells recognize and destroy tumors and virus-infected cells in an antibody-independent manner. The regulation of NK cells is mediated by activating and inhibiting receptors on the NK cell surface. One important family of activating receptors is the natural cytotoxicity receptors (NCRs) which include NKp30, NKp44 and NKp46. The NCRs initiate tumor targeting by recognition of heparan sulfate on cancer cells. This study aims to elucidate heparan sulfate structural motifs that are important for NCR binding. Microarray and surface plasmon resonance experiments with a small library of heparan sulfate/heparin oligosaccharides helped to clarify the binding preferences of the three NCRs. We demonstrate that the NCRs interact with highly charged HS/heparin structures, but differ in preferred modification patterns and chain lengths. The affinity of NKp30 and NKp44 for synthetic HS/heparin is approximately one order of magnitude higher than the affinity of NKp46. We further show the relevance of synthetic HS/heparin for the binding of NCRs to tumor cells and for NCR-mediated activation of natural killer cells. In conclusion, NCRs recognize different microdomains on heparan sulfate with different affinities.
Collapse
Affiliation(s)
- Marie-Lyn Hecht
- Laboratory for Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Biassoni R. Human natural killer receptors, co-receptors, and their ligands. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 14:14.10.1-14.10.40. [PMID: 19235767 DOI: 10.1002/0471142735.im1410s84] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. Our laboratory has contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. Only in the last ten years has it become possible to characterize the NK triggering receptors mediating natural cytotoxicity, leading to an appreciation of the existence of a cellular interaction network between effectors of both natural and adaptive immunity. This report reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells.
Collapse
Affiliation(s)
- Roberto Biassoni
- Instituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| |
Collapse
|
87
|
Białoszewska A, Niderla-Bielińska J, Hyc A, Osiecka-Iwan A, Radomska-Leśniewska DM, Kieda C, Malejczyk J. Chondrocyte-specific phenotype confers susceptibility of rat chondrocytes to lysis by NK cells. Cell Immunol 2009; 258:197-203. [DOI: 10.1016/j.cellimm.2009.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/07/2009] [Accepted: 05/11/2009] [Indexed: 11/26/2022]
|
88
|
Biassoni R. Natural killer cell receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:35-52. [PMID: 19065782 DOI: 10.1007/978-0-387-09789-3_4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells are an important arm of the innate immune response that are directly involved in the recognition and lysis of virus-infected and tumor cells. Such function is under the control of a complex array of germline-encoded receptors able to deliver either inhibitory or activating signals. The majority of inhibitory receptors expressed by NK cells are major histocompatibility complex (MHC) class I-specific and display clonal and stochastic distribution on the cell surface. Thus, a given NK cell expresses at least one self class I inhibitory receptor. Under normal conditions, the strength of inhibitory signals delivered by multiple interactions always overrides the activating signals, resulting in NK cell self-tolerance. Under certain pathological conditions, such as viral infections or tumor transformation, the delicate balance of inhibition versus activation is broken, resulting in downregulation or loss of MHC class I expression. In general, the degree of inhibition induced by class I-specific receptors is proportional to the amount of these molecules on the cell surface. Thus, in transformed cells, this inhibition can be overridden by the triggering signal cascades, leading to cell activation. The majority of triggering receptors expressed by NK cells belong to the multichain immune recognition receptor (MIRR) family and use separate signal-transducing polypeptides similar to those used by other immune receptors such as the T-cell antigen receptor, the B-cell antigen receptor and other receptors expressed by myeloid cells. Inhibitory receptors are not members of the MIRR family but they are relevant for a better understanding the exquisite equilibrium and regulatory crosstalk between positive and negative signals.
Collapse
Affiliation(s)
- Roberto Biassoni
- Molecular Medicine, Istituto Giannina Gaslini, Largo G. Gaslini 5, 16147 Genova, Italy.
| |
Collapse
|
89
|
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that monitor cell surfaces of autologous cells for an aberrant expression of MHC class I molecules and cell stress markers. Since their first description more than 30 years ago, NK cells have been implicated in the immune defence against tumours. Here, we review the broadly accumulating evidence for a crucial contribution of NK cells to the immunosurveillance of tumours and the molecular mechanisms that allow NK cells to distinguish malignant from healthy cells. Particular emphasis is placed on the activating NK receptor NKG2D, which recognizes a variety of MHC class I-related molecules believed to act as 'immuno-alerters' on malignant cells, and on tumour-mediated counterstrategies promoting escape from NKG2D-mediated recognition.
