51
|
Yang Y, Lin Q, Zhou C, Li Q, Li Z, Cao Z, Liang J, Li H, Mei J, Zhang Q, Xiang Q, Xue W, Huang Y. A Testis-Derived Hydrogel as an Efficient Feeder-Free Culture Platform to Promote Mouse Spermatogonial Stem Cell Proliferation and Differentiation. Front Cell Dev Biol 2020; 8:250. [PMID: 32509769 PMCID: PMC7248195 DOI: 10.3389/fcell.2020.00250] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
Fertility preservation and assisted reproductive medicine require effective culture systems for the successful proliferation and differentiation of spermatogonial stem cells (SSCs). Many SSC culture systems require the addition of feeder cells at each subculture, which is tedious and inefficient. Here, we prepared decellularized testicular matrix (DTM) from testicular tissue, which preserved essential structural proteins of testis. The DTM was then solubilized and induced to form a porous hydrogel scaffold with randomly oriented fibrillar structures that exhibited good cytocompatibility. The viability of SSCs inoculated onto DTM hydrogel scaffolds was significantly higher than those inoculated on Matrigel or laminin, and intracellular gene expression and DNA imprinting patterns were similar to that of native SSCs. Additionally, DTM promoted SSC differentiation into round spermatids. More importantly, the DTM hydrogel supported SSC proliferation and differentiation without requiring additional somatic cells. The DTM hydrogel scaffold culture system provided an alternative and simple method for culturing SSCs that eliminates potential variability and contamination caused by feeder cells. It might be a valuable tool for reproductive medicine.
Collapse
Affiliation(s)
- Yan Yang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China.,Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Qilian Lin
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Chengxing Zhou
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Quan Li
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Ziyi Li
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Zhen Cao
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Jinlian Liang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Hanhao Li
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Jiaxin Mei
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Qihao Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Qi Xiang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China.,Biopharmaceutical Research & Development Center of Jinan University, Guangzhou, China
| | - Wei Xue
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Yadong Huang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China.,Department of Pharmacology, Jinan University, Guangzhou, China
| |
Collapse
|
52
|
Xie X, Nóbrega R, Pšenička M. Spermatogonial Stem Cells in Fish: Characterization, Isolation, Enrichment, and Recent Advances of In Vitro Culture Systems. Biomolecules 2020; 10:E644. [PMID: 32331205 PMCID: PMC7226347 DOI: 10.3390/biom10040644] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis is a continuous and dynamic developmental process, in which a single diploid spermatogonial stem cell (SSC) proliferates and differentiates to form a mature spermatozoon. Herein, we summarize the accumulated knowledge of SSCs and their distribution in the testes of teleosts. We also reviewed the primary endocrine and paracrine influence on spermatogonium self-renewal vs. differentiation in fish. To provide insight into techniques and research related to SSCs, we review available protocols and advances in enriching undifferentiated spermatogonia based on their unique physiochemical and biochemical properties, such as size, density, and differential expression of specific surface markers. We summarize in vitro germ cell culture conditions developed to maintain proliferation and survival of spermatogonia in selected fish species. In traditional culture systems, sera and feeder cells were considered to be essential for SSC self-renewal, in contrast to recently developed systems with well-defined media and growth factors to induce either SSC self-renewal or differentiation in long-term cultures. The establishment of a germ cell culture contributes to efficient SSC propagation in rare, endangered, or commercially cultured fish species for use in biotechnological manipulation, such as cryopreservation and transplantation. Finally, we discuss organ culture and three-dimensional models for in vitro investigation of fish spermatogenesis.
Collapse
Affiliation(s)
- Xuan Xie
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| | - Rafael Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618-970, Brazil;
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| |
Collapse
|
53
|
Silva AMD, Pereira AF, Comizzoli P, Silva AR. Cryopreservation and Culture of Testicular Tissues: An Essential Tool for Biodiversity Preservation. Biopreserv Biobank 2020; 18:235-243. [PMID: 32282240 DOI: 10.1089/bio.2020.0010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Systematic cryo-banking of reproductive tissues could enhance reproductive management and ensure sustainability of rare mammalian genotypes. Testicular tissues contain a vast number of germ cells, including at early stages (spermatogonia and spermatocytes), that can potentially develop into viable spermatozoa after grafting or culture in vitro, and the resulting sperm cells then can be used for assisted reproductive techniques. The objective of this review was to describe current advances, limitations, and perspectives related to the use of testicular tissue preservation as a strategy for the conservation of male fertility. Testes can be obtained from mature or prepubertal individuals, immediately postmortem or by orchiectomy, but testicular biopsies could also be an alternative to collect samples from living individuals. Testicular fragments can be then cryopreserved by using slow or ultra-rapid freezing, or even vitrification methods. The composition of cryopreservation media can vary according to species-specific characteristics, especially regarding the cryoprotectant type and concentration. Finally, spermatozoa have been usually obtained after xenografting of testicular fragments into severely immunodeficient mice, while this method still has to be optimized after in vitro culture conditions.
Collapse
Affiliation(s)
- Andréia Maria da Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, Mossoró, Brazil
| | | | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital, Washington, District of Columbia, USA
| | | |
Collapse
|
54
|
Ibtisham F, Honaramooz A. Spermatogonial Stem Cells for In Vitro Spermatogenesis and In Vivo Restoration of Fertility. Cells 2020; 9:E745. [PMID: 32197440 PMCID: PMC7140722 DOI: 10.3390/cells9030745] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the only adult stem cells capable of passing genes onto the next generation. SSCs also have the potential to provide important knowledge about stem cells in general and to offer critical in vitro and in vivo applications in assisted reproductive technologies. After century-long research, proof-of-principle culture systems have been introduced to support the in vitro differentiation of SSCs from rodent models into haploid male germ cells. Despite recent progress in organotypic testicular tissue culture and two-dimensional or three-dimensional cell culture systems, to achieve complete in vitro spermatogenesis (IVS) using non-rodent species remains challenging. Successful in vitro production of human haploid male germ cells will foster hopes of preserving the fertility potential of prepubertal cancer patients who frequently face infertility due to the gonadotoxic side-effects of cancer treatment. Moreover, the development of optimal systems for IVS would allow designing experiments that are otherwise difficult or impossible to be performed directly in vivo, such as genetic manipulation of germ cells or correction of genetic disorders. This review outlines the recent progress in the use of SSCs for IVS and potential in vivo applications for the restoration of fertility.
