51
|
Veiga N, Diesendruck Y, Peer D. Targeted lipid nanoparticles for RNA therapeutics and immunomodulation in leukocytes. Adv Drug Deliv Rev 2020; 159:364-376. [PMID: 32298783 DOI: 10.1016/j.addr.2020.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/27/2020] [Accepted: 04/10/2020] [Indexed: 12/25/2022]
Abstract
Abnormalities in leukocytes' function are associated with many immune related disorders, such as cancer, autoimmunity and susceptibility to infectious diseases. Recent developments in Genome-wide-association-studies give rise to new opportunities for novel therapeutics. RNA-based modalities, that allow a selective genetic manipulation in vivo, are powerful tools for personalized medicine, enabling downregulation or expression of relevant proteins. Yet, RNA-based therapeutics requires a delivery modality to facilitate the stability, uptake and intracellular release of the RNA molecules. The use of lipid nanoparticles as a drug delivery approach improves the payloads' stability, pharmacokinetics, bio-distribution and therapeutic benefit while reducing side effects. Moreover, a wide variety of targeting moieties allow a precise and modular manipulation of gene expression, together with the ability to identify and selectively affect disease-relevant leukocytes-subsets. Altogether, RNA-based therapeutics, targeting leukocytes subsets, is believed to be one of the most promising therapeutic concepts of the near future, addressing pressing issues in cancer and inflammation heterogeneity.
Collapse
|
52
|
Nizyaeva NV, Amiraslanov EY, Lomova NA, Savel'eva NA, Pavlovich SV, Nagovitsyna МN, Shchegolev AI. Enhanced Expression of TLR8 in Placental Tissue in Preeclampsia. Bull Exp Biol Med 2020; 168:395-399. [PMID: 31938918 DOI: 10.1007/s10517-020-04717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 11/26/2022]
Abstract
The expression of TLR8 in the placental tissue was studied in specimens from women of reproductive age with early- and late-onset preeclampsia (12 and 8 patients, respectively). The reference groups included 15 women: 10 with uneventful full-term pregnancy and 5 with preterm operative delivery on gestation weeks 28-33. The expression of TLR8 in placental structures was maximum in early-onset preeclampsia (p<0.01) characterized by the gravest clinical course, while the expression of TLR8 in late-onset preeclampsia was comparable with that in full-term pregnancy. This significant increase of TLR8 expression in placental tissue seemed to reflect activation of the key proinflammatory factors of congenital immunity and induction of the systemic inflammatory response. Manifest differences in the expression of TLR8 in late- and early-onset preeclampsia confirmed the hypothesis on different variants of this condition.
Collapse
Affiliation(s)
- N V Nizyaeva
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - E Yu Amiraslanov
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N A Lomova
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N A Savel'eva
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S V Pavlovich
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - М N Nagovitsyna
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A I Shchegolev
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
53
|
Identification of U11snRNA as an endogenous agonist of TLR7-mediated immune pathogenesis. Proc Natl Acad Sci U S A 2019; 116:23653-23661. [PMID: 31694883 PMCID: PMC6876158 DOI: 10.1073/pnas.1915326116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The activation of innate immune receptors by pathogen-associated molecular patterns (PAMPs) is central to host defense against infections. On the other hand, these receptors are also activated by immunogenic damage-associated molecular patterns (DAMPs), typically released from dying cells, and the activation can evoke chronic inflammatory or autoimmune disorders. One of the best known receptors involved in the immune pathogenesis is Toll-like receptor 7 (TLR7), which recognizes RNA with single-stranded structure. However, the causative DAMP RNA(s) in the pathogenesis has yet to be identified. Here, we first developed a chemical compound, termed KN69, that suppresses autoimmunity in several established mouse models. A subsequent search for KN69-binding partners led to the identification of U11 small nuclear RNA (U11snRNA) as a candidate DAMP RNA involved in TLR7-induced autoimmunity. We then showed that U11snRNA robustly activated the TLR7 pathway in vitro and induced arthritis disease in vivo. We also found a correlation between high serum level of U11snRNA and autoimmune diseases in human subjects and established mouse models. Finally, by revealing the structural basis for U11snRNA's ability to activate TLR7, we developed more potent TLR7 agonists and TLR7 antagonists, which may offer new therapeutic approaches for autoimmunity or other immune-driven diseases. Thus, our study has revealed a hitherto unknown immune function of U11snRNA, providing insight into TLR7-mediated autoimmunity and its potential for further therapeutic applications.
Collapse
|
54
|
Salem ESB, Vonberg AD, Borra VJ, Gill RK, Nakamura T. RNAs and RNA-Binding Proteins in Immuno-Metabolic Homeostasis and Diseases. Front Cardiovasc Med 2019; 6:106. [PMID: 31482095 PMCID: PMC6710452 DOI: 10.3389/fcvm.2019.00106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
The increasing prevalence of worldwide obesity has emerged as a major risk factor for type 2 diabetes (T2D), hepatosteatosis, and cardiovascular disease. Accumulating evidence indicates that obesity has strong inflammatory underpinnings tightly linked to the development of metabolic diseases. However, the molecular mechanisms by which obesity induces aberrant inflammation associated with metabolic diseases are not yet clearly defined. Recently, RNAs have emerged as important regulators of stress responses and metabolism. RNAs are subject to changes in modification status, higher-order structure, and cellular localization; all of which could affect the affinity for RNA-binding proteins (RBPs) and thereby modify the RNA-RBP networks. Proper regulation and management of RNA characteristics are fundamental to cellular and organismal homeostasis, as well as paramount to health. Identification of multiple single nucleotide polymorphisms (SNPs) within loci of fat mass- and obesity-associated protein (FTO) gene, an RNA demethylase, through genome-wide association studies (GWAS) of T2D, and functional assessments of FTO in mice, support the concept that disruption in RNA modifications leads to the development of human diseases including obesity and metabolic disorder. In obesity, dynamic alterations in modification and localization of RNAs appear to modulate the RNA-RBP networks and activate proinflammatory RBPs, such as double-stranded RNA (dsRNA)-dependent protein kinase (PKR), Toll-like receptor (TLR) 3 and TLR7, and RNA silencing machinery. These changes induce aberrant inflammation and the development of metabolic diseases. This review will describe the current understanding of the underlying causes of these common and altered characteristics of RNA-RBP networks which will pave the way for developing novel approaches to tackle the pandemic issue of obesity.
