51
|
Eshleman N, Luo X, Capaldi A, Buchan JR. Alterations of signaling pathways in response to chemical perturbations used to measure mRNA decay rates in yeast. RNA (NEW YORK, N.Y.) 2020; 26:10-18. [PMID: 31601735 PMCID: PMC6913126 DOI: 10.1261/rna.072892.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Assessing variations in mRNA stability typically involves inhibiting transcription either globally or in a gene-specific manner. Alternatively, mRNA pulse-labeling strategies offer a means to calculate mRNA stability without inhibiting transcription. However, key stress-responsive cell signaling pathways, which affect mRNA stability, may themselves be perturbed by the approaches used to measure mRNA stability, leading to artifactual results. Here, we have focused on common strategies to measure mRNA half-lives in yeast and determined that commonly used transcription inhibitors thiolutin and 1,10 phenanthroline inhibit TORC1 signaling, PKC signaling, and partially activate HOG signaling. Additionally, 4-thiouracil (4tU), a uracil analog used in mRNA pulse-labeling approaches, modestly induces P-bodies, mRNA-protein granules implicated in storage and decay of nontranslating mRNA. Thiolutin also induces P-bodies, whereas phenanthroline has no effect. Doxycycline, which controls "Tet On/Tet Off" regulatable promoters, shows no impact on the above signaling pathways or P-bodies. In summary, our data argues that broad-acting transcriptional inhibitors are problematic for determining mRNA half-life, particularly if studying the impacts of the TORC1, HOG, or PKC pathway on mRNA stability. Regulatable promoter systems are a preferred approach for individual mRNA half-life studies, with 4tU labeling representing a good approach to global mRNA half-life analysis, despite modestly inducing P-bodies.
Collapse
Affiliation(s)
- Nichole Eshleman
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Xiangxia Luo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Andrew Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
52
|
Izumikawa K, Ishikawa H, Yoshikawa H, Fujiyama S, Watanabe A, Aburatani H, Tachikawa H, Hayano T, Miura Y, Isobe T, Simpson RJ, Li L, Min J, Takahashi N. LYAR potentiates rRNA synthesis by recruiting BRD2/4 and the MYST-type acetyltransferase KAT7 to rDNA. Nucleic Acids Res 2019; 47:10357-10372. [PMID: 31504794 PMCID: PMC6821171 DOI: 10.1093/nar/gkz747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/22/2019] [Accepted: 08/20/2018] [Indexed: 02/06/2023] Open
Abstract
Activation of ribosomal RNA (rRNA) synthesis is pivotal during cell growth and proliferation, but its aberrant upregulation may promote tumorigenesis. Here, we demonstrate that the candidate oncoprotein, LYAR, enhances ribosomal DNA (rDNA) transcription. Our data reveal that LYAR binds the histone-associated protein BRD2 without involvement of acetyl-lysine-binding bromodomains and recruits BRD2 to the rDNA promoter and transcribed regions via association with upstream binding factor. We show that BRD2 is required for the recruitment of the MYST-type acetyltransferase KAT7 to rDNA loci, resulting in enhanced local acetylation of histone H4. In addition, LYAR binds a complex of BRD4 and KAT7, which is then recruited to rDNA independently of the BRD2-KAT7 complex to accelerate the local acetylation of both H4 and H3. BRD2 also helps recruit BRD4 to rDNA. By contrast, LYAR has no effect on rDNA methylation or the binding of RNA polymerase I subunits to rDNA. These data suggest that LYAR promotes the association of the BRD2-KAT7 and BRD4-KAT7 complexes with transcription-competent rDNA loci but not to transcriptionally silent rDNA loci, thereby increasing rRNA synthesis by altering the local acetylation status of histone H3 and H4.
Collapse
Affiliation(s)
- Keiichi Izumikawa
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hideaki Ishikawa
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Harunori Yoshikawa
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sally Fujiyama
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Akira Watanabe
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University 53, Shogoin-kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8507, Japan
| | - Hiroyuki Aburatani
- Laboratory for System Biology and Medicine, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroyuki Tachikawa
- Department of Applied Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshiya Hayano
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan
| | - Yutaka Miura
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Richard J Simpson
- Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,La Trobe Institute for Molecular Science (LIMS) LIMS Building 1, Room 412 La Trobe University, Bundoora Victoria 3086, Australia
| | - Li Li
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, Ontario M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jinrong Min
- Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, Ontario M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nobuhiro Takahashi
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
53
|
Rodrigues DF, Costa VM, Silvestre R, Bastos ML, Carvalho F. Methods for the analysis of transcriptome dynamics. Toxicol Res (Camb) 2019; 8:597-612. [PMID: 31588338 PMCID: PMC6764467 DOI: 10.1039/c9tx00088g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
The transcriptome is the complete set of transcripts in a cell or tissue and includes ribosomal RNA (rRNA), messenger RNA (mRNA), transfer RNA (tRNA), and regulatory noncoding RNA. At steady-state, the transcriptome results from a compensatory variation of the transcription and decay rate to maintain the RNA concentration constant. RNA transcription constitutes the first stage in gene expression, and thus is a major and primary mode of gene expression control. Nevertheless, regulation of RNA decay is also a key factor in gene expression control, involving either selective RNA stabilization or enhanced degradation. Transcriptome analysis allows the identification of gene expression alterations, providing new insights regarding the pathways and mechanisms involved in physiological and pathological processes. Upon perturbation of cell homeostasis, rapid changes in gene expression are required to adapt to new conditions. Thus, to better understand the regulatory mechanisms associated with gene expression alterations, it is vital to acknowledge the relative contribution of RNA synthesis and decay to the transcriptome. To the toxicology field, the study of gene expression regulation mechanisms can help identify the early and mechanistic relevant cellular events associated with a particular response. This review aims to provide a critical comparison of the available methods used to analyze the contribution of RNA transcription and decay to gene expression dynamics. Notwithstanding, an integration of the data obtained is necessary to understand the entire repercussions of gene transcription changes at a system-level. Thus, a brief overview of the methods available for the integration and analysis of the data obtained from transcriptome analysis will also be provided.