Collapse
Affiliation(s)
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| |
Collapse
|
55
|
Ashouri Movassagh S, Banitalebi Dehkordi M, Koruji M, Pourmand G, Farzaneh P, Ashouri Movassagh S, Jabari A, Samadian A, Khadivi F, Abbasi M. In Vitro Spermatogenesis by Three-dimensional Culture of Spermatogonial Stem Cells on Decellularized Testicular Matrix. Galen Med J 2019; 8:e1565. [PMID: 34466530 PMCID: PMC8344169 DOI: 10.31661/gmj.v8i0.1565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/18/2019] [Accepted: 05/18/2019] [Indexed: 01/15/2023] Open
Abstract
Background In the males, Spermatogonial Stem Cells (SSCs) contribute to the production of sex cells and fertility. In vitro SSCs culture can operate as an effective strategy for studies on spermatogenesis and male infertility treatment. Cell culture in a three-dimensional (3D) substrate, relative to a two-dimensional substrate (2D), creates better conditions for cell interaction and is closer to in vivo conditions. In the present study, in order to create a 3D matrix substrate, decellularized testicular matrix (DTM) was used to engender optimal conditions for SSCs culture and differentiation. Materials and Methods After, testicular cells enzymatic extraction from testes of brain-dead donors, the SSCs were proliferated in a specific culture medium for four weeks, and after confirming the identity of the colonies derived from the growth of these cells, they were cultured on a layer of DTM as well as in 2D condition with a differentiated culture medium. In the Sixth week since the initiation of the differentiation culture, the expression of pre meiotic (OCT4 & PLZF ), meiotic (SCP3 & BOULE) and post meiotic (CREM & Protamine-2) genes were measured in both groups. Results The results indicated that the expression of pre meiotic, meiotic and post meiotic genes was significantly higher in the cells cultured on DTM (P ≤ 0.001). Conclusion SSCs culture in DTM with the creation of ECM and similar conditions with in vivo can be regarded as a way of demonstrating spermatogenesis in vitro, which can be adopted as a treatment modality for male infertility.
Collapse
Affiliation(s)
- Sepideh Ashouri Movassagh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Mehdi Banitalebi Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Center & Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Pourmand
- Urology Research Center, Sina Hospital, TehranUniversity of Medical Sciences, Tehran, Iran
| | - Parvaneh Farzaneh
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Sanaz Ashouri Movassagh
- Midwifery and Disease Reproduction group, College of Veterinary Medicine, Islamic Azad University, Science and Research Unite, Tehran, Iran
| | - Ayob Jabari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Samadian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Correspondence to: Mehdi Abbasi Ph.D, Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Qods Street, Enqelab Square, Tehran, Iran Telephone Number: +98-21-6405 3411 Email Address:
| |
Collapse
|
56
|
Three-dimensional decellularized amnion membrane scaffold promotes the efficiency of male germ cells generation from human induced pluripotent stem cells. Exp Cell Res 2019; 384:111544. [DOI: 10.1016/j.yexcr.2019.111544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/21/2019] [Accepted: 08/01/2019] [Indexed: 12/30/2022]
|
57
|
Gauthier-Fisher A, Kauffman A, Librach CL. Potential use of stem cells for fertility preservation. Andrology 2019; 8:862-878. [PMID: 31560823 DOI: 10.1111/andr.12713] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Infertility and gonadal dysfunction can result from gonadotoxic therapies, environmental exposures, aging, or genetic conditions. In men, non-obstructive azoospermia (NOA) results from defects in the spermatogenic process that can be attributed to spermatogonial stem cells (SSC) or their niche, or both. While assisted reproductive technologies and sperm banking can enable fertility preservation (FP) in men of reproductive age who are at risk for infertility, FP for pre-pubertal patients remains experimental. Therapeutic options for NOA are limited. The rapid advance of stem cell research and of gene editing technologies could enable new FP options for these patients. Induced pluripotent stem cells (iPSC), SSC, and testicular niche cells, as well as mesenchymal stromal cells (aka medicinal signaling cells, MSCs), have been investigated for their potential use in male FP strategies. OBJECTIVE Here, we review the benefits and challenges for three types of stem cell-based approaches under investigation for male FP, focusing on the role that promising sources of MSC derived from human umbilical cord, specifically human umbilical cord perivascular cells (HUCPVC), could fulfill. These approaches are as follows: 1. isolation and ex vivo expansion of autologous SSC for in vivo transplantation or in vitro spermatogenesis; 2. in vitro differentiation toward germ cell and testicular somatic cell lineages using autologous SSC, or stem cells such iPSC or MSC; and 3. protection or regeneration of the spermatogenic niche after gonadotoxic insults in vivo. CONCLUSION Our studies suggest that HUCPVC are promising sources of cells that could be utilized in multiple aspects of male FP strategies.
Collapse
Affiliation(s)
| | - A Kauffman
- CReATe Fertility Centre, Toronto, ON, Canada
| | - C L Librach
- CReATe Fertility Centre, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Gynecology, Women's College Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
58
|
Vermeulen M, Giudice MG, Del Vento F, Wyns C. Role of stem cells in fertility preservation: current insights. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2019; 12:27-48. [PMID: 31496751 PMCID: PMC6689135 DOI: 10.2147/sccaa.s178490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Abstract
While improvements made in the field of cancer therapy allow high survival rates, gonadotoxicity of chemo- and radiotherapy can lead to infertility in male and female pre- and postpubertal patients. Clinical options to preserve fertility before starting gonadotoxic therapies by cryopreserving sperm or oocytes for future use with assisted reproductive technology (ART) are now applied worldwide. Cryopreservation of pre- and postpubertal ovarian tissue containing primordial follicles, though still considered experimental, has already led to the birth of healthy babies after autotransplantation and is performed in an increasing number of centers. For prepubertal boys who do not produce gametes ready for fertilization, cryopreservation of immature testicular tissue (ITT) containing spermatogonial stem cells may be proposed as an experimental strategy with the aim of restoring fertility. Based on achievements in nonhuman primates, autotransplantation of ITT or testicular cell suspensions appears promising to restore fertility of young cancer survivors. So far, whether in two- or three-dimensional culture systems, in vitro maturation of immature male and female gonadal cells or tissue has not demonstrated a capacity to produce safe gametes for ART. Recently, primordial germ cells have been generated from embryonic and induced pluripotent stem cells, but further investigations regarding efficiency and safety are needed. Transplantation of mesenchymal stem cells to improve the vascularization of gonadal tissue grafts, increase the colonization of transplanted cells, and restore the damaged somatic compartment could overcome the current limitations encountered with transplantation.