Collapse
Affiliation(s)
- Esam S B Salem
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew D Vonberg
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Vishnupriya J Borra
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rupinder K Gill
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Takahisa Nakamura
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
55
|
Chen C, Gao R, Li M, Wang Q, Chen H, Zhang S, Mao X, Behensky A, Zhang Z, Gan L, Li T, Liao R, Li Q, Yu H, Yang J, Zhu T, Liu J. Extracellular RNAs-TLR3 signaling contributes to cognitive decline in a mouse model of postoperative cognitive dysfunction. Brain Behav Immun 2019; 80:439-451. [PMID: 30980952 DOI: 10.1016/j.bbi.2019.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/23/2019] [Accepted: 04/09/2019] [Indexed: 01/28/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is considered a severe complication after surgery among elderly patients. Toll-like receptor 3 (TLR3) has recently been reported to play an important role in hippocampus-dependent working memory. However, the role of TLR3 in the development of POCD remains unclear. In the current study, we hypothesized that increased extracellular RNAs (exRNAs) during anesthesia and surgical operation, especially double stranded RNAs (dsRNAs), would activate TLR3 signaling pathways and mediate POCD. Using a mouse model of POCD, 20-22 months wild-type (WT) mice were undergoing unilateral nephrectomy and increased TLR3 expression levels and co-localization with neuronal and microglial cells were found in the surgery group compared with the sham group. Compared with WT mice, TLR3 knockout (KO, -/-) mice had improved hippocampus-dependent memory and attenuated production of inflammatory cytokines and apoptosis. Increased exRNAs and/or co-localization with TLR3 were found in both in vitro and in vivo models. Of note, TLR3/dsRNA complex inhibitor administration reduced hippocampal dsRNA level and TLR3 expression, attenuated hippocampal inflammatory cytokines production and apoptosis, and thus improved hippocampus-dependent memory. Our results indicate that exRNAs, especially dsRNAs, present under stressful conditions may trigger TLR3 activation and initiate the downstream inflammatory and apoptotic signaling, and play a substantial role in the development of POCD.
Collapse
Affiliation(s)
- Chan Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Rui Gao
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ming Li
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiao Wang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hai Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shu Zhang
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaobo Mao
- Institute of Cell Engineering, Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Adam Behensky
- Institute of Cell Engineering, Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zheng Zhang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lu Gan
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tao Li
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ren Liao
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qian Li
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hai Yu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Yang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tao Zhu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jin Liu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
56
|
Castillo LA, Birnberg Weiss F, Rodriguez-Rodrigues N, Pittaluga JR, Martire-Greco D, Milillo MA, Grinstein SF, Camelli MR, Mena Aybar AJ, Landoni VI, Fernández GC. Prokaryotic RNA activates endothelial cells promoting neutrophil transmigration. Immunol Cell Biol 2019; 97:815-825. [PMID: 31264260 DOI: 10.1111/imcb.12282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/27/2019] [Accepted: 06/29/2019] [Indexed: 01/18/2023]
Abstract
Endothelial cell (EC)-neutrophil (PMN) interactions are crucial in the resolution of bacterial infections. Prokaryotic RNA (pRNA) has been reported as a pathogen-associated molecular pattern that is released from bacteria upon death and is able to activate PMN. In this work, we studied the effects of pRNA on EC and investigated whether these effects could modulate EC-PMN interaction. For this purpose, we purified total pRNA from Escherichia coli and used it as a stimulus for Human Umbilical Vein Endothelial Cells (HUVEC). We found that the incubation of pRNA with HUVEC caused the increase of surface intercellular adhesion molecule 1 (ICAM-1 or CD54) expression on HUVEC, and the secretion of IL-8 and von Willebrand factor, characteristics consistent with HUVEC activation, without causing toxic effects. Moreover, pRNA-treated HUVEC also induced PMN adhesion and the conditioned medium obtained from treated-HUVEC was chemotactic for PMN and caused their activation, as determined by CD11b upregulation. As reported previously, the degradation products of pRNA induced similar biological effects. The treatment of HUVEC with endocytosis inhibitors revealed that the entry of pRNA partially relied on a clathrin-dependent mechanism, whereas the effects of degradation products could not be inhibited by any of the inhibitors tested. Using a transwell system, we found that pRNA or degraded pRNA were also able to stimulate HUVEC when recognized from the basolateral side. Our results indicate that pRNA activates EC, resulting in the modulation of EC-PMN interaction by inducing PMN chemotaxis, adhesion and activation. In the context of infection, pRNA sensed by EC and PMN could favor bacterial clearance.