Collapse
Affiliation(s)
- I Waldhauer
- Department of Immunology, Interfacultary Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
90
|
Simhadri VR, Reiners KS, Hansen HP, Topolar D, Simhadri VL, Nohroudi K, Kufer TA, Engert A, Pogge von Strandmann E. Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function. PLoS One 2008; 3:e3377. [PMID: 18852879 PMCID: PMC2566590 DOI: 10.1371/journal.pone.0003377] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 09/12/2008] [Indexed: 11/18/2022] Open
Abstract
NKp30, a natural cytotoxicity receptor expressed on NK cells is critically involved in direct cytotoxicity against various tumor cells and directs both maturation and selective killing of dendritic cells. Recently the intracellular protein BAT3, which is involved in DNA damage induced apoptosis, was identified as a ligand for NKp30. However, the mechanisms underlying the exposure of the intracellular ligand BAT3 to surface NKp30 and its role in NK-DC cross talk remained elusive. Electron microscopy and flow cytometry demonstrate that exosomes released from 293T cells and iDCs express BAT3 on the surface and are recognized by NKp30-Ig. Overexpression and depletion of BAT3 in 293T cells directly correlates with the exosomal expression level and the activation of NK cell-mediated cytokine release. Furthermore, the NKp30-mediated NK/DC cross talk resulting either in iDC killing or maturation was BAT3-dependent. Taken together this puts forward a new model for the activation of NK cells through intracellular signals that are released via exosomes from accessory cells. The manipulation of the exosomal regulation may offer a novel strategy to induce tumor immunity or inhibit autoimmune diseases caused by NK cell-activation.
Collapse
Affiliation(s)
- Venkateswara Rao Simhadri
- Laboratory of Immune Therapy, Department of Internal Medicine I, Centre for Integrated Oncology Koeln Bonn, University of Cologne, Cologne, Germany
- * E-mail: (VRS); (EPvS)
| | - Katrin S. Reiners
- Laboratory of Immune Therapy, Department of Internal Medicine I, Centre for Integrated Oncology Koeln Bonn, University of Cologne, Cologne, Germany
| | - Hinrich P. Hansen
- Laboratory of Immune Therapy, Department of Internal Medicine I, Centre for Integrated Oncology Koeln Bonn, University of Cologne, Cologne, Germany
| | - Daniela Topolar
- Laboratory of Immune Therapy, Department of Internal Medicine I, Centre for Integrated Oncology Koeln Bonn, University of Cologne, Cologne, Germany
| | - Vijaya Lakshmi Simhadri
- Laboratory of Immune Therapy, Department of Internal Medicine I, Centre for Integrated Oncology Koeln Bonn, University of Cologne, Cologne, Germany
| | - Klaus Nohroudi
- Institute for Anatomy-I, University Hospital of Cologne, Cologne, Germany
| | - Thomas A. Kufer
- Institute of Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Andreas Engert
- Laboratory of Immune Therapy, Department of Internal Medicine I, Centre for Integrated Oncology Koeln Bonn, University of Cologne, Cologne, Germany
| | - Elke Pogge von Strandmann
- Laboratory of Immune Therapy, Department of Internal Medicine I, Centre for Integrated Oncology Koeln Bonn, University of Cologne, Cologne, Germany
- * E-mail: (VRS); (EPvS)
| |
Collapse
|
91
|
Dengue virus replicon expressing the nonstructural proteins suffices to enhance membrane expression of HLA class I and inhibit lysis by human NK cells. J Virol 2008; 82:7666-76. [PMID: 18508882 DOI: 10.1128/jvi.02274-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Many viruses escape the cellular immune response by downregulating cell surface expression of major histocompatibility complex (MHC) class I molecules. However, infection of cells with flaviviruses can upregulate the expression of these molecules. In this study we analyzed the expression of MHC class I in K562 and THP-1 human cell lines that were stably transfected with self-replicating subgenomic dengue virus RNA (replicons) and express all the dengue virus nonstructural proteins together. We show that MHC class I expression is upregulated in the dengue virus replicon-expressing cells and that the binding of natural killer (NK) inhibitory receptors to these cells is augmented. This upregulation results in reduced susceptibility of the dengue virus replicon-expressing cells to NK lysis, indicating a possible mechanism for evasion of the dengue virus from NK cell recognition. Visualizing MHC class I expression in replicon-containing K562 and THP-1 cells by confocal microscopy demonstrated aggregation of MHC class I molecules on the cell surface. Finally, replicon-expressing K562 cells manifested increased TAP (transporter associated with antigen processing) and LMP (low-molecular-mass protein) gene transcription, while replicon-expressing THP-1 cells manifested increased NF-kappaB activity and MHC class I transcription. We suggest that expression of dengue virus nonstructural proteins is sufficient to induce MHC class I upregulation through both TAP-dependent and -independent mechanisms. Additionally, aggregation of MHC class I molecules on the cell membrane also contributes to significantly higher binding of low-affinity NK inhibitory receptors, resulting in lower sensitivity to lysis by NK cells.