Collapse
Affiliation(s)
- Maxime Vermeulen
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Maria-Grazia Giudice
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels 1200, Belgium
| | - Federico Del Vento
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Christine Wyns
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels 1200, Belgium
| |
Collapse
|
59
|
Abofoul-Azab M, Lunenfeld E, Levitas E, Zeadna A, Younis JS, Bar-Ami S, Huleihel M. Identification of Premeiotic, Meiotic, and Postmeiotic Cells in Testicular Biopsies Without Sperm from Sertoli Cell-Only Syndrome Patients. Int J Mol Sci 2019; 20:E470. [PMID: 30678285 PMCID: PMC6387177 DOI: 10.3390/ijms20030470] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Sertoli cell-only syndrome (SCOS) affects about 26.3⁻57.8% of azoospermic men, with their seminiferous tubules containing only Sertoli cells. Recently, it was reported that testicular biopsies from nonobstructive azoospermic (NOA) patients contained germ cells, and that sperm could be found in the tubules of 20% of SCOS patients using testicular sperm extraction technology. Since the patients without sperm in their testicular biopsies do not have therapy to help them to father a biological child, in vitro maturation of spermatogonial stem cells (SSCs) isolated from their testis is a new approach for possible future infertility treatment. Recently, the induction of human and mice SSCs proliferation and differentiation was demonstrated using different culture systems. Our group reported the induction of spermatogonial cell proliferation and differentiation to meiotic and postmeiotic stages in mice, rhesus monkeys, and prepubertal boys with cancer using 3D agar and methylcellulose (MCS) culture systems. The aim of the study was to identify the type of spermatogenic cells present in biopsies without sperm from SCOS patients, and to examine the possibility of inducing spermatogenesis from isolated spermatogonial cells of these biopsies in vitro using 3D MCS. We used nine biopsies without sperm from SCOS patients, and the presence of spermatogenic markers was evaluated by PCR and specific immunofluorescence staining analyses. Isolated testicular cells were cultured in MCS in the presence of StemPro enriched media with different growth factors and the development of colonies/clusters was examined microscopically. We examined the presence of cells from the different stages of spermatogenesis before and after culture in MCS for 3⁻7 weeks. Our results indicated that these biopsies showed the presence of premeiotic markers (two to seven markers/biopsy), meiotic markers (of nine biopsies, cAMP responsive element modulator-1 (CREM-1) was detected in five, lactate dehydrogenase (LDH) in five, and BOULE in three) and postmeiotic markers (protamine was detected in six biopsies and acrosin in three). In addition, we were able to induce the development of meiotic and/or postmeiotic stages from spermatogonial cells isolated from three biopsies. Thus, our study shows for the first time the presence of meiotic and/or postmeiotic cells in biopsies without the sperm of SCOS patients. Isolated cells from some of these biopsies could be induced to meiotic and/or postmeiotic stages under in vitro culture conditions.
Collapse
Affiliation(s)
- Maram Abofoul-Azab
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University, Beer Sheva 8410501, Israel.
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
| | - Eitan Lunenfeld
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
- Fertility and IVF Unit, Department OB/GYN, Soroka Medical Center, Beer-Sheva 85025, Israel.
| | - Eliahu Levitas
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
- Fertility and IVF Unit, Department OB/GYN, Soroka Medical Center, Beer-Sheva 85025, Israel.
| | - Atif Zeadna
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
- Fertility and IVF Unit, Department OB/GYN, Soroka Medical Center, Beer-Sheva 85025, Israel.
| | - Johnny S Younis
- Reproductive Medicine Unit, Department OB/GYN, Poriya Medical Center, Tiberias; Azrieli Faculty of Medicine in Galilee, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Shalom Bar-Ami
- Reproductive Medicine Unit, Department OB/GYN, Poriya Medical Center, Tiberias; Azrieli Faculty of Medicine in Galilee, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University, Beer Sheva 8410501, Israel.
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
| |
Collapse
|
60
|
Michailov Y, Lunenfeld E, Kapilushnik J, Friedler S, Meese E, Huleihel M. Acute Myeloid Leukemia Affects Mouse Sperm Parameters, Spontaneous Acrosome Reaction, and Fertility Capacity. Int J Mol Sci 2019; 20:ijms20010219. [PMID: 30626098 PMCID: PMC6337746 DOI: 10.3390/ijms20010219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/29/2018] [Accepted: 01/01/2019] [Indexed: 11/16/2022] Open
Abstract
Leukemia is one of the most common cancers in patients of reproductive age. It is well known that chemotherapy, used as anti-cancer therapy, adversely affects male fertility. Moreover, the negative effect of leukemia on sperm quality, even before chemotherapy treatment, has been reported. However, the mechanisms behind this disease's effect on sperm quality remains unknown. In this study, we examine the direct effect of leukemia and chemotherapy alone and in combination on sperm parameters and male fertility. For this, we developed an acute myeloid leukemia (AML) mouse model (mice were treated with AML cells C1498 and developed leukemia); these mice then received cytarabine chemotherapy. Our findings reveal a significant reduction in sperm concentration and motility and a significant increase in abnormal morphology and spontaneous acrosome reaction of the sperm following AML and chemotherapy treatment, alone and in combination. We also found a reduction in male fertility and the number of delivered offspring. Our results support previous findings that AML impairs sperm parameters and show for the first time that AML increases spontaneous acrosome reaction and decreases male fertility capacity and number of offspring.
Collapse
Affiliation(s)
- Yulia Michailov
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
- IVF Unit, Barzilai University Medical Center, Ashkelon 7830604, Israel.
| | - Eitan Lunenfeld
- The Center of Advanced Research and Education in Reproduction (CARER), Department OB/GYN, Soroka Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Joseph Kapilushnik
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Shevach Friedler
- IVF Unit, Barzilai University Medical Center, Ashkelon 7830604, Israel.
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
- Department of OBGYN and Infertility, Barzilai University Medical Center, Ashkelon 7830604, Israel.
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Homburg/Saar, 66421 Homburg, Germany.
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
61
|
Michailov Y, Lunenfeld E, Kapelushnik J, Huleihel M. Leukemia and male infertility: past, present, and future. Leuk Lymphoma 2018; 60:1126-1135. [PMID: 30501544 DOI: 10.1080/10428194.2018.1533126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spermatogenesis is the process of the proliferation and differentiation of spermatogonial stem cells (SSCs) to generate sperm. Leukemia patients show impairment in some of the endocrine hormones that are involved in spermatogenesis. They also show a decrease in semen parameters before and after thawing of cryopreserved samples compared to a control. The mechanisms behind these effects have not yet been described. This review summarizes the effect of leukemia on semen parameters from adult patients and highlights feasible suggested mechanisms that may affect impairment of spermatogenesis in these patients. We suggest the possible involvement of leukemia in disturbing hormones involved in spermatogenesis, and the imbalance in testicular paracrine/autocrine factors involved in the formation of SSC niches that control their proliferation and differentiation. Understanding the mechanisms of leukemia in the impairment of spermatogenesis may lead to the development of novel therapeutic strategies mainly for prepubertal boys who do not yet produce sperm.
