51
|
The anaphase promoting complex regulates yeast lifespan and rDNA stability by targeting Fob1 for degradation. Genetics 2013; 196:693-709. [PMID: 24361936 DOI: 10.1534/genetics.113.158949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genomic stability, stress response, and nutrient signaling all play critical, evolutionarily conserved roles in lifespan determination. However, the molecular mechanisms coordinating these processes with longevity remain unresolved. Here we investigate the involvement of the yeast anaphase promoting complex (APC) in longevity. The APC governs passage through M and G1 via ubiquitin-dependent targeting of substrate proteins and is associated with cancer and premature aging when defective. Our two-hybrid screen utilizing Apc5 as bait recovered the lifespan determinant Fob1 as prey. Fob1 is unstable specifically in G1, cycles throughout the cell cycle in a manner similar to Clb2 (an APC target), and is stabilized in APC (apc5(CA)) and proteasome (rpn10) mutants. Deletion of FOB1 increased replicative lifespan (RLS) in wild type (WT), apc5(CA), and apc10 cells, and suppressed apc5(CA) cell cycle progression and rDNA recombination defects. Alternatively, increased FOB1 expression decreased RLS in WT cells, but did not reduce the already short apc5(CA) RLS, suggesting an epistatic interaction between apc5(CA) and fob1. Mutation to a putative L-Box (Fob1(E420V)), a Destruction Box-like motif, abolished Fob1 modifications, stabilized the protein, and increased rDNA recombination. Our work provides a mechanistic role played by the APC to promote replicative longevity and genomic stability in yeast.
Collapse
|
52
|
Siah A, McKenna P, Berthe FCJ, Afonso LOB, Danger JM. Transcriptome analysis of neoplastic hemocytes in soft-shell clams Mya arenaria: Focus on cell cycle molecular mechanism. RESULTS IN IMMUNOLOGY 2013; 3:95-103. [PMID: 24600564 DOI: 10.1016/j.rinim.2013.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/20/2013] [Accepted: 10/21/2013] [Indexed: 12/31/2022]
Abstract
In North America, a high mortality of soft-shell clams Mya arenaria was found to be related to the disease known as disseminated neoplasia (DN). Disseminated neoplasia is commonly recognized as a tetraploid disorder related to a disruption of the cell cycle. However, the molecular mechanisms by which hemocytes of clams are transformed in the course of DN remain by far unknown. This study aims at identifying the transcripts related to DN in soft shell clams' hemocytes using next generation of sequencing (Illumina HiSeq2000). This study mainly focuses on transcripts and molecular mechanisms involved in cell cycle. Using Illumina next generation of sequencing, more than 95,399,159 reads count with an average length of 45 bp was generated from three groups of hemocytes: (1) a healthy group with less than 10% of tetraploid cells; (2) an intermediate group with tetraploid hemocytes ranging between 10% and 50% and (3) a diseased group with more than 50% of tetraploid cells. After the reads were cleaned by removing the adapters, de novo assembly was performed on the sequences and more than 73,696 contigs were generated with a mean contig length estimated at 585 bp ranging from 189 bp to 14,773 bp. Once a Blastx search against NCBI Non Redundant database was performed and the duplicates removed, 18,378 annotated sequences matched known sequences, 3078 were hypothetical and 9002 were uncharacterized sequences. Fifty percent and 41% of known sequences match sequences from Mollusca and Gastropoda respectively. Among the bivalvia, 33%, 17%, 17% and 15% of the contigs match sequences from Ostreoida, Veneroida, Pectinoida and Mytiloida respectively. Gene ontology analysis showed that metabolic, cellular, transport, cell communication and cell cycle represent 33%, 15%, 9%, 8.5% and 7% respectively of the total biological process. Approximately 70% of the component process is related to intracellular process and 15% is linked to protein and ribonucleoprotein complex. Catalytic activities and binding molecular processes represent 39% and 33% of the total molecular functions. Interestingly, nucleic acid binding represents more than 18% of the total protein class. Transcripts involved in the molecular mechanisms of cell cycle are discussed providing new avenues for future investigations.