Collapse
Affiliation(s)
- Luis A Castillo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Pacheco de Melo 3081, C1425AUM, Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico Birnberg Weiss
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Pacheco de Melo 3081, C1425AUM, Ciudad Autónoma de Buenos Aires, Argentina
| | - Nahuel Rodriguez-Rodrigues
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Pacheco de Melo 3081, C1425AUM, Ciudad Autónoma de Buenos Aires, Argentina
| | - José R Pittaluga
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Pacheco de Melo 3081, C1425AUM, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daiana Martire-Greco
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Pacheco de Melo 3081, C1425AUM, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria A Milillo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Pacheco de Melo 3081, C1425AUM, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sebastian F Grinstein
- Servicio de Obstetricia, Hospital Militar Central Cirujano Mayor Dr. Cosme Argerich, Luis María Campos 726, C1426BOR, Ciudad Autónoma de Buenos Aires, Argentina
| | - María R Camelli
- Servicio de Obstetricia, Hospital Militar Central Cirujano Mayor Dr. Cosme Argerich, Luis María Campos 726, C1426BOR, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana J Mena Aybar
- Servicio de Obstetricia, Hospital Militar Central Cirujano Mayor Dr. Cosme Argerich, Luis María Campos 726, C1426BOR, Ciudad Autónoma de Buenos Aires, Argentina
| | - Verónica I Landoni
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Pacheco de Melo 3081, C1425AUM, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela C Fernández
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Pacheco de Melo 3081, C1425AUM, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
57
|
Keller P, Freund I, Marchand V, Bec G, Huang R, Motorin Y, Eigenbrod T, Dalpke A, Helm M. Double methylation of tRNA-U54 to 2'-O-methylthymidine (Tm) synergistically decreases immune response by Toll-like receptor 7. Nucleic Acids Res 2019; 46:9764-9775. [PMID: 30102387 PMCID: PMC6182150 DOI: 10.1093/nar/gky644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022] Open
Abstract
Sensing of nucleic acids for molecular discrimination between self and non-self is a challenging task for the innate immune system. RNA acts as a potent stimulus for pattern recognition receptors including in particular human Toll-like receptor 7 (TLR7). Certain RNA modifications limit potentially harmful self-recognition of endogenous RNA. Previous studies had identified the 2′-O-methylation of guanosine 18 (Gm18) within tRNAs as an antagonist of TLR7 leading to an impaired immune response. However, human tRNALys3 was non-stimulatory despite lacking Gm18. To identify the underlying molecular principle, interferon responses of human peripheral blood mononuclear cells to differentially modified tRNALys3 were determined. The investigation of synthetic modivariants allowed attributing a significant part of the immunosilencing effect to the 2′-O-methylthymidine (m5Um) modification at position 54. The effect was contingent upon the synergistic presence of both methyl groups at positions C5 and 2’O, as shown by the fact that neither Um54 nor m5U54 produced any effect alone. Testing permutations of the nucleobase at ribose-methylated position 54 suggested that the extent of silencing and antagonism of the TLR7 response was governed by hydrogen patterns and lipophilic interactions of the nucleobase. The results identify a new immune-modulatory endogenous RNA modification that limits TLR7 activation by RNA.
Collapse
Affiliation(s)
- Patrick Keller
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany
| | - Isabel Freund
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Virginie Marchand
- Next Generation Sequencing Platform, UMS2008 Ingénierie Biologie Santé en Lorraine (IBSLor), BioPôle de l'Université de Lorraine Campus Biologie-Santé, 9, avenue de la Forêt de Haye, CS 50184, 54505 Vandoeuvre-les-Nancy, France
| | - Guillaume Bec
- Biophysics and Structural Biology Team, Unité Architecture et réactivité de l'ARN (UPR9002), Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15, rue René Descartes, F67084, Strasbourg cedex, France
| | - Raven Huang
- Department of Biochemistry, Center for Biophysics & Computational Biology, University of Illinois at Urbana-Champaign, 411 Roger Adams Lab., 600 S. Mathews Ave. Urbana, IL 61801, USA
| | - Yuri Motorin
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA) UMR7365 CNRS-UL, BioPôle de l'Université de Lorraine Campus Biologie-Santé, 9, avenue de la Forêt de Haye, CS 50184, 54505 Vandoeuvre-les-Nancy, France
| | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Alexander Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany
| |
Collapse
|
58
|
Abstract
Small-molecule and protein/antibody drugs mainly act on genome-derived proteins to exert pharmacological effects. RNA based therapies hold the promise to expand the range of druggable targets from proteins to RNAs and the genome, as evidenced by several RNA drugs approved for clinical practice and many others under active trials. While chemo-engineered RNA mimics have found their success in marketed drugs and continue dominating basic research and drug development, these molecules are usually conjugated with extensive and various modifications. This makes them completely different from cellular RNAs transcribed from the genome that usually consist of unmodified ribonucleotides or just contain a few posttranscriptional modifications. The use of synthetic RNA mimics for RNA research and drug development is also in contrast with the ultimate success of protein research and therapy utilizing biologic or recombinant proteins produced and folded in living cells instead of polypeptides or proteins synthesized in vitro. Indeed, efforts have been made recently to develop RNA bioengineering technologies for cost-effective and large-scale production of biologic RNA molecules that may better capture the structures, functions, and safety profiles of natural RNAs. In this article, we provide an overview on RNA therapeutics for the treatment of human diseases via RNA interference mechanisms. By illustrating the structural differences between natural RNAs and chemo-engineered RNA mimics, we focus on discussion of a novel class of bioengineered/biologic RNA agents produced through fermentation and their potential applications to RNA research and drug development.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| | - Chao Jian
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Allan H Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Mei-Juan Tu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
59
|
Ng B, Cash-Mason T, Wang Y, Seitzer J, Burchard J, Brown D, Dudkin V, Davide J, Jadhav V, Sepp-Lorenzino L, Cejas PJ. Intratracheal Administration of siRNA Triggers mRNA Silencing in the Lung to Modulate T Cell Immune Response and Lung Inflammation. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:194-205. [PMID: 30901578 PMCID: PMC6426712 DOI: 10.1016/j.omtn.2019.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 01/07/2023]
Abstract
Clinical application of siRNA-based therapeutics outside of the liver has been hindered by the inefficient delivery of siRNA effector molecules into extra-hepatic organs and cells of interest. To understand the parameters that enable RNAi activity in vivo, it is necessary to develop a systematic approach to identify which cells within a tissue are permissive to oligonucleotide internalization and activity. In the present study, we evaluate the distribution and activity within the lung of chemically stabilized siRNA to characterize cell-type tropism and structure-activity relationship. We demonstrate intratracheal delivery of fully modified siRNA for RNAi-mediated target knockdown in lung CD11c+ cells (dendritic cells, alveolar macrophages) and alveolar epithelial cells. Finally, we use an allergen-induced model of lung inflammation to demonstrate the capacity of inhaled siRNA to induce target knockdown in dendritic cells and ameliorate lung pathology.