Collapse
Affiliation(s)
- Daniela F Rodrigues
- UCIBIO , REQUIMTE , Laboratory of Toxicology , Faculty of Pharmacy , University of Porto , Rua Jorge Viterbo Ferreira , 228 , 4050-313 , Porto , Portugal . ;
| | - Vera M Costa
- UCIBIO , REQUIMTE , Laboratory of Toxicology , Faculty of Pharmacy , University of Porto , Rua Jorge Viterbo Ferreira , 228 , 4050-313 , Porto , Portugal . ;
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS) , School of Medicine , University of Minho , Campus de Gualtar , 4710-057 , Braga , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães , Campus de Gualtar , 4710-057 , Braga , Portugal
| | - Maria L Bastos
- UCIBIO , REQUIMTE , Laboratory of Toxicology , Faculty of Pharmacy , University of Porto , Rua Jorge Viterbo Ferreira , 228 , 4050-313 , Porto , Portugal . ;
| | - Félix Carvalho
- UCIBIO , REQUIMTE , Laboratory of Toxicology , Faculty of Pharmacy , University of Porto , Rua Jorge Viterbo Ferreira , 228 , 4050-313 , Porto , Portugal . ;
| |
Collapse
|
54
|
Muthmann N, Hartstock K, Rentmeister A. Chemo-enzymatic treatment of RNA to facilitate analyses. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1561. [PMID: 31392842 DOI: 10.1002/wrna.1561] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/17/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Labeling RNA is a recurring problem to make RNA compatible with state-of-the-art methodology and comes in many flavors. Considering only cellular applications, the spectrum still ranges from site-specific labeling of individual transcripts, for example, for live-cell imaging of mRNA trafficking, to metabolic labeling in combination with next generation sequencing to capture dynamic aspects of RNA metabolism on a transcriptome-wide scale. Combining the specificity of RNA-modifying enzymes with non-natural substrates has emerged as a valuable strategy to modify RNA site- or sequence-specifically with functional groups suitable for subsequent bioorthogonal reactions and thus label RNA with reporter moieties such as affinity or fluorescent tags. In this review article, we will cover chemo-enzymatic approaches (a) for in vitro labeling of RNA for application in cells, (b) for treatment of total RNA, and (c) for metabolic labeling of RNA. This article is categorized under: RNA Processing < RNA Editing and Modification RNA Methods < RNA Analyses in vitro and In Silico RNA Methods < RNA Analyses in Cells.
Collapse
Affiliation(s)
- Nils Muthmann
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Katja Hartstock
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Andrea Rentmeister
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
55
|
Matsushima W, Herzog VA, Neumann T, Gapp K, Zuber J, Ameres SL, Miska EA. Sequencing cell-type-specific transcriptomes with SLAM-ITseq. Nat Protoc 2019; 14:2261-2278. [PMID: 31243395 PMCID: PMC6997029 DOI: 10.1038/s41596-019-0179-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
Abstract
Analysis of cell-type-specific transcriptomes is vital for understanding the biology of tissues and organs in the context of multicellular organisms. In this Protocol Extension, we combine a previously developed cell-type-specific metabolic RNA labeling method (thiouracil (TU) tagging) and a pipeline to detect the labeled transcripts by a novel RNA sequencing (RNA-seq) method, SLAMseq (thiol (SH)-linked alkylation for the metabolic sequencing of RNA). By injecting a uracil analog, 4-thiouracil, into transgenic mice that express cell-type-specific uracil phosphoribosyltransferase (UPRT), an enzyme required for 4-thiouracil incorporation into newly synthesized RNA, only cells expressing UPRT synthesize thiol-containing RNA. Total RNA isolated from a tissue of interest is then sequenced with SLAMseq, which introduces thymine to cytosine (T>C) conversions at the sites of the incorporated 4-thiouracil. The resulting sequencing reads are then mapped with the T>C-aware alignment software, SLAM-DUNK, which allows mapping of reads containing T>C mismatches. The number of T>C conversions per transcript is further analyzed to identify which transcripts are synthesized in the UPRT-expressing cells. Thus, our method, SLAM-ITseq (SLAMseq in tissue), enables cell-specific transcriptomics without laborious FACS-based cell sorting or biochemical isolation of the labeled transcripts used in TU tagging. In the murine tissues we assessed previously, this method identified ~5,000 genes that are expressed in a cell type of interest from the total RNA pool from the tissue. Any laboratory with access to a high-throughput sequencer and high-power computing can adapt this protocol with ease, and the entire pipeline can be completed in <5 d.
