51
|
Abstract
Background The dose-limiting toxic effect of cyclophosphamide (CY) is cardiotoxicity. The pathogenesis of myocardial damage is poorly understood, and there is no established means of prevention. In previous studies, we suggested that for CY-induced cardiotoxicity, whereas acrolein is the key toxic metabolite, carboxyethylphosphoramide mustard (CEPM) is protective. We sought to verify that acrolein is the main cause of cardiotoxicity and to investigate whether aldehyde dehydrogenase (ALDH), which is associated with greater CEPM production, is involved in the protective effect for cardiotoxicity. We also evaluated the protective effect of N-acetylcysteine (NAC), an amino acid with antioxidant activity and a known acrolein scavenger. Methods H9c2 cells were exposed to CY metabolites HCY (4-hydroxy-cyclophosphamide), acrolein or CEPM. The degree of cytotoxicity was evaluated by MTT assay, lactate dehydrogenase (LDH) release, and the production of reactive oxygen species (ROS). We also investigated how the myocardial cellular protective effects of CY metabolites were modified by NAC. To quantify acrolein levels, we measured the culture supernatants using high performance liquid chromatography. We measured ALDH activity after exposure to HCY or acrolein and the same with pre-treatment with NAC. Results Exposure of H9c2 cells to CEPM did not cause cytotoxicity. Increased ROS levels and myocardial cytotoxicity, however, were induced by HCY and acrolein. In cell cultures, HCY was metabolized to acrolein. Less ALDH activity was observed after exposure to HCY or acrolein. Treatment with NAC reduced acrolein concentrations. Conclusions Increased ROS generation and decreased ALDH activity confirmed that CY metabolites HCY and acrolein are strongly implicated in cardiotoxicity. By inhibiting ROS generation, increasing ALDH activity and decreasing the presence of acrolein, NAC has the potential to prevent CY-induced cardiotoxicity.
Collapse
|
52
|
Crouch ML, Knowels G, Stuppard R, Ericson NG, Bielas JH, Marcinek DJ, Syrjala KL. Cyclophosphamide leads to persistent deficits in physical performance and in vivo mitochondria function in a mouse model of chemotherapy late effects. PLoS One 2017; 12:e0181086. [PMID: 28700655 PMCID: PMC5507312 DOI: 10.1371/journal.pone.0181086] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022] Open
Abstract
Fatigue is the symptom most commonly reported by long-term cancer survivors and is increasingly recognized as related to skeletal muscle dysfunction. Traditional chemotherapeutic agents can cause acute toxicities including cardiac and skeletal myopathies. To investigate the mechanism by which chemotherapy may lead to persistent skeletal muscle dysfunction, mature adult mice were injected with a single cyclophosphamide dose and evaluated for 6 weeks. We found that exposed mice developed a persistent decrease in treadmill running time compared to baseline (25.7±10.6 vs. 49.0±16.8 min, P = 0.0012). Further, 6 weeks after drug exposure, in vivo parameters of mitochondrial function remained below baseline including maximum ATP production (482.1 ± 48.6 vs. 696.2 ± 76.6, P = 0.029) and phosphocreatine to ATP ratio (3.243 ± 0.1 vs. 3.878 ± 0.1, P = 0.004). Immunoblotting of homogenized muscles from treated animals demonstrated a transient increase in HNE adducts 1 week after exposure that resolved by 6 weeks. However, there was no evidence of an oxidative stress response as measured by quantitation of SOD1, SOD2, and catalase protein levels. Examination of mtDNA demonstrated that the mutation frequency remained comparable between control and treated groups. Interestingly, there was evidence of a transient increase in NF-ĸB p65 protein 1 day after drug exposure as compared to saline controls (0.091±0.017 vs. 0.053±0.022, P = 0.033). These data suggest that continued impairment in muscle and mitochondria function in cyclophosphamide-treated animals is not linked to persistent oxidative stress and that alternative mechanisms need to be considered.
Collapse
Affiliation(s)
- Marie-Laure Crouch
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Gary Knowels
- Department of Radiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Rudolph Stuppard
- Department of Radiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Nolan G. Ericson
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jason H. Bielas
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - David J. Marcinek
- Department of Radiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Karen L. Syrjala
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
53
|
Yang S, Zhao L, Han Y, Liu Y, Chen C, Zhan M, Xiong X, Zhu X, Xiao L, Hu C, Liu F, Zhou Z, Kanwar YS, Sun L. Probucol ameliorates renal injury in diabetic nephropathy by inhibiting the expression of the redox enzyme p66Shc. Redox Biol 2017; 13:482-497. [PMID: 28728079 PMCID: PMC5514499 DOI: 10.1016/j.redox.2017.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/28/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022] Open
Abstract
AIMS Probucol is an anti-hyperlipidemic agent and a potent antioxidant drug that can delay progression of diabetic nephropathy (DN) and reverses renal oxidative stress in diabetic animal models; however, the mechanisms underlying these effects remain unclear. p66Shc is a newly recognized mediator of mitochondrial ROS production in renal cells under high-glucose (HG) ambience. We previously showed that p66Shc can serve as a biomarker for renal oxidative injury in DN patients and that p66Shc up-regulation is correlated with renal damage in vivo and in vitro. Here, we determined whether probucol ameliorates renal injury in DN by inhibiting p66Shc expression. RESULTS We found that the expression of SIRT1, Ac-H3 and p66Shc in kidneys of DN patients was altered. Also, probucol reduced the levels of serum creatinine, urine protein and LDL-c and attenuated renal oxidative injury and fibrosis in STZ induced diabetic mice. In addition, probucol reversed p-AMPK, SIRT1, Ac-H3 and p66Shc expression. Correlation analyses showed that p66Shc expression was correlated with p-AMPK and Sirt1 expression and severity of renal injury. In vitro pretreatment of HK-2 cells with p-AMPK and SIRT1 siRNA negated the beneficial effects of probucol. Furthermore, we noted that probucol activates p-AMPK and Sirt1 and inhibits p66shc mRNA transcription by facilitating the binding of Sirt1 to the p66Shc promoter and modulation of Ac-H3 expression in HK-2 cells under HG ambience. INNOVATION AND CONCLUSION Our results suggest for the first time that probucol ameliorates renal damage in DN by epigenetically suppressing p66Shc expression via the AMPK-SIRT1-AcH3 pathway.