Collapse
Affiliation(s)
- Bruce Ng
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Tanesha Cash-Mason
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Yi Wang
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Jessica Seitzer
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Julja Burchard
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Duncan Brown
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Vadim Dudkin
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Joseph Davide
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Vasant Jadhav
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | | | - Pedro J Cejas
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA; Department of Infectious Diseases and Vaccines, Merck & Co., Inc., West Point, PA 19486, USA.
| |
Collapse
|
60
|
RNA Modifications Modulate Activation of Innate Toll-Like Receptors. Genes (Basel) 2019; 10:genes10020092. [PMID: 30699960 PMCID: PMC6410116 DOI: 10.3390/genes10020092] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
Self/foreign discrimination by the innate immune system depends on receptors that identify molecular patterns as associated to pathogens. Among others, this group includes endosomal Toll-like receptors, among which Toll-like receptors (TLR) 3, 7, 8, and 13 recognize and discriminate mammalian from microbial, potentially pathogen-associated, RNA. One of the discriminatory principles is the recognition of endogenous RNA modifications. Previous work has identified a couple of RNA modifications that impede activation of TLR signaling when incorporated in synthetic RNA molecules. Of note, work that is more recent has now shown that RNA modifications in their naturally occurring context can have immune-modulatory functions: Gm, a naturally occurring ribose-methylation within tRNA resulted in a lack of TLR7 stimulation and within a defined sequence context acted as antagonist. Additional RNA modifications with immune-modulatory functions have now been identified and recent work also indicates that RNA modifications within the context of whole prokaryotic or eukaryotic cells are indeed used for immune-modulation. This review will discuss new findings and developments in the field of immune-modulatory RNA modifications.
Collapse
|
61
|
Barrionuevo P, Giambartolomei GH. Inhibition of antigen presentation by Brucella: many more than many ways. Microbes Infect 2019; 21:136-142. [PMID: 30677519 DOI: 10.1016/j.micinf.2018.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 01/18/2023]
Abstract
Brucella infection activates the immune system and favors the differentiation of CD4+ and CD8+ T cells. To persist during a long time inside macrophages evading immune surveillance of these T cells the pathogen must exploit different evasion strategies. We review the mechanisms whereby Brucella, through TLR signaling, inhibits MHC class I and II antigen presentation, allowing infected macrophages to become effective niches for Brucella survival.
Collapse
Affiliation(s)
- Paula Barrionuevo
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina.
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
62
|
Kim TW, Papagiannis CN, Zwick LS, Engelhardt JA, Hoffmaster CM, Post NM, Matson JE, Hsiao JA, Burel SA, Henry SP. Comparison of the Class Effects of Antisense Oligonucleotides in CByB6F1-Tg(HRAS)2Jic and CD-1 Mice. Toxicol Pathol 2018; 47:82-92. [PMID: 30585133 DOI: 10.1177/0192623318813143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The 6-month Tg.rasH2 mouse carcinogenicity model provides an acceptable alternative to the 2-year carcinogenicity study in CD-1 mice. However, key questions related to the use of this model for testing antisense oligonucleotides (ASOs) include the similarity in the biologic response between mouse strains and the feasibility of using data from the CD-1 mouse to set doses and dose schedules for a Tg.rasH2 carcinogenicity study. To evaluate the potential strain differences, four distinct 2'- O-(2-methoxyethyl) ASOs were administered to CByB6F1 (wild type), Tg.rasH2 (hemizygous), and CD-1 mice. There were no meaningful differences in clinical signs, body weight, food consumption, or serum chemistry and hematology parameters. Histopathology evaluation indicated little to no difference in the spectrum or magnitude of changes present. The cytokine/chemokine response was also not appreciably different between the strains. This was consistent with the similarity in ASO concentration in the liver between the mouse strains tested. As the class effects of the ASOs were not meaningfully different between CD-1, CByB6F1, or Tg.rasH2 mice, data from nonclinical studies in CD-1 mice can be used for dose selection and expectation of effect in the Tg.rasH2 mouse.
Collapse
Affiliation(s)
- Tae-Won Kim
- 1 Ionis Pharmaceutical, Carlsbad, California, USA
| | | | | | | | | | - Noah M Post
- 1 Ionis Pharmaceutical, Carlsbad, California, USA
| | | | - Jill A Hsiao
- 1 Ionis Pharmaceutical, Carlsbad, California, USA
| | | | | |
Collapse
|
63
|
Oberbauer V, Schaefer MR. tRNA-Derived Small RNAs: Biogenesis, Modification, Function and Potential Impact on Human Disease Development. Genes (Basel) 2018; 9:genes9120607. [PMID: 30563140 PMCID: PMC6315542 DOI: 10.3390/genes9120607] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Transfer RNAs (tRNAs) are abundant small non-coding RNAs that are crucially important for decoding genetic information. Besides fulfilling canonical roles as adaptor molecules during protein synthesis, tRNAs are also the source of a heterogeneous class of small RNAs, tRNA-derived small RNAs (tsRNAs). Occurrence and the relatively high abundance of tsRNAs has been noted in many high-throughput sequencing data sets, leading to largely correlative assumptions about their potential as biologically active entities. tRNAs are also the most modified RNAs in any cell type. Mutations in tRNA biogenesis factors including tRNA modification enzymes correlate with a variety of human disease syndromes. However, whether it is the lack of tRNAs or the activity of functionally relevant tsRNAs that are causative for human disease development remains to be elucidated. Here, we review the current knowledge in regard to tsRNAs biogenesis, including the impact of RNA modifications on tRNA stability and discuss the existing experimental evidence in support for the seemingly large functional spectrum being proposed for tsRNAs. We also argue that improved methodology allowing exact quantification and specific manipulation of tsRNAs will be necessary before developing these small RNAs into diagnostic biomarkers and when aiming to harness them for therapeutic purposes.