Collapse
|
92
|
Arnon TI, Markel G, Bar-Ilan A, Hanna J, Fima E, Benchetrit F, Galili R, Cerwenka A, Benharroch D, Sion-Vardy N, Porgador A, Mandelboim O. Harnessing soluble NK cell killer receptors for the generation of novel cancer immune therapy. PLoS One 2008; 3:e2150. [PMID: 18478075 PMCID: PMC2364651 DOI: 10.1371/journal.pone.0002150] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 04/01/2008] [Indexed: 12/20/2022] Open
Abstract
The natural cytotoxic receptors (NCRs) are a unique set of activating proteins expressed mainly on the surface of natural killer (NK) cells. The NCRs, which include three members; NKp46, NKp44 and NKp30, are critically involved in NK cytotoxicity against different targets, including a wide range of tumor cells derived from various origins. Even though the tumor ligands of the NCRs have not been identified yet, the selective manner by which these receptors target tumor cells may provide an excellent basis for the development of novel anti-tumor therapies. To test the potential use of the NCRs as anti-tumor agents, we generated soluble NCR-Ig fusion proteins in which the constant region of human IgG1 was fused to the extracellular portion of the receptor. We demonstrate, using two different human prostate cancer cell lines, that treatment with NKp30-Ig, dramatically inhibits tumor growth in vivo. Activated macrophages were shown to mediate an ADCC response against the NKp30-Ig coated prostate cell lines. Finally, the Ig fusion proteins were also demonstrated to discriminate between benign prostate hyperplasia and prostate cancer. This may provide a novel diagnostic modality in the difficult task of differentiating between these highly common pathological conditions.
Collapse
Affiliation(s)
- Tal I. Arnon
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Gal Markel
- Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Ahuva Bar-Ilan
- The Shraga Segal Department of Microbiology and Immunology and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Jacob Hanna
- The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Eyal Fima
- The Shraga Segal Department of Microbiology and Immunology and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Fabrice Benchetrit
- The Shraga Segal Department of Microbiology and Immunology and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ruth Galili
- Lautenberg Center for General and Tumor Immunology, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Adelheid Cerwenka
- Division of Innate Immunity, German Cancer Research Center, Heidelberg, Germany
| | | | | | - Angel Porgador
- The Shraga Segal Department of Microbiology and Immunology and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva, Israel
- * E-mail: (AP); (OM)
| | - Ofer Mandelboim
- Lautenberg Center for General and Tumor Immunology, The Hebrew University Hadassah Medical School, Jerusalem, Israel
- * E-mail: (AP); (OM)
| |
Collapse
|
93
|
Byrd A, Hoffmann SC, Jarahian M, Momburg F, Watzl C. Expression analysis of the ligands for the Natural Killer cell receptors NKp30 and NKp44. PLoS One 2007; 2:e1339. [PMID: 18092004 PMCID: PMC2129109 DOI: 10.1371/journal.pone.0001339] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 11/26/2007] [Indexed: 01/17/2023] Open
Abstract
Background The natural cytotoxicity receptors (NCR) are important to stimulate the activity of Natural Killer (NK) cells against transformed cells. Identification of NCR ligands and their level of expression on normal and neoplastic cells has important implications for the rational design of immunotherapy strategies for cancer. Methodology/Principal Findings Here we analyze the expression of NKp30 ligand and NKp44 ligand on 30 transformed or non-transformed cell lines of different origin. We find intracellular and surface expression of these two ligands on almost all cell lines tested. Expression of NKp30 and NKp44 ligands was variable and did not correlate with the origin of the cell line. Expression of NKp30 and NKp44 ligand correlated with NKp30 and NKp44-mediated NK cell lysis of tumor cells, respectively. The surface expression of NKp30 ligand and NKp44 ligand was sensitive to trypsin treatment and was reduced in cells arrested in G2/M phase. Conclusion/Significance These data demonstrate the ubiquitous expression of the ligands for NKp30 and NKp44 and give an important insight into the regulation of these ligands.