Collapse
Affiliation(s)
- Shikun Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China; Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Chao Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Ming Zhan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Xiaofen Xiong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Xuejing Zhu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Chun Hu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Zhiguang Zhou
- Diabetes Center, and Institute of Metabolism and Endocrinology, Key Laboratory of Diabetes Immunology, Ministry of Education, China
| | - Yashpal S Kanwar
- Department of Pathology & Medicine, Northwestern University, Chicago, USA
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China.
| |
Collapse
|
54
|
Gunes S, Sahinturk V, Karasati P, Sahin IK, Ayhanci A. Cardioprotective Effect of Selenium Against Cyclophosphamide-Induced Cardiotoxicity in Rats. Biol Trace Elem Res 2017; 177:107-114. [PMID: 27709497 DOI: 10.1007/s12011-016-0858-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/26/2016] [Indexed: 01/25/2023]
Abstract
The objective of this study is to evaluate the possible protective effects of selenium (Se) against cyclophosphamide (CP)-induced acute cardiotoxicity in rats. A total of 42 male Spraque-Dawley rats were divided into six groups (n = 7). Rats in the first group were served as control. Rats in the second group received CP (150 mg/kg) at the sixth day of experiment. Animals in the third and fourth groups were treated with only 0.5 and 1 mg/kg Se respectively for six consecutive days. Rats in the fifth and sixth groups received respective Se doses (0.5 or 1 mg/kg) for 6 days and then a single dose of CP administered on the sixth day. On day 7, the animals were sacrificed; blood samples were collected to measure malondialdehyde (MDA), glutathione (GSH), lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and ischemia-modified albumin (IMA) levels. Heart tissues were processed routinely and tissue sections were stained with H + E for light microscopic examination. In the CP-treated rats MDA, LDH, CK-MB, and IMA serum levels increased, while GSH levels decreased. Microscopic evaluation showed that tissue damage was conspicuously lower in CP plus Se groups. Moreover, 1 mg/kg Se was more protective than 0.5 mg/kg Se as indicated by histopathological and biochemical values. In conclusion, Se is suggested to be a potential candidate to ameliorate CP-induced cardiotoxicity which may be related to its antioxidant activity.
Collapse
Affiliation(s)
- Sibel Gunes
- Faculty of Art and Science, Department of Biology, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey.
| | - Varol Sahinturk
- Medical Faculty, Department of Histology and Embryology, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey
| | - Pinar Karasati
- Faculty of Art and Science, Department of Biology, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey
| | - Ilknur Kulcanay Sahin
- Vocational School of Health Service, Medical Services and Techniques Department, Kırıkkale University, Kırıkkale, Turkey
| | - Adnan Ayhanci
- Faculty of Art and Science, Department of Biology, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey
| |
Collapse
|
55
|
El-Agamy DS, Elkablawy MA, Abo-Haded HM. Modulation of cyclophosphamide-induced cardiotoxicity by methyl palmitate. Cancer Chemother Pharmacol 2017; 79:399-409. [DOI: 10.1007/s00280-016-3233-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/26/2016] [Indexed: 11/29/2022]
|
56
|
Giordano G, Spagnuolo A, Olivieri N, Corbo C, Campagna A, Spagnoletti I, Pennacchio RM, Campidoglio S, Pancione M, Palladino L, Villari B, Febbraro A. Cancer drug related cardiotoxicity during breast cancer treatment. Expert Opin Drug Saf 2016; 15:1063-1074. [PMID: 27120499 DOI: 10.1080/14740338.2016.1182493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 04/21/2016] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Breast cancer (BC) is the most common cancer in women. Although therapeutic armamentarium like chemotherapy, endocrine and target agents have increased survival, cardiovascular side effects have been observed. A comprehensive risk assessment, early detection and management of cardiac adverse events is therefore needed. AREAS COVERED In this review we focus on cardiotoxicity data deriving from Phase III randomized trials, systematic reviews and meta-analysis in BC patients. We provide insight into advances that have been made in the molecular mechanisms, clinical presentation and management of such adverse event. EXPERT OPINION Despite the large number of data from Phase III trials about cardiac events incidence, there are poor evidences for detection, monitoring and management of cardiotoxicity during BC treatment. Future cardiotoxicity-oriented clinical cancer research can help to predict the risk of cardiac adverse events and improve patients' outcome. Multidisciplinary approach as well as integration of blood biomarkers with imaging will be desirable.