Collapse
Affiliation(s)
- Yulia Michailov
- a The Shraga Segal Dept. of Microbiology, Immunology, and Genetics , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,b The Center of Advanced Research and Education in Reproduction (CARER) , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,c Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,d IVF Unit , Barzilai Medical Center , Ashkelon , Israel
| | - Eitan Lunenfeld
- b The Center of Advanced Research and Education in Reproduction (CARER) , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,c Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,e Department of Obstetrics and Gynaecology , Soroka Medical Center , Beer-Sheva , Israel
| | - Joseph Kapelushnik
- b The Center of Advanced Research and Education in Reproduction (CARER) , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,c Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,f Department of Pediatric Oncology and Department of Hematology , Soroka Medical Center , Beer-Sheva , Israel
| | - Mahmoud Huleihel
- a The Shraga Segal Dept. of Microbiology, Immunology, and Genetics , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,b The Center of Advanced Research and Education in Reproduction (CARER) , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,c Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,g The National Institute for Biotechnology in the Negev , Beer-Sheva , Israel
| |
Collapse
|
62
|
AbuMadighem A, Solomon R, Stepanovsky A, Kapelushnik J, Shi Q, Meese E, Lunenfeld E, Huleihel M. Development of Spermatogenesis In Vitro in Three-Dimensional Culture from Spermatogonial Cells of Busulfan-Treated Immature Mice. Int J Mol Sci 2018; 19:ijms19123804. [PMID: 30501072 PMCID: PMC6321353 DOI: 10.3390/ijms19123804] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 01/22/2023] Open
Abstract
Aggressive chemotherapy may lead to permanent male infertility. Prepubertal males do not generate sperm, but their testes do contain spermatogonial cells (SPGCs) that could be used for fertility preservation. In the present study, we examined the effect of busulfan (BU) on the SPGCs of immature mice, and the possible induction of the survivor SPGCs to develop spermatogenesis in 3D in-vitro culture. Immature mice were injected with BU, and after 0.5⁻12 weeks, their testes were weighed and evaluated histologically compared to the control mice. The spermatogonial cells [Sal-like protein 4 (SALL4) and VASA (a member of the DEAD box protein family) in the testicular tissue were counted/seminiferous tubule (ST). The cells from the STs were enzymatically isolated and cultured in vitro. Our results showed a significant decrease in the testicular weight of the BU-treated mice compared to the control. This was in parallel to a significant increase in the number of severely damaged STs, and a decrease in the number of SALL4 and VASA/STs compared to the control. The cultures of the isolated cells from the STs of the BU-treated mice showed a development of colonies and meiotic and post-meiotic cells after four weeks of culture. The addition of homogenates from adult GFP mice to those cultures induced the development of sperm-like cells after four weeks of culture. This is the first study demonstrating the presence of biologically active spermatogonial cells in the testicular tissue of BU-treated immature mice, and their capacity to develop sperm-like cells in vitro.
Collapse
Affiliation(s)
- Ali AbuMadighem
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Beer-Sheva 84105, Israel.
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer-Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Ronnie Solomon
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Beer-Sheva 84105, Israel.
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer-Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Alina Stepanovsky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Beer-Sheva 84105, Israel.
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Joseph Kapelushnik
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer-Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
- Department of Pediatric Oncology and Department of Hematology, Soroka University Medical Center, Beer-Sheva 8410501, Israel.
| | - QingHua Shi
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230000, China.
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Homburg/Saar, 66421 Homburg, Germany.
| | - Eitan Lunenfeld
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer-Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
- Fertility and IVF Unit and Department of Obstetrics and Gynecology, Soroka University Medical Center, Beer-Sheva 8410501, Israel.
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Beer-Sheva 84105, Israel.
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer-Sheva 8410501, Israel.
| |
Collapse
|
63
|
Komeya M, Sato T, Ogawa T. In vitro spermatogenesis: A century-long research journey, still half way around. Reprod Med Biol 2018; 17:407-420. [PMID: 30377394 PMCID: PMC6194268 DOI: 10.1002/rmb2.12225] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/19/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Spermatogenesis is one of the most complicated cellular differentiation processes in a body. Researchers struggled to find and develop a micro-environmental condition that can support the process in vitro. Such endeavors can be traced back to a century ago and are yet continuing. METHODS Reports on in vitro spermatogenesis and related works were selected and classified into four categories based on the method used; organ culture, tubule culture, cell culture, and 3-dimensional cell culture methods. Each report was critically reviewed from the present point of view by authors who have been working on in vitro spermatogenesis with organ culture method over a decade. RESULTS The organ culture method has the longest history and is the most successful method, which produced fertile mouse sperm from spermatogonial stem cells. Formulation of the medium was a key factor, most importantly serum-derived substances. However, factors in the serum that induce and support spermatogenesis in the cultured tissue remain to be identified. In addition, the success of mouse spermatogenesis is yet to be applied to other animals. On looking into the history of cell culture method, it became clear that Sertoli cells as feeder cells play an important role. Even with Sertoli cells, however, spermatogenic development has been limited to small parts of spermatogenesis, a segmented period of meiotic prophase for instance. Recent developments of organoid or 3-dimensional culture techniques are promising but they still need further refinements. CONCLUSION The study of in vitro spermatogenesis progressed significantly over the last century. We need more work, however, to establish a culture system that can induce and maintain complete spermatogenesis of many if not all mammalian species.
Collapse
Affiliation(s)
- Mitsuru Komeya
- Department of UrologyYokohama City University Graduate School of MedicineYokohamaKanagawaJapan
- Laboratory of Biopharmaceutical and Regenerative SciencesInstitute of Molecular Medicine and Life ScienceYokohama City University Association of Medical ScienceYokohamaKanagawaJapan
| | - Takuya Sato
- Laboratory of Biopharmaceutical and Regenerative SciencesInstitute of Molecular Medicine and Life ScienceYokohama City University Association of Medical ScienceYokohamaKanagawaJapan
| | - Takehiko Ogawa
- Department of UrologyYokohama City University Graduate School of MedicineYokohamaKanagawaJapan
- Laboratory of Biopharmaceutical and Regenerative SciencesInstitute of Molecular Medicine and Life ScienceYokohama City University Association of Medical ScienceYokohamaKanagawaJapan
| |
Collapse
|
64
|
Dissanayake D, Patel H, Wijesinghe PS. Differentiation of human male germ cells from Wharton's jelly-derived mesenchymal stem cells. Clin Exp Reprod Med 2018; 45:75-81. [PMID: 29984207 PMCID: PMC6030615 DOI: 10.5653/cerm.2018.45.2.75] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/13/2018] [Accepted: 05/03/2018] [Indexed: 12/04/2022] Open
Abstract
Objective Recapitulation of the spermatogenesis process in vitro is a tool for studying the biology of germ cells, and may lead to promising therapeutic strategies in the future. In this study, we attempted to transdifferentiate Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) into male germ cells using all-trans retinoic acid and Sertoli cell-conditioned medium. Methods Human WJ-MSCs were propagated by the explant culture method, and cells at the second passage were induced with differentiation medium containing all-trans retinoic acid for 2 weeks. Putative germ cells were cultured with Sertoli cell-conditioned medium at 36℃ for 3 more weeks. Results The gene expression profile was consistent with the stage-specific development of germ cells. The expression of Oct4 and Plzf (early germ cell markers) was diminished, while Stra8 (a premeiotic marker), Scp3 (a meiotic marker), and Acr and Prm1 (postmeiotic markers) were upregulated during the induction period. In morphological studies, approximately 5% of the cells were secondary spermatocytes that had completed two stages of acrosome formation (the Golgi phase and the cap phase). A few spermatid-like cells that had undergone the initial stage of tail formation were also noted. Conclusion Human WJ-MSCs can be transdifferentiated into more advanced stages of germ cells by a simple two-step induction protocol using retinoic acid and Sertoli cell-conditioned medium.