Collapse
Affiliation(s)
- Andreina Byrd
- Institute for Immunology, University Heidelberg, Heidelberg, Germany
| | | | - Mostafa Jarahian
- Department of Molecular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Frank Momburg
- Department of Molecular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Carsten Watzl
- Institute for Immunology, University Heidelberg, Heidelberg, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
94
|
H5-type influenza virus hemagglutinin is functionally recognized by the natural killer-activating receptor NKp44. J Virol 2007; 82:2028-32. [PMID: 18077718 DOI: 10.1128/jvi.02065-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antiviral immune defenses involve natural killer (NK) cells. We previously showed that the NK-activating receptor NKp44 is involved in the functional recognition of H1-type influenza virus strains by NK cells. In the present study, we investigated the interaction of NKp44 and the hemagglutinin of a primary influenza virus H5N1 isolate. Here we show that recombinant NKp44 recognizes H5-expressing cells and specifically interacts with soluble H5 hemagglutinin. H5-pseudotyped lentiviral particles bind to NK cells expressing NKp44. Following interaction with target cells expressing H5, pseudotyped lentiviral particles, or membrane-associated H5, NK cells show NKp44-mediated induced activity. These findings indicate that NKp44-H5 interactions induce functional NK activation.
Collapse
|
95
|
Hershkovitz O, Jarahian M, Zilka A, Bar-Ilan A, Landau G, Jivov S, Tekoah Y, Glicklis R, Gallagher JT, Hoffmann SC, Zer H, Mandelboim O, Watzl C, Momburg F, Porgador A. Altered glycosylation of recombinant NKp30 hampers binding to heparan sulfate: a lesson for the use of recombinant immunoreceptors as an immunological tool. Glycobiology 2007; 18:28-41. [PMID: 18006589 DOI: 10.1093/glycob/cwm125] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
NKp30 is a natural cytotoxicity receptor expressed by human NK cells and involved in NK lytic activity. We previously published that membranal heparan sulfate serves as a coligand for human NKp30. In the present study, we complement our results by showing direct binding of recombinant NKp30 to immobilized heparin. The heparan sulfate epitope(s) on target tumor cells and the heparin epitope(s) recognized by NKp30 share similar characteristics. Warren and colleagues (Warren HS, Jones AL, Freeman C, Bettadapura J, Parish CR. 2005. Evidence that the cellular ligand for the human NK cell activation receptor NKp30 is not a heparan sulfate glycosaminoglycan. J Immunol. 175:207-212) published that NKp30 does not bind to membranal heparan sulfate on target cells and that heparan sulfate is not involved in NKp30-mediated lysis. In the current study, we examine the binding of six different recombinant NKp30s to membranal heparan sulfate and conclude that NKp30 does interact with membranal heparan sulfate. Yet, two of the six recombinant NKp30s, including the commercially available recombinant NKp30 (employed by Warren et al.) did not show heparan sulfate-dependent binding. We demonstrate that this is due to an altered glycosylation of these two recombinant NKp30s. Upon removal of its N-linked glycans, heparan sulfate-dependent binding to tumor cells and direct binding to heparin were restored. Overall, our results emphasize the importance of proper glycosylation for analysis of NKp30 binding to its ligand and that membranal heparan sulfate could serve as a coligand for NKp30. At the cellular level, soluble heparan sulfate enhanced the secretion of IFNgamma by NK-92 natural killer cells activated with anti-NKp30 monoclonal antibody. We discuss the involvement of heparan sulfate binding to NKp30 in NKp30-mediated activation of NK cells.