Collapse
Affiliation(s)
- Guido Giordano
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Alessia Spagnuolo
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Nunzio Olivieri
- b Department of Biology , University of Naples, Federico II , Napoli , Italy
| | - Claudia Corbo
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Angelo Campagna
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Ilaria Spagnoletti
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | | | - Serena Campidoglio
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Massimo Pancione
- c Duepartment of Science and Technology , University of Sannio , Benevento , Italy
| | - Luciano Palladino
- d Department of Surgery , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Bruno Villari
- e Department of Cardiology , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Antonio Febbraro
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| |
Collapse
|
57
|
Cheng WL, Kao YH, Chen SA, Chen YJ. Pathophysiology of cancer therapy-provoked atrial fibrillation. Int J Cardiol 2016; 219:186-94. [PMID: 27327505 DOI: 10.1016/j.ijcard.2016.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/11/2016] [Indexed: 02/07/2023]
Abstract
Atrial fibrillation (AF) occurs with increased frequency in cancer patients, especially in patients who undergo surgery or chemotherapy. AF disturbs the prognosis of cancer patients and challenges therapeutic outcomes of cancer treatment. Elucidating the mechanisms of cancer-induced AF would help identify specific strategies for preventing AF occurrence. In addition to concurrent risk factors of cancer and AF, cancer surgery, side effects of anticancer agents, and cancer-associated immune responses play critical roles in the genesis of AF. In this review, we provide succinct potential mechanisms of AF genesis in cancer patients.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ann Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
58
|
Probucol Improves Erectile Function by Restoring Endothelial Function and Preventing Cavernous Fibrosis in Streptozotocin-induced Diabetic Rats. Urology 2016; 91:241.e9-241.e16. [DOI: 10.1016/j.urology.2016.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/11/2016] [Accepted: 02/03/2016] [Indexed: 01/06/2023]
|
59
|
Nayak G, Honguntikar SD, Kalthur SG, D'Souza AS, Mutalik S, Setty MM, Kalyankumar R, Krishnamurthy H, Kalthur G, Adiga SK. Ethanolic extract of Moringa oleifera Lam. leaves protect the pre-pubertal spermatogonial cells from cyclophosphamide-induced damage. JOURNAL OF ETHNOPHARMACOLOGY 2016; 182:101-109. [PMID: 26875643 DOI: 10.1016/j.jep.2016.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/12/2016] [Accepted: 02/06/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. is widely cultivated in Asian and African countries for its medicinal and dietary significance. The leaves are highly nutritious and are known to possess various biological activities. MATERIALS AND METHODS Pre-pubertal Swiss albino male mice were injected with single dose of cyclophosphamide (CP, 200mg/kg body weight) or ethanolic extract of Moringa oleifera leaves (MOE, 100mg/kg body weight) intraperitoneally. In combination group, MOE was administered 24h prior to CP injection. RESULTS CP induced a significant decrease in testicular weight (p<0.01) and depletion of germ cells (p<0.001) and higher level of DNA damage (p<0.001) compared to control. The expression of P53, Bax, Cytochrome C (Cyt C) was increased while there was a decrease in the expression of Bcl2, c-Kit and Oct4. Administration of MOE 24h prior to CP treatment ameliorated the depletion (p<0.001), DNA damage (p<0.001) and apoptosis (p<0.01) of germ cells induced by CP. The mitigating effect of MOE appears to be mediated by up-regulating the expression of c-Kit and Oct4 transcripts in P53-independent manner. CONCLUSION MOE protects the spermatogonial cells from CP-induced damage by modulating the apoptotic response elicited by CP and therefore can be considered as an efficient method of male fertility preservation.
Collapse
Affiliation(s)
- Guruprasad Nayak
- Center of Excellence in Clinical Embryology, Level 2, Central Research Lab, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka, India
| | - Sachin D Honguntikar
- Center of Excellence in Clinical Embryology, Level 2, Central Research Lab, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka, India
| | - Antony Sylvan D'Souza
- Department of Anatomy, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576104, Karnataka, India
| | - Manjunath M Setty
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576104, Karnataka, India
| | - Raksha Kalyankumar
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru-560065, India
| | | | - Guruprasad Kalthur
- Center of Excellence in Clinical Embryology, Level 2, Central Research Lab, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka, India.
| | - Satish Kumar Adiga
- Center of Excellence in Clinical Embryology, Level 2, Central Research Lab, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka, India
| |
Collapse
|
60
|
Oyagbemi AA, Omobowale TO, Saba AB, Olowu ER, Dada RO, Akinrinde AS. Gallic Acid Ameliorates Cyclophosphamide-Induced Neurotoxicity in Wistar Rats Through Free Radical Scavenging Activity and Improvement in Antioxidant Defense System. J Diet Suppl 2015; 13:402-19. [DOI: 10.3109/19390211.2015.1103827] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
61
|
Chuang LY, Guh JY, Ye YL, Lee YH, Huang JS. Effects of probucol on cell proliferation in human ovarian cancer cells. Toxicol Res (Camb) 2015; 5:331-339. [PMID: 30090349 DOI: 10.1039/c5tx00088b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 11/19/2015] [Indexed: 12/12/2022] Open
Abstract
Probucol is considered to be an important agent in promoting anti-oxidative action and protecting against tissue injury. However, little is known about the effects of probucol on the progression of ovarian carcinoma. The aim of this study was to investigate the effects of probucol on cellular proliferation in human ovarian cancer cells (PA-1 and SKOV-3) and explore the anti-proliferative mechanism of probucol in these cells. We found that probucol decreased cell growth in PA-1 and SKOV-3 cells in a dose-dependent manner. Treatment with probucol had no effect on cytotoxicity, the percentages of Annexin V-FITC positive cells and caspase-3 activity when compared with the vehicle group. No significant differences in the protein expression of Bcl-2 and cytochrome c were observed, both of which were markers of cells undergoing apoptosis. The inhibition of cellular proliferation by probucol was caused by G1-phase arrest through regulating proteins associated with cell cycle progression, such as cyclin D1, p21Waf1/Cip1, and p27Kip1. A further study revealed that probucol strongly impaired the phosphorylation of IκBα and the nuclear translocation of NF-κB (p65). It also suppressed the activation of ERK/JNK/p38 MAPK signaling. Moreover, the NF-κB inhibitor (PDTC), the ERK inhibitor (PD98059), the JNK inhibitor (SP600125), and the p38 MAPK inhibitor (SB203580) markedly attenuated the growth of these cells. Our results indicate that probucol induces anti-proliferative effects via blocking of cell cycle progression and inactivation of NF-κB and MAPK pathways in human ovarian cancer cells.