Collapse
Affiliation(s)
- Ahmed Siah
- British Columbia Centre for Aquatic Health Sciences, BC CAHS, 871A Island Highway, Campbell River, BC, Canada V9W 2C2 ; Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Patty McKenna
- Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Franck C J Berthe
- Animal Health and Welfare Unit, European Food Safety Authority (EFSA), Largo N, Palli 5IA, I-43100, Parma,Italy
| | - Luis O B Afonso
- School of Life & Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, PO Box 423, Warrnambool, Victoria 3280, Australia
| | - Jean-Michel Danger
- Laboratory of Ecotoxicology, University of Le Havre, 25 rue Philippe Lebon, BP540, 76058 Le Havre, France
| |
Collapse
|
53
|
Wang Z, Wan L, Zhong J, Inuzuka H, Liu P, Sarkar FH, Wei W. Cdc20: a potential novel therapeutic target for cancer treatment. Curr Pharm Des 2013; 19:3210-4. [PMID: 23151139 DOI: 10.2174/1381612811319180005] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 11/22/2022]
Abstract
The Anaphase Promoting Complex (APC) has been characterized to play pivotal roles in regulating the timely cell cycle progression by forming two functionally distinct E3 ubiquitin ligase sub-complexes, APC(Cdc20) and APC(Cdh1). Interestingly, recent studies have shown that Cdh1 is functioning as a tumor suppressor whereas Cdc20 may function as an oncoprotein to promote the development and progression of human cancers. In this review, we will discuss the physiological role of Cdc20 and its downstream substrates in vitro and in the transgenic mouse model reminiscent of the pathogenesis of human cancers. Furthermore, we summarize recent findings to indicate that Cdc20 may represent a promising therapeutic target, thus development of Cdc20 inhibitors could be useful for achieving better treatment outcome of cancer patients.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
54
|
Mitra K. Mitochondrial fission-fusion as an emerging key regulator of cell proliferation and differentiation. Bioessays 2013; 35:955-64. [PMID: 23943303 DOI: 10.1002/bies.201300011] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mitochondrial shape change, brought about by molecules that promote either fission or fusion between individual mitochondria, has been documented in several model systems. However, the deeper significance of mitochondrial shape change has only recently begun to emerge: among others, it appears to play a role in the regulation of cell proliferation. Here, I review the emerging interplay between mitochondrial fission-fusion components with cell cycle regulatory machineries and how that may impact cell differentiation. Regulation of mitochondrial shape may modulate mitochondrial metabolism and/or energetics to promote crosstalk between signaling components and the cell cycle machinery. Focused research in this area will reveal the exact role of mitochondria in development and disease, specifically in stem cell regulation and tumorigenesis. Such research may also reveal whether and how the endosymbiotic event that gave rise to the mitochondrion was crucial for the evolution of cell cycle regulatory mechanisms in eukaryotes that are absent in prokaryotes.
Collapse
Affiliation(s)
- Kasturi Mitra
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
55
|
Nishimura K, Oki T, Kitaura J, Kuninaka S, Saya H, Sakaue-Sawano A, Miyawaki A, Kitamura T. APC(CDH1) targets MgcRacGAP for destruction in the late M phase. PLoS One 2013; 8:e63001. [PMID: 23696789 PMCID: PMC3656054 DOI: 10.1371/journal.pone.0063001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/26/2013] [Indexed: 11/30/2022] Open
Abstract
Background Male germ cell RacGTPase activating protein (MgcRacGAP) is an important regulator of the Rho family GTPases — RhoA, Rac1, and Cdc42 — and is indispensable in cytokinesis and cell cycle progression. Inactivation of RhoA by phosphorylated MgcRacGAP is an essential step in cytokinesis. MgcRacGAP is also involved in G1-S transition and nuclear transport of signal transducer and activator of transcription 3/5 (STAT3/5). Expression of MgcRacGAP is strictly controlled in a cell cycle-dependent manner. However, the underlying mechanisms have not been elucidated. Methodology/Principal Findings Using MgcRacGAP deletion mutants and the fusion proteins of full-length or partial fragments of MgcRacGAP to mVenus fluorescent protein, we demonstrated that MgcRacGAP is degraded by the ubiquitin-proteasome pathway in the late M to G1 phase via APCCDH1. We also identified the critical region for destruction located in the C-terminus of MgcRacGAP, AA537–570, which is necessary and sufficient for CDH1-mediated MgcRacGAP destruction. In addition, we identified a PEST domain-like structure with charged residues in MgcRacGAP and implicate it in effective ubiquitination of MgcRacGAP. Conclusions/Significance Our findings not only reveal a novel mechanism for controlling the expression level of MgcRacGAP but also identify a new target of APCCDH1. Moreover our results identify a C-terminal region AA537–570 of MgcRacGAP as its degron.