Collapse
Affiliation(s)
- Dmab Dissanayake
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - H Patel
- StemCure Pvt. Ltd., Ahmedabad, India
| | - P S Wijesinghe
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| |
Collapse
|
65
|
Abofoul-Azab M, AbuMadighem A, Lunenfeld E, Kapelushnik J, Shi Q, Pinkas H, Huleihel M. Development of Postmeiotic Cells In Vitro from Spermatogonial Cells of Prepubertal Cancer Patients. Stem Cells Dev 2018; 27:1007-1020. [PMID: 29779447 DOI: 10.1089/scd.2017.0301] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aggressive chemotherapy in childhood often results in testicular damage and consequently jeopardizes future fertility. The presence of spermatogonial cells (SPGCs) in the testes of prepubertal cancer patient boys (PCPBs) can be used to develop future strategies for male fertility preservation. In the present study, we examined the presence of SPGCs in testes of chemotherapy-treated PCPBs and their ability to develop spermatogenesis in vitro using a three-dimensional culture system. Seven testicular biopsies were obtained from chemotherapy-treated PCPBs and one from a patient with β-thalassemia major. Isolated testicular cells were cultured in a methylcellulose culture system (MCS)-containing StemPro enriched with growth factors for 5-15 weeks. The presence of premeiotic, meiotic, and postmeiotic cells was examined by immunofluorescence staining and/or reverse transcription-polymerase chain reaction (RT-PCR) analysis. We observed SPGCs in the examined testicular biopsies. Isolated testicular cells cultured in MCS developed into colonies and contained premeiotic, meiotic, and postmeiotic cells. Furthermore, we identified sperm-like cells that had developed from testicular cells of a PCPB. Our results demonstrate, for the first time, the presence of biologically active SPGCs in testicular biopsies of chemotherapy-treated PCPBs and their capacity to develop in vitro to different stages of spermatogenesis, including the generation of sperm-like cells. This study may open the way for new therapeutic strategies for fertility preservation of PCPBs and for azoospermic patients.
Collapse
Affiliation(s)
- Maram Abofoul-Azab
- 1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev , Beer-Sheva, Israel .,2 The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev , Beer-Sheva, Israel .,3 Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva, Israel
| | - Ali AbuMadighem
- 1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev , Beer-Sheva, Israel .,2 The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev , Beer-Sheva, Israel .,3 Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva, Israel
| | - Eitan Lunenfeld
- 2 The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev , Beer-Sheva, Israel .,3 Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva, Israel .,4 Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center , Beer-Sheva, Israel
| | - Joseph Kapelushnik
- 2 The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev , Beer-Sheva, Israel .,3 Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva, Israel .,5 Department of Pediatric Oncology, Soroka University Medical Center , Beer-Sheva, Israel .,6 Department of Hematology, Soroka University Medical Center , Beer-Sheva, Israel
| | - QingHua Shi
- 7 Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China , Hefei, China
| | - Haim Pinkas
- 8 Male Infertility and Sperm Bank, Helen Schneider Hospital for Women, Rabin Medical Center , Beilinson Hospital, Petach Tikva, Israel
| | - Mahmoud Huleihel
- 1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev , Beer-Sheva, Israel .,2 The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev , Beer-Sheva, Israel .,3 Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva, Israel
| |
Collapse
|
66
|
Rondanino C, Maouche A, Dumont L, Oblette A, Rives N. Establishment, maintenance and functional integrity of the blood-testis barrier in organotypic cultures of fresh and frozen/thawed prepubertal mouse testes. Mol Hum Reprod 2018; 23:304-320. [PMID: 28333312 DOI: 10.1093/molehr/gax017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/13/2017] [Indexed: 02/05/2023] Open
Abstract
STUDY QUESTION Can the spatio-temporal formation of an intact blood-testis barrier (BTB), which is essential for the progression of spermatogenesis, be reproduced in cultures of fresh or frozen/thawed prepubertal mouse testes? SUMMARY ANSWER Organotypic cultures allow the establishment and maintenance of major BTB components and the formation of a functional BTB in mouse testicular tissues. WHAT IS KNOWN ALREADY In vitro maturation of prepubertal testicular tissues is a promising approach to restore fertility in adult survivors of childhood cancer. Although gametes can be successfully obtained from prepubertal mouse testes in organotypic cultures, the spermatogenic yield remains low compared to in vivo controls. STUDY DESIGN, SIZE, DURATION Mouse testicular tissues were frozen using controlled slow freezing (CSF) or solid surface vitrification (SSV) procedures. A total of 158 testes (fresh n = 58, CSF n = 58 or SSV n = 42) from 6 to 7 days postpartum (dpp) mice were cultured at 34°C in basal medium (α-MEM, 10% KnockOut Serum Replacement, 5 μg/ml gentamicin) at a gas-liquid interphase (under 20% O2), with or without 10-6 M retinol, for 9, 16 and 30 days. In addition, 32 testes from 6-7, 15-16, 22-23 and 36-37 dpp mice were used as in vivo controls. PARTICIPANTS/MATERIALS, SETTING, METHODS The mRNA levels of BTB genes (Claudin 3, Claudin 11, Zonula occludens 1 and Connexin-43), germ cell-specific genes (Sal-like protein 4, Kit oncogene, Stimulated by retinoic acid gene 8, Synaptonemal complex protein 3, Transition protein 1 and Protamine 2), markers of Sertoli cell immaturity/maturity (anti-Mullerian hormone, androgen receptor, cyclin-dependent kinase inhibitor 1b) and the androgen-regulated gene Reproductive homeobox 5 (Rhox5) were measured by quantitative RT-PCR (RT-qPCR). The localization of BTB proteins in seminiferous tubules was studied by immunohistochemistry and spermatogenic progression was evaluated histologically. The integrity of the BTB was assessed using a biotin tracer. MAIN RESULTS AND THE ROLE OF CHANCE Modest differences in Claudin 11 (Cldn11), Zonula occludens 1 (Zo-1), Connexin-43 (Cx43) transcript levels and in the localization of the corresponding proteins were found between in vitro cultures of fresh or frozen/thawed testes and in vivo controls (P < 0.05). However, a 32-77-fold decrease in Claudin 3 (Cldn3) mRNA levels and a lack of CLDN3 immunolabelling in 36-44% of seminiferous tubules were observed in 30-day organotypic cultures (P < 0.05). Although Sertoli cell maturation and the completion of a full spermatogenic cycle were achieved after 30 days of culture, meiotic and postmeiotic progression was altered in cultured testicular tissues (P < 0.05). Moreover, an increased BTB permeability and a decreased expression of Rhox5 were observed at the end of the culture period in comparison with in vivo controls (P < 0.05). Completion of spermatogenesis occurred in vitro in seminiferous tubules with an intact BTB, and in those expressing or lacking CLDN3. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION Further studies will be needed to determine whether the expression of other BTB components is altered and to decipher the reason for lower Cldn3 and Rhox5 mRNA levels in organotypic cultures. WIDER IMPLICATIONS OF THE FINDINGS This work contributes to a better understanding of the molecular mechanisms occurring in in vitro matured prepubertal testes. The organotypic culture system will have to be developed further and optimized for human tissue, before potential clinical applications can be envisaged. STUDY FUNDING AND COMPETING INTEREST(S) This work was supported by Rouen University Hospital, Ligue contre le Cancer (to L.D.), and co-supported by European Union and Région Normandie (to A.O.). Europe gets involved in Normandie with European Régional Development Fund (ERDF). The authors declare that they have no conflict of interest.