Collapse
Affiliation(s)
- Wayo Matsushima
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Veronika A Herzog
- Institute of Molecular Biotechnology, Vienna Biocenter Campus, Vienna, Austria
| | - Tobias Neumann
- Research Institute of Molecular Pathology, Vienna Biocenter Campus, Vienna, Austria
| | - Katharina Gapp
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna Biocenter Campus, Vienna, Austria
| | - Stefan L Ameres
- Institute of Molecular Biotechnology, Vienna Biocenter Campus, Vienna, Austria
| | - Eric A Miska
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| |
Collapse
|
56
|
Park S, Ahn SH, Cho ES, Cho YK, Jang ES, Chi SW. CLIPick: a sensitive peak caller for expression-based deconvolution of HITS-CLIP signals. Nucleic Acids Res 2019; 46:11153-11168. [PMID: 30329090 PMCID: PMC6265468 DOI: 10.1093/nar/gky917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
High-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP, also called CLIP-Seq) has been used to map global RNA–protein interactions. However, a critical caveat of HITS-CLIP results is that they contain non-linear background noise—different extent of non-specific interactions caused by individual transcript abundance—that has been inconsiderately normalized, resulting in sacrifice of sensitivity. To properly deconvolute RNA–protein interactions, we have implemented CLIPick, a flexible peak calling pipeline for analyzing HITS-CLIP data, which statistically determines the signal-to-noise ratio for each transcript based on the expression-dependent background simulation. Comprising of streamlined Python modules with an easy-to-use standalone graphical user interface, CLIPick robustly identifies significant peaks and quantitatively defines footprint regions within which RNA–protein interactions were occurred. CLIPick outperforms other peak callers in accuracy and sensitivity, selecting the largest number of peaks particularly in lowly expressed transcripts where such marginal signals are hard to discriminate. Specifically, the application of CLIPick to Argonaute (Ago) HITS-CLIP data were sensitive enough to uncover extended features of microRNA target sites, and these sites were experimentally validated. CLIPick enables to resolve critical interactions in a wide spectrum of transcript levels and extends the scope of HITS-CLIP analysis. CLIPick is available at: http://clip.korea.ac.kr/clipick/
Collapse
Affiliation(s)
- Sihyung Park
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Seung Hyun Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Eun Sol Cho
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - You Kyung Cho
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Eun-Sook Jang
- Department of Life Sciences, Korea University, Seoul 02841, Korea.,EncodeGEN Co. Ltd., Seoul 06329, Korea
| | - Sung Wook Chi
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.,Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
57
|
Zhang Q, An Y, Chen ZS, Koon AC, Lau KF, Ngo JCK, Chan HYE. A Peptidylic Inhibitor for Neutralizing r(GGGGCC) exp-Associated Neurodegeneration in C9ALS-FTD. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:172-185. [PMID: 30889483 PMCID: PMC6424097 DOI: 10.1016/j.omtn.2019.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
Abstract
One drug, two diseases is a rare and economical therapeutic strategy that is highly desirable in the pharmaceutical industry. We previously reported a 21-amino acid peptide named beta-structured inhibitor for neurodegenerative diseases (BIND) that can effectively inhibit expanded CAG trinucleotide toxicity in polyglutamine (polyQ) diseases. Here we report that BIND also effectively inhibits GGGGCC repeat-mediated neurodegeneration in vitro and in vivo. When fused with a cell-penetrating peptide derived from the transactivator of transcription (TAT) protein of the HIV, TAT-BIND reduces cell death, formation of GGGGCC RNA foci, and levels of poly-GR, poly-GA, and poly-GP dipeptide proteins in cell models of C9ORF72-associated amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS-FTD). We showed that TAT-BIND disrupts the interaction between GGGGCC RNA and nucleolin protein, restores rRNA maturation, and inhibits mislocalization of nucleolin and B23, which eventually suppresses nucleolar stress in C9ALS-FTD. In a Drosophila model of C9ALS-FTD, TAT-BIND suppresses retinal degeneration, rescues climbing ability, and extends the lifespan of flies. In contrast, TAT-BIND has no effect on UAS-poly-glycine-arginine (poly-GR)100-expressing flies, which generate only poly-GR protein toxicity, indicating BIND ameliorates toxicity in C9ALS-FTD models via a r(GGGGCC)exp-dependent inhibitory mechanism. Our findings demonstrated that, apart from being a potential therapeutic for polyQ diseases, BIND is also a potent peptidylic inhibitor that suppresses expanded GGGGCC RNA-mediated neurodegeneration, highlighting its potential application in C9ALS-FTD treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ying An
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Zhefan Stephen Chen
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Alex Chun Koon
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China.