Collapse
Affiliation(s)
- Koutarou Nishimura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Toshihiko Oki
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Jiro Kitaura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Shinji Kuninaka
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Asako Sakaue-Sawano
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, Wako-city, Saitama, Japan
- Life Function and Dynamics, ERATO, JST, Wako-city, Saitama, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, Wako-city, Saitama, Japan
- Life Function and Dynamics, ERATO, JST, Wako-city, Saitama, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
56
|
Regulation of APC(Cdh1) E3 ligase activity by the Fbw7/cyclin E signaling axis contributes to the tumor suppressor function of Fbw7. Cell Res 2013; 23:947-61. [PMID: 23670162 DOI: 10.1038/cr.2013.67] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 12/21/2022] Open
Abstract
Fbw7 and Cdh1 are substrate-recognition subunits of the SCF- and APC-type E3 ubiquitin ligases, respectively. There is emerging evidence suggesting that both Fbw7 and Cdh1 function as tumor suppressors by targeting oncoproteins for destruction. Loss of Fbw7, but not Cdh1, is frequently observed in various human tumors. However, it remains largely unknown how Fbw7 mechanistically functions as a tumor suppressor and whether there is a signaling crosstalk between Fbw7 and Cdh1. Here, we report that Fbw7-deficient cells not only display elevated expression levels of SCF(Fbw7) substrates, including cyclin E, but also have increased expression of various APC(Cdh1) substrates. We further defined cyclin E as the critical signaling link by which Fbw7 governs APC(Cdh1) activity, as depletion of cyclin E in Fbw7-deficient cells results in decreased expression of APC(Cdh1) substrates to levels comparable to those in wild-type (WT) cells. Conversely, ectopic expression of cyclin E recapitulates the aberrant APC(Cdh1) substrate expression observed in Fbw7-deficient cells. More importantly, 4A-Cdh1 that is resistant to Cdk2/cyclin E-mediated phosphorylation, but not WT-Cdh1, reversed the elevated expression of various APC(Cdh1) substrates in Fbw7-deficient cells. Overexpression of 4A-Cdh1 also resulted in retarded cell growth and decreased anchorage-independent colony formation. Altogether, we have identified a novel regulatory mechanism by which Fbw7 governs Cdh1 activity in a cyclin E-dependent manner. As a result, loss of Fbw7 can lead to aberrant increase in the expression of both SCF(Fbw7) and APC(Cdh1) substrates. Our study provides a better understanding of the tumor suppressor function of Fbw7, and suggests that Cdk2/cyclin E inhibitors could serve as effective therapeutic agents for treating Fbw7-deficient tumors.
Collapse
|
57
|
Abstract
The ubiquitin-proteasome system plays a pivotal role in the sequence of events leading to cell division known as the cell cycle. Not only does ubiquitin-mediated proteolysis constitute a critical component of the core oscillator that drives the cell cycle in all eukaryotes, it is also central to the mechanisms that ensure that the integrity of the genome is maintained. These functions are primarily carried out by two families of E3 ubiquitin ligases, the Skp/cullin/F-box-containing and anaphase-promoting complex/cyclosome complexes. However, beyond those functions associated with regulation of central cell cycle events, many peripheral cell cycle-related processes rely on ubiquitylation for signaling, homeostasis, and dynamicity, involving additional types of ubiquitin ligases and regulators. We are only beginning to understand the diversity and complexity of this regulation.
Collapse
Affiliation(s)
- Leonardo K Teixeira
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
58
|
Parrillas V, Martínez-Muñoz L, Holgado BL, Kumar A, Cascio G, Lucas P, Rodríguez-Frade JM, Malumbres M, Carrera AC, van Wely KHM, Mellado M. Suppressor of cytokine signaling 1 blocks mitosis in human melanoma cells. Cell Mol Life Sci 2013; 70:545-58. [PMID: 23001011 PMCID: PMC11113299 DOI: 10.1007/s00018-012-1145-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/06/2012] [Accepted: 08/20/2012] [Indexed: 01/05/2023]
Abstract
Hypermethylation of SOCS genes is associated with many human cancers, suggesting a role as tumor suppressors. As adaptor molecules for ubiquitin ligases, SOCS proteins modulate turnover of numerous target proteins. Few SOCS targets identified so far have a direct role in cell cycle progression; the mechanism by which SOCS regulate the cell cycle thus remains largely unknown. Here we show that SOCS1 overexpression inhibits in vitro and in vivo expansion of human melanoma cells, and that SOCS1 associates specifically with Cdh1, triggering its degradation by the proteasome. Cells therefore show a G1/S transition defect, as well as a secondary blockade in mitosis and accumulation of cells in metaphase. SOCS1 expression correlated with a reduction in cyclin D/E levels and an increase in the tumor suppressor p19, as well as the CDK inhibitor p53, explaining the G1/S transition defect. As a result of Cdh1 degradation, SOCS1-expressing cells accumulated cyclin B1 and securin, as well as apparently inactive Cdc20, in mitosis. Levels of the late mitotic Cdh1 substrate Aurora A did not change. These observations comprise a hitherto unreported mechanism of SOCS1 tumor suppression, suggesting this molecule as a candidate for the design of new therapeutic strategies for human melanoma.
Collapse
Affiliation(s)
- Verónica Parrillas
- Chemokines Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Laura Martínez-Muñoz
- Chemokines Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Borja L. Holgado
- Chemokines Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Amit Kumar
- PI3K Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, 28049 Madrid, Spain
- Present Address: Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy
| | - Graciela Cascio
- Chemokines Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Pilar Lucas
- Chemokines Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - José Miguel Rodríguez-Frade
- Chemokines Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Ana C. Carrera
- PI3K Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, 28049 Madrid, Spain
| | - Karel HM van Wely
- Genetic Instability Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, 28049 Madrid, Spain
| | - Mario Mellado
- Chemokines Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
59
|
Abstract
Mammalian oocytes spend the majority of their lives in a dormant state, residing in primordial follicles. This arrest, most analogous to the G2 stage of the mitotic cell cycle division, is only broken in the hours preceding ovulation, when a hormonal rise induces meiotic resumption and entry into the first meiotic division. At a molecular level, this event is triggered by CDK1 activity, and here, we examine how CDK1 is suppressed during meiotic arrest and raised for oocyte maturation. We focus on signaling: intercellular signaling between the oocyte and the somatic cells of the follicle, and spatial signaling involving the anaphase-promoting complex (APC) within the oocyte. Meiotic arrest is achieved through APC(FZR1)-mediated cyclin B1 degradation. Once meiotic resumption resumes, CDK1 levels rise, but its activity eventually needs to be suppressed for completion of the first meiotic division. This is achieved by APC(CDC20), whose activity is critically regulated by the spindle assembly checkpoint, and which induces both a loss in CDK1 activity as well as the cohesive ties holding chromosomes together.