Collapse
Affiliation(s)
- Lea-Yea Chuang
- Department of Biochemistry , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Jinn-Yuh Guh
- Department of Internal Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Yi-Ling Ye
- Department of Biotechnology , National Formosa University , Yunlin , Taiwan
| | - Ying-Ho Lee
- Department of Biological Science and Technology , Chung Hwa University of Medical Technology , Tainan , Taiwan . ; ; Tel: +886-6-2674567-420
| | - Jau-Shyang Huang
- Department of Biological Science and Technology , Chung Hwa University of Medical Technology , Tainan , Taiwan . ; ; Tel: +886-6-2674567-420
| |
Collapse
|
62
|
Mansour HH, El Kiki SM, Hasan HF. Protective effect of N-acetylcysteine on cyclophosphamide-induced cardiotoxicity in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:417-422. [PMID: 26262887 DOI: 10.1016/j.etap.2015.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 07/14/2015] [Accepted: 07/18/2015] [Indexed: 06/04/2023]
Abstract
Cyclophosphamide (CP) is an oxazaphosphorine nitrogen mustard alkylating drug used for the treatment of chronic and acute leukemias, lymphoma, myeloma, and cancers of the breast and ovary. It is known to cause severe cardiac toxicity. This study investigated the protective effect of N-Acetylcysteine (NAC) on CP-induced cardiotoxicity in rats. CP resulted in a significant increase in serum aminotransferases, creatine kinase (CK), lactate dehydrogenase(LDH) enzymes, asymmetric dimethylarginine and tumor necrosis factor-α and significant decrease in total nitrate/nitrite(NOx). In cardiac tissues, a single dose of CP (200mg/kg, i.p.) resulted in significant increase in malondialdehyde and NOx and a significant decrease in reduced glutathione content, glutathione peroxidase, catalase, and superoxide dismutase activities. Interestingly, Administration of NAC (200mg/kg, i.p.) for 5 days prior to CP attenuates all the biochemical changes induced by CP. These results revealed that NAC attenuates CP-induced cardiotoxicity by inhibiting oxidative and nitrosative stress and preserving the activity of antioxidant enzymes.
Collapse
Affiliation(s)
- Heba H Mansour
- Health Radiation Research Department, National Center for Radiation Research and Technology, PO Box 29, Nasr City, Cairo, Egypt.
| | - Shereen M El Kiki
- Health Radiation Research Department, National Center for Radiation Research and Technology, PO Box 29, Nasr City, Cairo, Egypt
| | - Hesham F Hasan
- Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
63
|
Alhumaidha KA, Saleh DO, Abd El Fattah MA, El-Eraky WI, Moawad H. Cardiorenal protective effect of taurine against cyclophosphamide-induced toxicity in albino rats. Can J Physiol Pharmacol 2015; 94:131-139. [PMID: 26695545 DOI: 10.1139/cjpp-2015-0138] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cyclophosphamide (CP) is a cytotoxic alkylating agent used in the treatment of malignant diseases and autoimmune disorders. Its clinical use is limited to its marked cardiorenal toxicity. The present study aimed to investigate the possible protective role of taurine (Tau; 200 mg·kg-1 per day, i.p.) on CP-induced cardiorenal toxicity. CP (200 mg·kg-1) was administered as a single intraperitoneal injection whereas; Tau was administered for 3 weeks on a daily basis. The results showed that CP produced an elevation in serum activities of creatine kinase, creatine kinase isoenzyme, lactate dehydrogenase, creatinine as well as blood urea nitrogen. CP also induced an elevation in the oxidative stress markers viz. elevation in the serum lipid peroxides level (measured as malondialdehyde; MDA) and reduction in reduced glutathione level and superoxide dismutase activity in both heart and renal tissue. On the other hand, administration of Tau attenuated the CP-evoked disturbances in the above mentioned parameters. In addition, CP exhibited electrocardiographic (ECG) changes, which were significantly reversed by Tau treatment. Finally, the histopathological examination emphasized the obtained results. In conclusion, Tau is suggested to be a potential candidate to ameliorate CP-induced cardiorenal toxicity that may be related to its antioxidant activity.