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China.
| |
Collapse
|
58
|
Moore KS, 't Hoen PAC. Computational approaches for the analysis of RNA-protein interactions: A primer for biologists. J Biol Chem 2018; 294:1-9. [PMID: 30455357 DOI: 10.1074/jbc.rev118.004842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA-binding proteins (RBPs) play important roles in the control of gene expression and the coordination of different layers of post-transcriptional regulation. Interactions between certain RBPs and mRNA transcripts are notoriously difficult to predict, as any given protein-RNA interaction may rely not only on RNA sequence, but also on three-dimensional RNA structures, competitive inhibition from other RBPs, and input from cellular signaling pathways. Advanced and high-throughput technologies for the identification of RNA-protein interactions have come to the rescue, but the identification of binding sites and downstream functional effects of RBPs from the resulting data can be challenging. In this review, we discuss statistical inference and machine-learning approaches and tools relevant for the study of RBPs and the analysis of large-scale RNA-protein interaction datasets. This primer is intended for life scientists who are interested in incorporating these tools into their own research. We begin with the demystification of regression models, as used in the analysis of next-generation sequencing data, and progress to a discussion of Hidden Markov Models, which are of particular value in analyzing cross-linking followed by immunoprecipitation data. We then continue with examples of machine learning techniques, such as support vector machines and gradient tree boosting. We close with a brief discussion of current trends in the field, including deep learning architectures.
Collapse
Affiliation(s)
- Kat S Moore
- Department of Hematopoiesis, Sanquin, and Landsteiner Laboratory AMC/UvA, 1066 CX Amsterdam
| | - Peter A C 't Hoen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
59
|
Duffy EE, Schofield JA, Simon MD. Gaining insight into transcriptome-wide RNA population dynamics through the chemistry of 4-thiouridine. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1513. [PMID: 30370679 DOI: 10.1002/wrna.1513] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
Cellular RNA levels are the result of a juggling act between RNA transcription, processing, and degradation. By tuning one or more of these parameters, cells can rapidly alter the available pool of transcripts in response to stimuli. While RNA sequencing (RNA-seq) is a vital method to quantify RNA levels genome-wide, it is unable to capture the dynamics of different RNA populations at steady-state or distinguish between different mechanisms that induce changes to the steady-state (i.e., altered rate of transcription vs. degradation). The dynamics of different RNA populations can be studied by targeted incorporation of noncanonical nucleosides. 4-Thiouridine (s4 U) is a commonly used and versatile RNA metabolic label that allows the study of many properties of RNA metabolism from synthesis to degradation. Numerous experimental strategies have been developed that leverage the power of s4 U to label newly transcribed RNA in whole cells, followed by enrichment with activated disulfides or chemistry to induce C mutations at sites of s4 U during sequencing. This review presents existing methods to study RNA population dynamics genome-wide using s4 U metabolic labeling, as well as a discussion of considerations and challenges when designing s4 U metabolic labeling experiments. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Erin E Duffy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.,Chemical Biology Institute, Yale University, West Haven, Connecticut
| | - Jeremy A Schofield
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.,Chemical Biology Institute, Yale University, West Haven, Connecticut
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.,Chemical Biology Institute, Yale University, West Haven, Connecticut
| |
Collapse
|
60
|
Perez-Perri JI, Rogell B, Schwarzl T, Stein F, Zhou Y, Rettel M, Brosig A, Hentze MW. Discovery of RNA-binding proteins and characterization of their dynamic responses by enhanced RNA interactome capture. Nat Commun 2018; 9:4408. [PMID: 30352994 PMCID: PMC6199288 DOI: 10.1038/s41467-018-06557-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/12/2018] [Indexed: 01/25/2023] Open
Abstract
Following the realization that eukaryotic RNA-binding proteomes are substantially larger than anticipated, we must now understand their detailed composition and dynamics. Methods such as RNA interactome capture (RIC) have begun to address this need. However, limitations of RIC have been reported. Here we describe enhanced RNA interactome capture (eRIC), a method based on the use of an LNA-modified capture probe, which yields numerous advantages including greater specificity and increased signal-to-noise ratios compared to existing methods. In Jurkat cells, eRIC reduces the rRNA and DNA contamination by >10-fold compared to RIC and increases the detection of RNA-binding proteins. Due to its low background, eRIC also empowers comparative analyses of changes of RNA-bound proteomes missed by RIC. For example, in cells treated with dimethyloxalylglycine, which inhibits RNA demethylases, eRIC identifies m6A-responsive RNA-binding proteins that escape RIC. eRIC will facilitate the unbiased characterization of RBP dynamics in response to biological and pharmacological cues. RNA interactome capture allows the detailed investigation of RNA-bound proteomes. Here the authors describe enhanced RNA-interactome capture using LNA-modified probes for increased sensitivity and specificity.
Collapse
Affiliation(s)
- Joel I Perez-Perri
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Birgit Rogell
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Thomas Schwarzl
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Yang Zhou
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Annika Brosig
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Matthias W Hentze
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany. .,Molecular Medicine Partnership Unit (MMPU), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.
| |
Collapse
|
61
|
Ule J, Hwang HW, Darnell RB. The Future of Cross-Linking and Immunoprecipitation (CLIP). Cold Spring Harb Perspect Biol 2018; 10:a032243. [PMID: 30068528 PMCID: PMC6071486 DOI: 10.1101/cshperspect.a032243] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To understand the assembly and functional outcomes of protein-RNA regulation, it is crucial to precisely identify the positions of such interactions. Cross-linking and immunoprecipitation (CLIP) serves this purpose by exploiting covalent protein-RNA cross-linking and RNA fragmentation, along with a series of stringent purification and quality control steps to prepare complementary DNA (cDNA) libraries for sequencing. Here we describe the core steps of CLIP, its primary variations, and the approaches to data analysis. We present the application of CLIP to studies of specific cell types in genetically engineered mice and discuss the mechanistic and physiologic insights that have already been gained from studies using CLIP. We conclude by discussing the future opportunities for CLIP, including studies of human postmortem tissues from disease patients and controls, RNA epigenetic modifications, and RNA structure. These and other applications of CLIP will continue to unravel fundamental gene regulatory mechanisms while providing important biologic and clinically relevant insights.