Collapse
Affiliation(s)
- Janet E Holt
- Center for Reproductive Sciences & School of Biomedical Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
| | | | | |
Collapse
|
60
|
Zhao S, Gou LT, Zhang M, Zu LD, Hua MM, Hua Y, Shi HJ, Li Y, Li J, Li D, Wang ED, Liu MF. piRNA-Triggered MIWI Ubiquitination and Removal by APC/C in Late Spermatogenesis. Dev Cell 2013; 24:13-25. [DOI: 10.1016/j.devcel.2012.12.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/16/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
|
61
|
Holt JE, Lane SIR, Jennings P, García-Higuera I, Moreno S, Jones KT. APC(FZR1) prevents nondisjunction in mouse oocytes by controlling meiotic spindle assembly timing. Mol Biol Cell 2012; 23:3970-81. [PMID: 22918942 PMCID: PMC3469513 DOI: 10.1091/mbc.e12-05-0352] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The APC activator FZR1 has a role in controlling the timing of meiosis I spindle assembly. Oocytes lacking FZR1 undergo accelerated meiosis I, associated with earlier spindle assembly checkpoint satisfaction and APCCDC20 activity, resulting in high rates of aneuploidy. FZR1 is an anaphase-promoting complex (APC) activator best known for its role in the mitotic cell cycle at M-phase exit, in G1, and in maintaining genome integrity. Previous studies also established that it prevents meiotic resumption, equivalent to the G2/M transition. Here we report that mouse oocytes lacking FZR1 undergo passage through meiosis I that is accelerated by ∼1 h, and this is due to an earlier onset of spindle assembly checkpoint (SAC) satisfaction and APCCDC20 activity. However, loss of FZR1 did not compromise SAC functionality; instead, earlier SAC satisfaction was achieved because the bipolar meiotic spindle was assembled more quickly in the absence of FZR1. This novel regulation of spindle assembly by FZR1 led to premature bivalent attachment to microtubules and loss of kinetochore-bound MAD2. Bivalents, however, were observed to congress poorly, leading to nondisjunction rates of 25%. We conclude that in mouse oocytes FZR1 controls the timing of assembly of the bipolar spindle and in so doing the timing of SAC satisfaction and APCCDC20 activity. This study implicates FZR1 as a major regulator of prometaphase whose activity helps to prevent chromosome nondisjunction.
Collapse
Affiliation(s)
- Janet E Holt
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | | | | | | | |
Collapse
|
62
|
Regulation of APC/C-Cdh1 and its function in neuronal survival. Mol Neurobiol 2012; 46:547-54. [PMID: 22836916 PMCID: PMC3496556 DOI: 10.1007/s12035-012-8309-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/12/2012] [Indexed: 12/22/2022]
Abstract
Neurons are post-mitotic cells that undergo an active downregulation of cell cycle-related proteins to survive. The activity of the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase that regulates cell cycle progression in proliferating cells, plays a relevant role in post-mitotic neurons. Recent advances in the study of the regulation of APC/C have documented that the APC/C-activating cofactor, Cdh1, is essential for the function(s) of APC/C in neuronal survival. Here, we review the normal regulation of APC/C activity in proliferating cells and neurons. We conclude that in neurons the APC/C-Cdh1 complex actively downregulates the stability of the cell cycle protein cyclin B1 and the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3. Keeping these proteins destabilized is critical both for preventing the aberrant reentry of post-mitotic neurons into the cell cycle and for maintaining their reduced antioxidant status. Further understanding of the pathophysiological regulation of these proteins by APC/C-Cdh1 in neurons will be important for the search for novel therapeutic targets against neurodegeneration.
Collapse
|
63
|
Postnikoff SDL, Harkness TAA. Mechanistic insights into aging, cell-cycle progression, and stress response. Front Physiol 2012; 3:183. [PMID: 22675309 PMCID: PMC3366476 DOI: 10.3389/fphys.2012.00183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 05/17/2012] [Indexed: 12/22/2022] Open
Abstract
The longevity of an organism depends on the health of its cells. Throughout life cells are exposed to numerous intrinsic and extrinsic stresses, such as free radicals, generated through mitochondrial electron transport, and ultraviolet irradiation. The cell has evolved numerous mechanisms to scavenge free radicals and repair damage induced by these insults. One mechanism employed by the yeast Saccharomycescerevisiae to combat stress utilizes the Anaphase Promoting Complex (APC), an essential multi-subunit ubiquitin-protein ligase structurally and functionally conserved from yeast to humans that controls progression through mitosis and G1. We have observed that yeast cells expressing compromised APC subunits are sensitive to multiple stresses and have shorter replicative and chronological lifespans. In a pathway that runs parallel to that regulated by the APC, members of the Forkhead box (Fox) transcription factor family also regulate stress responses. The yeast Fox orthologs Fkh1 and Fkh2 appear to drive the transcription of stress response factors and slow early G1 progression, while the APC seems to regulate chromatin structure, chromosome segregation, and resetting of the transcriptome in early G1. In contrast, under non-stress conditions, the Fkhs play a complex role in cell-cycle progression, partially through activation of the APC. Direct and indirect interactions between the APC and the yeast Fkhs appear to be pivotal for lifespan determination. Here we explore the potential for these interactions to be evolutionarily conserved as a mechanism to balance cell-cycle regulation with stress responses.
