51
|
Oriá RB, Murray-Kolb LE, Scharf RJ, Pendergast LL, Lang DR, Kolling GL, Guerrant RL. Early-life enteric infections: relation between chronic systemic inflammation and poor cognition in children. Nutr Rev 2016; 74:374-86. [PMID: 27142301 DOI: 10.1093/nutrit/nuw008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The intestinal microbiota undergoes active remodeling in the first 6 to 18 months of life, during which time the characteristics of the adult microbiota are developed. This process is strongly influenced by the early diet and enteric pathogens. Enteric infections and malnutrition early in life may favor microbiota dysbiosis and small intestinal bacterial overgrowth, resulting in intestinal barrier dysfunction and translocation of intestinal bacterial products, ultimately leading to low-grade, chronic, subclinical systemic inflammation. The leaky gut-derived low-grade systemic inflammation may have profound consequences on the gut-liver-brain axis, compromising normal growth, metabolism, and cognitive development. This review examines recent data suggesting that early-life enteric infections that lead to intestinal barrier disruption may shift the intestinal microbiota toward chronic systemic inflammation and subsequent impaired cognitive development.
Collapse
Affiliation(s)
- Reinaldo B Oriá
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA.
| | - Laura E Murray-Kolb
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca J Scharf
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Laura L Pendergast
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Dennis R Lang
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Glynis L Kolling
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Richard L Guerrant
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
52
|
Verma M, Hontecillas R, Abedi V, Leber A, Tubau-Juni N, Philipson C, Carbo A, Bassaganya-Riera J. Modeling-Enabled Systems Nutritional Immunology. Front Nutr 2016; 3:5. [PMID: 26909350 PMCID: PMC4754447 DOI: 10.3389/fnut.2016.00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/01/2016] [Indexed: 12/14/2022] Open
Abstract
This review highlights the fundamental role of nutrition in the maintenance of health, the immune response, and disease prevention. Emerging global mechanistic insights in the field of nutritional immunology cannot be gained through reductionist methods alone or by analyzing a single nutrient at a time. We propose to investigate nutritional immunology as a massively interacting system of interconnected multistage and multiscale networks that encompass hidden mechanisms by which nutrition, microbiome, metabolism, genetic predisposition, and the immune system interact to delineate health and disease. The review sets an unconventional path to apply complex science methodologies to nutritional immunology research, discovery, and development through “use cases” centered around the impact of nutrition on the gut microbiome and immune responses. Our systems nutritional immunology analyses, which include modeling and informatics methodologies in combination with pre-clinical and clinical studies, have the potential to discover emerging systems-wide properties at the interface of the immune system, nutrition, microbiome, and metabolism.
Collapse
Affiliation(s)
- Meghna Verma
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Vida Abedi
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Andrew Leber
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | | | | | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
53
|
Decoding Hidden Messages: Can Fecal Host Transcriptomics Open Pathways to Understanding Environmental Enteropathy? Cell Mol Gastroenterol Hepatol 2016; 2:114-115. [PMID: 28174708 PMCID: PMC4980715 DOI: 10.1016/j.jcmgh.2016.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
54
|
Terrin G, Berni Canani R, Di Chiara M, Pietravalle A, Aleandri V, Conte F, De Curtis M. Zinc in Early Life: A Key Element in the Fetus and Preterm Neonate. Nutrients 2015; 7:10427-46. [PMID: 26690476 PMCID: PMC4690094 DOI: 10.3390/nu7125542] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 11/26/2022] Open
Abstract
Zinc is a key element for growth and development. In this narrative review, we focus on the role of dietary zinc in early life (including embryo, fetus and preterm neonate), analyzing consequences of zinc deficiency and adequacy of current recommendations on dietary zinc. We performed a systematic search of articles on the role of zinc in early life. We selected and analyzed 81 studies. Results of this analysis showed that preservation of zinc balance is of critical importance for the avoidance of possible consequences of low zinc levels on pre- and post-natal life. Insufficient quantities of zinc during embryogenesis may influence the final phenotype of all organs. Maternal zinc restriction during pregnancy influences fetal growth, while adequate zinc supplementation during pregnancy may result in a reduction of the risk of preterm birth. Preterm neonates are at particular risk to develop zinc deficiency due to a combination of different factors: (i) low body stores due to reduced time for placental transfer of zinc; (ii) increased endogenous losses; and (iii) marginal intake. Early diagnosis of zinc deficiency, through the measurement of serum zinc concentrations, may be essential to avoid severe prenatal and postnatal consequences in these patients. Typical clinical manifestations of zinc deficiency are growth impairment and dermatitis. Increasing data suggest that moderate zinc deficiency may have significant subclinical effects, increasing the risk of several complications typical of preterm neonates (i.e., necrotizing enterocolitis, chronic lung disease, and retinopathy), and that current recommended intakes should be revised to meet zinc requirements of extremely preterm neonates. Future studies evaluating the adequacy of current recommendations are advocated.
