51
|
Wang JJ, Zheng C, Jiang YZ, Zheng Z, Lin M, Lin Y, Zhang ZL, Wang H, Pang DW. One-Step Monitoring of Multiple Enterovirus 71 Infection-Related MicroRNAs Using Core-Satellite Structure of Magnetic Nanobeads and Multicolor Quantum Dots. Anal Chem 2019; 92:830-837. [PMID: 31762266 DOI: 10.1021/acs.analchem.9b03317] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The accurate and rapid monitoring of the expression levels of enterovirus 71 (EV71)-related microRNAs (miRNAs) can contribute to diagnosis of hand, foot, and mouth disease (HFMD) at the early stage. However, there is currently a lack of convenient methods for simultaneous monitoring of multiplex miRNAs in one step. Herein a one-step method for the simultaneous monitoring of multiple EV71 infection-related miRNAs is developed based on core-satellite structure assembled with magnetic nanobeads and quantum dots (MNs-ssDNA-QDs). In the presence of target miRNAs, duplex-specific nuclease (DSN)-assisted target recycling can be triggered, resulting in the release of QDs and recycling of target miRNAs. Then the simultaneous quantification can be easily realized by recording the corresponding amplified fluorescence signal of QDs in the suspension. With this method, simultaneous detection of hsa-miRNA-296-5p and hsa-miRNA-16-5p, potential biomarkers of EV71 infection, can be easily achieved with femtomolar sensitivity and single-base mismatch specificity. Moreover, the method is successfully used for monitoring of the expression level of miRNAs in EV71-infected cells at different time points, demonstrating the potential for diagnostic applications. With the merits of one-step operation and single-nucleotide mismatch discrimination, this work opens a new avenue for multiplex miRNAs detection. As different nucleotide sequences and multicolor QDs can be employed, this work is expected to offer great potential for the development of high throughput diagnosis.
Collapse
Affiliation(s)
- Jia-Jia Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan , 430072 , P. R. China
| | - Caishang Zheng
- State Key Laboratory of Virology , Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071 , P. R. China
| | - Yong-Zhong Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan , 430072 , P. R. China.,Hubei Provincial Center for Disease Control and Prevention , Wuhan , 430072 , P. R. China
| | - Zhenhua Zheng
- State Key Laboratory of Virology , Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071 , P. R. China
| | - Miao Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan , 430072 , P. R. China
| | - Yi Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan , 430072 , P. R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan , 430072 , P. R. China
| | - Hanzhong Wang
- State Key Laboratory of Virology , Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071 , P. R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan , 430072 , P. R. China.,College of Chemistry , Nankai University , Tianjin , 300071 , P. R. China
| |
Collapse
|
52
|
Wang M, Zheng Y. Oxidative stress and antioxidants in the trabecular meshwork. PeerJ 2019; 7:e8121. [PMID: 31788363 PMCID: PMC6883950 DOI: 10.7717/peerj.8121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022] Open
Abstract
Glaucoma is an age-dependent disease closely related to oxidative stress and is regarded as the second leading cause of irreversible blindness worldwide. In recent years, many studies have shown that morphological and functional abnormalities of the trabecular meshwork (TM) are closely related to glaucoma, especially with respect to oxidative stress. In this review, the mechanisms of oxidative stress in the TM and treatment strategies for this condition, including strategies involving antioxidants, noncoding RNAs and exogenous compounds, are discussed. Although many questions remain to be answered, the reviewed findings provide insights for further research on oxidative stress alleviation in glaucoma and suggest new targets for glaucoma prevention.
Collapse
Affiliation(s)
- Mingxuan Wang
- Department of Ophthalmology, 2nd hospital affiliated to Jilin University, Changchun, China
| | - Yajuan Zheng
- Department of Ophthalmology, 2nd hospital affiliated to Jilin University, Changchun, China
| |
Collapse
|
53
|
Hirschberger S, Hübner M, Strauß G, Effinger D, Bauer M, Weis S, Giamarellos-Bourboulis EJ, Kreth S. Identification of suitable controls for miRNA quantification in T-cells and whole blood cells in sepsis. Sci Rep 2019; 9:15735. [PMID: 31672997 PMCID: PMC6823537 DOI: 10.1038/s41598-019-51782-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022] Open
Abstract
Complex immune dysregulation is a hallmark of sepsis. The occurring phases of immunosuppression and hyperinflammation require rapid detection and close monitoring. Reliable tools to monitor patient’s immune status are yet missing. Currently, microRNAs are being discussed as promising new biomarkers in sepsis. However, no suitable internal control for normalization of miRNA expression by qPCR has been validated so far, thus hampering their potential benefit. We here present the first evaluation of endogenous controls for miRNA analysis in human sepsis. Novel candidate reference miRNAs were identified via miRNA microArray. TaqMan qPCR assays were performed to evaluate these microRNAs in T-cells and whole blood cells of sepsis patients and healthy controls in two independent cohorts. In T-cells, U48 and miR-320 proved suitable as endogenous controls, while in whole blood cells, U44 and miR-942 provided best stability values for normalization of miRNA quantification. Commonly used snRNA U6 exhibited worst stability in all sample groups. The identified internal controls have been prospectively validated in independent cohorts. The critical importance of housekeeping gene selection is emphasized by exemplary quantification of imuno-miR-150 in sepsis patients. Use of appropriate internal controls could facilitate research on miRNA-based biomarker-use and might even improve treatment strategies in the future.
Collapse
Affiliation(s)
- Simon Hirschberger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Max Hübner
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Gabriele Strauß
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - David Effinger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Michael Bauer
- Department of Anaesthesiology and Intensive Care Medicine, Friedrich-Schiller University, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Sebastian Weis
- Department of Anaesthesiology and Intensive Care Medicine, Friedrich-Schiller University, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Institute for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany
| | | | - Simone Kreth
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany. .,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany.
| |
Collapse
|
54
|
Ryan MM, Guévremont D, Mockett BG, Abraham WC, Williams JM. Circulating Plasma microRNAs are Altered with Amyloidosis in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2019; 66:835-852. [PMID: 30347618 DOI: 10.3233/jad-180385] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pathological changes underlying Alzheimer's disease (AD) begin decades before the classical symptoms of memory loss become evident. As microRNAs are released from neurons and enter the bloodstream, circulating microRNAs may be reflective of AD progression and are ideal candidates as biomarkers for early-stage disease detection. Here, we provide a novel, in-depth analysis of how plasma microRNAs alter with aging, the most prominent risk factor for AD, and with development of amyloid-β (Aβ) plaque deposition. We assessed the circulating microRNAs in APPswe/PSEN1dE9 transgenic mice and wild-type controls at 4, 8 and 15 m (n = 8-10) using custom designed Taqman arrays representing 185 neuropathology-related microRNAs. We performed a linear mixed-effects model to investigate the effects of age and genotype on plasma microRNAs expression. Following this analysis, we found 8 microRNAs were significantly affected by age alone in wild-type animals and 12 microRNAs altered in APPswe/PSEN1dE9 mice, either prior to Aβ plaque deposition (4 m) or during the development of AD-like pathogenesis (8 m or 15 m). Importantly, we found that differing sets of microRNAs were identified at each time point. Functional analysis of these data revealed that while common biological pathways, such as Inflammatory Response, were enriched throughout the disease process, Free Radical Scavenging, Immunological Disease, and Apoptosis Signaling were specifically enriched later in the disease process. Overall, this study reinforces that distinct biological processes underpin the early versus late stages of AD-like pathogenesis and highlights potential pre-symptomatic microRNAs biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Margaret M Ryan
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Diane Guévremont
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Bruce G Mockett
- Department of Psychology, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
55
|
Abstract
Systemic sclerosis (SSc) is a severe autoimmune disease that is characterized by vascular abnormalities, immunological alterations and fibrosis of the skin and internal organs. The results of genetic studies in patients with SSc have revealed statistically significant genetic associations with disease manifestations and progression. Nevertheless, genetic susceptibility to SSc is moderate, and the functional consequences of genetic associations remain only partially characterized. A current hypothesis is that, in genetically susceptible individuals, epigenetic modifications constitute the driving force for disease initiation. As epigenetic alterations can occur years before fibrosis appears, these changes could represent a potential link between inflammation and tissue fibrosis. Epigenetics is a fast-growing discipline, and a considerable number of important epigenetic studies in SSc have been published in the past few years that span histone post-translational modifications, DNA methylation, microRNAs and long non-coding RNAs. This Review describes the latest insights into genetic and epigenetic contributions to the pathogenesis of SSc and aims to provide an improved understanding of the molecular pathways that link inflammation and fibrosis. This knowledge will be of paramount importance for the development of medicines that are effective in treating or even reversing tissue fibrosis.
Collapse
|
56
|
Cai C, Lin Y, Yu C. Circulating miRNAs as Novel Diagnostic Biomarkers in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Can J Gastroenterol Hepatol 2019; 2019:2096161. [PMID: 31531307 PMCID: PMC6720843 DOI: 10.1155/2019/2096161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/14/2019] [Accepted: 07/21/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND AIMS Recent studies have indicated that circulating miRNAs could serve as accurate biomarkers for diagnosing nonalcoholic fatty liver disease (NAFLD). We aimed to assess the evidence on the probability of circulating miRNAs as new diagnostic biomarkers in patients with NAFLD. METHODS We comprehensively retrieved relevant English literature from the databases of PubMed, Embase, and the Cochrane Library from 2000 to 1 January 2019. The diagnostic accuracy of circulating miRNAs as markers for NAFLD was analyzed. Moreover, we evaluated the methodological quality of the included article. STATA was applied to perform statistical analyses. RESULTS In this meta-analysis, 17 studies that enrolled 1408 patients of NAFLD and 926 healthy people from 6 articles were analyzed. We constructed a summary receiver-operating characteristic (SROC) curve of all circulating miRNAs, and the area under the curve (AUC) was 0.83, with the pooled sensitivity (SEN) 0.70 and the pooled specificity (SPE) 0.82 in distinguishing patients with NAFLD from healthy controls. Among them, miR-122 showed high diagnostic accuracy, with the diagnostic index of pooled SEN, SPE, and AUC being 0.88, 0.66, and 0.86, respectively. We then performed subgroup analyses based on the mode of miRNA regulation, countries, miRNA profiling, sample size, and male proportion. We then did a regression analysis and found the cause of heterogeneity might be miRNA profiling. Finally, publication bias was not found, and Fagan's nomogram showed valuable clinical utility. CONCLUSION Circulating miRNAs, especially miR-122, might be promising diagnostic biomarkers for NAFLD with high-accuracy, and more large-sample studies are required to support the above findings in the future.
Collapse
Affiliation(s)
- Changzhou Cai
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yiming Lin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
57
|
Expression of MicroRNAs miR-145, miR-181c, miR-199a and miR-1183 in the Blood and Hippocampus of Patients with Mesial Temporal Lobe Epilepsy. J Mol Neurosci 2019; 69:580-587. [PMID: 31368064 DOI: 10.1007/s12031-019-01386-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
Abstract
The aim of this study was to analyze the expression profiles of the microRNAs (miRNAs) miR-145, miR-181c, miR-199a and miR-1183 in the hippocampus and blood of patients with mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) and to investigate whether these can be used as diagnosis and prognosis biomarkers for epilepsy. Hippocampus and blood samples were collected from 20 patients with MTLE-HS, ten of whom had a favorable surgical outcome (Engel I) and ten with an unfavorable surgical outcome (Engel III-IV). Hippocampus samples from autopsied individuals with no neurological or psychiatric medical history (necropsy samples) and blood samples from healthy individuals were used as controls. Real-time quantitative PCR (RQ-PCR) was used to analyze miRNA expression. The results showed that the expressions of these miRNAs differed quantitatively in the hippocampus and blood of patients with MTLE-HS in comparison to the respective control. This difference was most pronounced for miR-145, which was hypo-expressed in the hippocampus and hyper-expressed in the blood of MTLE-HS patients. MiRNAs miR-145, miR-181c, miR-199a and miR-1183 were hyper-expressed in the blood of patients with MTLE-HS. No statistical differences in the levels of these miRNAs in the blood or hippocampus were found between Engel I patients and Engel III-IV patients. These results suggest that the analyzed microRNAs are potential circulating biomarkers for epilepsy diagnosis.
Collapse
|
58
|
Shabaninejad Z, Yousefi F, Movahedpour A, Ghasemi Y, Dokanehiifard S, Rezaei S, Aryan R, Savardashtaki A, Mirzaei H. Electrochemical-based biosensors for microRNA detection: Nanotechnology comes into view. Anal Biochem 2019; 581:113349. [PMID: 31254490 DOI: 10.1016/j.ab.2019.113349] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/04/2023]
Abstract
Nanotechnology plays an undeniable significant role in medical sciences, particularly in the field of biomedicine. Development of several diagnostic procedures in medicine has been possible through the beneficial application of nano-materials, among which electrochemical nano-biosensors can be mentioned. They can be employed to quantify various clinical biomarkers in detection, evaluation, and follow up stages of the illnesses. MicroRNAs, a group of regulatory short RNA fragments, added a new dimension to the management and diagnosis of several diseases. Mature miRNAs are single-stranded RNA molecules approximately 22 nucleotides in length, which regulate a vast range of biological functions from cellular proliferation and death to cancer development and progression. Recently, diagnostic value of miRNAs in various diseases has been demonstrated. There are many traditional methods for detection of miRNAs including northern blotting, quantitative real time PCR (qRT-PCR), microarray technology, nanotechnology-based approaches, and molecular biology tools including miRNA biosensors. In comparison with other techniques, electrochemical nucleic acid biosensor methods exhibit many interesting features, and could play an important role in the future nucleic acid analysis. This review paper provides an overview of some different types of nanotechnology-based biosensors for detection of miRNAs.