Collapse
Affiliation(s)
- S D L Postnikoff
- Department of Anatomy and Cell Biology, University of Saskatchewan Saskatoon, SK, Canada
| | | |
Collapse
|
64
|
Aguissa-Touré AH, Li G. Genetic alterations of PTEN in human melanoma. Cell Mol Life Sci 2012; 69:1475-91. [PMID: 22076652 PMCID: PMC11114653 DOI: 10.1007/s00018-011-0878-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/13/2011] [Accepted: 10/24/2011] [Indexed: 12/31/2022]
Abstract
The PTEN gene is one of the most frequently inactivated tumor suppressor genes in sporadic cancers. Inactivating mutations and deletions of the PTEN gene are found in many types of cancers, including melanoma. However, the exact frequency of PTEN alteration in melanoma is unknown. In this study, we comprehensively reviewed 16 studies on PTEN genetic changes in melanoma cell lines and tumor biopsies. To date, 76 PTEN alterations have been reported in melanoma cell lines and 38 PTEN alterations in melanoma biopsies. The rate of PTEN alterations in melanoma cell lines, primary melanoma, and metastatic melanoma is 27.6, 7.3, and 15.2%, respectively. Three mutations were found in both melanoma cell lines and biopsies. These mutations are scattered throughout the gene, with the exception of exon 9. A mutational hot spot is found in exon 5, which encodes the phosphatase activity domain. Evidence is also presented to suggest that numerous homozygous deletions and missense variants exist in the PTEN transcript. Studying PTEN functions and implications of its mutations and other genes could provide insights into the precise nature of PTEN function in melanoma and additional targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Almass-Houd Aguissa-Touré
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, Jack Bell Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
65
|
Chun ACS, Kok KH, Jin DY. REV7 is required for anaphase-promoting complex-dependent ubiquitination and degradation of translesion DNA polymerase REV1. Cell Cycle 2012; 12:365-78. [PMID: 23287467 DOI: 10.4161/cc.23214] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
REV1 is a Y-family polymerase specialized for replicating across DNA lesions at the stalled replication folk. Due to the high error rate of REV1-dependent translesion DNA synthesis (TLS), tight regulation of REV1 activity is essential. Here, we show that human REV1 undergoes proteosomal degradation mediated by the E3 ubiquitin ligase known as anaphase-promoting complex (APC). REV1 associates with APC. Overexpression of APC coactivator CDH1 or CDC20 promotes polyubiquitination and proteosomal degradation of REV1. Surprisingly, polyubiquitination of REV1 also requires REV7, a TLS accessory protein that interacts with REV1 and other TLS polymerases. The N-terminal region of REV1 contains both the APC degron and an additional REV7-binding domain. Depletion of REV7 by RNA interference stabilizes REV1 by preventing polyubiquitination, whereas overexpression of REV7 augments REV1 degradation. Taken together, our findings suggest a role of REV7 in governing REV1 stability and interplay between TLS and APC-dependent proteolysis.
Collapse
Affiliation(s)
- Abel Chiu-Shun Chun
- Department of Biochemistry and State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
66
|
Penas C, Ramachandran V, Ayad NG. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis. Front Oncol 2012; 1:60. [PMID: 22655255 PMCID: PMC3356048 DOI: 10.3389/fonc.2011.00060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/22/2011] [Indexed: 01/15/2023] Open
Abstract
The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1-Cullin-F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C's cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy.