Collapse
Affiliation(s)
- Oren Hershkovitz
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and the Cancer Research Center, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Human melanoma cell lines were shown to express ligands for the natural cytotoxicity receptor, NKp46, expressed by natural killer (NK) cells. We aimed to examine the expression of ligands for NKp46 by various primary human melanocytic cells and melanocytic lesions. Sections from primary nevi and melanomas were tested for expression of NKp46 ligands employing chimeric NKp46-Fc for staining. The melanocytes present in the reticular dermis were negative for NKp46 ligands in common nevi; in malignant melanocytic lesions, the deeper melanocytes were focally positive. In dermoepidermal junction of all melanocytic lesions, the melanocytes showed enhanced expression of NKp46 ligands. Melanophages in all lesions were consistently positive for NKp46 ligands. These observations establish the expression of NKp46 ligands by primary-transformed melanocytes. Normal melanocytes did not express ligands to NKp46. Therefore, the results show (i) a correlation between the malignant potential of the lesion and the expression of NKp46 ligands in the reticular dermis, and (ii) enhanced expression of NKp46 ligands in the active proliferation zone (dermoepidermal junction) of nevi and melanomas. Ligands to NKp46 were expressed on the membrane and within the cells. The physiological role of NKp46 ligands in the progression of malignancy within melanocytic lesions should be explored further.
Collapse
|
97
|
Hershkovitz O, Jivov S, Bloushtain N, Zilka A, Landau G, Bar-Ilan A, Lichtenstein RG, Campbell KS, van Kuppevelt TH, Porgador A. Characterization of the Recognition of Tumor Cells by the Natural Cytotoxicity Receptor, NKp44. Biochemistry 2007; 46:7426-36. [PMID: 17536787 DOI: 10.1021/bi7000455] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NKp44 is a natural cytotoxicity receptor expressed by human NK cells upon activation. In this study, we demonstrate that cell surface heparan sulfate proteoglycans (HSPGs), expressed by target cells, are involved in the recognition of tumor cells by NKp44. NKp44 showed heparan sulfate-dependent binding to tumor cells; this binding was partially blocked with an antibody to heparan sulfate. In addition, direct binding of NKp44 to heparin was observed, and soluble heparin/heparan sulfate enhanced the secretion of IFNgamma by NK92 cells activated with anti-NKp44 monoclonal antibody. Basic amino acids, predicted to constitute the putative heparin/heparan sulfate binding site of NKp44, were mutated. Tumor cell recognition of the mutated NKp44 proteins was significantly reduced and correlated with their lower recognition of heparin. We previously reported that NKp44 recognizes the hemagglutinin of influenza virus (IV). Nevertheless, the ability of the mutated NKp44 proteins to bind viral hemagglutinin expressed by IV-infected cells was not affected. Thus, we suggest that heparan sulfate epitope(s) are ligands/co-ligands of NKp44 and are involved in its tumor recognition ability.
Collapse
Affiliation(s)
- Oren Hershkovitz
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Rodacki M, Svoren B, Butty V, Besse W, Laffel L, Benoist C, Mathis D. Altered natural killer cells in type 1 diabetic patients. Diabetes 2007; 56:177-85. [PMID: 17192480 DOI: 10.2337/db06-0493] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Evidence from animal models suggests that natural killer (NK) cells can be important players in the development of type 1 diabetes, although data in humans are still sparse. We studied the frequency and activation state of blood NK cells at different stages of human type 1 diabetes, and whether genetic or phenotypic NK cell peculiarities could be associated with an early onset of diabetes. The onset period is marked by a slight reduction in blood NK cells, but these are unusually activated in some patients (gamma-interferon expression). This activation status does not correlate, however, with a particularly young age at onset. In contrast, NK cells in patients with long-standing type 1 diabetes had a markedly lower expression of p30/p46 NK-activating receptor molecules compared with those of control subjects. A slightly decreased expression of NKG2D in all type 1 diabetic patients relative to control subjects was observed, independent of the duration of disease, parallel to prior observations in the NOD mouse. Finally, type 1 diabetic patients had an increased frequency of KIR gene haplotypes that include the activating KIR2DS3 gene, with a genetic interaction between the KIR and HLA complexes. The reduced activation of NK cells in individuals with long-standing type 1 diabetes would seem to be a consequence rather than a cause, but other peculiarities may relate to type 1 diabetes pathogenesis.