Collapse
Affiliation(s)
- Zahra Shabaninejad
- Department of Nanobiotechnology, School of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yousefi
- Department of Genetics, School of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadat Dokanehiifard
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Samaneh Rezaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Aryan
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
59
|
Hindle AG, Thoonen R, Jasien JV, Grange RMH, Amin K, Wise J, Ozaki M, Ritch R, Malhotra R, Buys ES. Identification of Candidate miRNA Biomarkers for Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:134-146. [PMID: 30629727 PMCID: PMC6329203 DOI: 10.1167/iovs.18-24878] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Glaucoma, a leading cause of blindness worldwide, often remains undetected until irreversible vision loss has occurred. Treatments focus on lowering intraocular pressure (IOP), the only modifiable and readily measurable risk factor. However, IOP can vary and does not always predict disease progression. MicroRNAs (miRNAs) are promising biomarkers. They are abundant and stable in biological fluids, including plasma and aqueous humor (AqH). We aimed to identify differentially expressed miRNAs in AqH and plasma from glaucoma, exfoliation syndrome (XFS), and control subjects. Methods Plasma and AqH from two ethnic cohorts were harvested from glaucoma or XFS (often associated with glaucoma, n = 33) and control (n = 31) patients undergoing elective surgery. A custom miRNA array measured 372 miRNAs. Molecular target prediction and pathway analysis were performed with Ingenuity Pathway Analysis (IPA) and DIANA bioinformatical tools. Results Levels of miRNAs in plasma, a readily accessible biomarker source, correlated with miRNA levels in AqH. Twenty circulating miRNAs were at least 1.5-fold higher in glaucoma or XFS patients than in controls across two ethnic cohorts: miR-4667-5p (P = 4.1 × 10−5), miR-99b-3p (P = 4.8 × 10−5), miR-637 (P = 5.1 × 10−5), miR-4490 (P = 5.7 × 10−5), miR-1253 (P = 6.0 × 10−5), miR-3190-3p (P = 3.1 × 10−4), miR-3173-3p (P = 0.001), miR-608 (P = 0.001), miR-4725-3p (P = 0.002), miR-4448 (P = 0.002), and miR-323b-5p (P = 0.002), miR-4538 (P = 0.003), miR-3913-3p (P = 0.003), miR-3159 (P = 0.003), miR-4663 (P = 0.003), miR-4767 (P = 0.003), miR-4724-5p (P = 0.003), miR-1306-5p (P = 0.003), miR-181b-3p (P = 0.004), and miR-433-3p (P = 0.004). miR-637, miR-1306-5p, and miR-3159, in combination, allowed discrimination between glaucoma patients and control subjects (AUC = 0.91 ± 0.008, sensitivity 85.0%, specificity 87.5%). Conclusions These results identify specific miRNAs as potential biomarkers and provide insight into the molecular processes underlying glaucoma.
Collapse
Affiliation(s)
- Allyson G Hindle
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | - Robrecht Thoonen
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | - Jessica V Jasien
- Einhorn Clinical Research Center, New York Ear Eye and Ear Infirmary of Mount Sinai, New York, New York, United States
| | - Robert M H Grange
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | | | - Jasen Wise
- Qiagen, Frederick, Maryland, United States
| | | | - Robert Ritch
- Einhorn Clinical Research Center, New York Ear Eye and Ear Infirmary of Mount Sinai, New York, New York, United States
| | - Rajeev Malhotra
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | - Emmanuel S Buys
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
60
|
Zhang H, Xu S, Liu X. MicroRNA profiling of plasma exosomes from patients with ovarian cancer using high-throughput sequencing. Oncol Lett 2019; 17:5601-5607. [PMID: 31186782 PMCID: PMC6507395 DOI: 10.3892/ol.2019.10220] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 03/01/2019] [Indexed: 12/11/2022] Open
Abstract
To the best of our knowledge, the microRNA (miR/miRNA) expression profile of plasma exosomes in ovarian cancer has not been previously studied. The aim of the present study was to investigate the practicality of using plasma exosomal miRNAs as novel serological biomarkers of ovarian cancer. In the study, exosome-like vesicles were purified from the plasma of patients with ovarian cancer and healthy women using differential centrifugation. The purified vesicles, ranging from 50-100 nm in size, were identified as exosomes by transmission electron microscopy and western blotting. High-throughput sequencing demonstrated that 65 known miRNAs, 34 of which were upregulated and 31 downregulated, were differentially expressed between patients with ovarian cancer and healthy women (P<0.05; fold change ≥2). The miRNA expression levels of hsa-miR-106a-5p, hsa-let-7d-5p and hsa-miR-93-5p were significantly increased, whereas hsa-miR-122-5p, hsa-miR-185-5p and hsa-miR-99b-5p expression levels were significantly decreased in the exosomes of patients with ovarian cancer compared with those in the healthy controls. Additionally, the miRNA expression levels of plasma hsa-miR-93-5p were significantly increased in patients with ovarian cancer compared with those in the healthy controls, while the plasma expression levels of hsa-miR-122-5p and hsa-miR-99b-5p were significantly decreased in patients with ovarian cancer compared with those in the healthy controls. Overall, the present study identified plasma and exosomal miRNAs with dysregulated expression in patients with ovarian cancer compared with that in healthy controls, and the differentially expressed miRNAs may have potential as diagnostic and prognostic targets for the treatment of patients with ovarian cancer.
Collapse
Affiliation(s)
- Honghong Zhang
- Maternal Intensive Care Unit, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Sijuan Xu
- Center of Reproductive Medicine, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Xiaoli Liu
- Maternal Intensive Care Unit, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
61
|
Nagano T, Katsurada M, Dokuni R, Hazama D, Kiriu T, Umezawa K, Kobayashi K, Nishimura Y. Crucial Role of Extracellular Vesicles in Bronchial Asthma. Int J Mol Sci 2019; 20:ijms20102589. [PMID: 31137771 PMCID: PMC6566667 DOI: 10.3390/ijms20102589] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are circulating vesicles secreted by various cell types. EVs are classified into three groups according to size, structural components, and generation process of vesicles: exosomes, microvesicles, and apoptotic bodies. Recently, EVs have been considered to be crucial for cell-to-cell communications and homeostasis because they contain intracellular proteins and nucleic acids. Epithelial cells from mice suffering from bronchial asthma (BA) secrete more EVs and suppress inflammation-induced EV production. Moreover, microarray analyses of bronchoalveolar lavage fluid have revealed that several microRNAs are useful novel biomarkers of BA. Mesenchymal stromal cell-derived EVs are possible candidates of novel BA therapy. In this review, we highlight the biologic roles of EVs in BA and review novel EV-targeted therapy to help understanding by clinicians and biologists.
Collapse
Affiliation(s)
- Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Masahiro Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Ryota Dokuni
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Daisuke Hazama
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Tatsunori Kiriu
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Kanoko Umezawa
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
62
|
Tang C, Zhou H, Zheng X, Zhang Y, Sha X. Dual Laplacian regularized matrix completion for microRNA-disease associations prediction. RNA Biol 2019; 16:601-611. [PMID: 30676207 PMCID: PMC6546388 DOI: 10.1080/15476286.2019.1570811] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 01/21/2023] Open
Abstract
Since lots of miRNA-disease associations have been verified, it is meaningful to discover more miRNA-disease associations for serving disease diagnosis and prevention of human complex diseases. However, it is not practical to identify potential associations using traditional biological experimental methods since the process is expensive and time consuming. Therefore, it is necessary to develop efficient computational methods to accomplish this task. In this work, we introduced a matrix completion model with dual Laplacian regularization (DLRMC) to infer unknown miRNA-disease associations in heterogeneous omics data. Specifically, DLRMC transformed the task of miRNA-disease association prediction into a matrix completion problem, in which the potential missing entries of the miRNA-disease association matrix were calculated, the missing association can be obtained based on the prediction scores after the completion procedure. Meanwhile, the miRNA functional similarity and the disease semantic similarity were fully exploited to serve the miRNA-disease association matrix completion by using a dual Laplacian regularization term. In the experiments, we conducted global and local Leave-One-Out Cross Validation (LOOCV) and case studies to evaluate the efficacy of DLRMC on the Human miRNA-disease associations dataset obtained from the HMDDv2.0 database. As a result, the AUCs of DLRMC is 0.9174 and 0.8289 in global LOOCV and local LOOCV, respectively, which significantly outperform a variety of previous methods. In addition, in the case studies on four significant diseases related to human health including Colon Neoplasms, Kidney neoplasms, Lymphoma and Prostate neoplasms, 90%, 92%, 92% and 94% out of the top 50 predicted miRNAs has been confirmed, respectively.
Collapse
Affiliation(s)
- Chang Tang
- School of Computer Science, China University of Geosciences, Wuhan, China
| | - Hua Zhou
- Department of Hematology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Xiao Zheng
- Wuhan University of Technology Hospital, Wuhan University of Technology, Wuhan, China
| | - Yanming Zhang
- Department of Hematology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Xiaofeng Sha
- Department of Oncology, Huai’an Hongze District People’s Hospital, Huai’an, China
| |
Collapse
|
63
|
He Z, Yang JJ, Zhang R, Li HT, Wu L, Jiang F, Jia WP, Hu C. Circulating miR-29b positively correlates with non-alcoholic fatty liver disease in a Chinese population. J Dig Dis 2019; 20:189-195. [PMID: 30756471 DOI: 10.1111/1751-2980.12716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/28/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Early screening of non-alcoholic fatty liver disease (NAFLD) is of great significance for the early detection and intervention in NAFLD. MicroRNAs (miRNAs) are important regulators of metabolic diseases including NAFLD. The aim of this study was to investigate the association of serum miR-29a-c with NAFLD in a Chinese population. METHODS Participants were divided into four groups based on the presence or absence of NAFLD and/or type 2 diabetes mellitus (T2DM). Quantitative polymerase chain reaction analysis was performed to quantify serum level of miR-29a-c. The association of miR-29a-c with NAFLD was evaluated. RESULTS Serum miR-29b, but not miR-29a or miR-29c, was positively associated with NAFLD (odds ratio [OR] 2.04 [1.16- 3.58], P = 0.013). Additionally, age, serum triglyceride and fasting plasma glucose (FPG) levels were independently associated with miR-29b (β ± standard error [SE] = 0.004 ± 0.002, P = 0.019 for age; β ± SE = 0.110 ± 0.054, P = 0.042 for triglyceride; and β ± SE = 0.389 ± 0.161, P = 0.016 for FPG). MiR-29b level was positively correlated with intrahepatic lipid content (β ± SE = 6.055 ± 2.630, P = 0.024) after adjusted for age, sex, and body mass index. CONCLUSIONS Serum miR-29b was associated with intrahepatic lipid content and NAFLD in a Chinese population-based study.