Collapse
Affiliation(s)
- Clara Penas
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine Miami, FL, USA
| | | | | |
Collapse
|
67
|
Seah MKY, Holt JE, García-Higuera I, Moreno S, Jones KT. The Anaphase-Promoting Complex activator Fizzy-Related-1 (FZR1) is involved in the establishment of a single mitotic spindle in 1-cell embryos and in the mitotic divisions of early mammalian embryos. J Cell Sci 2012; 125:6030-7. [DOI: 10.1242/jcs.110155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In early embryos of a number of species the Anaphase-Promoting Complex (APC), an important cell cycle regulator, requires only CDC20 for cell division. In contrast FZR1, a non-essential gene in many cell types, is thought to play a role in APC activation at later cell cycles, and especially in endoreplication. In keeping with this, FZR1 knockout mouse embryos show normal preimplantation development but die due to a lack of endoreplication needed for placentation. However, interpretation of the role of FZR1 during this period is hindered by the presence of maternal stores. Here, therefore, we used an oocyte-specific knockout to examine FZR1 function in early mouse embryo development. Maternal FZR1 was not critical for completion of meiosis, and furthermore viable pups were born to these females mated with normal males. However, in early embryos the absence of both maternal and paternal FZR1 led to a dramatic loss in genome integrity, such that the majority of embryos arrested having undergone only a single mitotic division and contained many γ-H2AX foci, consistent with fragmented DNA. A prominent feature of such embryos was a the establishment of two independent spindles following pronuclear fusion and thus a failure of the chromosomes to mix (syngamy). These generated binucleate 2-cell embryos. In the 10% of embryos that progressed to the 4-cell stage, division was so slow that compaction occurred prematurely. No embryo development to the blastocyst stage was ever observed. We conclude that FZR1 is a surprisingly essential gene involved in the establishment of a single spindle from the two pronuclei in 1-cell embryos as well as being involved in the maintainence of genomic integrity during the mitotic divisions of early mammalian embryos.
Collapse
|
68
|
Cotto-Rios XM, Jones MJK, Huang TT. Insights into phosphorylation-dependent mechanisms regulating USP1 protein stability during the cell cycle. Cell Cycle 2011; 10:4009-16. [PMID: 22101265 DOI: 10.4161/cc.10.23.18501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tight regulation of the cell cycle and DNA repair machinery is essential for maintaining genome stability. The APC/CCdh1 ubiquitin ligase complex is a key regulator of protein stability during the G 1 phase of the cell cycle. APC/CCdh1 regulates and promotes the degradation of proteins involved in both cell cycle regulation and DNA repair. In a recent study, we identified a novel APC/CCdh1 substrate, the ubiquitin protease USP1. USP1 is a critical regulator of both the Fanconi anemia (FA) and translesion synthesis (TLS) DNA repair pathways. Here, we provide additional mechanistic insights into the regulation of USP1 during the cell cycle. Specifically, we demonstrate that USP1 is phosphorylated in mitosis by cyclin-dependent kinases (Cdks), and that this phosphorylation event may prevent premature degradation of USP1 during normal cell cycle progression. Finally, we provide a unifying hypothesis integrating the role of G 1-specific proteolysis of USP1 with the regulation of the transcriptional repressors, Inhibitor of DNA-binding (ID) proteins.
Collapse
Affiliation(s)
- Xiomaris M Cotto-Rios
- Department of Biochemistry, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
69
|
Weitzman MD, Lilley CE, Chaurushiya MS. Changing the ubiquitin landscape during viral manipulation of the DNA damage response. FEBS Lett 2011; 585:2897-906. [PMID: 21549706 PMCID: PMC3312807 DOI: 10.1016/j.febslet.2011.04.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 04/16/2011] [Accepted: 04/19/2011] [Indexed: 02/08/2023]
Abstract
Viruses often induce signaling through the same cellular cascades that are activated by damage to the cellular genome. Signaling triggered by viral proteins or exogenous DNA delivered by viruses can be beneficial or detrimental to viral infection. Viruses have therefore evolved to dissect the cellular DNA damage response pathway during infection, often marking key cellular regulators with ubiquitin to induce their degradation or change their function. Signaling controlled by ubiquitin or ubiquitin-like proteins has recently emerged as key regulator of the cellular DNA damage response. Situated at the interface between DNA damage signaling and the ubiquitin system, viruses can reveal key convergence points in this important cellular pathway. In this review, we examine how viruses harness the diversity of the cellular ubiquitin system to modulate the DNA damage signaling pathway. We discuss the implications of viral infiltration of this pathway for both the transcriptional program of the virus and for the cellular response to DNA damage.
Collapse
Affiliation(s)
- Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
70
|
Sasaki T, Li A, Gillespie PJ, Blow JJ, Gilbert DM. Evidence for a mammalian late-G1 phase inhibitor of replication licensing distinct from geminin or Cdk activity. Nucleus 2011; 2:455-64. [PMID: 21983086 DOI: 10.4161/nucl.2.5.17859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pre-replication complexes (pre-RCs) are assembled onto DNA during late mitosis and G1 to license replication origins for use in S phase. In order to prevent re-replication of DNA, licensing must be completely shutdown prior to entry into S phase. While mechanisms preventing re-replication during S phase and mitosis have been elucidated, the means by which cells first prevent licensing during late G1 phase are poorly understood. We have employed a hybrid mammalian / Xenopus egg extract replication system to dissect activities that inhibit replication licensing at different stages of the cell cycle in Chinese Hamster Ovary (CHO) cells. We find that soluble extracts from mitotic cells inhibit licensing through a combination of geminin and Cdk activities, while extracts from S-phase cells inhibit licensing predominantly through geminin alone. Surprisingly however, geminin did not accumulate until after cells enter S phase. Unlike extracts from cells in early G1 phase, extracts from late G1 phase and early S phase cells contained an inhibitor of licensing that could not be accounted for by either geminin or Cdk. Moreover, inhibiting cyclin and geminin protein synthesis or inhibiting Cdk activity early in G1 phase did not prevent the appearance of inhibitory activity. These results suggest that a soluble inhibitor of replication licensing appears prior to entry into S phase that is distinct from either geminin or Cdk activity. Our hybrid system should permit the identification of this and other novel cell cycle regulatory activities.