Collapse
Affiliation(s)
- Vera Oberbauer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| | - Matthias R Schaefer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| |
Collapse
|
64
|
Krieger J, Stifter K, Riedl P, Schirmbeck R. Cationic domains in particle-forming and assembly-deficient HBV core antigens capture mammalian RNA that stimulates Th1-biased antibody responses by DNA vaccination. Sci Rep 2018; 8:14660. [PMID: 30279478 PMCID: PMC6168482 DOI: 10.1038/s41598-018-32971-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022] Open
Abstract
The HBV core protein self-assembles into particles and encapsidates immune-stimulatory bacterial RNA through a cationic COOH-terminal (C150-183) domain. To investigate if different cationic domains have an impact on the endogenous RNA-binding of HBV-C antigens in mammalian cells, we developed a strep-tag (st) based expression/purification system for HBV-C/RNA antigens in vector-transfected HEK-293 cells. We showed that HBV-stC but not HBV-stC149 particles (lacking the cationic domain) capture low amounts of mammalian RNA. Prevention of specific phosphorylation in cationic domains, either by exchanging the serine residues S155, S162 and S170 with alanines (HBV-stCAAA) or by exchanging the entire cationic domain with a HIV-tat48-57-like sequence (HBV-stC149tat) enhanced the encapsidation of RNA into mutant core particles. Particle-bound mammalian RNA functioned as TLR-7 ligand and induced a Th1-biased humoral immunity in B6 but not in TLR-7-/- mice by exogenous (protein) and endogenous (DNA) vaccines. Compared to core particles, binding of mammalian RNA to freely exposed cationic domains in assembly-deficient antigens was enhanced. However, RNA bound to non-particulate antigens unleash its Th1-stimulating adjuvant activity by DNA- but not protein-based vaccination. Mammalian RNAs targeted by an endogenously expressed antigen thus function as a natural adjuvant in the host that facilitates priming of Th1-biased immune responses by DNA-based immunization.
Collapse
Affiliation(s)
- Jana Krieger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Katja Stifter
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Petra Riedl
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | | |
Collapse
|
65
|
Toonen LJA, Casaca-Carreira J, Pellisé-Tintoré M, Mei H, Temel Y, Jahanshahi A, van Roon-Mom WMC. Intracerebroventricular Administration of a 2'-O-Methyl Phosphorothioate Antisense Oligonucleotide Results in Activation of the Innate Immune System in Mouse Brain. Nucleic Acid Ther 2018; 28:63-73. [PMID: 29565739 PMCID: PMC5899290 DOI: 10.1089/nat.2017.0705] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antisense oligonucleotides (AONs) are versatile molecules that can be used to modulate gene expression by binding to RNA. The therapeutic potential of AONs appears particularly high in the central nervous system, due to excellent distribution and uptake in brain cells, as well as good tolerability in clinical trials thus far. Nonetheless, immune stimulation in response to AON treatment in the brain remains a concern. For this reason we performed RNA sequencing analysis of brain tissue from mice treated intracerebroventricularly with phosphorothioate, 2′-O-methyl modified AONs. A significant upregulation of immune system associated genes was observed in brains of AON treated mice, with the striatum showing largest transcriptional changes. Strongest upregulation was seen for the antiviral enzyme 2′-5′-oligoadenylate synthase-like protein 2 (Oasl2) and Bone marrow stromal antigen 2 (Bst2). Histological analysis confirmed activation of microglia and astrocytes in striatum. The upregulation of immune system associated genes was detectable for at least 2 months after the last AON administration, consistent with a continuous immune response to the AON.
Collapse
Affiliation(s)
- Lodewijk J A Toonen
- 1 Department of Human Genetics, Leiden University Medical Center , Leiden, the Netherlands
| | - João Casaca-Carreira
- 2 Department of Neurosurgery, Maastricht University Medical Center , Maastricht, the Netherlands .,3 European Graduate School of Neuroscience (EURON) , Maastricht, the Netherlands .,4 Department of Physiotherapy, Portuguese Red Cross Health School , Lisbon, Portugal .,5 Department of Physiotherapy, School of Health Care , Setubal Polytechnic Institute, Setubal, Portugal
| | - Maria Pellisé-Tintoré
- 2 Department of Neurosurgery, Maastricht University Medical Center , Maastricht, the Netherlands .,6 Department of Medical Science, Faculty of Medicine, University of Girona (UdG) , Girona, Spain
| | - Hailiang Mei
- 7 Sequencing Analysis Support Core, Leiden University Medical Center , Leiden, the Netherlands
| | - Yasin Temel
- 2 Department of Neurosurgery, Maastricht University Medical Center , Maastricht, the Netherlands .,3 European Graduate School of Neuroscience (EURON) , Maastricht, the Netherlands
| | - Ali Jahanshahi
- 2 Department of Neurosurgery, Maastricht University Medical Center , Maastricht, the Netherlands .,3 European Graduate School of Neuroscience (EURON) , Maastricht, the Netherlands
| | | |
Collapse
|
66
|
Schaefer M, Kapoor U, Jantsch MF. Understanding RNA modifications: the promises and technological bottlenecks of the 'epitranscriptome'. Open Biol 2018; 7:rsob.170077. [PMID: 28566301 PMCID: PMC5451548 DOI: 10.1098/rsob.170077] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023] Open
Abstract
The discovery of mechanisms that alter genetic information via RNA editing or introducing covalent RNA modifications points towards a complexity in gene expression that challenges long-standing concepts. Understanding the biology of RNA modifications represents one of the next frontiers in molecular biology. To this date, over 130 different RNA modifications have been identified, and improved mass spectrometry approaches are still adding to this list. However, only recently has it been possible to map selected RNA modifications at single-nucleotide resolution, which has created a number of exciting hypotheses about the biological function of RNA modifications, culminating in the proposition of the ‘epitranscriptome’. Here, we review some of the technological advances in this rapidly developing field, identify the conceptual challenges and discuss approaches that are needed to rigorously test the biological function of specific RNA modifications.