Collapse
Affiliation(s)
- Khaled A Alhumaidha
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Dalia O Saleh
- b Pharmacology Department, National Research Centre, Cairo, Egypt
| | - Mai A Abd El Fattah
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Wafaa I El-Eraky
- b Pharmacology Department, National Research Centre, Cairo, Egypt
| | - Helmy Moawad
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
64
|
Liu Y, Tan D, Shi L, Liu X, Zhang Y, Tong C, Song D, Hou M. Blueberry Anthocyanins-Enriched Extracts Attenuate Cyclophosphamide-Induced Cardiac Injury. PLoS One 2015; 10:e0127813. [PMID: 26133371 PMCID: PMC4489910 DOI: 10.1371/journal.pone.0127813] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/18/2015] [Indexed: 11/19/2022] Open
Abstract
We sought to explore the effect of blueberry anthocyanins-enriched extracts (BAE) on cyclophosphamide (CTX)-induced cardiac injury. The rats were divided randomly into five groups including normal control, CTX 100 mg/kg, BAE 80mg/kg, CTX+BAE 20mg/kg and CTX+BAE 80mg/kg groups. The rats in the three BAE-treated groups were administered BAE for four weeks. Seven days after BAE administration, rats in CTX group and two BAE-treated groups were intraperitoneally injected with a single dose of 100 mg/kg CTX. Cardiac injury was assessed using physiological parameters, Echo, morphological staining, real-time PCR and western blot. In addition, cardiotoxicity indices, inflammatory cytokines expression and oxidative stress markers were also detected. Four weeks 20mg/kg and 80mg/kg dose of BAE treatment following CTX exposure attenuated mean arterial blood pressure, heart rate and activities of heart enzymes, improved cardiac dysfunction, left ventricular hypertrophy and fibrosis. Importantly, BAE also attenuated CTX-induced LV leukocyte infiltration and inflammatory cytokines expression, ameliorated oxidative stress as well as cardiomyocyte apoptosis. In conclusion, BAE attenuated the CTX-induced cardiac injury and the protective mechanisms were related closely to the anti-inflammatory, antioxidant and anti-inflammatory characteristics of BAE.
Collapse
MESH Headings
- Animals
- Anthocyanins/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Blood Pressure/drug effects
- Blueberry Plants/chemistry
- Cell Movement
- Cyclophosphamide
- Drug Administration Schedule
- Fibrosis
- Heart Injuries/chemically induced
- Heart Injuries/drug therapy
- Heart Injuries/enzymology
- Heart Injuries/pathology
- Heart Rate/drug effects
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/drug therapy
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/pathology
- Injections, Intraperitoneal
- Leukocytes/drug effects
- Leukocytes/pathology
- Male
- Myocardium/enzymology
- Myocardium/pathology
- Myocytes, Cardiac/diagnostic imaging
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Oxidative Stress/drug effects
- Plant Extracts/pharmacology
- Rats
- Rats, Sprague-Dawley
- Ultrasonography
Collapse
Affiliation(s)
- Yunen Liu
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - Dehong Tan
- College of Food, Shenyang Agricultural University, Shenyang, China
| | - Lin Shi
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - Xinwei Liu
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - Yubiao Zhang
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - Changci Tong
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - Dequn Song
- College of Food, Shenyang Agricultural University, Shenyang, China
| | - Mingxiao Hou
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
- * E-mail:
| |
Collapse
|
65
|
Nishikawa T, Miyahara E, Kurauchi K, Watanabe E, Ikawa K, Asaba K, Tanabe T, Okamoto Y, Kawano Y. Mechanisms of Fatal Cardiotoxicity following High-Dose Cyclophosphamide Therapy and a Method for Its Prevention. PLoS One 2015; 10:e0131394. [PMID: 26114497 PMCID: PMC4482695 DOI: 10.1371/journal.pone.0131394] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022] Open
Abstract
Observed only after administration of high doses, cardiotoxicity is the dose-limiting effect of cyclophosphamide (CY). We investigated the poorly understood cardiotoxic mechanisms of high-dose CY. A rat cardiac myocardial cell line, H9c2, was exposed to CY metabolized by S9 fraction of rat liver homogenate mixed with co-factors (CYS9). Cytotoxicity was then evaluated by 3-(4,5-dimethyl-2-thiazolyl)¬2,5-diphenyl¬2H-tetrazolium bromide (MTT) assay, lactate dehydrogenase release, production of reactive oxygen species (ROS), and incidence of apoptosis. We also investigated how the myocardial cellular effects of CYS9 were modified by acrolein scavenger N-acetylcysteine (NAC), antioxidant isorhamnetin (ISO), and CYP inhibitor β-ionone (BIO). Quantifying CY and CY metabolites by means of liquid chromatography coupled with electrospray tandem mass spectrometry, we assayed culture supernatants of CYS9 with and without candidate cardioprotectant agents. Assay results for MTT showed that treatment with CY (125-500 μM) did not induce cytotoxicity. CYS9, however, exhibited myocardial cytotoxicity when CY concentration was 250 μM or more. After 250 μM of CY was metabolized in S9 mix for 2 h, the concentration of CY was 73.6 ± 8.0 μM, 4-hydroxy-cyclophosphamide (HCY) 17.6 ± 4.3, o-carboxyethyl-phosphoramide (CEPM) 26.6 ± 5.3 μM, and acrolein 26.7 ± 2.5 μM. Inhibition of CYS9-induced cytotoxicity occurred with NAC, ISO, and BIO. When treated with ISO or BIO, metabolism of CY was significantly inhibited. Pre-treatment with NAC, however, did not inhibit the metabolism of CY: compared to control samples, we observed no difference in HCY, a significant increase of CEPM, and a significant decrease of acrolein. Furthermore, NAC pre-treatment did not affect intracellular amounts of ROS produced by CYS9. Since acrolein seems to be heavily implicated in the onset of cardiotoxicity, any competitive metabolic processing of CY that reduces its transformation to acrolein is likely to be an important mechanism for preventing cardiotoxicity.