Collapse
|
99
|
Solana R, Casado JG, Delgado E, DelaRosa O, Marín J, Durán E, Pawelec G, Tarazona R. Lymphocyte activation in response to melanoma: interaction of NK-associated receptors and their ligands. Cancer Immunol Immunother 2007; 56:101-9. [PMID: 16485126 PMCID: PMC11030256 DOI: 10.1007/s00262-006-0141-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Accepted: 01/22/2006] [Indexed: 12/17/2022]
Abstract
In recent years, studies on the molecular and cellular mechanisms of immune responses against melanoma have contributed to a better understanding of how these tumours can be recognised by cytotoxic cells and the mechanisms they have developed to escape from innate and adaptive immunity. Lysis of melanoma cells by natural killer (NK) cells and cytolytic T cells is the result of a fine balance between signals transmitted by activating and inhibitory receptors. In addition to the T cell receptor, these were initially described as NK cell-associated receptors (NKRs) and were later also found on subsets of T lymphocytes, particularly effector-memory and terminally differentiated CD8 T cells. An increase of NKR(+)CD8(+) T cells has been found in melanoma patients, correlating with the expansion of differentiated effector CD8(+)CD28(null) CD27(null) T cells. NKRs can regulate the lysis of target cells expressing appropriate ligands. Activating receptors recognise ligands on tumours whereas inhibitory receptors are specific for MHC class I antigens and sense missing self. Altered expression of MHC class I antigens is frequently found on melanoma cells, preventing recognition by specific cytolytic T cells but favouring NK cell recognition. Changes in the expression of NKR-ligands in melanoma contribute in explaining the differences in the capacity of cytotoxic immune cells to control melanoma growth and dissemination.
Collapse
Affiliation(s)
- Rafael Solana
- Department of Cellular Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Córdoba, Spain
| | - Javier G. Casado
- Department of Cellular Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Córdoba, Spain
| | - Elena Delgado
- Immunology Unit, Department of Physiology, Faculty of Veterinary, University of Extremadura, Cáceres, Spain
| | - Olga DelaRosa
- Department of Cellular Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Córdoba, Spain
| | - Juan Marín
- Immunology Unit, Department of Physiology, Faculty of Veterinary, University of Extremadura, Cáceres, Spain
| | - Esther Durán
- Histology and Pathological Anatomy Unit, Faculty of Veterinary, University of Extremadura, Cáceres, Spain
| | - Graham Pawelec
- Center for Medical Research, University of Tubingen, Tubingen, Germany
| | - Raquel Tarazona
- Immunology Unit, Department of Physiology, Faculty of Veterinary, University of Extremadura, Cáceres, Spain
| |
Collapse
|
100
|
Garg A, Barnes PF, Porgador A, Roy S, Wu S, Nanda JS, Griffith DE, Girard WM, Rawal N, Shetty S, Vankayalapati R. Vimentin Expressed onMycobacterium tuberculosis-Infected Human Monocytes Is Involved in Binding to the NKp46 Receptor. THE JOURNAL OF IMMUNOLOGY 2006; 177:6192-8. [PMID: 17056548 DOI: 10.4049/jimmunol.177.9.6192] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously showed that human NK cells used the NKp46 receptor to lyse Mycobacterium tuberculosis H37Ra-infected monocytes. To identify ligands on H37Ra-infected human mononuclear phagocytes, we used anti-NKp46 to immunoprecipitate NKp46 from NK cells bound to its ligand(s) on H37Ra-infected monocytes. Mass spectrometry analysis identified a 57-kDa molecule, vimentin, as a putative ligand for NKp46. Vimentin expression was significantly up-regulated on the surface of infected monocytes, compared with uninfected cells, and this was confirmed by fluorescence microscopy. Anti-vimentin antiserum inhibited NK cell lysis of infected monocytes, whereas antiserum to actin, another filamentous protein, did not. CHO-K1 cells transfected with a vimentin construct were lysed much more efficiently by NK cells than cells transfected with a control plasmid. This lysis was inhibited by mAb-mediated masking of NKp46 (on NK cells) or vimentin (on infected monocytes). ELISA and Far Western blotting showed that recombinant vimentin bound to a NKp46 fusion protein. These results indicate that vimentin is involved in binding of NKp46 to M. tuberculosis H37Ra-infected mononuclear phagocytes.
Collapse
Affiliation(s)
- Ankita Garg
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Center, 11937 U.S. Highway 271, Tyler, TX 75708, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|