Collapse
Affiliation(s)
- Jernej Ule
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Hun-Way Hwang
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065
| |
Collapse
|
62
|
Bieniasz PD, Kutluay SB. CLIP-related methodologies and their application to retrovirology. Retrovirology 2018; 15:35. [PMID: 29716635 PMCID: PMC5930818 DOI: 10.1186/s12977-018-0417-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/17/2018] [Indexed: 01/28/2023] Open
Abstract
Virtually every step of HIV-1 replication and numerous cellular antiviral defense mechanisms are regulated by the binding of a viral or cellular RNA-binding protein (RBP) to distinct sequence or structural elements on HIV-1 RNAs. Until recently, these protein-RNA interactions were studied largely by in vitro binding assays complemented with genetics approaches. However, these methods are highly limited in the identification of the relevant targets of RBPs in physiologically relevant settings. Development of crosslinking-immunoprecipitation sequencing (CLIP) methodology has revolutionized the analysis of protein-nucleic acid complexes. CLIP combines immunoprecipitation of covalently crosslinked protein-RNA complexes with high-throughput sequencing, providing a global account of RNA sequences bound by a RBP of interest in cells (or virions) at near-nucleotide resolution. Numerous variants of the CLIP protocol have recently been developed, some with major improvements over the original. Herein, we briefly review these methodologies and give examples of how CLIP has been successfully applied to retrovirology research.
Collapse
Affiliation(s)
- Paul D. Bieniasz
- Howard Hughes Medical Institute and Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065 USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110 USA
| |
Collapse
|
63
|
Köster T, Meyer K. Plant Ribonomics: Proteins in Search of RNA Partners. TRENDS IN PLANT SCIENCE 2018; 23:352-365. [PMID: 29429586 DOI: 10.1016/j.tplants.2018.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
Research into the regulation of gene expression underwent a shift from focusing on DNA-binding proteins as key transcriptional regulators to RNA-binding proteins (RBPs) that come into play once transcription has been initiated. RBPs orchestrate all RNA-processing steps in the cell. To obtain a global view of in vivo targets, the RNA complement associated with particular RBPs is determined via immunoprecipitation of the RBP and subsequent identification of bound RNAs via RNA-seq. Here, we describe technical advances in identifying RBP in vivo targets and their binding motifs. We provide an up-to-date view of targets of nucleocytoplasmic RBPs collected in arabidopsis. We also discuss current experimental limitations and provide an outlook on how the approaches may advance our understanding of post-transcriptional networks.
Collapse
Affiliation(s)
- Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany.
| | - Katja Meyer
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
64
|
Davari K, Lichti J, Friedel CC, Glasmacher E. Real-time Analysis of Transcription Factor Binding, Transcription, Translation, and Turnover to Display Global Events During Cellular Activation. J Vis Exp 2018. [PMID: 29578509 PMCID: PMC5931490 DOI: 10.3791/56752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Upon activation, cells rapidly change their functional programs and, thereby, their gene expression profile. Massive changes in gene expression occur, for example, during cellular differentiation, morphogenesis, and functional stimulation (such as activation of immune cells), or after exposure to drugs and other factors from the local environment. Depending on the stimulus and cell type, these changes occur rapidly and at any possible level of gene regulation. Displaying all molecular processes of a responding cell to a certain type of stimulus/drug is one of the hardest tasks in molecular biology. Here, we describe a protocol that enables the simultaneous analysis of multiple layers of gene regulation. We compare, in particular, transcription factor binding (Chromatin-immunoprecipitation-sequencing (ChIP-seq)), de novo transcription (4-thiouridine-sequencing (4sU-seq)), mRNA processing, and turnover as well as translation (ribosome profiling). By combining these methods, it is possible to display a detailed and genome-wide course of action. Sequencing newly transcribed RNA is especially recommended when analyzing rapidly adapting or changing systems, since this depicts the transcriptional activity of all genes during the time of 4sU exposure (irrespective of whether they are up- or downregulated). The combinatorial use of total RNA-seq and ribosome profiling additionally allows the calculation of RNA turnover and translation rates. Bioinformatic analysis of high-throughput sequencing results allows for many means for analysis and interpretation of the data. The generated data also enables tracking co-transcriptional and alternative splicing, just to mention a few possible outcomes. The combined approach described here can be applied for different model organisms or cell types, including primary cells. Furthermore, we provide detailed protocols for each method used, including quality controls, and discuss potential problems and pitfalls.