Collapse
Affiliation(s)
- Takuro Nishikawa
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- * E-mail:
| | - Emiko Miyahara
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Koichiro Kurauchi
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Erika Watanabe
- Department of Clinical Pharmacy and Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuro Ikawa
- Department of Clinical Pharmacotherapy, Hiroshima University, Hiroshima, Japan
| | - Kousuke Asaba
- Clinical Development Dept. 1, Clinical Development Division, EPS Corporation, Saitama, Japan
| | - Takayuki Tanabe
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasuhiro Okamoto
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshifumi Kawano
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
66
|
Shi L, Liu YE, Tan DH, Yan TC, Song DQ, Hou MX, Meng XJ. Blueberry anthocyanins ameliorate cyclophosphamide-induced liver damage in rats by reducing inflammation and apoptosis. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
67
|
Ahmed MA, Hassan KH, Hassanein KMA, Waly H. Role of vitamin C and selenium in attenuation of nicotine induced oxidative stress, P53 and Bcl2 expression in adult rat spleen. ACTA ACUST UNITED AC 2014; 21:211-7. [PMID: 25128927 DOI: 10.1016/j.pathophys.2014.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/24/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED Forty adult female rats were randomly divided into four groups: control, nicotine, nicotine+vitamin C and nicotine+selenium group. Splenic tissues concentrations of thiobarbituric acid reactive substances (TBARS), nitric oxide, superoxide dismutase (SOD) and catalase (CAT) activities were measured. The P53 and Bcl2 proteins were detected by Western blot and their expression in splenic tissues were measured by quantitative real time PCR in all groups. Compared to control group, nicotine increased the concentrations of TBARS and nitric oxide significantly. However, Vit. C or Se supplementation with nicotine caused a significant decrease in these concentrations. SOD and CAT activities of nicotine group decreased significantly compared to control group. Treatment with Vit. C or Se plays a significant role in elevation of SOD and CAT activities. In splenic tissues, nicotine significantly decreases the protein levels and the mRNA expression of P53 and increases the protein levels of Bcl2 and its expression. Administration of Vit. C. to nicotine-treated rats completely reversed the decrease in P53 levels and its mRNA expression and the increase in Bcl2 levels and its mRNA expression to the control values. In contrast, Se administration did not induce any significant changes in these genes levels or expressions compared to nicotine group. CONCLUSION Vit. C supplementation to nicotine treated rats was more effective than selenium in attenuation of nicotine-induced oxidative stress, p53 and Bcl2 expression in rat spleen tissues.
Collapse
Affiliation(s)
- Marwa A Ahmed
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt.
| | - K H Hassan
- Zoology Department, Faculty of Science, Assiut University, Assiut 71526, Egypt
| | - Khaled M A Hassanein
- Pathology & Clinical Pathology Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - H Waly
- Zoology Department, Faculty of Science, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
68
|
The role of antioxidants in the era of cardio‑oncology. Cancer Chemother Pharmacol 2014; 72:1157-68. [PMID: 23959462 DOI: 10.1007/s00280-013-2260-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/04/2013] [Indexed: 10/26/2022]
Abstract
Although most chemotherapeutic drugs have the potential to exert cardiotoxicity, these drugs have been chosen for use in cancer treatment because survival and curability benefits outweigh the risk of these complications. Anthracyclines, for example, are a powerful class of chemotherapeutic agents; however, their use is restricted by dose-related cardiotoxicity. Experimental evidence strongly supports the role of reactive oxygen species in this process, suggesting that antioxidants may be effective in protecting the heart from toxicity. Clinical use of antioxidants to protect the heart during anthracycline chemotherapy has been controversial due to the potential for reduced cytotoxic efficacy toward cancer cells. Results from randomized clinical trials addressing whether antioxidants either reduce the incidence of clinical heart failure among patients undergoing anthracycline-based chemotherapy or reduce the response rates to anthracycline-based chemotherapy have been unclear. While anthracyclines are by far the most well-studied antitumor agents with cardiotoxic properties, evidence now shows that reactive oxygen species may play roles in cardiotoxicity induced by other chemotherapeutic agents such as cyclophosphamide, cisplatin, 5-fluorouracil, and trastuzumab. Thus, in the new era of combination therapy and long-term survival of cancer patients, the use of antioxidants to support cancer therapy should be revisited.