Collapse
Affiliation(s)
- Zhen He
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jian Jun Yang
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hua Ting Li
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Liang Wu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Jiang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Ping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Endocrinology and Metabolism, Institute for Metabolic Diseases, Fengxian Central Hospital, Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| |
Collapse
|
64
|
Finotti A, Fabbri E, Lampronti I, Gasparello J, Borgatti M, Gambari R. MicroRNAs and Long Non-coding RNAs in Genetic Diseases. Mol Diagn Ther 2019; 23:155-171. [PMID: 30610665 PMCID: PMC6469593 DOI: 10.1007/s40291-018-0380-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the discovery and classification of non-coding RNAs, their roles have gained great attention. In this respect, microRNAs and long non-coding RNAs have been firmly demonstrated to be linked to regulation of gene expression and onset of human diseases, including rare genetic diseases; therefore they are suitable targets for therapeutic intervention. This issue, in the context of rare genetic diseases, is being considered by an increasing number of research groups and is of key interest to the health community. In the case of rare genetic diseases, the possibility of developing personalized therapy in precision medicine has attracted the attention of researchers and clinicians involved in developing "orphan medicinal products" and proposing these to the European Medicines Agency (EMA) and to the Food and Drug Administration (FDA) Office of Orphan Products Development (OOPD) in the United States. The major focuses of these activities are the evaluation and development of products (drugs, biologics, devices, or medical foods) considered to be promising for diagnosis and/or treatment of rare diseases or conditions, including rare genetic diseases. In an increasing number of rare genetic diseases, analysis of microRNAs and long non-coding RNAs has been proven a promising strategy. These diseases include, but are not limited to, Duchenne muscular dystrophy, cystic fibrosis, Rett syndrome, and β-thalassemia. In conclusion, a large number of approaches based on targeting microRNAs and long non-coding RNAs are expected in the field of molecular diagnosis and therapy, with a facilitated technological transfer in the case of rare genetic diseases, in virtue of the existing regulation concerning these diseases.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy.
| |
Collapse
|
65
|
Liu X, Gan L, Zhang J. miR-543 inhibites cervical cancer growth and metastasis by targeting TRPM7. Chem Biol Interact 2019; 302:83-92. [PMID: 30710498 DOI: 10.1016/j.cbi.2019.01.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/15/2018] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
Dysregulation of miR-543 has been implicated to play crucial roles in various human cancers. However, the function of miR-543 involved in cervical cancer (CC) progress remains largely unknown. Thus, this study aimed to explore the potential role of miR-543 and the underlying mechanisms in human CC. In this study, we found that miR-543 was significantly downregulated in 69 CC tissue samples and cell lines when compared to adjacent normal tissues and cell line. Decreased miR-543 was closely correlated with poor clinicopathological parameters including larger tumor size, late FIGO stage and lymph node metastasis. Overexpression of miR-543 in CC cell lines remarkably inhibited cell proliferation, invasion and migration, caused cell cycle arrest, promoted apoptosis in vitro, and suppressed tumor growth in vivo, whereas miR-543 inhibitor showed the opposite effect. Dual-luciferase assay validated that 3'-untranslated region (UTR) of transient receptor potential melastatin 7 (TRPM7) was a direct binding site of miR-543. Rescue experiments showed that restoration of TRPM7 expression partially reversed the miR-543-mediated inhibition of proliferation and invasion in CC cells. Further studies confirmed that P13K/AKT and p38/MAPK signaling was involved in miR-543/TRPM7 axis mediated CC progression. Thus, these findings demonstrated the tumor suppressor role of miR-543 on CC progression, which might serve as a potential biomarker for CC diagnosis and therapy.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Gynecology, Shaanxi Provincial People's Hospital, 710068, Shaanxi, China.
| | - Lu Gan
- Department of Gynecology, Shaanxi Provincial People's Hospital, 710068, Shaanxi, China
| | - Jing Zhang
- Department of Gynecology, Shaanxi Provincial People's Hospital, 710068, Shaanxi, China
| |
Collapse
|
66
|
Garabet L, Ghanima W, Rangberg A, Teruel-Montoya R, Martinez C, Lozano ML, Nystrand CF, Bussel JB, Sandset PM, Jonassen CM. Circulating microRNAs in patients with immune thrombocytopenia before and after treatment with thrombopoietin-receptor agonists. Platelets 2019; 31:198-205. [PMID: 30885035 DOI: 10.1080/09537104.2019.1585527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in the regulation of gene expression. Dysregulated expression of several miRNAs has been found in primary immune thrombocytopenia (ITP) suggesting that miRNAs are likely involved in the pathogenesis of ITP. We aimed to explore the differential expression of miRNAs in patients with ITP before and after starting treatment with thrombopoietin-receptor agonists (TPO-RAs) to clarify their roles in the pathophysiology of ITP, and as potential diagnostic and prognostic markers of this disorder.We performed a profiling study where 179 miRNAs were analyzed in eight ITP patients before and during treatment with TPO-RAs and in eight controls using miRNA PCR panel; 81 miRNAs were differentially expressed in ITP patients compared to controls, and 14 miRNAs showed significant changes during TPO-RA-treatment. Ten miRNAs were selected for validation that was performed in 23 patients and 22 controls using droplet digital PCR. Three miRNAs were found to be differentially expressed in ITP patients before TPO-RA-treatment compared to controls: miR-199a-5p was down-regulated (p = 0.0001), miR-33a-5p (p = 0.0002) and miR-195-5p (p = 0.035) were up-regulated. Treatment with TPO-RAs resulted in changes in six miRNAs including miR-199a-5p (p = 0.001), miR-33a-5p (p = 0.003), miR-382-5p (p = 0.004), miR-92b-3p (p = 0.005), miR-26a-5p (p = 0.008) and miR-221-3p (p = 0.023); while miR-195-5p remained unchanged and significantly higher than in controls, despite the increase in the platelet count, which may indicate its possible role in the pathophysiology of ITP. Regression analysis revealed that pre-treatment levels of miR-199a-5p and miR-221-3p could help to predict platelet response to TPO-RA-treatment. ROC curve analysis showed that the combination of miR-199a-5p and miR-33a-5p could distinguish patients with ITP from controls with AUC of 0.93.This study identifies a number of differentially expressed miRNAs in ITP patients before and after initiation of TPO-RAs with potential roles in the pathophysiology, as well as with a possible utility as diagnostic and prognostic biomarkers. These interesting findings deserve further exploration and validation in future studies.
Collapse
Affiliation(s)
- Lamya Garabet
- Multidisciplinary Laboratory Medicine and Medical Biochemistry, Akershus University Hospital, Lørenskog, Norway.,Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Waleed Ghanima
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Research, Østfold Hospital Trust, Grålum, Norway.,Department of Medicine, Østfold Hospital Trust, Grålum, Norway
| | - Anbjørg Rangberg
- Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway
| | - Raul Teruel-Montoya
- Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Servicio de Hematología y Oncología Médica, Murcia, Spain.,Grupo de investigación CB15/00055 del Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Constantino Martinez
- Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Servicio de Hematología y Oncología Médica, Murcia, Spain
| | - Maria Luisa Lozano
- Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Servicio de Hematología y Oncología Médica, Murcia, Spain.,Grupo de investigación CB15/00055 del Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - James B Bussel
- Department of Pediatrics, Division of Hematology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Per Morten Sandset
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Christine M Jonassen
- Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway.,Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
67
|
El Samaloty NM, Hassan ZA, Hefny ZM, Abdelaziz DHA. Circulating microRNA-155 is associated with insulin resistance in chronic hepatitis C patients. Arab J Gastroenterol 2019; 20:1-7. [PMID: 30852102 DOI: 10.1016/j.ajg.2019.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 12/10/2018] [Accepted: 01/27/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND STUDY AIM Hepatitis C represents a potential public health problem worldwide. Insulin resistance (IR) and type 2 diabetes (T2D) are among the serious metabolic complications for chronic hepatitis C virus (HCV) infection. MicroRNAs (miRNAs) are a group of small non-coding RNAs which are implicated in the modulation of almost all biological processes. The objective of this study was to investigate the levels of both miR-155 and miR-34a in sera of chronic HCV patients with or without T2D. PATIENTS AND METHODS In this study, we investigated the expression of both miR-155 and miR-34a in 80 subjects (20 HCV, 19 HCV/T2D, 21 T2D and 19 healthy controls), using quantitative real-time PCR. RESULTS Our results revealed significantly higher levels of both miR-155 and miR-34a in chronic HCV patients compared to healthy control subjects. However, only circulating miR-155 levels showed significant decline in diabetic HCV patients compared to non-diabetic HCV group. Intriguingly, the circulating levels of miR-155 were inversely correlated with HOMA-IR, fasting blood glucose and HbA1c levels. CONCLUSION Our findings indicate that the insulin resistance and T2D in HCV are strongly related to miR-155. This may suggest a role for miR-155 in the pathogenesis of IR caused by HCV. However, further large-scale studies are required to confirm our findings.
Collapse
Affiliation(s)
- Nourhan M El Samaloty
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Future University, Egypt
| | - Zeinab A Hassan
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Egypt
| | - Zeinab M Hefny
- Department of Tropical Medicine, Faculty of Medicine Ain Shams University, Egypt
| | - Dalia H A Abdelaziz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Egypt.
| |
Collapse
|
68
|
Chen P, Li Y, Li L, Yu Q, Chao K, Zhou G, Qiu Y, Feng R, Huang S, He Y, Chen B, Chen M, Zeng Z, Zhang S. Circulating microRNA146b-5p is superior to C-reactive protein as a novel biomarker for monitoring inflammatory bowel disease. Aliment Pharmacol Ther 2019; 49:733-743. [PMID: 30734320 DOI: 10.1111/apt.15159] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/06/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Owing to the importance of early treatment, simple and reliable methods for monitoring inflammatory bowel disease (IBD) are needed. AIMS To determine whether circulating microRNAs are reliable biomarkers for IBD monitoring. METHODS Serum levels of 17 candidate microRNAs were measured by quantitative real-time polymerase chain reaction in a discovery cohort (n = 120). Differentially expressed serum microRNAs were further investigated in an independent training cohort (n = 341). Correlations between relative microRNA levels and disease activity were evaluated. A disease control group was included to investigate the specificity of microRNA. Logistical regression was used to construct a microRNA classifier to identify endoscopic activity. Its predictive value was explored in the validation cohort (n = 66) using the area under the receiver operating characteristic curve (AUC). RESULTS Serum microRNA146b-5p (miR-146b-5p) expression was 2.87- and 2.72-fold higher in patients with Crohn's disease and ulcerative colitis, respectively, than in healthy controls. Serum miR-146b-5p was significantly correlated with disease activity and was more specific than C-reactive protein (CRP). A classifier was built for Crohn's disease, ie P [Endoscopically active] = 11+e2.937-0.737(miR-146b-5p)-0.008PLT , with a greater AUC of 0.869 [0.764-0.940] than that for CRP (0.680 [0.554-0.790]) (P = 0.0043). CONCLUSIONS MiR-146b-5p may better reflect mucosal inflammation in IBD than CRP. The Crohn's disease classifier developed in this study may be valuable for identifying endoscopic activity in patients with Crohn's disease.
Collapse
Affiliation(s)
- Peng Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ying Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Li Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qiao Yu
- Division of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Kang Chao
- Division of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Gaoshi Zhou
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yun Qiu
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Rui Feng
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shanshan Huang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yao He
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Baili Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Minhu Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhirong Zeng
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
69
|
Lee LC, Su MT, Cho YC, Lee-Chen GJ, Yeh TK, Chang CY. Multiple epigenetic biomarkers for evaluation of students' academic performance. GENES BRAIN AND BEHAVIOR 2019; 18:e12559. [PMID: 30806012 DOI: 10.1111/gbb.12559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/18/2019] [Accepted: 02/07/2019] [Indexed: 11/28/2022]
Abstract
Several reports have shown that methyl CpG-binding protein 2 (MeCP2), brain-derived neurotrophic factor (BDNF), phospho-cAMP response element-binding protein (p-CREB) and microRNAs may be important in regulating academic performance because of their roles in neuropsychiatry and cognitive diseases. The first goal of this study was to explore the associations among MeCP2, BDNF, CREB and academic performance. This study also examined the pathway responsible for the effects of MeCP2, BDNF, p-CREB and microRNAs on academic performance. Scores from the basic competency test, an annual national competitive entrance examination, were used to evaluate academic performance. Subjects' plasma RNA was extracted and analyzed. This study determined that participants in the higher academic performance group had a significant difference in MECP2 mRNA expression compared with the lower academic performance group. We then used neuronal human derived neuroblastoma cell line (SH-SY5Y) cells with inducible MeCP2 expression from a second copy of the gene as a gain-of-function model and found that MeCP2 overexpression positively affected p-CREB and BDNF expression initially. After negative feedback, the p-CREB and BDNF levels subsequently decreased. In the neuronal phenotype examination, we found a significant reduction in total outgrowth and branches in MeCP2-induced cells compared with noninduced cells. This work describes pathways that may be responsible for the effects of MeCP2, BDNF, p-CREB and microRNAs on academic performance. These results may shed light on the development of promising clinical treatment strategies in the area of neuropsychological adjustment.
Collapse
Affiliation(s)
- Li-Ching Lee
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, Taipei, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ying-Chun Cho
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ting-Kuang Yeh
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, Taipei, Taiwan.,Institute of Marine Environment Science and Technology, National Taiwan Normal University, Taipei, Taiwan.,Department of Earth Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chun-Yen Chang
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, Taipei, Taiwan.,Department of Earth Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
70
|
Abstract
Cervical cancer is the third most common gynecological cancer and the fourth leading cause of cancer-related deaths in women around the world. Substantial evidence has demonstrated that microRNA (miRNA) expression is disordered in many malignant tumors. The dysregulation of miRNAs has been suggested to be involved in the tumorigenesis and tumor development of cervical cancer. Therefore, identification of miRNAs and their biological roles and targets involved in tumor pathology would provide valuable insight into the diagnosis and treatment of patients with cervical cancer. MicroRNA-411 (miR-411) has been reported to play an important role in several types of human cancer. However, the expression level, role, and underlying molecular mechanisms of miR-411 in cervical cancer remain unclear. Therefore, the objectives of this study were to investigate the expression pattern and clinical significance of miR-411 in cervical cancer and to evaluate its role and underlying mechanisms in this disease. In this study, we confirmed that the expression of miR-411 was significantly downregulated in both cervical cancer tissues and cell lines. Low expression of miR-411 was associated with tumor size, FIGO stage, lymph node metastasis, and distant metastasis. Additionally, miR-411 overexpression inhibited cell proliferation and invasion in cervical cancer. Furthermore, signal transducer and activator of transcription 3 (STAT3) was identified as a direct target of miR-411 in this disease. In clinical samples, miR-411 expression levels were inversely correlated with STAT3, which was significantly upregulated in cervical cancer. Restored STAT3 expression abolished the tumor-suppressing effects of miR-411 overexpression on the proliferation and invasion of cervical cancer cells. In conclusion, our data demonstrated that miR-411 inhibited cervical cancer progression by directly targeting STAT3 and may represent a novel potential therapeutic target and prognostic marker for patients with this disease.