Collapse
Affiliation(s)
- Kathrin Davari
- Institute for Diabetes and Obesity (IDO), German Center for Diabetes Research (DZD), Helmholtz Zentrum München
| | - Johannes Lichti
- Institute for Diabetes and Obesity (IDO), German Center for Diabetes Research (DZD), Helmholtz Zentrum München
| | | | - Elke Glasmacher
- Institute for Diabetes and Obesity (IDO), German Center for Diabetes Research (DZD), Helmholtz Zentrum München; Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Penzberg;
| |
Collapse
|
65
|
Circadian clock-dependent and -independent posttranscriptional regulation underlies temporal mRNA accumulation in mouse liver. Proc Natl Acad Sci U S A 2018; 115:E1916-E1925. [PMID: 29432155 PMCID: PMC5828596 DOI: 10.1073/pnas.1715225115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rhythms in gene expression propelled by the circadian clock and environmental signals are ubiquitous across cells and tissues. In particular, in mouse tissues, thousands of transcripts show oscillations with a period of 24 hours. Keys question are how such rhythms propagate and eventually exert functions, but also how these are generated. Here, we developed a mathematical model based on total RNA-seq to classify genes according to the respective contributions of transcriptional and posttranscriptional regulation toward mRNA expression profiles. We found that about one-third of rhythmically accumulating mRNA are under posttranscriptional regulation. Such regulation is only partially dependent on the circadian clock, showing that systemic pathways and feeding patterns contribute important posttranscriptional control of gene expression in liver. The mammalian circadian clock coordinates physiology with environmental cycles through the regulation of daily oscillations of gene expression. Thousands of transcripts exhibit rhythmic accumulations across mouse tissues, as determined by the balance of their synthesis and degradation. While diurnally rhythmic transcription regulation is well studied and often thought to be the main factor generating rhythmic mRNA accumulation, the extent of rhythmic posttranscriptional regulation is debated, and the kinetic parameters (e.g., half-lives), as well as the underlying regulators (e.g., mRNA-binding proteins) are relatively unexplored. Here, we developed a quantitative model for cyclic accumulations of pre-mRNA and mRNA from total RNA-seq data, and applied it to mouse liver. This allowed us to identify that about 20% of mRNA rhythms were driven by rhythmic mRNA degradation, and another 15% of mRNAs regulated by both rhythmic transcription and mRNA degradation. The method could also estimate mRNA half-lives and processing times in intact mouse liver. We then showed that, depending on mRNA half-life, rhythmic mRNA degradation can either amplify or tune phases of mRNA rhythms. By comparing mRNA rhythms in wild-type and Bmal1−/− animals, we found that the rhythmic degradation of many transcripts did not depend on a functional BMAL1. Interestingly clock-dependent and -independent degradation rhythms peaked at distinct times of day. We further predicted mRNA-binding proteins (mRBPs) that were implicated in the posttranscriptional regulation of mRNAs, either through stabilizing or destabilizing activities. Together, our results demonstrate how posttranscriptional regulation temporally shapes rhythmic mRNA accumulation in mouse liver.
Collapse
|
66
|
|
67
|
Cleary MD. Uncovering cell type-specific complexities of gene expression and RNA metabolism by TU-tagging and EC-tagging. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e315. [PMID: 29369522 DOI: 10.1002/wdev.315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 01/17/2023]
Abstract
Cell type-specific transcription is a key determinant of cell fate and function. An ongoing challenge in biology is to develop robust and stringent biochemical methods to explore gene expression with cell type specificity. This challenge has become even greater as researchers attempt to apply high-throughput RNA analysis methods under in vivo conditions. TU-tagging and EC-tagging are in vivo biosynthetic RNA tagging techniques that allow spatial and temporal specificity in RNA purification. Spatial specificity is achieved through targeted expression of pyrimidine salvage enzymes (uracil phosphoribosyltransferase and cytosine deaminase) and temporal specificity is achieved by controlling exposure to bioorthogonal substrates of these enzymes (4-thiouracil and 5-ethynylcytosine). Tagged RNAs can be purified from total RNA extracted from an animal or tissue and used in transcriptome profiling analyses. In addition to identifying cell type-specific mRNA profiles, these techniques are applicable to noncoding RNAs and can be used to measure RNA transcription and decay. Potential applications of TU-tagging and EC-tagging also include fluorescent RNA imaging and selective definition of RNA-protein interactions. TU-tagging and EC-tagging hold great promise for supporting research at the intersection of RNA biology and developmental biology. This article is categorized under: Technologies > Analysis of the Transcriptome.
Collapse
Affiliation(s)
- Michael D Cleary
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California
| |
Collapse
|
68
|
Sun W, Chen W. Metabolic Labeling of Newly Synthesized RNA with 4sU to in Parallel Assess RNA Transcription and Decay. Methods Mol Biol 2018; 1720:25-34. [PMID: 29236249 DOI: 10.1007/978-1-4939-7540-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of genome-wide RNA profiling technologies greatly facilitates the global analysis of gene expression. However, such technologies alone could not distinguish the contribution to cellular RNA abundance by transcription versus decay. To overcome such limitation, metabolic labeling of newly synthesized RNA with 4-thiouridine (4sU) combined with genome-wide RNA profiling was used to in parallel measure RNA transcription and decay. Here, we describe the detailed protocol for using metabolic labeling with 4sU to separate newly synthesized RNA from the preexisting RNA in mammalian cells.
Collapse
Affiliation(s)
- Wei Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen City, Nanshan District, China
- Laboratory for Functional and Medical Genomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen City, Nanshan District, China.
- Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen City, Nanshan District, China.
| |
Collapse
|
69
|
Impact of Methods on the Measurement of mRNA Turnover. Int J Mol Sci 2017; 18:ijms18122723. [PMID: 29244760 PMCID: PMC5751324 DOI: 10.3390/ijms18122723] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022] Open
Abstract
The turnover of the RNA molecules is determined by the rates of transcription and RNA degradation. Several methods have been developed to study RNA turnover since the beginnings of molecular biology. Here we summarize the main methods to measure RNA half-life: transcription inhibition, gene control, and metabolic labelling. These methods were used to detect the cellular activity of the mRNAs degradation machinery, including the exo-ribonuclease Xrn1 and the exosome. On the other hand, the study of the differential stability of mature RNAs has been hampered by the fact that different methods have often yielded inconsistent results. Recent advances in the systematic comparison of different method variants in yeast have permitted the identification of the least invasive methodologies that reflect half-lives the most faithfully, which is expected to open the way for a consistent quantitative analysis of the determinants of mRNA stability.
Collapse
|
70
|
Herzog VA, Reichholf B, Neumann T, Rescheneder P, Bhat P, Burkard TR, Wlotzka W, von Haeseler A, Zuber J, Ameres SL. Thiol-linked alkylation of RNA to assess expression dynamics. Nat Methods 2017; 14:1198-1204. [PMID: 28945705 PMCID: PMC5712218 DOI: 10.1038/nmeth.4435] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023]
Abstract
Gene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM seq), an orthogonal-chemistry-based RNA sequencing technology that detects 4-thiouridine (s4U) incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM seq enabled rapid access to RNA-polymerase-II-dependent gene expression dynamics in the context of total RNA. We validated the method in mouse embryonic stem cells by showing that the RNA-polymerase-II-dependent transcriptional output scaled with Oct4/Sox2/Nanog-defined enhancer activity, and we provide quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N6-methyladenosine. SLAM seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective and scalable manner.
Collapse
Affiliation(s)
- Veronika A. Herzog
- Institute of Molecular Biotechnology (IMBA), Vienna Biocenter Campus (VBC), 1030 Vienna, Austria
| | - Brian Reichholf
- Institute of Molecular Biotechnology (IMBA), Vienna Biocenter Campus (VBC), 1030 Vienna, Austria
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter Campus (VBC), 1030 Vienna, Austria
| | - Philipp Rescheneder
- Center for Integrative Bioinformatics Vienna, Max F Perutz Laboratories, Medical University of Vienna, University of Vienna, Vienna Biocenter Campus (VBC), 1030 Vienna, Austria
| | - Pooja Bhat
- Institute of Molecular Biotechnology (IMBA), Vienna Biocenter Campus (VBC), 1030 Vienna, Austria
| | - Thomas R. Burkard
- Institute of Molecular Biotechnology (IMBA), Vienna Biocenter Campus (VBC), 1030 Vienna, Austria
| | - Wiebke Wlotzka
- Institute of Molecular Biotechnology (IMBA), Vienna Biocenter Campus (VBC), 1030 Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F Perutz Laboratories, Medical University of Vienna, University of Vienna, Vienna Biocenter Campus (VBC), 1030 Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter Campus (VBC), 1030 Vienna, Austria
| | - Stefan L. Ameres
- Institute of Molecular Biotechnology (IMBA), Vienna Biocenter Campus (VBC), 1030 Vienna, Austria
| |
Collapse
|
71
|
Riml C, Amort T, Rieder D, Gasser C, Lusser A, Micura R. Osmium-Mediated Transformation of 4-Thiouridine to Cytidine as Key To Study RNA Dynamics by Sequencing. Angew Chem Int Ed Engl 2017; 56:13479-13483. [PMID: 28817234 DOI: 10.1002/anie.201707465] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Indexed: 11/08/2023]
Abstract
To understand the functional roles of RNA in the cell, it is essential to elucidate the dynamics of their production, processing and decay. A recent method for assessing mRNA dynamics is metabolic labeling with 4-thiouridine (4sU), followed by thio-selective attachment of affinity tags. Detection of labeled transcripts by affinity purification and hybridization to microarrays or by deep sequencing then reveals RNA expression levels. Here, we present a novel sequencing method (TUC-seq) that eliminates affinity purification and allows for direct assessment of 4sU-labeled RNA. It employs an OsO4 -mediated transformation to convert 4sU into cytosine. We exemplify the utility of the new method for verification of endogenous 4sU in tRNAs and for the detection of pulse-labeled mRNA of seven selected genes in mammalian cells to determine the relative abundance of the new transcripts. The results prove TUC-seq as a straight-forward and highly versatile method for studies of cellular RNA dynamics.