Collapse
|
69
|
Finsterer J, Ohnsorge P. Influence of mitochondrion-toxic agents on the cardiovascular system. Regul Toxicol Pharmacol 2013; 67:434-45. [DOI: 10.1016/j.yrtph.2013.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/01/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
|
70
|
Costa VM, Carvalho F, Duarte JA, Bastos MDL, Remião F. The heart as a target for xenobiotic toxicity: the cardiac susceptibility to oxidative stress. Chem Res Toxicol 2013; 26:1285-1311. [PMID: 23902227 DOI: 10.1021/tx400130v] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The heart is a target organ for oxidative stress-related injuries. Because of its very high energetic metabolic demand, the heart has the highest rate of production of reactive oxygen species, namely, hydrogen peroxide (H2O2), per gram of tissue. Additionally, the heart has lower levels of antioxidants and total activity of antioxidant enzymes when compared to other organs. Furthermore, drugs that have relevant antioxidant activity and that are used in the treatment of oxidative stress related cardiac diseases demonstrate better clinical cardiac outcomes than other drugs with similar receptor affinity but with no antioxidant activity. Several xenobiotics particularly target the heart and promote toxicity. Anticancer drugs, like anthracyclines, cyclophosphamide, mitoxantrone, and more recently tyrosine kinase targeting drugs, are well-known cardiac toxicants whose therapeutic application has been associated to a high prevalence of heart failure. High levels of catecholamines or drugs of abuse, namely, amphetamines, cocaine, and even the consumption of alcohol for long periods of time, are linked to cardiovascular abnormalities. Oxidative stress may be one common link for the cardiac toxicity elicited by these compounds. We aim to revise the mechanisms involved in cardiac lesions caused by the above-mentioned substances specially focusing in oxidative stress related pathways. Oxidative stress biomarkers can be useful in the early recognition of cardiotoxicity in patients treated with these drugs and aid to minimize the setting of cardiac irreversible events.
Collapse
Affiliation(s)
- Vera Marisa Costa
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto , Porto, Portugal
| | | | | | | | | |
Collapse
|
71
|
Abstract
Probucol, an antioxidant and anti-inflammatory agent counteracting atherosclerosis and restenosis, is partially effective by influencing suicidal cell death or apoptosis. In analogy to apoptosis of nucleated cells, suicidal death of erythrocytes or eryptosis is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Eryptosis is stimulated by increase in cytosolic Ca(2+) activity, for example, after energy depletion or oxidative stress. The present study explored whether probucol influences eryptosis. Phosphatidylserine exposure was estimated from annexin-V-binding, cell volume from forward scatter (FSC), and cytosolic Ca(2+) concentration from fluo-3 fluorescence in flow cytometry. As a result, energy depletion (48-hour glucose removal) increased annexin-V-binding, decreased FSC, and increased fluo-3 fluorescence. Probucol (≤30 μM) did not significantly modify annexin-V-binding, FSC, or fluo-3 fluorescence in the presence of glucose but (at ≥5 μM) blunted the effect of glucose depletion on annexin-V-binding. Probucol (≥20 μM) only slightly blunted the effects of glucose depletion on FSC and fluo-3 fluorescence. Ca(2+) ionophore ionomycin (1 μM) and oxidative stress (30-minute exposure to 0.3 mM of tert-butylhydroperoxide) increased annexin-V-binding, effects again blunted by 30 μM of probucol. In conclusion, probucol blunts cell membrane scrambling after energy depletion and oxidative stress, effects primarily because of interference with the scrambling effects of increased cytosolic Ca(2+) concentration.
Collapse
|
72
|
Colle D, Santos DB, Moreira ELG, Hartwig JM, dos Santos AA, Zimmermann LT, Hort MA, Farina M. Probucol increases striatal glutathione peroxidase activity and protects against 3-nitropropionic acid-induced pro-oxidative damage in rats. PLoS One 2013; 8:e67658. [PMID: 23799154 PMCID: PMC3683065 DOI: 10.1371/journal.pone.0067658] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/21/2013] [Indexed: 01/08/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominantly inherited neurodegenerative disease characterized by symptoms attributable to the death of striatal and cortical neurons. The molecular mechanisms mediating neuronal death in HD involve oxidative stress and mitochondrial dysfunction. Administration of 3-nitropropionic acid (3-NP), an irreversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, in rodents has been proposed as a useful experimental model of HD. This study evaluated the effects of probucol, a lipid-lowering agent with anti-inflammatory and antioxidant properties, on the biochemical parameters related to oxidative stress, as well as on the behavioral parameters related to motor function in an in vivo HD model based on 3-NP intoxication in rats. Animals were treated with 3.5 mg/kg of probucol in drinking water daily for 2 months and, subsequently, received 3-NP (25 mg/kg i.p.) once a day for 6 days. At the end of the treatments, 3-NP-treated animals showed a significant decrease in body weight, which corresponded with impairment on motor ability, inhibition of mitochondrial complex II activity and oxidative stress in the striatum. Probucol, which did not rescue complex II inhibition, protected against behavioral and striatal biochemical changes induced by 3-NP, attenuating 3-NP-induced motor impairments and striatal oxidative stress. Importantly, probucol was able to increase activity of glutathione peroxidase (GPx), an enzyme important in mediating the detoxification of peroxides in the central nervous system. The major finding of this study was that probucol protected against 3-NP-induced behavioral and striatal biochemical changes without affecting 3-NP-induced mitochondrial complex II inhibition, indicating that long-term probucol treatment resulted in an increased resistance against neurotoxic events (i.e., increased oxidative damage) secondary to mitochondrial dysfunction. These data appeared to be of great relevance when extrapolated to human neurodegenerative processes involving mitochondrial dysfunction and indicates that GPx is an important molecular target involved in the beneficial effects of probucol.