Collapse
Affiliation(s)
- Dan Shan
- Department of Obstetrics and Gynecology, Tianjin Hospital, Tianjin, P.R. China
| | - Yumin Shang
- Department of Obstetrics and Gynecology, Tianjin Hospital, Tianjin, P.R. China
| | - Tongxiu Hu
- Department of Obstetrics and Gynecology, Tianjin Hospital, Tianjin, P.R. China
| |
Collapse
|
71
|
Famitafreshi H, Karimian M. Social Isolation Rearing Induces Neuropsychiatric Diseases: Updated Overview. MOLECULAR NEUROPSYCHIATRY 2019; 4:190-195. [PMID: 30815454 DOI: 10.1159/000495659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Neuropsychiatric and neurologic diseases cause a great burden for individuals, families, and societies. Social isolation rearing can trigger a variety of psychiatric diseases. New advances suggest that epigenetic factors along with other neurochemical changes can be an important topic in neuropsychiatric diseases. It is thought that the prevention of social isolation rearing that occurs around birth can reduce the occurrence of neuropsychiatric diseases. It has been suggested that the environment can induce epigenetic alternation. So, for the diagnosis of a proportion of neuropsychiatric diseases, assessing epigenetic factors may be helpful. Also, apart from epigenetic factors, new advances have been made about new mechanisms of and treatments for such a disorder.
Collapse
Affiliation(s)
- Hamidreza Famitafreshi
- Physiology Department, Tehran University of Medical Sciences - International Campus, Tehran, Iran
| | - Morteza Karimian
- Physiology Department, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
72
|
Hendy OM, Rabie H, El Fouly A, Abdel-Samiee M, Abdelmotelb N, Elshormilisy AA, Allam M, Ali ST, Bahaa EL-Deen NM, Abdelsattar S, Mohamed SM. The Circulating Micro-RNAs (-122, -34a and -99a) as Predictive Biomarkers for Non-Alcoholic Fatty Liver Diseases. Diabetes Metab Syndr Obes 2019; 12:2715-2723. [PMID: 31908512 PMCID: PMC6927587 DOI: 10.2147/dmso.s231321] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND It remains essential for patient safety to develop non-invasive diagnostic tools to diagnose non-alcoholic fatty liver rather than invasive techniques. AIM Our case-control study was to address the value of circulating miRNAs as a potential non-invasive biomarker for the diagnosis of non-alcoholic fatty acid diseases (NAFLD) and monitoring of disease progression. METHODS Routine clinical assessment, laboratory tests, anthropometric study, and liver biopsy results reported for 210 patients with NAFLD (124 patients of simple steatosis (SS) and 86 of non-alcoholic steatohepatitis (NASH)). Apparently matched for age and gender, healthy participants (n= 90) were enrolled as a control group. Serum samples were tested for micro-RNAs (-122, -34a and -99a) by quantitative-PCR. RESULTS By histopathology, 124 of the NAFLD group were of SS and 86 patients were of NASH. Compared with the control subjects, both mi-RNA-122 and -34a levels were increased in NAFLD (p< 001) and at a cut-off = 1.261, mi-RNA-122 had 92% sensitivity, 85% specificity to differentiate NAFLD from healthy controls, while mi-RNA-99a were significantly decreased in NAFLD patients with an observed decrease in disease severity, and at a cut-off = 0.46, miRNA-99a had 94% sensitivity and 96% specificity to discriminate SS from NASH. CONCLUSION The integration of a circulating mi-RNA panel to diagnose NAFLD cases and to discriminate between SS and NASH. Large-scale study is still needed to verify the other mi-RNA profiles and their role in NAFLD pathogenesis and targeting therapy.
Collapse
Affiliation(s)
- Olfat M Hendy
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Hatem Rabie
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Amr El Fouly
- Endemic Medicine Department, Helwan University, Cairo, Egypt
| | - Mohamed Abdel-Samiee
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
- Correspondence: Mohamed Abdel-Samiee National Liver Institute, Yassin Abdel-Ghafar Street, Shebin El-Kom, Menoufia32511, EgyptTel +2048 2222740Fax +2048 2234685 Email
| | - Nashwa Abdelmotelb
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | | | - Mahmoud Allam
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Samia Taher Ali
- Internal Medicine Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Shimaa Abdelsattar
- Department of Clinical Biochemistry, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Somia Mokabel Mohamed
- Department of Physiology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
73
|
Abstract
High-throughput profiling/sensing of nucleic acids has recently emerged as a highly promising strategy for the early diagnosis and improved prognosis of a broad range of pathologies, most notably cancer. Among the potential biomarker candidates, microRNAs (miRNAs), a class of non-coding RNAs of 19-25 nucleotides in length, are of particular interest due to their role in the post-transcriptional regulation of gene expression. Developing miRNA sensing technologies that are quantitative, ultrasensitive and highly specific has proven very challenging because of their small size, low natural abundance and the high degree of sequence similarity among family members. When compared to optical based methods, electrochemical sensors offer many advantages in terms of sensitivity and scalability. This non-comprehensive review aims to break-down and highlight some of the most promising strategies for electrochemical sensing of microRNA biomarkers.
Collapse
Affiliation(s)
- Philip Gillespie
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| | - Danny O'Hare
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| |
Collapse
|
74
|
Liu CH, Ampuero J, Gil-Gómez A, Montero-Vallejo R, Rojas Á, Muñoz-Hernández R, Gallego-Durán R, Romero-Gómez M. miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis. J Hepatol 2018; 69:1335-1348. [PMID: 30142428 DOI: 10.1016/j.jhep.2018.08.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/21/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS microRNAs (miRNAs) are deregulated in non-alcoholic fatty liver disease (NAFLD) and have been proposed as useful markers for the diagnosis and stratification of disease severity. We conducted a meta-analysis to identify the potential usefulness of miRNA biomarkers in the diagnosis and stratification of NAFLD severity. METHODS After a systematic review, circulating miRNA expression consistency and mean fold-changes were analysed using a vote-counting strategy. The sensitivity, specificity, positive and negative likelihood ratios, diagnostic odds ratio and area under the curve (AUC) for the diagnosis of NAFLD or non-alcoholic steatohepatitis (NASH) were pooled using a bivariate meta-analysis. Deeks' funnel plot was used to assess the publication bias. RESULTS Thirty-seven studies of miRNA expression profiles and six studies of diagnostic accuracy were ultimately included in the quantitative analysis. miRNA-122 and miRNA-192 showed consistent upregulation. miRNA-122 was upregulated in every scenario used to distinguish NAFLD severity. The miRNA expression correlation between the serum and liver tissue was inconsistent across studies. miRNA-122 distinguished NAFLD from healthy controls with an AUC of 0.82 (95% CI 0.75-0.89), and miRNA-34a distinguished non-alcoholic steatohepatitis (NASH) from non-alcoholic fatty liver (NAFL) with an AUC of 0.78 (95% CI 0.67-0.88). CONCLUSION miRNA-34a, miRNA-122 and miRNA-192 were identified as potential diagnostic markers to segregate NAFL from NASH. Both miRNA-122, in distinguishing NAFLD from healthy controls, and miRNA-34a, in distinguishing NASH from NAFL, showed moderate diagnostic accuracy. miRNA-122 was upregulated in every scenario of NAFL, NASH and fibrosis. LAY SUMMARY: microRNAs are deregulated in non-alcoholic fatty liver disease. The microRNAs, miRNA-34a, miRNA-122 and miRNA-192, were identified as potential biomarkers of non-alcoholic fatty liver and non-alcoholic steatohepatitis, at different stages of disease severity. The correlation between miRNA expression in the serum and in liver tissue was inconsistent, or even inverse.
Collapse
Affiliation(s)
- Chang-Hai Liu
- Institute of Biomedicine of Seville, Sevilla, Spain; University of Seville, Seville, Spain
| | - Javier Ampuero
- Institute of Biomedicine of Seville, Sevilla, Spain; Unit of Digestive Diseases and Ciberehd, University Hospital Virgen del Rocío, Seville, Spain; University of Seville, Seville, Spain
| | - Antonio Gil-Gómez
- Institute of Biomedicine of Seville, Sevilla, Spain; University of Seville, Seville, Spain
| | - Rocío Montero-Vallejo
- Institute of Biomedicine of Seville, Sevilla, Spain; University of Seville, Seville, Spain
| | - Ángela Rojas
- Institute of Biomedicine of Seville, Sevilla, Spain
| | | | | | - Manuel Romero-Gómez
- Institute of Biomedicine of Seville, Sevilla, Spain; Unit of Digestive Diseases and Ciberehd, University Hospital Virgen del Rocío, Seville, Spain; University of Seville, Seville, Spain.
| |
Collapse
|
75
|
Grieco GE, Cataldo D, Ceccarelli E, Nigi L, Catalano G, Brusco N, Mancarella F, Ventriglia G, Fondelli C, Guarino E, Crisci I, Sebastiani G, Dotta F. Serum Levels of miR-148a and miR-21-5p Are Increased in Type 1 Diabetic Patients and Correlated with Markers of Bone Strength and Metabolism. Noncoding RNA 2018; 4:ncrna4040037. [PMID: 30486455 PMCID: PMC6315714 DOI: 10.3390/ncrna4040037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is characterized by bone loss and altered bone remodeling, resulting into reduction of bone mineral density (BMD) and increased risk of fractures. Identification of specific biomarkers and/or causative factors of diabetic bone fragility is of fundamental importance for an early detection of such alterations and to envisage appropriate therapeutic interventions. MicroRNAs (miRNAs) are small non-coding RNAs which negatively regulate genes expression. Of note, miRNAs can be secreted in biological fluids through their association with different cellular components and, in such context, they may represent both candidate biomarkers and/or mediators of bone metabolism alterations. Here, we aimed at identifying miRNAs differentially expressed in serum of T1D patients and potentially involved in bone loss in type 1 diabetes. We selected six miRNAs previously associated with T1D and bone metabolism: miR-21; miR-24; miR-27a; miR-148a; miR-214; and miR-375. Selected miRNAs were analyzed in sera of 15 T1D patients (age: 33.57 ± 8.17; BMI: 21.4 ± 1.65) and 14 non-diabetic subjects (age: 31.7 ± 8.2; BMI: 24.6 ± 4.34). Calcium, osteocalcin, parathormone (PTH), bone ALkaline Phoshatase (bALP), and Vitamin D (VitD) as well as main parameters of bone health were measured in each patient. We observed an increased expression of miR-148a (p = 0.012) and miR-21-5p (p = 0.034) in sera of T1D patients vs. non-diabetic subjects. The correlation analysis between miRNAs expression and the main parameters of bone metabolism, showed a correlation between miR-148a and Bone Mineral Density (BMD) total body (TB) values (p = 0.042) and PTH circulating levels (p = 0.033) and the association of miR-21-5p to Bone Mineral Content-Femur (BMC-FEM). Finally, miR-148a and miR-21-5p target genes prediction analysis revealed several factors involved in bone development and remodeling, such as MAFB, WNT1, TGFB2, STAT3, or PDCD4, and the co-modulation of common pathways involved in bone homeostasis thus potentially assigning a role to both miR-148a and miR-21-5p in bone metabolism alterations. In conclusion, these results lead us to hypothesize a potential role for miR-148a and miR-21-5p in bone remodeling, thus representing potential biomarkers of bone fragility in T1D.
Collapse
Affiliation(s)
- Giuseppina E Grieco
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Dorica Cataldo
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, 53100, Italy.
| | - Elena Ceccarelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
| | - Laura Nigi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Giovanna Catalano
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
| | - Noemi Brusco
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Francesca Mancarella
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Giuliana Ventriglia
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Cecilia Fondelli
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, 53100, Italy.
| | - Elisa Guarino
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, 53100, Italy.
| | - Isabella Crisci
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, 53100, Italy.
| | - Guido Sebastiani
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Francesco Dotta
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, 53100, Italy.
| |
Collapse
|
76
|
Qiu X, Xu J, Guo J, Yahia-Ammar A, Kapetanakis NI, Duroux-Richard I, Unterluggauer JJ, Golob-Schwarzl N, Regeard C, Uzan C, Gouy S, DuBow M, Haybaeck J, Apparailly F, Busson P, Hildebrandt N. Advanced microRNA-based cancer diagnostics using amplified time-gated FRET. Chem Sci 2018; 9:8046-8055. [PMID: 30542553 PMCID: PMC6249629 DOI: 10.1039/c8sc03121e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in cellular functions and in the development and progression of cancer. Precise quantification of endogenous miRNAs from different clinical patient and control samples combined with a one-to-one comparison to standard technologies is a challenging but necessary endeavor that is largely neglected by many emerging fluorescence technologies. Here, we present a simple, precise, sensitive, and specific ratiometric assay for absolute quantification of miRNAs. Isothermally amplified time-gated Förster resonance energy transfer (TG-FRET) between Tb donors and dye acceptors resulted in miRNA assays with single-nucleotide variant specificity and detection limits down to 4.2 ± 0.5 attomoles. Quantification of miR-21 from human tissues and plasma samples revealed the relevance for breast and ovarian cancer diagnostics. Analysis of miR-132 and miR-146a from acute monocytic leukemia cells (THP-1) demonstrated the broad applicability to different miRNAs and other types of clinical samples. Direct comparison to the gold standard RT-qPCR showed advantages of amplified TG-FRET concerning precision and specificity when quantifying low concentrations of miRNAs as required for diagnostic applications. Our results demonstrate that a careful implementation of rolling circle amplification and TG-FRET into one straightforward nucleic acid detection method can significantly advance the possibilities of miRNA-based cancer diagnostics and research.