Collapse
Affiliation(s)
- C Rondanino
- Normandie Univ, UNIROUEN, EA 4308 'Gametogenesis and Gamete Quality', Rouen University Hospital, Department of Reproductive Biology-CECOS, F 76000 Rouen, France
| | - A Maouche
- Normandie Univ, UNIROUEN, EA 4308 'Gametogenesis and Gamete Quality', Rouen University Hospital, Department of Reproductive Biology-CECOS, F 76000 Rouen, France
| | - L Dumont
- Normandie Univ, UNIROUEN, EA 4308 'Gametogenesis and Gamete Quality', Rouen University Hospital, Department of Reproductive Biology-CECOS, F 76000 Rouen, France
| | - A Oblette
- Normandie Univ, UNIROUEN, EA 4308 'Gametogenesis and Gamete Quality', Rouen University Hospital, Department of Reproductive Biology-CECOS, F 76000 Rouen, France
| | - N Rives
- Normandie Univ, UNIROUEN, EA 4308 'Gametogenesis and Gamete Quality', Rouen University Hospital, Department of Reproductive Biology-CECOS, F 76000 Rouen, France
| |
Collapse
|
67
|
Gat I, Maghen L, Filice M, Kenigsberg S, Wyse B, Zohni K, Saraz P, Fisher AG, Librach C. Initial germ cell to somatic cell ratio impacts the efficiency of SSC expansion in vitro. Syst Biol Reprod Med 2018; 64:39-50. [PMID: 29193985 DOI: 10.1080/19396368.2017.1406013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/12/2017] [Indexed: 12/23/2022]
Abstract
Spermatogonial Stem Cell (SSC) expansion in vitro remains a major challenge in efforts to preserve fertility among pubertal cancer survivor boys. The current study focused on innovative approaches to optimize SSC expansion. Six- to eight-week-old CD-1 murine testicular samples were harvested by mechanical and enzymatic digestion. Cell suspensions were incubated for differential plating (DP). After DP, we established two experiments comparing single vs. repetitive DP (S-DP and R-DP, respectively) until passage 2 (P2) completion. Each experiment included a set of cultures consisting of 5 floating-to-attached cell ratios (5, 10, 15, 20, and 25) and control cultures containing floating cells only. We found similar cell and colony count drops during P0 in both S- and R-DP. During P2, counts increased in S-DP in middle ratios (10, 15, and especially 20) relative to low and high ratios (5 and 25, respectively). Counts dropped extensively in R-DP after passage 2. The superiority of intermediate ratios was demonstrated by enrichment of GFRα1 by qPCR. The optimal ratio of 20 in S-DP contained significantly increased proportions of GFRα1-positive cells (25.8±5.8%) as measured by flow cytometry compared to after DP (1.9±0.7%, p<0.0001), as well as positive immunostaining for GFRα1 and UTF1, with rare Sox9-positive cells. This is the first report of the impact of initial floating-to-attached cell ratios on SSC proliferation in vitro. ABBREVIATIONS SSC: spermatogonial stem cells; DP: differential plating; NOA: non-obstructive azoospermia; MACS: magnetic-activated cells sorting; FACS: fluorescence-activated cells sorting.
Collapse
Affiliation(s)
- Itai Gat
- a CReATe Fertility Centre , Toronto , Ontario , Canada
- b Pinchas Borenstein Talpiot Medical Leadership Program , Sheba Medical Center, Tel HaShomer , Ramat Gan , Israel
- c Sackler Medical School, University of Tel Aviv , Israel
| | - Leila Maghen
- a CReATe Fertility Centre , Toronto , Ontario , Canada
| | | | | | - Brandon Wyse
- a CReATe Fertility Centre , Toronto , Ontario , Canada
| | - Khaled Zohni
- a CReATe Fertility Centre , Toronto , Ontario , Canada
| | - Peter Saraz
- a CReATe Fertility Centre , Toronto , Ontario , Canada
| | | | - Clifford Librach
- a CReATe Fertility Centre , Toronto , Ontario , Canada
- d Department of Obstetrics & Gynecology , University of Toronto , Toronto , Ontario , Canada
- e Department of Gynecology , Women's College Hospital , Toronto , Ontario , Canada
| |
Collapse
|
68
|
Aliberti P, Perez Garrido N, Marino R, Ramirez P, Solari AJ, Sciurano R, Costanzo M, Guercio G, Warman DM, Bailez M, Baquedano MS, Rivarola MA, Belgorosky A, Berensztein E. Androgen Insensitivity Syndrome at Prepuberty: Marked Loss of Spermatogonial Cells at Early Childhood and Presence of Gonocytes up to Puberty. Sex Dev 2018; 11:225-237. [PMID: 29393262 DOI: 10.1159/000486089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 01/01/2023] Open
Abstract
Androgen insensitivity syndrome (AIS) is a hereditary condition in patients with a 46,XY karyotype in which loss-of-function mutations of the androgen receptor (AR) gene are responsible for defects in virilization. The aim of this study was to investigate the consequences of the lack of AR activity on germ cell survival and the degree of testicular development reached by these patients by analyzing gonadal tissue from patients with AIS prior to Sertoli cell maturation at puberty. Twenty-three gonads from 13 patients with AIS were assessed and compared to 18 testes from 17 subjects without endocrine disorders. The study of the gonadal structure using conventional microscopy and the ultrastructural characteristics of remnant germ cells using electron microscopy, combined with the immunohistochemical analysis of specific germ cell markers (MAGE-A4 for premeiotic germ cells and of OCT3/4 for gonocytes), enabled us to carry out a thorough investigation of germ cell life in an androgen-insensitive microenvironment throughout prepuberty until young adulthood. Here, we show that germ cell degeneration starts very early, with a marked decrease in number after only 2 years of life, and we demonstrate the permanence of gonocytes in AIS testis samples until puberty, describing 2 different populations. Additionally, our results provide further evidence for the importance of AR signaling in peritubular myoid cells during prepuberty to maintain Sertoli and spermatogonial cell health and survival.