Collapse
Affiliation(s)
- Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | | | | | | | | |
Collapse
|
71
|
Cooper KF, Strich R. Meiotic control of the APC/C: similarities & differences from mitosis. Cell Div 2011; 6:16. [PMID: 21806783 PMCID: PMC3162515 DOI: 10.1186/1747-1028-6-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/01/2011] [Indexed: 02/06/2023] Open
Abstract
The anaphase promoting complex is a highly conserved E3 ligase complex that mediates the destruction of key regulatory proteins during both mitotic and meiotic divisions. In order to maintain ploidy, this destruction must occur after the regulatory proteins have executed their function. Thus, the regulation of APC/C activity itself is critical for maintaining ploidy during all types of cell divisions. During mitotic cell division, two conserved activator proteins called Cdc20 and Cdh1 are required for both APC/C activation and substrate selection. However, significantly less is known about how these proteins regulate APC/C activity during the specialized meiotic nuclear divisions. In addition, both budding yeast and flies utilize a third meiosis-specific activator. In Saccharomyces cerevisiae, this meiosis-specific activator is called Ama1. This review summarizes our knowledge of how Cdc20 and Ama1 coordinate APC/C activity to regulate the meiotic nuclear divisions in yeast.
Collapse
Affiliation(s)
- Katrina F Cooper
- University of Medicine and Dentistry of New Jersey, 2 Medical Center Drive, Stratford, NJ 08055, USA.
| | | |
Collapse
|
72
|
Cotto-Rios XM, Jones MJK, Busino L, Pagano M, Huang TT. APC/CCdh1-dependent proteolysis of USP1 regulates the response to UV-mediated DNA damage. ACTA ACUST UNITED AC 2011; 194:177-86. [PMID: 21768287 PMCID: PMC3144416 DOI: 10.1083/jcb.201101062] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
APC/CCdh1-dependent degradation of USP1 allows for PCNA monoubiquitination and subsequent recruitment of trans-lesion synthesis polymerase to UV repair sites. Targeted protein destruction of critical cellular regulators during the G1 phase of the cell cycle is achieved by anaphase-promoting complex/cyclosomeCdh1 (APC/CCdh1), a multisubunit E3 ubiquitin ligase. Cells lacking Cdh1 have been shown to accumulate deoxyribonucleic acid (DNA) damage, suggesting that it may play a previously unrecognized role in maintaining genomic stability. The ubiquitin-specific protease 1 (USP1) is a known critical regulator of DNA repair and genomic stability. In this paper, we report that USP1 was degraded in G1 via APC/CCdh1. USP1 levels were kept low in G1 to provide a permissive condition for inducing proliferating cell nuclear antigen (PCNA) monoubiquitination in response to ultraviolet (UV) damage before DNA replication. Importantly, expression of a USP1 mutant that cannot be degraded via APC/CCdh1 inhibited PCNA monoubiquitination during G1, likely compromising the recruitment of trans-lesion synthesis polymerase to UV repair sites. Thus, we propose a role for APC/CCdh1 in modulating the status of PCNA monoubiquitination and UV DNA repair before S phase entry.
Collapse
Affiliation(s)
- Xiomaris M Cotto-Rios
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
73
|
Islam A, Turner EL, Menzel J, Malo ME, Harkness TA. Antagonistic Gcn5-Hda1 interactions revealed by mutations to the Anaphase Promoting Complex in yeast. Cell Div 2011; 6:13. [PMID: 21651791 PMCID: PMC3141613 DOI: 10.1186/1747-1028-6-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/08/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Histone post-translational modifications are critical for gene expression and cell viability. A broad spectrum of histone lysine residues have been identified in yeast that are targeted by a variety of modifying enzymes. However, the regulation and interaction of these enzymes remains relatively uncharacterized. Previously we demonstrated that deletion of either the histone acetyltransferase (HAT) GCN5 or the histone deacetylase (HDAC) HDA1 exacerbated the temperature sensitive (ts) mutant phenotype of the Anaphase Promoting Complex (APC) apc5CA allele. Here, the apc5CA mutant background is used to study a previously uncharacterized functional antagonistic genetic interaction between Gcn5 and Hda1 that is not detected in APC5 cells. RESULTS Using Northerns, Westerns, reverse transcriptase PCR (rtPCR), chromatin immunoprecipitation (ChIP), and mutant phenotype suppression analysis, we observed that Hda1 and Gcn5 appear to compete for recruitment to promoters. We observed that the presence of Hda1 can partially occlude the binding of Gcn5 to the same promoter. Occlusion of Gcn5 recruitment to these promoters involved Hda1 and Tup1. Using sequential ChIP we show that Hda1 and Tup1 likely form complexes at these promoters, and that complex formation can be increased by deleting GCN5. CONCLUSIONS Our data suggests large Gcn5 and Hda1 containing complexes may compete for space on promoters that utilize the Ssn6/Tup1 repressor complex. We predict that in apc5CA cells the accumulation of an APC target may compensate for the loss of both GCN5 and HDA1.