Collapse
Affiliation(s)
- Xue Qiu
- NanoBioPhotonics , Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay , Université Paris-Sud , CNRS , CEA , Orsay , France . ; https://www.nanofret.com
| | - Jingyue Xu
- NanoBioPhotonics , Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay , Université Paris-Sud , CNRS , CEA , Orsay , France . ; https://www.nanofret.com
| | - Jiajia Guo
- NanoBioPhotonics , Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay , Université Paris-Sud , CNRS , CEA , Orsay , France . ; https://www.nanofret.com
| | - Akram Yahia-Ammar
- NanoBioPhotonics , Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay , Université Paris-Sud , CNRS , CEA , Orsay , France . ; https://www.nanofret.com
| | - Nikiforos-Ioannis Kapetanakis
- Gustave Roussy , Université Paris-Saclay , CNRS , UMR 8126 , Villejuif , France
- Université Paris-Sud , Université Paris-Saclay , Le Kremlin-Bicêtre , France
| | | | - Julia J Unterluggauer
- Diagnostic and Research Institute of Pathology , Diagnostic and Research Center for Molecular BioMedicine , Medical University of Graz , Austria
| | - Nicole Golob-Schwarzl
- Diagnostic and Research Institute of Pathology , Diagnostic and Research Center for Molecular BioMedicine , Medical University of Graz , Austria
| | - Christophe Regeard
- Laboratoire de Génomique et Biodiversité Microbienne des Biofilms (LGBMB) , Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay , Université Paris-Sud , CNRS , CEA , Orsay , France
| | - Catherine Uzan
- Department of Surgery , Gustave Roussy , Université Paris-Saclay , Villejuif , France
- Department of Breast and Gynecologic Surgery , Pitié Salpêtrière Hospital , APHP , Institut Universitaire de Cancérologie , Sorbonne University , INSERM U938 , France
| | - Sébastien Gouy
- Department of Surgery , Gustave Roussy , Université Paris-Saclay , Villejuif , France
| | - Michael DuBow
- Laboratoire de Génomique et Biodiversité Microbienne des Biofilms (LGBMB) , Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay , Université Paris-Sud , CNRS , CEA , Orsay , France
| | - Johannes Haybaeck
- Diagnostic and Research Institute of Pathology , Diagnostic and Research Center for Molecular BioMedicine , Medical University of Graz , Austria
- Department of Pathology , Otto-von-Guericke-University Magdeburg , Germany
- Department of Pathology , Medical University Innsbruck , Austria
| | - Florence Apparailly
- IRMB , INSERM , Univ Montpellier , Montpellier , France
- Clinical Department for Osteoarticular Diseases , University Hospital of Montpellier , Montpellier , France
| | - Pierre Busson
- Gustave Roussy , Université Paris-Saclay , CNRS , UMR 8126 , Villejuif , France
- Université Paris-Sud , Université Paris-Saclay , Le Kremlin-Bicêtre , France
| | - Niko Hildebrandt
- NanoBioPhotonics , Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay , Université Paris-Sud , CNRS , CEA , Orsay , France . ; https://www.nanofret.com
| |
Collapse
|
77
|
Huang Q, Ding J, Gong M, Wei M, Zhao Q, Yang J. Effect of miR-30e regulating NK cell activities on immune tolerance of maternal-fetal interface by targeting PRF1. Biomed Pharmacother 2018; 109:1478-1487. [PMID: 30551399 DOI: 10.1016/j.biopha.2018.09.172] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 11/17/2022] Open
Abstract
AIM Natural killer (NK) cells, as key regulatory cells, accumulate at the maternal-fetal interface in large numbers. This study explored the effect of miR-30e on regulating the activity and function of peripheral blood NK cells (PB-NK cells) and decidua NK cells (D-NK cells) by targeting PRF1 in immune tolerance of maternal-fetal interface. METHODS Expressions of miR-30e in PB and decidua tissues from 49 patients with recurrent spontaneous abortion and 52 normal pregnant women were measured using PCR. NK cells were isolated from PB and decidua tissues and identified by flow cytometry (FCM). In PB-NK cells and D-NK cells activated by IFN-α, expressions of miR-30e and PRF1 were determined by PCR and Western blot. Negative controls of miR-30e mimics/inhibitors and siRNA against PRF1 were transfected in PB-NK cells and D-NK cells. Expressions of miR-30e and PRF1 were determined and their relationship was verified. Expressions of KIR2DL1, NKp44, IFN-γ, TNF-α, IL-4 and IL-10 were determined by FCM. Cytotoxicity kit was used to identify the cytotoxicity of NK cells. PCR and ELISA were employed to measure expression of VEGF, Ang-2 and PGF in D-NK cells. RESULTS After activation by IFN-α, D-NK cells and PB-NK cells showed decreased miR-30e expression and increased PRF1 expression in normal non-pregnant women. PRF1 is a target gene of miR-30e and miR-30e negatively regulated PRF1 expression. The treatment of miR-30e mimics elevated KIR2DL1 expression and decreased NKp44 expression in PB-NK or D-NK cells. Moreover, up-regulation of miR-30e expression suppressed cytotoxicity, corresponding to increased expression of IL-4and IL-10 and reduced expression of IFN-γ and TNF-α in PB-NK and D-NK cells, as well as enhanced expression of VEGF, Ang-2 and PGF in D-NK cells. Transfection of miR-30e inhibitors could reverse the tendencies. CONCLUSION Up-regulated miR-30e can reduce the cytotoxicity of PB-NK cells and D-NK cells by targeting PRF1, whereby inhibiting Th1 tolerance phenotype and inducing Th2 immunodominance. miR-30e may be contributive to creating a micro-immune tolerance environment of maternal-fetal interface.
Collapse
Affiliation(s)
- Qin Huang
- Department of Obstetrics and Gynecology, Renmin Hosptial of Wuhan University, Wuhan 430060, PR China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hosptial of Wuhan University, Wuhan 430060, PR China
| | - Meng Gong
- Department of Obstetrics and Gynecology, Renmin Hosptial of Wuhan University, Wuhan 430060, PR China
| | - Min Wei
- Department of Obstetrics and Gynecology, Renmin Hosptial of Wuhan University, Wuhan 430060, PR China
| | - Qinghong Zhao
- Department of Obstetrics and Gynecology, Renmin Hosptial of Wuhan University, Wuhan 430060, PR China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hosptial of Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
78
|
Guo H, Qi RQ, Sheng J, Liu C, Ma H, Wang HX, Li JH, Gao XH, Wan YS, Chen HD. MiR-155, a potential serum marker of extramammary Paget's disease. BMC Cancer 2018; 18:1078. [PMID: 30458743 PMCID: PMC6247506 DOI: 10.1186/s12885-018-4994-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Extramammary Paget's disease (EMPD), a rare skin malignancy with non-specific manifestations, is often misdiagnosed as eczema of scrotum or tinea cruris. Although the diagnosis of EMPD could be confirmed by biopsy, it can be delayed as patients are reluctant to receive invasive operations. Herein, we investigated the serum miRNA expressions of EMPD patients and compared to that of the eczema of scrotum or tinea cruris patients as well as health volunteers for potential diagnostic markers for EMPD. METHODS Altogether 45 subjects including 16 patients diagnosed with EMPD, 12 patients diagnosed with eczema of scrotum or tinea cruris and 17 healthy volunteers were enrolled in this study. Serum from all of subjects were collected to identify miRNAs (by miRNA array global normalization, RT-PCR validation, and receiver operating characteristic curve analysis) that could be potential diagnostic markers for EMPD. RESULTS The miRNA array analyses revealed that the expressions of 37 miRNAs from the EMPD patients were different (change ≥4-fold) from health volunteers. Among these miRNAs, the expression of miR-155 was significantly increased (p < 0.01) in the EMPD patients as compared with that of the health volunteers and the eczema of scrotum or the tinea cruris patients (no difference between these two control groups). In addition, receiver operating characteristic (ROC) curve analysis showed that diagnostic capacities (defined as the area under curve of ROC) of miR-155 are 0.85 (as compared with health volunteers group) and 0.81 (as compared with the eczema of scrotum or the tinea cruris patients group), respectively. CONCLUSION The serum miRNA expression of gene miR-155 in the EMPD patients was differentiated from that of other subjects warranting further validation of miR-155 as a diagnostic marker of EMPD.
Collapse
Affiliation(s)
- Hao Guo
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Rui-Qun Qi
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Jie Sheng
- Department of Anesthesiology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Chang Liu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - He-Xiao Wang
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Jiu-Hong Li
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Xing-Hua Gao
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Yin-Sheng Wan
- Department of Physiology, Providence College, Providence, RI, 02918, USA
| | - Hong-Duo Chen
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
79
|
Sheinerman K, Tsivinsky V, Mathur A, Kessler D, Shaz B, Umansky S. Age- and sex-dependent changes in levels of circulating brain-enriched microRNAs during normal aging. Aging (Albany NY) 2018; 10:3017-3041. [PMID: 30383539 PMCID: PMC6224262 DOI: 10.18632/aging.101613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022]
Abstract
Aging is a major risk factor for many common and life-threatening pathologies. The development of reliable biomarkers of aging should lead to a better understanding of aging-associated processes and facilitate the development of therapeutic regimens that delay aging. Levels of 38 brain-enriched microRNAs (miRNA) circulating in plasma were measured by quantitative RT-PCR in two age groups: 26-35 and 56-65 years old. An miRNA-pair approach was used for data normalization and determination of effective miRNA biomarker ratios. Nineteen miRNAs, comprising miRNA pairs and pair combinations (classifiers) that effectively differentiated the age and sex (individual pairs: 74-95% and 68-95%, respectively; classifiers: up to 100% accuracy) groups, were selected for further analysis of plasma samples from 5 donor age groups: 26-35, 36-45, 46-55, 56-65 and 66-75 years old. Dynamic changes in the plasma concentrations of certain miRNAs occurred at different ages in females and males, with peaks in the 46-55-year-old and 56-65-year-old groups, respectively. This finding suggests that the changes in miRNA levels can reflect centrally regulated processes, including changes in hormone levels during menopause. Certain miRNAs and miRNA pairs correlated with age in the sex-stratified groups at different ages and should be investigated further as potentially promising biomarkers of brain aging.
Collapse
Affiliation(s)
| | | | | | | | - Beth Shaz
- New York Blood Center, New York, NY 10065, USA
| | | |
Collapse
|
80
|
Möhnle P, Hirschberger S, Hinske LC, Briegel J, Hübner M, Weis S, Dimopoulos G, Bauer M, Giamarellos-Bourboulis EJ, Kreth S. MicroRNAs 143 and 150 in whole blood enable detection of T-cell immunoparalysis in sepsis. Mol Med 2018; 24:54. [PMID: 30332984 PMCID: PMC6191918 DOI: 10.1186/s10020-018-0056-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/04/2018] [Indexed: 12/25/2022] Open
Abstract
Background Currently, no suitable clinical marker for detection of septic immunosuppression is available. We aimed at identifying microRNAs that could serve as biomarkers of T-cell mediated immunoparalysis in sepsis. Methods RNA was isolated from purified T-cells or from whole blood cells obtained from septic patients and healthy volunteers. Differentially regulated miRNAs were identified by miRNA Microarray (n = 7). Validation was performed via qPCR (n = 31). Results T-cells of septic patients revealed characteristics of immunosuppression: Pro-inflammatory miR-150 and miR-342 were downregulated, whereas anti-inflammatory miR-15a, miR-16, miR-93, miR-143, miR-223 and miR-424 were upregulated. Assessment of T-cell effector status showed significantly reduced mRNA-levels of IL2, IL7R and ICOS, and increased levels of IL4, IL10 and TGF-β. The individual extent of immunosuppression differed markedly. MicroRNA-143, − 150 and − 223 independently indicated T-cell immunoparalysis and significantly correlated with patient’s IL7R-/ICOS-expression and SOFA-scores. In whole blood, composed of innate and adaptive immune cells, both traits of immunosuppression and hyperinflammation were detected. Importantly, miR-143 and miR-150 – both predominantly expressed in T-cells – retained strong power of discrimination also in whole blood samples. Conclusions These findings suggest miR-143 and miR-150 as promising markers for detection of T-cell immunosuppression in whole blood and may help to develop new approaches for miRNA-based diagnostic in sepsis. Electronic supplementary material The online version of this article (10.1186/s10020-018-0056-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Möhnle
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| | - S Hirschberger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - L C Hinske
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| | - J Briegel
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| | - M Hübner
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - S Weis
- Department of Anaesthesiology and Intensive Care Medicine, Friedrich-Schiller University, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Center for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany
| | - G Dimopoulos
- 2nd Department of Critical Care Medicine, ATTIKON University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - M Bauer
- Department of Anaesthesiology and Intensive Care Medicine, Friedrich-Schiller University, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - E J Giamarellos-Bourboulis
- 4th Department of Internal Medicine, ATTIKON University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - S Kreth
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany. .,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany.