Collapse
Affiliation(s)
- Dirleise Colle
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail: marcelo.farina@.ufsc.br (MF); (DC)
| | - Danúbia Bonfanti Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Eduardo Luiz Gasnhar Moreira
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Juliana Montagna Hartwig
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Alessandra Antunes dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Luciana Teixeira Zimmermann
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mariana Appel Hort
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail: marcelo.farina@.ufsc.br (MF); (DC)
| |
Collapse
|
73
|
SHENG LIN, JIAO BO, SHAO LIJUAN, BI SHAOJIE, CHENG CHAO, ZHANG JINGBO, JIANG YIHAO. Probucol inhibits hydrogen peroxide to induce apoptosis of vascular smooth muscle cells. Mol Med Rep 2013; 7:1185-90. [DOI: 10.3892/mmr.2013.1299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/31/2012] [Indexed: 11/06/2022] Open
|
74
|
The Protective Effects of Spirulina in Cyclophosphamide Induced Nephrotoxicity and Urotoxicity in Rats. Urology 2012; 80:1392.e1-6. [DOI: 10.1016/j.urology.2012.06.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/22/2012] [Accepted: 06/28/2012] [Indexed: 12/15/2022]
|
75
|
Inhibition of gene expression of organic cation/carnitine transporter and antioxidant enzymes in oxazaphosphorines-induced acute cardiomyopathic rat models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:452902. [PMID: 22701146 PMCID: PMC3369488 DOI: 10.1155/2012/452902] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 03/12/2012] [Accepted: 03/29/2012] [Indexed: 02/02/2023]
Abstract
It is well documented that high therapeutic doses of oxazaphosphorines, cyclophosphamide (CP) and ifosfamide (IFO), are associated with cardiomyopathy. This study investigated whether oxazaphosphorines alter the expression of organic cation/carnitine transporter (OCTN2) and antioxidant genes and if so, whether these alterations contribute to CP and IFO-induced cardiotoxicity. Adult male Wistar albino rats were assigned to one of six treatment groups namely, control, L carnitine, CP, IFO, CP plus L carnitine and IFO plus L carnitine. In cardiac and kidney tissues, CP and IFO significantly decreased mRNA and protein expression of OCTN2. Oxazaphosphorines significantly increased serum acyl-carnitine/free carnitine ratio and urinary carnitine excretion and significantly decreased total carnitine in cardiac tissues. Interestingly, carnitine supplementation completely reversed the biochemical and gene expression changes-induced by oxazaphosphorines to the control values, except OCTN2 expression remained inhibited by IFO. Data from this study suggest that: (1) Oxazaphosphorines decreased myocardial carnitine content following the inhibition of OCTN2 mRNA and protein expression in cardiac tissues. (2) Oxazaphosphorine therapy increased urinary loss of carnitine secondary to the inhibition of OCTN2 mRNA and protein expression in proximal tubules of the kidney. (3) Carnitine supplementation attenuates CP but not IFO-induced inhibition of OCTN2 mRNA and protein expression in heart and kidney tissues.
Collapse
|
76
|
ROS and RNS signaling in heart disorders: could antioxidant treatment be successful? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2011:293769. [PMID: 21912722 PMCID: PMC3170796 DOI: 10.1155/2011/293769] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 11/29/2022]
Abstract
There is not too much success in the antioxidant treatment of heart deceases in humans. However a new approach is now developed that suggests that depending on their structures and concentrations antioxidants can exhibit much more complicated functions in many pathological disorders. It is now well established that physiological free radicals superoxide and nitric oxide together with their derivatives hydrogen peroxide and peroxynitrite (all are named reactive oxygen species (ROS) and reactive nitrogen species (RNS)) play a more important role in heart diseases through their signaling functions. Correspondingly this work is dedicated to the consideration of damaging signaling by ROS and RNS in various heart and vascular disorders: heart failure (congestive heart failure or CHF), left ventricular hypertrophy (LVH), coronary heart disease, cardiac arrhythmias, and so forth. It will be demonstrated that ROS overproduction (oxidative stress) is a main origin of the transformation of normal physiological signaling processes into the damaging ones. Furthermore the favorable effects of low/moderate oxidative stress through preconditioning mechanisms in ischemia/reperfusion will be considered. And in the last part we will discuss the possibility of efficient application of antioxidants and enzyme/gene inhibitors for the regulation of damaging ROS signaling in heart disorders.
Collapse
|
77
|
Probucol attenuates oxidative stress, energy starvation, and nitric acid production following transient forebrain ischemia in the rat hippocampus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2011:471590. [PMID: 21904644 PMCID: PMC3166564 DOI: 10.1155/2011/471590] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/30/2011] [Accepted: 06/14/2011] [Indexed: 01/21/2023]
Abstract
Oxidative stress and energy depletion are believed to participate in hippocampal neuronal damage after forebrain ischemia. This study has been initiated to investigate the potential neuroprotective effects of probucol, a lipid-lowering drug with strong antioxidant properties, against transient forebrain ischemia-induced neuronal damage and biochemical abnormalities in rat hippocampal CA1 region. Adult male Wistar albino rats were subjected to forebrain ischemia and injected with probucol for the next 7 successive days, and compared to controls. Forebrain ischemia resulted in a significant decrease in the number of intact neurons (77%), glutathione (GSH), and adenosine triphosphate (ATP), and a significant increase in thiobarbituric acid reactive substances (TBARS) and total nitrate/nitrite, (NOx) production in hippocampal tissues. The administration of probucol attenuated forebrain ischemia-induced neuronal damage, manifested as a complete reversal of the decrease in the number of intact neurons, ATP and GSH and the increase in TBARS and NOx in hippocampal tissues. This study demonstrates that probucol treatment abates forebrain ischemia-induced hippocampal neuronal loss, energy depletion, and oxidative stress in hippocampal CA1 region. Thus, probucol could be a promising neuroprotective agent in the treatment of forebrain ischemia.
Collapse
|