Collapse
Affiliation(s)
- Azharul Islam
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| | | | | | | | | |
Collapse
|
74
|
Sui X, Wang D, Geng S, Zhou G, He C, Hu X. Methylated promoters of genes encoding protocadherins as a new cancer biomarker family. Mol Biol Rep 2011; 39:1105-11. [PMID: 21598112 DOI: 10.1007/s11033-011-0837-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 05/05/2011] [Indexed: 12/15/2022]
|
75
|
The emerging role of APC/CCdh1 in development. Semin Cell Dev Biol 2011; 22:579-85. [PMID: 21497201 DOI: 10.1016/j.semcdb.2011.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/24/2011] [Accepted: 03/30/2011] [Indexed: 01/10/2023]
Abstract
The function of APC/C (anaphase-promoting complex/cyclosome) was initially implicated with the onset of anaphase during mitosis, where its association with Cdc20 targets securin for destruction, thereby allowing the separation of two duplicated daughter genomes. When combined with Cdh1, APC regulates G1/S transition and DNA replication during cell cycle. Beyond cell cycle control, results from recent biochemical and mouse genetic studies have attracted our attention to the unexpected impact of APC/C(Cdh1) in cellular differentiation, genomic integrity and pathogenesis of various diseases. This review will aim to summarize current understanding of APC/C(Cdh1) in regulating crucial events during development.
Collapse
|
76
|
Hollander MC, Blumenthal GM, Dennis PA. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 2011; 11:289-301. [PMID: 21430697 PMCID: PMC6946181 DOI: 10.1038/nrc3037] [Citation(s) in RCA: 638] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PTEN is among the most frequently inactivated tumour suppressor genes in sporadic cancer. PTEN has dual protein and lipid phosphatase activity, and its tumour suppressor activity is dependent on its lipid phosphatase activity, which negatively regulates the PI3K-AKT-mTOR pathway. Germline mutations in PTEN have been described in a variety of rare syndromes that are collectively known as the PTEN hamartoma tumour syndromes (PHTS). Cowden syndrome is the best-described syndrome within PHTS, with approximately 80% of patients having germline PTEN mutations. Patients with Cowden syndrome have an increased incidence of cancers of the breast, thyroid and endometrium, which correspond to sporadic tumour types that commonly exhibit somatic PTEN inactivation. Pten deletion in mice leads to Cowden syndrome-like phenotypes, and tissue-specific Pten deletion has provided clues to the role of PTEN mutation and loss in specific tumour types. Studying PTEN in the continuum of rare syndromes, common cancers and mouse models provides insight into the role of PTEN in tumorigenesis and will inform targeted drug development.
Collapse
Affiliation(s)
- M Christine Hollander
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
77
|
Holt JE, Tran SMT, Stewart JL, Minahan K, García-Higuera I, Moreno S, Jones KT. The APC/C activator FZR1 coordinates the timing of meiotic resumption during prophase I arrest in mammalian oocytes. Development 2011; 138:905-13. [DOI: 10.1242/dev.059022] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
FZR1, an activator of the anaphase-promoting complex/cyclosome (APC/C), is recognized for its roles in the mitotic cell cycle. To examine its meiotic function in females we generated an oocyte-specific knockout of the Fzr1 gene (Fzr1Δ/Δ). The total number of fully grown oocytes enclosed in cumulus complexes was 35-40% lower in oocytes from Fzr1Δ/Δ mice and there was a commensurate rise in denuded, meiotically advanced and/or fragmented oocytes. The ability of Fzr1Δ/Δ oocytes to remain prophase I/germinal vesicle (GV) arrested in vitro was also compromised, despite the addition of the phosphodiesterase milrinone. Meiotic competency of smaller diameter oocytes was also accelerated by Fzr1 loss. Cyclin B1 levels were elevated ~5-fold in Fzr1Δ/Δ oocytes, whereas securin and CDC25B, two other APC/CFZR1 substrates, were unchanged. Cyclin B1 overexpression can mimic the effects of Fzr1 loss on GV arrest and here we show that cyclin B1 knockdown in Fzr1Δ/Δ oocytes affects the timing of meiotic resumption. Therefore, the effects of Fzr1 loss are mediated, at least in part, by raised cyclin B1. Thus, APC/CFZR1 activity is required to repress cyclin B1 levels in oocytes during prophase I arrest in the ovary, thereby maintaining meiotic quiescence until hormonal cues trigger resumption.
Collapse
Affiliation(s)
- Janet E. Holt
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Suzanne M.-T. Tran
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jessica L. Stewart
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kyra Minahan
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Irene García-Higuera
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Salamanca University, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Sergio Moreno
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Salamanca University, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Keith T. Jones
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|