Collapse
Affiliation(s)
- Matthias Schaefer
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17-I, 1090 Vienna, Austria
| | - Utkarsh Kapoor
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17-I, 1090 Vienna, Austria
| | - Michael F Jantsch
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17-I, 1090 Vienna, Austria
| |
Collapse
|
67
|
Kwon H, Kim M, Seo Y, Moon YS, Lee HJ, Lee K, Lee H. Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials 2017; 156:172-193. [PMID: 29197748 DOI: 10.1016/j.biomaterials.2017.11.034] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/25/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
The field of gene therapy has evolved over the past two decades after the first introduction of nucleic acid drugs, such as plasmid DNA (pDNA). With the development of in vitro transcription (IVT) methods, synthetic mRNA has become an emerging class of gene therapy. IVT mRNA has several advantages over conventional pDNA for the expression of target proteins. mRNA does not require nuclear localization to mediate protein translation. The intracellular process for protein expression is much simpler and there is no potential risk of insertion mutagenesis. Having these advantages, the level of protein expression is far enhanced as comparable to that of viral expression systems. This makes IVT mRNA a powerful alternative gene expression system for various applications in regenerative medicine. In this review, we highlight the synthesis and preparation of IVT mRNA and its therapeutic applications. The article includes the design and preparation of IVT mRNA, chemical modification of IVT mRNA, and therapeutic applications of IVT mRNA in cellular reprogramming, stem cell engineering, and protein replacement therapy. Finally, future perspectives and challenges of IVT mRNA are discussed.
Collapse
Affiliation(s)
- Hyokyoung Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minjeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yunmi Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yae Seul Moon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hwa Jeong Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
68
|
Milillo MA, Velásquez LN, Trotta A, Delpino MV, Marinho FV, Balboa L, Vermeulen M, Espindola SL, Rodriguez-Rodrigues N, Fernández GC, Oliveira SC, Giambartolomei GH, Barrionuevo P. B. abortus RNA is the component involved in the down-modulation of MHC-I expression on human monocytes via TLR8 and the EGFR pathway. PLoS Pathog 2017; 13:e1006527. [PMID: 28767704 PMCID: PMC5540288 DOI: 10.1371/journal.ppat.1006527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/12/2017] [Indexed: 01/18/2023] Open
Abstract
Despite eliciting a potent CD8+ T cell response, Brucella abortus is able to persist and establish a chronic infection inside its host. We have previously reported that the infection of human monocytes/macrophages with B. abortus inhibits the IFN-γ-induced MHC-I cell surface expression down-modulating cytotoxic CD8+ T cell responses. MHC-I down-modulation depends on bacterial viability and results from the capacity of B. abortus to retain the MHC-I molecules within the Golgi apparatus. Furthermore, we recently demonstrated that epidermal growth factor receptor (EGFR) pathway is involved in this phenomenon and that this is an early event during infection. However, the components and mechanisms whereby B. abortus is able to down-modulate MHC-I remained to be elucidated. In this study we demonstrated that the down-modulation of MHC-I expression is not mediated by well-known Brucella virulence factors but instead by B. abortus RNA, a PAMP associated to viability (vita-PAMP). Surprisingly, completely degraded RNA was also able to inhibit MHC-I expression to the same extent as intact RNA. Accordingly, B. abortus RNA and its degradation products were able to mimic the MHC-I intracellular retention within the Golgi apparatus observed upon infection. We further demonstrated that TLR8, a single-stranded RNA and RNA degradation products sensor, was involved in MHC-I inhibition. On the other hand, neutralization of the EGFR reversed the MHC-I inhibition, suggesting a connection between the TLR8 and EGFR pathways. Finally, B. abortus RNA-treated macrophages display diminished capacity of antigen presentation to CD8+ T cells. Overall, our results indicate that the vita-PAMP RNA as well as its degradation products constitute novel virulence factors whereby B. abortus, by a TLR8-dependent mechanism and through the EGFR pathway, inhibits the IFN-γ-induced MHC-I surface expression on human monocytes/macrophages. Thus, bacteria can hide within infected cells and avoid the immunological surveillance of cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- M. Ayelén Milillo
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Lis N. Velásquez
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Aldana Trotta
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - M. Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (CONICET-UBA), Laboratorio de Inmunogenética, Buenos Aires, Argentina
| | - Fábio V. Marinho
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Balboa
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Mónica Vermeulen
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Sonia L. Espindola
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Buenos Aires, Argentina
| | | | - Gabriela C. Fernández
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Sergio Costa Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guillermo H. Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (CONICET-UBA), Laboratorio de Inmunogenética, Buenos Aires, Argentina
| | - Paula Barrionuevo
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| |
Collapse
|
69
|
Barwari T, Joshi A, Mayr M. MicroRNAs in Cardiovascular Disease. J Am Coll Cardiol 2017; 68:2577-2584. [PMID: 27931616 DOI: 10.1016/j.jacc.2016.09.945] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
Abstract
Micro-ribonucleic acids (miRNAs) are in the spotlight as post-transcriptional regulators of gene expression. More than 1,000 miRNAs are encoded in the human genome. In this review, we provide an introduction to miRNA biology and research methodology, and highlight advances in cardiovascular research to date. This includes the potential of miRNAs as therapeutic targets in cardiac and vascular disease, and their use as novel biomarkers. Although some miRNA therapies are already undergoing clinical evaluation, we stress the importance of integrating current knowledge of miRNA biology into a systemic context. Discovery studies focus on miRNA effects within one specific organ, whereas the expression of most miRNAs is not restricted to a single tissue. Because most miRNA-based therapies act systemically, this may preclude widespread clinical use. The development of more targeted interventions will bolster well-informed clinical applications, increasing the chances of success and minimizing the risk of setbacks for miRNA-based therapeutics.