Collapse
Affiliation(s)
- Paula Aliberti
- Servicio de Endocrinología, Hospital de Pediatría 'Prof. Dr. Juan Pedro Garrahan', Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Alves-Lopes JP, Stukenborg JB. Testicular organoids: a new model to study the testicular microenvironment in vitro? Hum Reprod Update 2017; 24:176-191. [PMID: 29281008 DOI: 10.1093/humupd/dmx036] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In recent decades, a broad range of strategies have been applied to model the testicular microenvironment in vitro. These models have been utilized to study testicular physiology and development. However, a system that allows investigations into testicular organogenesis and its impact in the spermatogonial stem-cell (SSC) niche in vitro has not been developed yet. Recently, the creation of tissue-specific organ-like structures called organoids has resurged, helping researchers to answer scientific questions that previous in vitro models could not help to elucidate. So far, a small number of publications have concerned the generation of testicular organoids and their application in the field of reproductive medicine and biology. OBJECTIVE AND RATIONALE Here, we aim to elucidate whether testicular organoids might be useful in answering current scientific questions about the regulation and function of the SSC niche as well as germ cell proliferation and differentiation, and whether or not the existing in vitro models are already sufficient to address them. Moreover, we would like to discuss how an organoid system can be a better solution to address these prominent scientific problems in our field, by the creation of a rationale parallel to those in other areas where organoid systems have been successfully utilized. SEARCH METHODS We comprehensively reviewed publications regarding testicular organoids and the methods that most closely led to the formation of these organ-like structures in vitro by searching for the following terms in both PubMed and the Web of Science database: testicular organoid, seminiferous tubule 3D culture, Sertoli cell 3D culture, testicular cord formation in vitro, testicular morphogenesis in vitro, germ cell 3D culture, in vitro spermatogenesis, testicular de novo morphogenesis, seminiferous tubule de novo morphogenesis, seminiferous tubule-like structures, testicular in vitro model and male germ cell niche in vitro, with no restrictions to any publishing year. The inclusion criteria were based on the relation with the main topic (i.e. testicular organoids, testicular- and seminiferous-like structures as in vitro models), methodology applied (i.e. in vitro culture, culture dimensions (2D, 3D), testicular cell suspension or fragments) and outcome of interest (i.e. organization in vitro). Publications about grafting of testicular tissue, germ-cell transplantation and female germ-cell culture were excluded. OUTCOMES The application of organoid systems is making its first steps in the field of reproductive medicine and biology. A restricted number of publications have reported and characterized testicular organoids and even fewer have denominated such structures by this method. However, we detected that a clear improvement in testicular cell reorganization is recognized when 3D culture conditions are utilized instead of 2D conditions. Depending on the scientific question, testicular organoids might offer a more appropriate in vitro model to investigate testicular development and physiology because of the easy manipulation of cell suspensions (inclusion or exclusion of a specific cell population), the fast reorganization of these structures and the controlled in vitro conditions, to the same extent as with other organoid strategies reported in other fields. WIDER IMPLICATIONS By way of appropriate research questions, we might use testicular organoids to deepen our basic understanding of testicular development and the SSC niche, leading to new methodologies for male infertility treatment.
Collapse
Affiliation(s)
- João Pedro Alves-Lopes
- Department of Women's and Children's Health, NORDFERTIL Research Lab Stockholm, Paediatric Endocrinology Unit, Q2:08, Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- Department of Women's and Children's Health, NORDFERTIL Research Lab Stockholm, Paediatric Endocrinology Unit, Q2:08, Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
70
|
Abstract
PURPOSE OF REVIEW This review evaluates the state of the art in terms of challenges and strategies used to restore fertility with spermatogonial stem cells retrieved from prepubertal boys affected by cancer. Although these boys do not yet produce spermatozoa, the only option to preserve their fertility is cryopreservation of spermatogonial stem cells in the form of testicular cell suspensions or whole tissue pieces. Different techniques have been described to achieve completion of spermatogenesis from human, spermatogonial stem cells but none is yet ready for clinical application. A crucial point to address is gaining a full understanding of spermatogonial stem cell niche pathophysiology, where germ cells undergo proliferation and differentiation. Various fertility restoration approaches will be presented depending on the presence of an intact niche, dissociated niche, or reconstituted niche. RECENT FINDINGS Testicular organoids open the way to providing further insights into the niche. They can recreate the three-dimensional architecture of the testicular microenvironment in vitro, allowing a large number of applications, from physiology to drug toxicity investigations. SUMMARY In addition to the full elucidation of the niche microenvironment, achieving fertility restoration from cryopreserved human spermatogonial stem cells implies overcoming other important challenges. Testicular organoids might prove to be essential tools to progress in this field.
Collapse
Affiliation(s)
- Francesca de Michele
- aInstitut de Recherche Expérimentale et Clinique, Université Catholique de Louvain bDepartment of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | | |
Collapse
|
71
|
Bhartiya D, Anand S, Patel H, Parte S. Making gametes from alternate sources of stem cells: past, present and future. Reprod Biol Endocrinol 2017; 15:89. [PMID: 29145898 PMCID: PMC5691385 DOI: 10.1186/s12958-017-0308-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
Infertile couples including cancer survivors stand to benefit from gametes differentiated from embryonic or induced pluripotent stem (ES/iPS) cells. It remains challenging to convert human ES/iPS cells into primordial germ-like cells (PGCLCs) en route to obtaining gametes. Considerable success was achieved in 2016 to obtain fertile offspring starting with mouse ES/iPS cells, however the specification of human ES/iPS cells into PGCLCs in vitro is still not achieved. Human ES cells will not yield patient-specific gametes unless and until hES cells are derived by somatic cell nuclear transfer (therapeutic cloning) whereas iPS cells retain the residual epigenetic memory of the somatic cells from which they are derived and also harbor genomic and mitochondrial DNA mutations. Thus, they may not be ideal starting material to produce autologus gametes, especially for aged couples. Pluripotent, very small embryonic-like stem cells (VSELs) have been reported in adult tissues including gonads, are relatively quiescent in nature, survive oncotherapy and can be detected in aged, non-functional gonads. Being developmentally equivalent to PGCs (natural precursors to gametes), VSELs spontaneously differentiate into gametes in vitro. It is also being understood that gonadal stem cells niche is compromised by oncotherapy and with age. Improving the gonadal somatic niche could regenerate non-functional gonads from endogenous VSELs to restore fertility. Niche cells (Sertoli/mesenchymal cells) can be directly transplanted and restore gonadal function by providing paracrine support to endogenous VSELs. This strategy has been successful in several mice studies already and resulted in live birth in a woman with pre-mature ovarian failure.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Sandhya Anand
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Seema Parte
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
72
|
Navid S, Abbasi M, Hoshino Y. The effects of melatonin on colonization of neonate spermatogonial mouse stem cells in a three-dimensional soft agar culture system. Stem Cell Res Ther 2017; 8:233. [PMID: 29041987 PMCID: PMC5646105 DOI: 10.1186/s13287-017-0687-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Melatonin is a pleiotropic hormone with powerful antioxidant activity both in vivo and in vitro. The present study aimed to investigate the effects of melatonin on the proliferation efficiency of neonatal mouse spermatogonial stem cells (SSCs) using a three-dimensional soft agar culture system (SACS) which has the capacity to induce development of SSCs similar to in vivo conditions. METHODS SSCs were isolated from testes of neonate mice and their purities were assessed by flow cytometry using PLZF antibody. Isolated testicular cells were cultured in the upper layer of the SACS in αMEM medium in the absence or presence of melatonin extract for 4 weeks. RESULTS The identity of colonies was confirmed by alkaline phosphatase staining and immunocytochemistry using PLZF and α6 integrin antibodies. The number and diameter of colonies of SSCs in the upper layer were evaluated at days 14 and 28 of culture. The number and diameter of colonies of SSCs were significantly higher in the melatonin group compared with the control group. The levels of expression of ID-4 and Plzf, unlike c-kit, were significantly higher in the melatonin group than in the control group. CONCLUSIONS Results of the present study show that supplementation of the culture medium (SACS) with 100 μM melatonin significantly decreased reactive oxygen species (ROS) production in the treated group compared with the control group, and increased SSC proliferation.