| |
Collapse
|
81
|
Liu B, Liu Y, Luo X, Pan Y, Yang L, Li F, Gao R, Chen W, He J. MicroRNA-195 as a diagnostic biomarker in human cancer detection: A meta-analysis. Oncol Lett 2018; 16:6253-6260. [PMID: 30405760 PMCID: PMC6202545 DOI: 10.3892/ol.2018.9489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) show great promise as novel cancer biomarkers. Several studies have revealed an association between abnormal miRNA expression and the risk of various cancer types. However, the diagnostic accuracy and reliability of miRNAs remains unclear. The present meta-analysis was performed to summarize the overall diagnostic performance of miR-195 for cancer. The PubMed, Cochrane Library, Wanfang and China National Knowledge Infrastructure databases were searched for associated literature published until December 10, 2017. Eligible studies were selected using multiple search strategies based on study selection criteria. Measures, including sensitivity and specificity, of the performance of miR-195 as a cancer diagnostic tool were pooled using bivariate meta-analysis models. All analyses were performed using Stata 14.0. The pooled analysis included 8 studies comprising 735 cases and 547 controls. The pooled diagnostic results calculated from all studies were as follows: Sensitivity, 0.79 [95% confidence interval (CI), 0.69–0.87]; specificity, 0.84 (95% CI, 0.68–0.93); positive likelihood ratio, 4.9 (95% CI, 2.50–9.50); negative likelihood ratio, 0.25 (95% CI, 0.18–0.35); diagnostic odds ratio, 20 (95% CI, 10.00–38.00); and area under the curve, 0.87 (95% CI, 0.84–0.90). Deeks' funnel plot asymmetry test suggested no potential publication bias (P=0.53). The present meta-analysis indicated that miR-195 could be a reliable non-invasive biomarker for the diagnosis of cancer. Further large-scale prospective studies are necessary to confirm the present findings and the clinical value of miR-195 for future diagnostics.
Collapse
Affiliation(s)
- Baoer Liu
- Department of Breast Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Yuhan Liu
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Xueying Luo
- Department of Breast Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Yue Pan
- Department of Breast Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Liping Yang
- Department of Breast Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Feng Li
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Rui Gao
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Weicai Chen
- Department of Breast Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Jinsong He
- Department of Breast Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China.,Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
82
|
Zubor P, Kubatka P, Dankova Z, Gondova A, Kajo K, Hatok J, Samec M, Jagelkova M, Krivus S, Holubekova V, Bujnak J, Laucekova Z, Zelinova K, Stastny I, Nachajova M, Danko J, Golubnitschaja O. miRNA in a multiomic context for diagnosis, treatment monitoring and personalized management of metastatic breast cancer. Future Oncol 2018; 14:1847-1867. [DOI: 10.2217/fon-2018-0061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metastatic breast cancer is characterized by aggressive spreading to distant organs. Despite huge multilevel research, there are still several important challenges that have to be clarified in the management of this disease. Therefore, recent investigations have implemented a modern, multiomic approach with the aim of identifying specific biomarkers for not only early detection but also to predict treatment responses and metastatic spread. Specific attention is paid to short miRNAs, which regulate gene expression at the post-transcriptional level. Aberrant miRNA expression could initiate cancer development, cell proliferation, invasion, migration, metastatic spread or drug resistance. An miRNA signature is, therefore, believed to be a promising biomarker and prediction tool that could be utilized in all phases of carcinogenesis. This article offers comprehensive information about miRNA profiles useful for diagnostic and treatment purposes that may sufficiently advance breast cancer management and improve individual outcomes in the near future.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Peter Kubatka
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Zuzana Dankova
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Alexandra Gondova
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
| | - Karol Kajo
- Department of Pathology, St Elizabeth Cancer Institute Hospital, Bratislava, Slovak Republic
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jozef Hatok
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Marek Samec
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Marianna Jagelkova
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Stefan Krivus
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
| | - Veronika Holubekova
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Jan Bujnak
- Department of Obstetrics & Gynecology, Kukuras Michalovce Hospital, Michalovce, Slovak Republic
- Oncogynecology Unit, Penta Hospitals International, Svet Zdravia, Michalovce, Slovak Republic
| | - Zuzana Laucekova
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
| | - Katarina Zelinova
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Igor Stastny
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Marcela Nachajova
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
| | - Jan Danko
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
| | - Olga Golubnitschaja
- Radiological Clinic, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
- Breast Cancer Research Center, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
- Center for Integrated Oncology, Cologne-Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| |
Collapse
|
83
|
Kho AT, McGeachie MJ, Moore KG, Sylvia JM, Weiss ST, Tantisira KG. Circulating microRNAs and prediction of asthma exacerbation in childhood asthma. Respir Res 2018; 19:128. [PMID: 29940952 PMCID: PMC6020199 DOI: 10.1186/s12931-018-0828-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/12/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Circulating microRNAs have shown promise as non-invasive biomarkers and predictors of disease activity. Prior asthma studies using clinical, biochemical and genomic data have not shown excellent prediction of exacerbation. We hypothesized that a panel of circulating microRNAs in a pediatric asthma cohort combined with an exacerbation clinical score might predict exacerbation better than the latter alone. METHODS Serum samples from 153 children at randomization in the Childhood Asthma Management Program were profiled for 754 microRNAs. Data dichotomized for asthma exacerbation one year after randomization to inhaled corticosteroid treatment were used for binary logistic regression with miRNA expressions and exacerbation clinical score. RESULTS 12 of 125 well-detected circulating microRNAs had significant odd ratios for exacerbation with miR-206 being most significant. Each doubling of expression of the 12 microRNA corresponded to a 25-67% increase in exacerbation risk. Stepwise logistic regression yielded a 3-microRNA model (miR-146b, miR-206 and miR-720) that, combined with the exacerbation clinical score, had excellent predictive power with a 0.81 AUROC. These 3 microRNAs were involved in NF-kβ and GSK3/AKT pathways. CONCLUSIONS This combined circulating microRNA-clinical score model predicted exacerbation in asthmatic subjects on inhaled corticosteroids better than each constituent feature alone. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT00000575 .
Collapse
Affiliation(s)
- Alvin T. Kho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 USA
- Computational Health Informatics Program, Boston Children’s Hospital, 320 Longwood Avenue, Boston, MA 02115 USA
| | - Michael J. McGeachie
- Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 USA
| | - Kip G. Moore
- Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Jody M. Sylvia
- Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 USA
| | - Kelan G. Tantisira
- Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 USA
| |
Collapse
|
84
|
Human plasma and serum extracellular small RNA reference profiles and their clinical utility. Proc Natl Acad Sci U S A 2018; 115:E5334-E5343. [PMID: 29777089 PMCID: PMC6003356 DOI: 10.1073/pnas.1714397115] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nucleic acids mediate storage and expression of genetic information. Extracellular DNA (exDNA) and exRNA are traces of nucleic acids released from cells into the extracellular environment. Their use as disease biomarkers has been limited by technical challenges in their isolation caused by abundant RNA- and DNA-degrading enzymes in biofluids. Using isolation protocols developed especially for biofluids, we generated plasma and serum exRNA reference profiles from 13 healthy volunteers over time and determined the effect of critical clinical parameters such as gender and fasting. Surprisingly, we encountered one participant with dramatically increased endocrine-origin exRNA contributions stable over 1 year and detectable in all of his samples, thereby demonstrating the robustness of this approach and the clinical potential of circulating RNAs as biomarkers. Circulating extracellular RNAs (exRNAs) have the potential to serve as biomarkers for a wide range of medical conditions. However, limitations in existing exRNA isolation methods and a lack of knowledge on parameters affecting exRNA variability in human samples may hinder their successful discovery and clinical implementation. Using combinations of denaturants, reducing agents, proteolysis, and revised organic extraction, we developed an automated, high-throughput approach for recovery of exRNAs and exDNA from the same biofluid sample. We applied this method to characterize exRNAs from 312 plasma and serum samples collected from 13 healthy volunteers at 12 time points over a 2-month period. Small RNA cDNA library sequencing identified nearly twofold increased epithelial-, muscle-, and neuroendocrine-cell–specific miRNAs in females, while fasting and hormonal cycle showed little effect. External standardization helped to detect quantitative differences in erythrocyte and platelet-specific miRNA contributions and in miRNA concentrations between biofluids. It also helped to identify a study participant with a unique exRNA phenotype featuring a miRNA signature of up to 20-fold elevated endocrine-cell–specific miRNAs and twofold elevated total miRNA concentrations stable for over 1 year. Collectively, these results demonstrate an efficient and quantitative method to discern exRNA phenotypes and suggest that plasma and serum RNA profiles are stable over months and can be routinely monitored in long-term clinical studies.
Collapse
|
85
|
Alharthi A, Beck D, Howard DR, Hillmen P, Oates M, Pettitt A, Wagner SD. An increased fraction of circulating miR-363 and miR-16 is particle bound in patients with chronic lymphocytic leukaemia as compared to normal subjects. BMC Res Notes 2018; 11:280. [PMID: 29739419 PMCID: PMC5941460 DOI: 10.1186/s13104-018-3391-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES In vitro culture studies have shown that miR-363 is enriched in extracellular vesicles from chronic lymphocytic leukaemia cells. We wondered whether miR-363 was detectable in plasma, which is an essential precondition for further studies to assess its usefulness as a biomarker. Using samples from two clinical trials: one enrolling patients with advanced disease and the other asymptomatic patients with early stage disease, we determined plasma miR-363 levels and secondly investigated the distribution of this miRNA between plasma and particle bound fractions in patients and normal subjects. RESULTS Advanced disease (n = 95) was associated with higher levels of miR-363 than early stage disease (n = 45) or normal subjects (n = 11) but there was no association with markers of prognosis. The distribution of specific miRNA between particle bound and plasma protein fractions was investigated using size exclusion chromatography on plasma from patients (n = 4) and normal subjects (n = 3). ~ 20% of total miR-16 and miR-363 is particle bound in patients while there was no detectable particle bound material in normal subjects. Our work demonstrates that miR-363 levels are raised in chronic lymphocytic leukaemia patients and raises the possibility that distribution of circulating miRNA between plasma fractions differs in health and disease.
Collapse
Affiliation(s)
- Afaf Alharthi
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Room 104, Hodgkin Building, Lancaster Road, Leicester, LE1 7HB UK
| | - Daniel Beck
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Room 104, Hodgkin Building, Lancaster Road, Leicester, LE1 7HB UK
| | | | | | - Melanie Oates
- University of Liverpool, Level 6, Duncan Building, Daulby Street, Liverpool, L69 3GA UK
| | - Andrew Pettitt
- University of Liverpool, Level 6, Duncan Building, Daulby Street, Liverpool, L69 3GA UK
| | - Simon D. Wagner
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Room 104, Hodgkin Building, Lancaster Road, Leicester, LE1 7HB UK
| |
Collapse
|
86
|
miRNAs in platelet-poor blood plasma and purified RNA are highly stable: a confirmatory study. BMC Res Notes 2018; 11:273. [PMID: 29728133 PMCID: PMC5936026 DOI: 10.1186/s13104-018-3378-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 11/18/2022] Open
Abstract
Objective We wished to re-assess the relative stability of microRNAs (miRNAs) as compared with other RNA molecules, which has been confirmed in many contexts. When bound to Argonaute proteins, miRNAs are protected from degradation, even when released into the extracellular space in ribonucleoprotein complexes, and with or without the protection of membranes in extracellular vesicles. Purified miRNAs also appear to present less of a target for degradation than other RNAs. Although miRNAs are by no means immune to degradation, biological samples subjected to prolonged incubation at room temperature, multiple freeze/thaws, or collection in the presence of inhibitors like heparin, can typically be remediated or used directly for miRNA measurements. Results Here, we provide additional confirmation of early, well validated findings on miRNA stability and detectability. Our data also suggest that inadequate depletion of platelets from plasma may explain the occasional report that freeze–thaw cycles can adversely affect plasma miRNA levels. Overall, the repeated observation of miRNA stability is again confirmed.