Collapse
Affiliation(s)
- Gianluca Terrin
- Department of Gynecology-Obstetrics, University of Rome La Sapienza, Rome 00186, Italy.
| | - Roberto Berni Canani
- Department of Translational Medicine, University of Naples Federico II, Napoli 80138, Italy.
| | - Maria Di Chiara
- Department of Gynecology-Obstetrics, University of Rome La Sapienza, Rome 00186, Italy.
| | - Andrea Pietravalle
- Department of Gynecology-Obstetrics, University of Rome La Sapienza, Rome 00186, Italy.
| | - Vincenzo Aleandri
- Department of Gynecology-Obstetrics, University of Rome La Sapienza, Rome 00186, Italy.
- Research Center on Evaluation of Quality in Medicine-CEQUAM, University of Rome La Sapienza, Rome 00186, Italy.
| | - Francesca Conte
- Department of Pediatrics, University of Rome La Sapienza, Rome 00186, Italy.
| | - Mario De Curtis
- Department of Pediatrics, University of Rome La Sapienza, Rome 00186, Italy.
| |
Collapse
|
55
|
Noto JM, Peek RM. Micronutrients: A double-edged sword in microbial-induced gastric carcinogenesis. Trends Cancer 2015; 1:136-144. [PMID: 26623443 DOI: 10.1016/j.trecan.2015.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/01/2015] [Accepted: 07/10/2015] [Indexed: 12/13/2022]
Abstract
Epidemiologic studies throughout the world have uniformly demonstrated significant relationships between the intake of dietary micronutrients and gastric cancer risk. An exciting concept that has gained considerable traction recently is that micronutrients modulate gene expression within Helicobacter pylori, the strongest identified risk factor for gastric carcinogenesis. We present evidence here that essential micronutrients have a direct effect on H. pylori virulence, which subsequently affects interactions at the host-pathogen interface, thereby facilitating the development of premalignant and malignant lesions in the stomach. Further, these fundamental concepts provide a framework for understanding mechanisms driving the development of other malignancies that arise from foci of gastrointestinal inflammation.
Collapse
Affiliation(s)
- Jennifer M Noto
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, MRB IV 1030C, Nashville, TN 37232-0252, , ,
| | - Richard M Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue MRB IV 1030C, Nashville, TN 37232-0252, , ,
| |
Collapse
|
56
|
Moore JH, Pinheiro CCD, Zaenker EI, Bolick DT, Kolling GL, van Opstal E, Noronha FJD, De Medeiros PHQS, Rodriguez RS, Lima AA, Guerrant RL, Warren CA. Defined Nutrient Diets Alter Susceptibility to Clostridium difficile Associated Disease in a Murine Model. PLoS One 2015; 10:e0131829. [PMID: 26181795 PMCID: PMC4504475 DOI: 10.1371/journal.pone.0131829] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/06/2015] [Indexed: 12/23/2022] Open
Abstract
Background Clostridium difficile is a major identifiable and treatable cause of antibiotic-associated diarrhea. Poor nutritional status contributes to mortality through weakened host defenses against various pathogens. The primary goal of this study was to assess the contribution of a reduced protein diet to the outcomes of C. difficile infection in a murine model. Methods C57BL/6 mice were fed a traditional house chow or a defined diet with either 20% protein or 2% protein and infected with C. difficile strain VPI10463. Animals were monitored for disease severity, clostridial shedding and fecal toxin levels. Select intestinal microbiota were measured in stool and C. difficile growth and toxin production were quantified ex vivo in intestinal contents from untreated or antibiotic-treated mice fed with the different diets. Results C. difficile infected mice fed with defined diets, particularly (and unexpectedly) with protein deficient diet, had increased survival, decreased weight loss, and decreased overall disease severity. C. difficile shedding and toxin in the stool of the traditional diet group was increased compared with either defined diet 1 day post infection. Mice fed with traditional diet had an increased intestinal Firmicutes to Bacteroidetes ratio following antibiotic exposure compared with either a 2% or 20% protein defined nutrient diet. Ex vivo inoculation of cecal contents from antibiotic-treated mice showed decreased toxin production and C. difficile growth in both defined diets compared with a traditional diet. Conclusions Low protein diets, and defined nutrient diets in general, were found to be protective against CDI in mice. Associated diet-induced alterations in intestinal microbiota may influence colonization resistance and clostridial toxin production in a defined nutrient diet compared to a traditional diet, leading to increased survival. However, mechanisms which led to survival differences between 2% and 20% protein defined nutrient diets need to be further elucidated.