Collapse
Affiliation(s)
- Temo Barwari
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Abhishek Joshi
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, United Kingdom.
| |
Collapse
|
70
|
Hellmuth I, Freund I, Schlöder J, Seidu-Larry S, Thüring K, Slama K, Langhanki J, Kaloyanova S, Eigenbrod T, Krumb M, Röhm S, Peneva K, Opatz T, Jonuleit H, Dalpke AH, Helm M. Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7. Front Immunol 2017; 8:312. [PMID: 28392787 PMCID: PMC5364167 DOI: 10.3389/fimmu.2017.00312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/06/2017] [Indexed: 12/25/2022] Open
Abstract
A fundamental mechanism of the innate immune system is the recognition, via extra- and intracellular pattern-recognition receptors, of pathogen-associated molecular patterns. A prominent example is represented by foreign nucleic acids, triggering the activation of several signaling pathways. Among these, the endosomal toll-like receptor 7 (TLR7) is known to be activated by single-stranded RNA (ssRNA), which can be specifically influenced through elements of sequence structure and posttranscriptional modifications. Furthermore, small molecules TLR7 agonists (smTLRa) are applied as boosting adjuvants in vaccination processes. In this context, covalent conjugations between adjuvant and vaccines have been reported to exhibit synergistic effects. Here, we describe a concept to chemically combine three therapeutic functions in one RNA bioconjugate. This consists in the simultaneous TLR7 stimulation by ssRNA and smTLRa as well as the therapeutic function of the RNA itself, e.g., as a vaccinating or knockdown agent. We have hence synthesized bioconjugates of mRNA and siRNA containing covalently attached smTLRa and tested their function in TLR7 stimulation. Strikingly, the bioconjugates displayed decreased rather than synergistically increased stimulation. The decrease was distinct from the antagonistic action of an siRNA bearing a Gm motive, as observed by direct comparison of the effects in the presence of otherwise stimulatory RNA. In summary, these investigations showed that TRL7 activation can be impeded by bioconjugation of small molecules to RNA.
Collapse
Affiliation(s)
- Isabell Hellmuth
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Isabel Freund
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg , Heidelberg , Germany
| | - Janine Schlöder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Salifu Seidu-Larry
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Kathrin Thüring
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Kaouthar Slama
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Jens Langhanki
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | | | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg , Heidelberg , Germany
| | - Matthias Krumb
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Sandra Röhm
- Max Planck Institute for Polymer Research (MPG) , Mainz , Germany
| | - Kalina Peneva
- Max Planck Institute for Polymer Research (MPG) , Mainz , Germany
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Helmut Jonuleit
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Alexander H Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg , Heidelberg , Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| |
Collapse
|
71
|
Bhadra U, Patra P, Chhatai J, Pal-Bhadra M. Pigmy MicroRNA: surveillance cops in Therapies kingdom. Mol Med 2016; 22:759-775. [PMID: 27704139 PMCID: PMC5193465 DOI: 10.2119/molmed.2016.00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/13/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are well preserved in every animal. These pigmy sized non-coding RNAs (21-23 nt), scattered in genome, are responsible for micromanaging the versatile gene regulations. Involvement of miRNAs was surveillance cops in all human diseases including cardiovascular defects, tumor formation, reproductive pathways, and neurological and autoimmune disorders. The effective functional role of miRNA can be reduced by chemical entities of antisense oligonucleotides and versatile small molecules that support the views of novel therapy of different human diseases. In this study, we have updated our current understanding for designing and synthesizing miRNA-controlling therapeutic chemicals. We have also proposed various in-vivo delivery strategies and their ongoing challenges to combat the incorporation hurdles in live cells and animals. Lastly, we have demonstrated the current progress of miRNA modulation in the treatment of different human diseases that provides an alternative approach of gene therapy.
Collapse
Affiliation(s)
- Utpal Bhadra
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Pradipta Patra
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Jagamohan Chhatai
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Manika Pal-Bhadra
- Centre for Chemical Biology, Indian Institute of Chemical Technology, Uppal Road, Hyderabad, India
| |
Collapse
|
72
|
CoverageAnalyzer (CAn): A Tool for Inspection of Modification Signatures in RNA Sequencing Profiles. Biomolecules 2016; 6:biom6040042. [PMID: 27834909 PMCID: PMC5197952 DOI: 10.3390/biom6040042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/23/2022] Open
Abstract
Combination of reverse transcription (RT) and deep sequencing has emerged as a powerful instrument for the detection of RNA modifications, a field that has seen a recent surge in activity because of its importance in gene regulation. Recent studies yielded high-resolution RT signatures of modified ribonucleotides relying on both sequence-dependent mismatch patterns and reverse transcription arrests. Common alignment viewers lack specialized functionality, such as filtering, tailored visualization, image export and differential analysis. Consequently, the community will profit from a platform seamlessly connecting detailed visual inspection of RT signatures and automated screening for modification candidates. CoverageAnalyzer (CAn) was developed in response to the demand for a powerful inspection tool. It is freely available for all three main operating systems. With SAM file format as standard input, CAn is an intuitive and user-friendly tool that is generally applicable to the large community of biomedical users, starting from simple visualization of RNA sequencing (RNA-Seq) data, up to sophisticated modification analysis with significance-based modification candidate calling.
Collapse
|
73
|
Schmid K, Thüring K, Keller P, Ochel A, Kellner S, Helm M. Variable presence of 5-methylcytosine in commercial RNA and DNA. RNA Biol 2015; 12:1152-8. [PMID: 26274337 PMCID: PMC4829282 DOI: 10.1080/15476286.2015.1076612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Katharina Schmid
- a Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University of Mainz ; Mainz , Germany
| | - Kathrin Thüring
- a Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University of Mainz ; Mainz , Germany
| | - Patrick Keller
- a Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University of Mainz ; Mainz , Germany
| | - Antonia Ochel
- a Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University of Mainz ; Mainz , Germany
| | - Stefanie Kellner
- a Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University of Mainz ; Mainz , Germany.,b Present affiliation: Department of Biological Engineering; Massachusetts Institute of Technology ; Cambridge , MA USA
| | - Mark Helm
- a Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University of Mainz ; Mainz , Germany
| |
Collapse
|
74
|
Abstract
Cells have developed molecular machineries, which can chemically modify DNA and RNA nucleosides. One particular and chemically simple modification, (cytosine-5) methylation (m(5)C), has been detected both in RNA and DNA suggesting universal use of m(5)C for the function of these nucleotide polymers. m(5)C can be reproducibly mapped to abundant noncoding RNAs (transfer RNA, tRNA and ribosomal RNA, rRNA), and recently, also nonabundant RNAs (including mRNAs) have been reported to carry this modification. Quantification of m(5)C content in total RNA preparations indicates that a limited number of RNAs carry this modification and suggests specific functions for (cytosine-5) RNA methylation. What exactly is the biological function of m(5)C in RNA? Before attempting to address this question, m(5)C needs to be mapped specifically and reproducibly, preferably on a transcriptome-wide scale. To facilitate the detection of m(5)C in its sequence context, RNA bisulfite sequencing (RNA-BisSeq) has been developed. This method relies on the efficient chemical deamination of nonmethylated cytosine, which can be read out as single nucleotide polymorphism (nonmethylated cytosine as thymine vs. methylated cytosine as cytosine), when differentially comparing cDNA libraries to reference sequences after DNA sequencing. Here, the basic protocol of RNA-BisSeq, its current applications and limitations are described.