Collapse
|
87
|
Su Q, Kumar V, Sud N, Mahato RI. MicroRNAs in the pathogenesis and treatment of progressive liver injury in NAFLD and liver fibrosis. Adv Drug Deliv Rev 2018; 129:54-63. [PMID: 29391222 DOI: 10.1016/j.addr.2018.01.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/05/2018] [Accepted: 01/13/2018] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) increases the risk of various liver injuries, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis, and ultimately hepatocellular carcinoma (HCC). Ample evidence has suggested that aberrant expression of microRNAs (miRNAs) is functionally involved in the activation of cellular stress, inflammation and fibrogenesis in hepatic cells, including hepatocytes, Kupffer and hepatic stellate cells (HSCs), at different pathological stages of NAFLD and liver fibrosis. Here, we overview recent findings on the potential role of miRNAs in the pathogenesis of NAFLD, including lipotoxicity, oxidative stress, metabolic inflammation and fibrogenesis. We critically assess the literatures on both human subjects and animal models of NAFLD and liver fibrosis with miRNA dysregulation and their mechanisms of actions in liver damage. We further highlight the potential use of miRNA mimics or antimiRNAs as therapeutic approaches for the prevention and treatment of NAFLD and liver fibrosis.
Collapse
Affiliation(s)
- Qiaozhu Su
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neetu Sud
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
88
|
Molin CJ, Sabre L, Weis CA, Punga T, Punga AR. Thymectomy lowers the myasthenia gravis biomarker miR-150-5p. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 5:e450. [PMID: 29511707 PMCID: PMC5833334 DOI: 10.1212/nxi.0000000000000450] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022]
Abstract
Objective The aim of the study was to analyze the effect of thymectomy on the proposed disease-specific microRNA (miRNA) biomarkers miR-150-5p and miR-21-5p in patients from the prospective randomized trial of thymectomy in myasthenia gravis (MGTX trial) and to evaluate the longitudinal changes in clinical patterns compared with these miRNA levels. Methods Serum samples were obtained from 80 patients with MG who were included in the MGTX trial. Thirty-eight patients were randomized to thymectomy plus prednisone treatment, and 42 patients were randomized to prednisone treatment. Serum samples were analyzed for the expression of miR-150-5p and miR-21-5p, with quantitative reverse transcriptase PCR at baseline and at 12, 24, and 36 months after randomization. The inclusion criteria for participation in the MGTX trial were age 18-65 years, generalized myasthenia gravis (Myasthenia Gravis Foundation of America Class II-IV), disease duration of less than 5 years, and seropositivity for acetylcholine receptor antibodies (AChR+). Results Patients treated with thymectomy had lower levels of miR-150-5p at 24 months, both compared with baseline values (p = 0.0011) and the prednisone group (p = 0.04). No change in miRNA levels was found in the prednisone group. Levels of miR-21-5p displayed a negative correlation with the prednisone dose within the prednisone-only group (p ≤ 0.001). Conclusions Thymectomy lowers the levels of the proposed biomarker miR-150-5p, which strengthens its position as a potential disease-specific biomarker for AChR+ MG.
Collapse
Affiliation(s)
- Carl Johan Molin
- Department of Neuroscience, Clinical Neurophysiology (C.J.M., L.S., A.R.P.), Uppsala University, Sweden; Institute of Pathology (C.-A.W.), University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Germany; and Department of Medical Biochemistry and Microbiology (T.P.), Uppsala University, Sweden
| | - Liis Sabre
- Department of Neuroscience, Clinical Neurophysiology (C.J.M., L.S., A.R.P.), Uppsala University, Sweden; Institute of Pathology (C.-A.W.), University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Germany; and Department of Medical Biochemistry and Microbiology (T.P.), Uppsala University, Sweden
| | - Cleo-Aron Weis
- Department of Neuroscience, Clinical Neurophysiology (C.J.M., L.S., A.R.P.), Uppsala University, Sweden; Institute of Pathology (C.-A.W.), University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Germany; and Department of Medical Biochemistry and Microbiology (T.P.), Uppsala University, Sweden
| | - Tanel Punga
- Department of Neuroscience, Clinical Neurophysiology (C.J.M., L.S., A.R.P.), Uppsala University, Sweden; Institute of Pathology (C.-A.W.), University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Germany; and Department of Medical Biochemistry and Microbiology (T.P.), Uppsala University, Sweden
| | - Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology (C.J.M., L.S., A.R.P.), Uppsala University, Sweden; Institute of Pathology (C.-A.W.), University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Germany; and Department of Medical Biochemistry and Microbiology (T.P.), Uppsala University, Sweden
| |
Collapse
|
89
|
Brandt S, Roos J, Inzaghi E, Kotnik P, Kovac J, Battelino T, Cianfarani S, Nobili V, Colajacomo M, Kratzer W, Denzer C, Fischer-Posovszky P, Wabitsch M. Circulating levels of miR-122 and nonalcoholic fatty liver disease in pre-pubertal obese children. Pediatr Obes 2018; 13:175-182. [PMID: 29271122 DOI: 10.1111/ijpo.12261] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 10/20/2017] [Accepted: 10/31/2017] [Indexed: 01/23/2023]
Abstract
OBJECTIVES The liver-specific miR-122 was proposed as biomarker for NAFLD in adults. Here, we investigated the relationship between miR-122 levels, parameters of liver metabolism and NAFLD in pre-pubertal obese children. METHODS Parameters of liver metabolism (ALT, AST and GGT) of three European cohorts were included (German cohort [n = 71; age: 11.53 ± 1.29 years; BMI z-score: 2.96 ± 0.64], Italian cohort [n = 45; age: 9.60 ± 2.11 years; BMI z-score: 3.57 ± 1.16], Slovenian cohort [n = 31; age: 7.53 ± 1.47 years; BMI z-score: 3.66 ± 0.88]). MiR-122 levels and CK18 concentrations were measured in fasting blood samples. In the German and Italian cohort, the diagnosis of NAFLD and grading of NAFLD was assessed by ultrasound. RESULTS NAFLD was diagnosed in n = 50 patients of the German cohort (29.6%) and in n = 29 patients (72.5%) of the Italian cohort. In all three cohorts, miR-122 was positively correlated with ALT and AST as well as with CK18 concentrations. MiR-122 levels were higher in children with NAFLD compared with healthy controls. CONCLUSIONS MiR-122 levels in pre-pubertal obese children could be a potential biomarker for paediatric NAFLD.
Collapse
Affiliation(s)
- S Brandt
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - J Roos
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - E Inzaghi
- Dipartimento Pediatrico Universitario Ospedaliero, Bambino Gesù Children's Hospital, Tor Vergata University, Rome, Italy
| | - P Kotnik
- University Children's Hospital, Ljubljana, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - J Kovac
- University Children's Hospital, Ljubljana, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - T Battelino
- University Children's Hospital, Ljubljana, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - S Cianfarani
- Dipartimento Pediatrico Universitario Ospedaliero, Bambino Gesù Children's Hospital, Tor Vergata University, Rome, Italy.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - V Nobili
- Hepato-Metabolic Disease Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - M Colajacomo
- Dipartimento Diagnostica per Immagini, Bambino Gesù Children's Hospital, Rome, Italy
| | - W Kratzer
- Department of Internal Medicine I, University Hospital Ulm, Germany
| | - C Denzer
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - P Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - M Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
90
|
Guo L, Li W, Hu L, Zhou H, Zheng L, Yu L, Liang W. Diagnostic value of circulating microRNAs for liver cirrhosis: a meta-analysis. Oncotarget 2018; 9:5397-5405. [PMID: 29435187 PMCID: PMC5797058 DOI: 10.18632/oncotarget.23332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
Circulating microRNAs are potential biomarkers for various diseases including liver cirrhosis. We designed a meta-analysis to evaluate the diagnostic value of circulating microRNAs for liver cirrhosis patients. Eligible studies were identified by searching PubMed, Embase, and the Cochrane Library up to July 1, 2017. The diagnostic sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the receiver operating characteristic (AUROC) curve were analyzed using a random or fixed effects models based on the between-study heterogeneities. Thirteen studies from 7 articles with 627 patients and 418 healthy controls were included in this meta-analysis. All studies had high quality assessment scores. The pooled sensitivity, specificity, PLR, NLR, DOR and AUROC were 0.83 (95% CI: 0.80-0.86), 0.89 (95% CI: 0.86-0.92), 6.41 (95% CI: 3.93-10.44), 0.22 (95% CI: 0.14-0.33), 35.18 (95% CI: 15.90-77.81) and 0.93 (95% CI: 0.91-0.95), respectively. In conclusion, circulating microRNAs may serve as potential noninvasive biomarkers of liver cirrhosis.
Collapse
Affiliation(s)
- Liwei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, China
| | - Weiyan Li
- Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liyang Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, China
| | - Huanhuan Zhou
- Institute of Cancer Research, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lei Zheng
- Institute of Cancer Research, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lifei Yu
- Department of Infectious Diseases, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Weifeng Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, China
| |
Collapse
|
91
|
Droplet Digital PCR for Absolute Quantification of Extracellular MicroRNAs in Plasma and Serum: Quantification of the Cancer Biomarker hsa-miR-141. Methods Mol Biol 2018; 1768:459-474. [PMID: 29717459 DOI: 10.1007/978-1-4939-7778-9_26] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Droplet-based digital PCR provides high-precision, absolute quantification of nucleic acid target sequences with wide-ranging applications for both research and clinical diagnostic applications. Droplet-based digital PCR enables absolute quantification by counting nucleic acid molecules encapsulated in discrete, volumetrically defined water-in-oil droplet partitions. The current available systems overcome the previous lack of scalable and practical technologies for digital PCR implementation. Extracellular microRNAs in biofluids (plasma, serum, urine, cerebrospinal fluid, etc.) are promising noninvasive biomarkers in multiple diseases and different clinical settings (e.g., diagnosis, early diagnosis, prediction of recurrence, and prognosis). Here we describe a protocol that enables highly precise and reproducible absolute quantification of extracellular microRNAs using droplet digital PCR.
Collapse
|
92
|
Ferruelo A, Peñuelas Ó, Lorente JA. MicroRNAs as biomarkers of acute lung injury. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:34. [PMID: 29430451 DOI: 10.21037/atm.2018.01.10] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a common and complex inflammatory lung diseases affecting critically ill patients requiring mechanical ventilation. MicroRNAs (miRNAs), a novel pathway of non-coding RNA molecules that regulate gene expression at the post-transcriptional level, have emerged as a novel class of gene expression, and can play important roles in inflammation or apoptosis, which are common manifestations of ARDS and diffuse alveolar damage (DAD). In the present review, we discuss the role of miRNAs as biomarkers of ARDS and DAD, and their potential use as therapeutic targets for this condition.
Collapse
Affiliation(s)
- Antonio Ferruelo
- Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Óscar Peñuelas
- Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Department of Medicine, Universidad Europea, Madrid, Spain
| | - José A Lorente
- Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Department of Medicine, Universidad Europea, Madrid, Spain
| |
Collapse
|
93
|
Lee M, Cho H, Jung SH, Yim SH, Cho SM, Chun JW, Paik SH, Park YE, Cheon DH, Lee JE, Choi JS, Kim DJ, Chung YJ. Circulating MicroRNA Expression Levels Associated With Internet Gaming Disorder. Front Psychiatry 2018; 9:81. [PMID: 29593587 PMCID: PMC5858605 DOI: 10.3389/fpsyt.2018.00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/27/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Addictive use of the Internet and online games is a potential psychiatric disorder termed Internet gaming disorder (IGD). Altered microRNA (miRNA) expression profiles have been reported in blood and brain tissue of patients with certain psychiatric disorders and suggested as biomarkers. However, there have been no reports on blood miRNA profiles in IGD. METHODS To discover IGD-associated miRNAs, we analyzed the miRNA expression profiles of 51 samples (25 IGD and 26 controls) using the TaqMan Low Density miRNA Array. For validation, we performed quantitative reverse transcription PCR with 36 independent samples (20 IGD and 16 controls). RESULTS Through discovery and independent validation, we identified three miRNAs (hsa-miR-200c-3p, hsa-miR-26b-5p, hsa-miR-652-3p) that were significantly downregulated in the IGD group. Individuals with all three miRNA alterations had a much higher risk of IGD than those with no alteration [odds ratio (OR) 22, 95% CI 2.29-211.11], and the ORs increased dose dependently with number of altered miRNAs. The predicted target genes of the three miRNAs were associated with neural pathways. We explored the protein expression of the three downstream target genes by western blot and confirmed that expression of GABRB2 and DPYSL2 was significantly higher in the IGD group. CONCLUSION We observed that expressions of hsa-miR-200c-3p, hsa-miR-26b-5p, and hsa-miR-652-3p were downregulated in the IGD patients. Our results will be helpful to understand the pathophysiology of IGD.
