51
|
El Refaey M, Watkins CP, Kennedy EJ, Chang A, Zhong Q, Ding KH, Shi XM, Xu J, Bollag WB, Hill WD, Johnson M, Hunter M, Hamrick MW, Isales CM. Oxidation of the aromatic amino acids tryptophan and tyrosine disrupts their anabolic effects on bone marrow mesenchymal stem cells. Mol Cell Endocrinol 2015; 410:87-96. [PMID: 25637715 PMCID: PMC4444384 DOI: 10.1016/j.mce.2015.01.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 02/06/2023]
Abstract
Age-induced bone loss is associated with greater bone resorption and decreased bone formation resulting in osteoporosis and osteoporosis-related fractures. The etiology of this age-induced bone loss is not clear but has been associated with increased generation of reactive oxygen species (ROS) from leaky mitochondria. ROS are known to oxidize/damage the surrounding proteins/amino acids/enzymes and thus impair their normal function. Among the amino acids, the aromatic amino acids are particularly prone to modification by oxidation. Since impaired osteoblastic differentiation from bone marrow mesenchymal stem cells (BMMSCs) plays a role in age-related bone loss, we wished to examine whether oxidized amino acids (in particular the aromatic amino acids) modulated BMMSC function. Using mouse BMMSCs, we examined the effects of the oxidized amino acids di-tyrosine and kynurenine on proliferation, differentiation and Mitogen-Activated Protein Kinase (MAPK) pathway. Our data demonstrate that amino acid oxides (in particular kynurenine) inhibited BMMSC proliferation, alkaline phosphatase expression and activity and the expression of osteogenic markers (Osteocalcin and Runx2). Taken together, our data are consistent with a potential pathogenic role for oxidized amino acids in age-induced bone loss.
Collapse
Affiliation(s)
- Mona El Refaey
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, United States
| | - Christopher P Watkins
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy University of Georgia, Athens, GA 30602, United States
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy University of Georgia, Athens, GA 30602, United States
| | - Andrew Chang
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States
| | - Qing Zhong
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, United States
| | - Ke-Hong Ding
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, United States
| | - Xing-ming Shi
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, United States
| | - Jianrui Xu
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Medicine, Georgia Regents University, Augusta, GA, United States
| | - Wendy B Bollag
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Physiology, Georgia Regents University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - William D Hill
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, United States
| | - Maribeth Johnson
- Department of Biostatistics, Georgia Regents University, Augusta, GA, United States
| | - Monte Hunter
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, United States
| | - Mark W Hamrick
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, United States; Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, United States
| | - Carlos M Isales
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, United States; Department of Medicine, Georgia Regents University, Augusta, GA, United States; Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, United States.
| |
Collapse
|
52
|
Bone Marrow Mesenchymal Stem Cells Alleviate Extracellular Kynurenine Levels, as Detected by High-Performance Liquid Chromatography. Inflammation 2015; 38:1450-7. [PMID: 25854176 DOI: 10.1007/s10753-015-0119-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Endothelial cell dysfunction plays an important role in the occurrence and development of sepsis, which is a consequence of the interaction between coagulation and inflammation. Kynurenine (KYN) is an endothelium-derived relaxing factor that makes a large contribution to sepsis pathophysiology. In this study, we investigated the influence of bone marrow mesenchymal stem cells (BMSCs) on KYN production by cultured endothelial cells. KYN and tryptophan (TRP) concentrations in cell supernatants were simultaneously measured with a high-performance liquid chromatography (HPLC) system equipped with a fluorescence detector (FLD) and an ultraviolet detector (UVD). Our results revealed that lipopolysaccharide-stimulated endothelial cells produced more KYN, which was accompanied by a parallel decrease in TRP. When co-cultured with BMSCs, KYN and TRP production were significantly decreased compared to lipopolysaccharide (LPS)-induction alone. Our results suggest that BMSCs can attenuate endothelial cell damage by decreasing KYN as detected with HPLC. This method is the first to be capable of capturing functional changes in the cells and is simple, fast, and suitable for cellular level research purposes.
Collapse
|
53
|
Gostner JM, Becker K, Überall F, Fuchs D. The potential of targeting indoleamine 2,3-dioxygenase for cancer treatment. Expert Opin Ther Targets 2015; 19:605-15. [PMID: 25684107 DOI: 10.1517/14728222.2014.995092] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Degradation of the essential amino acid tryptophan via indoleamine 2,3-dioxygenase (IDO1) represents an important antiproliferative strategy of the cellular immune response. Tryptophan shortage and accumulation of kynurenine downstream products also affect T-cell responses, providing a negative feedback control of immune activation. IDO1 activity can promote a regulatory phenotype in both T cells and dendritic cells. These phenomena can support tumor immune escape. AREAS COVERED IDO1 activity reflects the course of several malignancies, and determination of kynurenine to tryptophan ratio in serum/plasma can be used to assess immune activation. Moreover, the accelerated breakdown of tryptophan has been correlated with the development of cancer-associated disturbances such as anemia, weight loss and depression. Tumoral IDO1 expression was correlated with a poor prognosis in several types of tumors, which makes it to an interesting target for immunotherapy. In addition, according to recent data, a role of trytptophan 2,3-dioxygenase (TDO) in tumorigenesis cannot be excluded. EXPERT OPINION Tryptophan metabolism is critical for cell proliferation, inflammation and immunoregulation. Accelerated tryptophan breakdown favors tumor immune escape. Accordingly, targeting IDO1 by immunotherapy may represent a favorable approach; however, blocking crucial immunoregulatory pathways could also introduce the risk of immune system overactivation, finally leading to unresponsiveness.
Collapse
Affiliation(s)
- Johanna M Gostner
- Medical University of Innsbruck, Biocenter, Division of Medical Biochemistry , Innsbruck 6020 , Austria
| | | | | | | |
Collapse
|