Collapse
Affiliation(s)
- John H. Moore
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
| | | | - Edna I. Zaenker
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - David T. Bolick
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Glynis L. Kolling
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Edward van Opstal
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
| | | | | | | | - Aldo A. Lima
- Biomedicine Institute, Federal University of Ceará, Fortaleza, Brazil
| | - Richard L. Guerrant
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Cirle A. Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
57
|
Connolly JPR, Finlay BB, Roe AJ. From ingestion to colonization: the influence of the host environment on regulation of the LEE encoded type III secretion system in enterohaemorrhagic Escherichia coli. Front Microbiol 2015; 6:568. [PMID: 26097473 PMCID: PMC4456613 DOI: 10.3389/fmicb.2015.00568] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/24/2015] [Indexed: 12/21/2022] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) binds to host tissue and intimately attaches to intestinal cells using a dedicated type III secretion system (T3SS). This complex multi-protein organelle is encoded within a large pathogenicity island called the locus of enterocyte effacement (LEE), which is subject to extensive regulatory control. Over the past 15 years we have gained a wealth of knowledge concerning how the LEE is regulated transcriptionally by specific, global and phage encoded regulators. More recently, significant advances have been made in our understanding of how specific signals, including host or microbiota derived metabolic products and various nutrient sources, can affect how the LEE-encoded T3SS is regulated. In this review we discuss regulation of the LEE, focusing on how these physiologically relevant signals are sensed and how they affect the expression of this major virulence factor. The implications for understanding the disease process by specific regulatory mechanisms are also discussed.
Collapse
Affiliation(s)
- James P R Connolly
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow, UK
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC, Canada
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow, UK
| |
Collapse
|
58
|
Bartelt LA, Sartor RB. Advances in understanding Giardia: determinants and mechanisms of chronic sequelae. F1000PRIME REPORTS 2015; 7:62. [PMID: 26097735 PMCID: PMC4447054 DOI: 10.12703/p7-62] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Giardia lamblia is a flagellated protozoan that is the most common cause of intestinal parasitic infection in children living in resource-limited settings. The pathogenicity of Giardia has been debated since the parasite was first identified, and clinical outcomes vary across studies. Among recent perplexing findings are diametrically opposed associations between Giardia and acute versus persistent diarrhea and a poorly understood potential for long-term sequelae, including impaired child growth and cognitive development. The mechanisms driving these protean clinical outcomes remain elusive, but recent advances suggest that variability in Giardia strains, host nutritional status, the composition of microbiota, co-infecting enteropathogens, host genetically determined mucosal immune responses, and immune modulation by Giardia are all relevant factors influencing disease manifestations after Giardia infection.
Collapse
Affiliation(s)
- Luther A. Bartelt
- Division of Infectious Diseases and International Health, University of VirginiaBox 801340, Charlottesville, VA 22908USA
| | - R. Balfour Sartor
- Division of Gastroenterology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel HillCampus Box 7032, Chapel Hill, NC 27599-7032USA
| |
Collapse
|
59
|
Vela G, Stark P, Socha M, Sauer AK, Hagmeyer S, Grabrucker AM. Zinc in gut-brain interaction in autism and neurological disorders. Neural Plast 2015; 2015:972791. [PMID: 25878905 PMCID: PMC4386645 DOI: 10.1155/2015/972791] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/05/2015] [Indexed: 12/27/2022] Open
Abstract
A growing amount of research indicates that abnormalities in the gastrointestinal (GI) system during development might be a common factor in multiple neurological disorders and might be responsible for some of the shared comorbidities seen among these diseases. For example, many patients with Autism Spectrum Disorder (ASD) have symptoms associated with GI disorders. Maternal zinc status may be an important factor given the multifaceted effect of zinc on gut development and morphology in the offspring. Zinc status influences and is influenced by multiple factors and an interdependence of prenatal and early life stress, immune system abnormalities, impaired GI functions, and zinc deficiency can be hypothesized. In line with this, systemic inflammatory events and prenatal stress have been reported to increase the risk for ASD. Thus, here, we will review the current literature on the role of zinc in gut formation, a possible link between gut and brain development in ASD and other neurological disorders with shared comorbidities, and tie in possible effects on the immune system. Based on these data, we present a novel model outlining how alterations in the maternal zinc status might pathologically impact the offspring leading to impairments in brain functions later in life.
Collapse
Affiliation(s)
- Guillermo Vela
- Zinpro Corporation, Eden Prairie, MN 55344, USA
- Autismo ABP, 64639 Monterrey, NL, Mexico
| | - Peter Stark
- Zinpro Corporation, Eden Prairie, MN 55344, USA
| | | | - Ann Katrin Sauer
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Simone Hagmeyer
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Andreas M. Grabrucker
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|