Collapse
Affiliation(s)
- Shadan Navid
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yumi Hoshino
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Kagamiyama 1-4-4, Hiroshima 739-8528 Japan
| |
Collapse
|
73
|
Fattahi A, Latifi Z, Ghasemnejad T, Nejabati HR, Nouri M. Insights into in vitro spermatogenesis in mammals: Past, present, future. Mol Reprod Dev 2017; 84:560-575. [DOI: 10.1002/mrd.22819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Amir Fattahi
- Institute for Stem Cell and Regenerative Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Zeinab Latifi
- Department of Clinical Biochemistry, Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Tohid Ghasemnejad
- Women's Reproductive Health Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Hamid Reza Nejabati
- Women's Reproductive Health Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
74
|
Galdon G, Atala A, Sadri-Ardekani H. In Vitro Spermatogenesis: How Far from Clinical Application? Curr Urol Rep 2016; 17:49. [PMID: 27107595 DOI: 10.1007/s11934-016-0605-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Male infertility affects 7 % of the male population, and 10 % of infertile men are azoospermic. In these instances, using microsurgical testicular sperm extraction (m-TESE) and intra-cytoplasmic sperm injection (ICSI) helps a significant number of patients. However, in vitro differentiation of diploid germ cells to mature haploid germ cell has the potential to benefit many others, including pediatric cancer survivors who have previously cryopreserved their immature testicular tissue prior to starting gonadotoxic cancer treatment as well as men with spermatogenic arrest. This systematic review evaluates and summarizes half a century of researchers' efforts towards achieving in vitro spermatogenesis in mammalian species. A myriad of experimental assays and approaches has been developed using whole testis tissue or separated single cells from testis in two- or three-dimensional cell culture systems (2D versus 3D). Recent advances in the mammalian in vitro spermatogenesis, particularly in murine and nonhuman primate systems, hold promise towards translating the availability of in vitro spermatogenesis models in the human clinical setting in the near future.
Collapse
Affiliation(s)
- Guillermo Galdon
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA.,Department of Urology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Hooman Sadri-Ardekani
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA. .,Department of Urology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA.
| |
Collapse
|
75
|
Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions. Fertil Steril 2016; 106:1539-1549.e8. [PMID: 27490045 DOI: 10.1016/j.fertnstert.2016.07.1065] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/17/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To study the ability of human spermatogonial stem cells (hSSCs) to proliferate in vitro under mouse spermatogonial stem cell (mSSC) culture conditions. DESIGN Experimental basic science study. SETTING Reproductive biology laboratory. PATIENT(S) Cryopreserved testicular tissue with normal spermatogenesis obtained from three donors subjected to orchiectomy due to a prostate cancer treatment. INTERVENTION(S) Testicular cells used to create in vitro cell cultures corresponding to the following groups: [1] unsorted human testicular cells, [2] differentially plated human testicular cells, and [3] cells enriched with major histocompatibility complex class 1 (HLA-)/epithelial cell surface antigen (EPCAM+) in coculture with inactivated testicular feeders from the same patient. MAIN OUTCOME MEASURE(S) Analyses and characterization including immunocytochemistry and quantitative reverse-transcription polymerase chain reaction for somatic and germ cell markers, testosterone and inhibin B quantification, and TUNEL assay. RESULT(S) Putative hSSCs appeared in singlets, doublets, or small groups of up to four cells in vitro only when testicular cells were cultured in StemPro-34 medium supplemented with glial cell line-derived neurotrophic factor (GDNF), leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF). Fluorescence-activated cell sorting with HLA-/EPCAM+ resulted in an enrichment of 27% VASA+/UTF1+ hSSCs, compared to 13% in unsorted controls. Coculture of sorted cells with inactivated testicular feeders gave rise to an average density of 112 hSSCs/cm2 after 2 weeks in vitro compared with unsorted cells (61 hSSCs/cm2) and differentially plated cells (49 hSSCS/cm2). However, putative hSSCs rarely stained positive for the proliferation marker Ki67, and their presence was reduced to the point of almost disappearing after 4 weeks in vitro. CONCLUSION(S) We found that hSSCs show limited proliferation in vitro under mSSC culture conditions. Coculture of HLA-/EPCAM+ sorted cells with testicular feeders improved the germ cell/somatic cell ratio.
Collapse
|
76
|
Deng SL, Chen SR, Wang ZP, Zhang Y, Tang JX, Li J, Wang XX, Cheng JM, Jin C, Li XY, Zhang BL, Yu K, Lian ZX, Liu GS, Liu YX. Melatonin promotes development of haploid germ cells from early developing spermatogenic cells of Suffolk sheep under in vitro condition. J Pineal Res 2016; 60:435-47. [PMID: 26993286 DOI: 10.1111/jpi.12327] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/15/2016] [Indexed: 01/03/2023]
Abstract
Promotion of spermatogonial stem cell (SSC) differentiation into functional sperms under in vitro conditions is a great challenge for reproductive physiologists. In this study, we observed that melatonin (10(-7) M) supplementation significantly enhanced the cultured SSCs differentiation into haploid germ cells. This was confirmed by the expression of sperm special protein, acrosin. The rate of SSCs differentiation into sperm with melatonin supplementation was 11.85 ± 0.93% which was twofold higher than that in the control. The level of testosterone, the transcriptions of luteinizing hormone receptor (LHR), and the steroidogenic acute regulatory protein (StAR) were upregulated with melatonin treatment. At the early stage of SSCs culture, melatonin suppressed the level of cAMP, while at the later stage, it promoted cAMP production. The similar pattern was observed in testosterone content. Expressions for marker genes of meiosis anaphase, Dnmt3a, and Bcl-2 were upregulated by melatonin. In contrast, Bax expression was downregulated. Importantly, the in vitro-generated sperms were functional and they were capable to fertilize oocytes. These fertilized oocytes have successfully developed to the blastula stage.
Collapse
Affiliation(s)
- Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Peng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ji-Xin Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jin-Mei Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bao-Lu Zhang
- National key Lab of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Kun Yu
- National key Lab of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Zheng-Xing Lian
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Guo-Shi Liu
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|