Collapse
Affiliation(s)
- Matthias Schaefer
- Vienna Biocenter, Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, Universität Wien, Vienna, Austria.
| |
Collapse
|
75
|
Kaiser S, Rimbach K, Eigenbrod T, Dalpke AH, Helm M. A modified dinucleotide motif specifies tRNA recognition by TLR7. RNA (NEW YORK, N.Y.) 2014; 20:1351-5. [PMID: 25051971 PMCID: PMC4138318 DOI: 10.1261/rna.044024.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
RNA can function as a pathogen-associated molecular pattern (PAMP) whose recognition by the innate immune system alerts the body to an impending microbial infection. The recognition of tRNA as either self or nonself RNA by TLR7 depends on its modification patterns. In particular, it is known that the presence of a ribose methylated guanosine at position 18, which is overrepresented in self-RNA, antagonizes an immune response. Here, we report that recognition extends to the next downstream nucleotide and the effectively recognized molecular detail is actually a methylated dinucleotide. The most efficient nucleobases combination of this motif includes two purines, while pyrimidines diminish the effect of ribose methylation. The constraints of this motif stay intact when transposed to other parts of the tRNA. The results argue against a fixed orientation of the tRNA during interaction with TLR7 and, rather, suggest a processive type of inspection.
Collapse
Affiliation(s)
- Steffen Kaiser
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Katharina Rimbach
- Department of Infectious Diseases-Medical Microbiology and Hygiene, Ruprecht-Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Tatjana Eigenbrod
- Department of Infectious Diseases-Medical Microbiology and Hygiene, Ruprecht-Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Alexander H Dalpke
- Department of Infectious Diseases-Medical Microbiology and Hygiene, Ruprecht-Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| |
Collapse
|
76
|
Durdevic Z, Schaefer M. Dnmt2 methyltransferases and immunity: An ancient overlooked connection between nucleotide modification and host defense? Bioessays 2013; 35:1044-9. [DOI: 10.1002/bies.201300088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zeljko Durdevic
- Division of Epigenetics; DKFZ-ZMBH Alliance, German Cancer Research Center; Heidelberg Germany
| | - Matthias Schaefer
- Division of Epigenetics; DKFZ-ZMBH Alliance, German Cancer Research Center; Heidelberg Germany
| |
Collapse
|
77
|
Mallikaratchy P, Gardner J, Nordstrøm LUR, Veomett NJ, McDevitt MR, Heaney ML, Scheinberg DA. A self-assembling short oligonucleotide duplex suitable for pretargeting. Nucleic Acid Ther 2013; 23:289-99. [PMID: 23848521 DOI: 10.1089/nat.2013.0425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Monoclonal antibodies (mAbs) have naturally evolved as suitable, high affinity and specificity targeting molecules. However, the large size of full-length mAbs yields poor pharmacokinetic properties. A solution to this issue is the use of a multistep administration approach, in which the slower clearing mAb is administered first and allowed to reach the target site selectively, followed by administration of a rapidly clearing small molecule carrier of the cytotoxic or imaging ligand, which bears a cognate receptor for the mAb. Here, we introduce a novel pretargetable RNA based system comprised of locked nucleic acids (LNA) and 2'O-Methyloligoribonucleotides (2'OMe-RNA). The duplex shows fast hybridization, high melting temperatures, excellent affinity, and high nuclease stability in plasma. Using a prototype model system with rituximab conjugated to 2'OMe-RNA (oligo), we demonstrate that LNA-based complementary strand (c-oligo) effectively hybridizes with rituximab-oligo, which is slowly circulating in vivo, despite the high clearance rates of c-oligo.
Collapse
Affiliation(s)
- Prabodhika Mallikaratchy
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Durdevic Z, Hanna K, Gold B, Pollex T, Cherry S, Lyko F, Schaefer M. Efficient RNA virus control in Drosophila requires the RNA methyltransferase Dnmt2. EMBO Rep 2013; 14:269-75. [PMID: 23370384 DOI: 10.1038/embor.2013.3] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/11/2012] [Accepted: 01/03/2013] [Indexed: 12/20/2022] Open
Abstract
Drosophila use small-interfering RNA mechanisms to limit the amplification of viral genomes. However, it is unclear how small RNA interference components recognize and separate viral from cellular RNA. Dnmt2 enzymes are highly conserved RNA methyltransferases with substrate specificity towards cellular tRNAs. We report here that Dnmt2 is required for efficient innate immune responses in Drosophila. Dnmt2 mutant flies accumulate increasing levels of Drosophila C virus and show activated innate immune responses. Binding of Dnmt2 to DCV RNA suggests that Dnmt2 contributes to virus control directly, possibly by RNA methylation. These observations demonstrate a role for Dnmt2 in antiviral defence.
Collapse
Affiliation(s)
- Zeljko Durdevic
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | | | | | | | | | | | | |
Collapse
|
79
|
Durdevic Z, Schaefer M. tRNA modifications: necessary for correct tRNA-derived fragments during the recovery from stress? Bioessays 2013; 35:323-7. [PMID: 23315679 DOI: 10.1002/bies.201200158] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Endonuclease-mediated tRNA fragmentation has been observed in many species suggesting functional importance for tRNA fragments. The size distribution of tRNA-derived fragments indicates the existence of mechanisms that protect tRNAs and their fragments from total degradation by exonucleases. Could post-transcriptional modifications be important for the controlled processing of tRNAs?
Collapse
Affiliation(s)
- Zeljko Durdevic
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|