Collapse
Affiliation(s)
- Minho Lee
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyeyoung Cho
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Hyun Jung
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seon-Hee Yim
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Min Cho
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji-Won Chun
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Soo-Hyun Paik
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yae Eun Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Dong Huey Cheon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Department of Biomedical Engineering, Sogang University, Seoul, South Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jung-Seok Choi
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeun-Jun Chung
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
94
|
Zou YF, Zhang W. Role of microRNA in the detection, progression, and intervention of acute kidney injury. Exp Biol Med (Maywood) 2017; 243:129-136. [PMID: 29264947 DOI: 10.1177/1535370217749472] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute kidney injury, characterized by sharply decreased renal function, is a common and important complication in hospitalized patients. The pathological mechanism of acute kidney injury is mainly related to immune activation and inflammation. Given the high morbidity and mortality rates of hospitalized patients with acute kidney injury, the identification of biomarkers useful for assessing risk, making an early diagnosis, evaluating the prognosis, and classifying the injury severity is urgently needed. Furthermore, investigation into the development of acute kidney injury and potential therapeutic targets is required. While microRNA was first discovered in Caenorhabditis elegans, Gary Ruvkun's laboratory identified the first microRNA target gene. Together, these two important findings confirmed the existence of a novel post-transcriptional gene regulatory mechanism. Considering that serum creatinine tests often fail in the early detection of AKI, testing for microRNAs as early diagnostic biomarkers has shown great potential. Numerous studies have identified microRNAs that can serve as biomarkers for the detection of acute kidney injury. In addition, as microRNAs can control the expression of multiple proteins through hundreds or thousands of targets influencing multiple signaling pathways, the number of studies on the functions of microRNAs in AKI progression is increasing. Here, we mainly focus on research into microRNAs as biomarkers and explorations of their functions in acute kidney injury. Impact statement Firstly, we have discussed the potential advantages and limitations of miRNA as biomarkers. Secondly, we have summarized the role of miRNA in the progress of AKI. Finally, we have made a vision of miRNA's potential and advantages as therapeutic target intervention AKI.
Collapse
Affiliation(s)
- Yan-Fang Zou
- Department of Nephrology, 66281 School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University , Shanghai 200025, PR China
| | - Wen Zhang
- Department of Nephrology, 66281 School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University , Shanghai 200025, PR China
| |
Collapse
|
95
|
Wang Y, Chen S, Gao Y, Zhang S. Serum MicroRNA-27b as a Screening Biomarker for Left Ventricular Hypertrophy. Tex Heart Inst J 2017; 44:385-389. [PMID: 29276436 DOI: 10.14503/thij-16-5955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
MicroRNA-27b (miR-27b) is frequently upregulated in pressure-overloaded hypertrophic hearts. The clinical implications of aberrant circulating miR-27b in the diagnosis and management of left ventricular hypertrophy warrant study. We investigated whether serum miR-27b is a biomarker for left ventricular hypertrophy (LVH). We used stem-loop reverse-transcription quantitative polymerase chain reaction techniques to analyze serum miR-27b levels in 200 hypertensive patients with LVH, 100 hypertensive patients without LVH, and 100 healthy volunteers. We found that serum miR-27b levels were significantly higher in the hypertensive patients with LVH than in the hypertensive patients without LVH and in the healthy volunteers. Upon receiver operating characteristic curve analysis, serum miR-27b had an area under the curve of 0.885 with 91% sensitivity and 73% specificity in distinguishing hypertensive patients with LVH from healthy volunteers (P=0.021), and an area under the curve of 0.818 with 79.1% sensitivity and 70.3% specificity in distinguishing hypertensive patients with LVH from those without LVH (P=0.036). We conclude that circulating miR-27b might serve as a specific, noninvasive biomarker in screening for LVH.
Collapse
|
96
|
Sheinerman KS, Toledo JB, Tsivinsky VG, Irwin D, Grossman M, Weintraub D, Hurtig HI, Chen-Plotkin A, Wolk DA, McCluskey LF, Elman LB, Trojanowski JQ, Umansky SR. Circulating brain-enriched microRNAs as novel biomarkers for detection and differentiation of neurodegenerative diseases. ALZHEIMERS RESEARCH & THERAPY 2017; 9:89. [PMID: 29121998 PMCID: PMC5679501 DOI: 10.1186/s13195-017-0316-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
Background Minimally invasive specific biomarkers of neurodegenerative diseases (NDs) would facilitate patient selection and disease progression monitoring. We describe the assessment of circulating brain-enriched microRNAs as potential biomarkers for Alzheimer’s disease (AD), frontotemporal dementia (FTD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Methods In this case-control study, the plasma samples were collected from 250 research participants with a clinical diagnosis of AD, FTD, PD, and ALS, as well as from age- and sex-matched control subjects (n = 50 for each group), recruited from 2003 to 2015 at the University of Pennsylvania Health System, including the Alzheimer’s Disease Center, the Parkinson’s Disease and Movement Disorders Center, the Frontotemporal Degeneration Center, and the Amyotrophic Lateral Sclerosis Clinic. Each group was randomly divided into training and confirmation sets of equal size. To evaluate the potential of circulating microRNAs enriched in specific brain regions affected by NDs and present in synapses as biomarkers of NDs, the levels of 37 brain-enriched and inflammation-associated microRNAs in the plasma of all participants were measured using individual qRT-PCR. A “microRNA pair” approach was used for data normalization. Results MicroRNA pairs and their combinations (classifiers) capable of differentiating NDs from control and from each other were defined using independently and jointly analyzed training and confirmation datasets. AD, PD, FTD, and ALS are differentiated from control with accuracy of 0.89, 0.90, 0.88, and 0.83 (AUCs, 0.96, 0.96, 0.94, and 0.93), respectively; NDs are differentiated from each other with accuracy ranging from 0.77 (AUC, 0.87) for AD vs. FTD to 0.93 (AUC, 0.98) for AD vs. ALS. The data further indicate sex dependence of some microRNA markers. The average increase in accuracy in distinguishing ND from control for all and male/female groups is 0.06; the largest increase is for ALS, from 0.83 for all participants to 0.92/0.98 for male/female participants. Conclusions The work presented here suggests the possibility of developing microRNA-based diagnostics for detection and differentiation of NDs. Larger multicenter clinical studies are needed to further evaluate circulating brain-enriched microRNAs as biomarkers for NDs and to investigate their association with other ND biomarkers in clinical trial settings. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0316-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jon B Toledo
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Present address: Department of Neurology, Houston Methodist Hospital, Houston, TX, 77030, USA
| | | | - David Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel Weintraub
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Howard I Hurtig
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Leo F McCluskey
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren B Elman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Institute on Aging, Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | |
Collapse
|
97
|
Jiang W, Pan JJ, Deng YH, Liang MR, Yao LH. Down-regulated serum microRNA-101 is associated with aggressive progression and poor prognosis of cervical cancer. J Gynecol Oncol 2017; 28:e75. [PMID: 29027393 PMCID: PMC5641525 DOI: 10.3802/jgo.2017.28.e75] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/25/2017] [Accepted: 07/11/2017] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE MicroRNAs (miRNAs) play a vital role in pathogenesis and progression of many cancers, including cervical cancer. However, importance of serum level of miR-101 in cervical cancer has rarely been studied. In the present study, clinical significance and prognostic value of serum miR-101 for cervical cancer was investigated. METHODS Association between miR-101 level in cervical cancer tissues and prognosis of patients was analyzed by using data retrieved from The Cancer Genome Atlas (TCGA) database, which was followed with our clinical study in which miR-101 serum level comparison between cervical cancer patients and healthy controls was conducted by real-time quantitative polymerase chain reaction (PCR). RESULTS TCGA database demonstrated that miR-101 was down-regulated in cervical cancer tissues compared with normal cervical tissues, and univariate Cox regression analysis indicated that decreased miR-101 expression was a highly significant negative risk factor. Similar trend was found in the serum miR-101. Serum level of miR-101 was associated with International Federation of Gynecology and Obstetrics (FIGO) stage (p=0.003), lymph node metastasis (p=0.001), and serum squamous cell carcinoma antigen (SCC-Ag) level >4 (p=0.007). The overall survival time of cervical cancer patients with a higher level of serum miR-101 was significantly longer than that of patients with a lower level of serum miR-101. Moreover, multivariate Cox regression analysis indicated that the down-regulated serum level of miR-101 was an independent predictor for the unfavorable prognosis of cervical cancer. CONCLUSION Serum level of miR-101 is closely associated with metastasis and prognosis of cervical cancer; and, hence could be a potential biomarker and prognostic predictor for cervical cancer.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Gynecologic Oncology, Jiangxi Maternal and Child Health Hospital, Nanchang, China.
| | - Jia Jia Pan
- Department of Reproduction, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Ying Hui Deng
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Mei Rong Liang
- Department of Gynecologic Oncology, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Li Hua Yao
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, China.
| |
Collapse
|
98
|
Review: Environmental impact on ocular surface disorders: Possible epigenetic mechanism modulation and potential biomarkers. Ocul Surf 2017; 15:680-687. [DOI: 10.1016/j.jtos.2017.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/02/2017] [Accepted: 05/28/2017] [Indexed: 12/27/2022]
|
99
|
Gutierrez-Loli R, Orrego MA, Sevillano-Quispe OG, Herrera-Arrasco L, Guerra-Giraldez C. MicroRNAs in Taenia solium Neurocysticercosis: Insights as Promising Agents in Host-Parasite Interaction and Their Potential as Biomarkers. Front Microbiol 2017; 8:1905. [PMID: 29033926 PMCID: PMC5626859 DOI: 10.3389/fmicb.2017.01905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/19/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are short, endogenous, non-coding, single-stranded RNAs involved in post-transcriptional gene regulation. Although, several miRNAs have been identified in parasitic helminths, there is little information about their identification and function in Taenia. Furthermore, the impact of miRNAs in neurocysticercosis, the brain infection caused by larvae of Taenia solium is still unknown. During chronic infection, T. solium may activate numerous mechanisms aimed to modulate host immune responses. Helminthic miRNAs might also have effects on host mRNA expression and thus play an important role regulating host-parasite interactions. Also, the diagnosis of this disease is difficult and it usually requires neuroimaging and confirmatory serology. Since miRNAs are stable when released, they can be detected in body fluids and therefore have potential to diagnose infection, determine parasite burden, and ascertain effectiveness of treatment or disease progression, for instance. This review discusses the potential roles of miRNAs in T. solium infection, including regulation of host-parasite relationships and their eventual use as diagnostic or disease biomarkers. Additionally, we summarize the bioinformatics resources available for identification of T. solium miRNAs and prediction of their targets.
Collapse
Affiliation(s)
- Renzo Gutierrez-Loli
- Neurocysticercosis Lab, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Miguel A Orrego
- Neurocysticercosis Lab, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Oscar G Sevillano-Quispe
- Neurocysticercosis Lab, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Luis Herrera-Arrasco
- Neurocysticercosis Lab, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Cristina Guerra-Giraldez
- Neurocysticercosis Lab, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
100
|
Cirnigliaro M, Barbagallo C, Gulisano M, Domini CN, Barone R, Barbagallo D, Ragusa M, Di Pietro C, Rizzo R, Purrello M. Expression and Regulatory Network Analysis of miR-140-3p, a New Potential Serum Biomarker for Autism Spectrum Disorder. Front Mol Neurosci 2017; 10:250. [PMID: 28848387 PMCID: PMC5554380 DOI: 10.3389/fnmol.2017.00250] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Given its prevalence and social impact, Autism Spectrum Disorder (ASD) is drawing much interest. Molecular basis of ASD is heterogeneous and only partially known. Many factors, including disorders comorbid with ASD, like TS (Tourette Syndrome), complicate ASD behavior-based diagnosis and make it vulnerable to bias. To further investigate ASD etiology and to identify potential biomarkers to support its precise diagnosis, we used TaqMan Low Density Array technology to profile serum miRNAs from ASD, TS, and TS+ASD patients, and unaffected controls (NCs). Through validation assays in 30 ASD, 24 TS, and 25 TS+ASD patients and 25 NCs, we demonstrated that miR-140-3p is upregulated in ASD vs.: NC, TS, and TS+ASD (Tukey's test, p-values = 0.03, = 0.01, < 0.0001, respectively). ΔCt values for miR-140-3p and YGTSS (Yale Global Tic Severity Scale) scores are positively correlated (Spearman r = 0.33; Benjamini-Hochberg p = 0.008) and show a linear relationship (p = 0.002). Network functional analysis showed that nodes controlled by miR-140-3p, especially CD38 and NRIP1 which are its validated targets, are involved in processes convergingly dysregulated in ASD, such as synaptic plasticity, immune response, and chromatin binding. Biomarker analysis proved that serum miR-140-3p can discriminate among: (1) ASD and NC (Area under the ROC curve, AUC: 0.70; sensitivity: 63.33%; specificity: 68%); (2) ASD and TS (AUC: 0.72; sensitivity: 66.66%; specificity: 70.83%); (3) ASD and TS+ASD (AUC: 0.78; sensitivity: 73.33%; specificity: 76%). Characterization of miR-140-3p network would contribute to further clarify ASD etiology. Serum miR-140-3p could represent a potential non-invasive biomarker for ASD, easy to test through liquid biopsy.
Collapse
Affiliation(s)
- Matilde Cirnigliaro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Cristina Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Mariangela Gulisano
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of CataniaCatania, Italy
| | - Carla N Domini
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of CataniaCatania, Italy
| | - Rita Barone
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of CataniaCatania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy.,Associazione Oasi Maria SS. Onlus (IRCCS), Institute for Research on Mental Retardation and Brain AgingTroina, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Renata Rizzo
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of CataniaCatania, Italy
| | - Michele Purrello
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| |
Collapse
|