Collapse
Affiliation(s)
- Christian Riml
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Leopold-Franzens University, Innrain 80-82, 6020, Innsbruck, Austria
| | - Thomas Amort
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Dietmar Rieder
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Catherina Gasser
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Leopold-Franzens University, Innrain 80-82, 6020, Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Leopold-Franzens University, Innrain 80-82, 6020, Innsbruck, Austria
| |
Collapse
|
72
|
Riml C, Amort T, Rieder D, Gasser C, Lusser A, Micura R. Osmium-Mediated Transformation of 4-Thiouridine to Cytidine as Key To Study RNA Dynamics by Sequencing. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Christian Riml
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI); Leopold-Franzens University; Innrain 80-82 6020 Innsbruck Austria
| | - Thomas Amort
- Division of Molecular Biology, Biocenter; Medical University of Innsbruck; 6020 Innsbruck Austria
| | - Dietmar Rieder
- Division of Bioinformatics, Biocenter; Medical University of Innsbruck; 6020 Innsbruck Austria
| | - Catherina Gasser
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI); Leopold-Franzens University; Innrain 80-82 6020 Innsbruck Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter; Medical University of Innsbruck; 6020 Innsbruck Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI); Leopold-Franzens University; Innrain 80-82 6020 Innsbruck Austria
| |
Collapse
|
73
|
Wheeler EC, Van Nostrand EL, Yeo GW. Advances and challenges in the detection of transcriptome-wide protein-RNA interactions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 28853213 PMCID: PMC5739989 DOI: 10.1002/wrna.1436] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
RNA binding proteins (RBPs) play key roles in determining cellular behavior by manipulating the processing of target RNAs. Robust methods are required to detect the numerous binding sites of RBPs across the transcriptome. RNA‐immunoprecipitation followed by sequencing (RIP‐seq) and crosslinking followed by immunoprecipitation and sequencing (CLIP‐seq) are state‐of‐the‐art methods used to identify the RNA targets and specific binding sites of RBPs. Historically, CLIP methods have been confounded with challenges such as the requirement for tens of millions of cells per experiment, low RNA yields resulting in libraries that contain a high number of polymerase chain reaction duplicated reads, and technical inconveniences such as radioactive labeling of RNAs. However, recent improvements in the recovery of bound RNAs and the efficiency of converting isolated RNAs into a library for sequencing have enhanced our ability to perform the experiment at scale, from less starting material than has previously been possible, and resulting in high quality datasets for the confident identification of protein binding sites. These, along with additional improvements to protein capture, removal of nonspecific signals, and methods to isolate noncanonical RBP targets have revolutionized the study of RNA processing regulation, and reveal a promising future for mapping the human protein‐RNA regulatory network. WIREs RNA 2018, 9:e1436. doi: 10.1002/wrna.1436 This article is categorized under:
RNA Interactions with Proteins and Other Molecules > Protein–RNA Recognition RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications RNA Methods > RNA Analyses in Cells
Collapse
Affiliation(s)
- Emily C Wheeler
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California at San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California at San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California at San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA.,Molecular Engineering Laboratory, A*STAR, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
74
|
Jukam D, Shariati SAM, Skotheim JM. Zygotic Genome Activation in Vertebrates. Dev Cell 2017; 42:316-332. [PMID: 28829942 PMCID: PMC5714289 DOI: 10.1016/j.devcel.2017.07.026] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
The first major developmental transition in vertebrate embryos is the maternal-to-zygotic transition (MZT) when maternal mRNAs are degraded and zygotic transcription begins. During the MZT, the embryo takes charge of gene expression to control cell differentiation and further development. This spectacular organismal transition requires nuclear reprogramming and the initiation of RNAPII at thousands of promoters. Zygotic genome activation (ZGA) is mechanistically coordinated with other embryonic events, including changes in the cell cycle, chromatin state, and nuclear-to-cytoplasmic component ratios. Here, we review progress in understanding vertebrate ZGA dynamics in frogs, fish, mice, and humans to explore differences and emphasize common features.
Collapse
Affiliation(s)
- David Jukam
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - S Ali M Shariati
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
75
|
Kastelic N, Landthaler M. mRNA interactome capture in mammalian cells. Methods 2017; 126:38-43. [DOI: 10.1016/j.ymeth.2017.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/22/2017] [Accepted: 07/08/2017] [Indexed: 01/14/2023] Open
|
76
|
Davari K, Lichti J, Gallus C, Greulich F, Uhlenhaut NH, Heinig M, Friedel CC, Glasmacher E. Rapid Genome-wide Recruitment of RNA Polymerase II Drives Transcription, Splicing, and Translation Events during T Cell Responses. Cell Rep 2017; 19:643-654. [PMID: 28423325 DOI: 10.1016/j.celrep.2017.03.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/17/2017] [Accepted: 03/22/2017] [Indexed: 12/24/2022] Open
Abstract
Activation of immune cells results in rapid functional changes, but how such fast changes are accomplished remains enigmatic. By combining time courses of 4sU-seq, RNA-seq, ribosome profiling (RP), and RNA polymerase II (RNA Pol II) ChIP-seq during T cell activation, we illustrate genome-wide temporal dynamics for ∼10,000 genes. This approach reveals not only immediate-early and posttranscriptionally regulated genes but also coupled changes in transcription and translation for >90% of genes. Recruitment, rather than release of paused RNA Pol II, primarily mediates transcriptional changes. This coincides with a genome-wide temporary slowdown in cotranscriptional splicing, even for polyadenylated mRNAs that are localized at the chromatin. Subsequent splicing optimization correlates with increasing Ser-2 phosphorylation of the RNA Pol II carboxy-terminal domain (CTD) and activation of the positive transcription elongation factor (pTEFb). Thus, rapid de novo recruitment of RNA Pol II dictates the course of events during T cell activation, particularly transcription, splicing, and consequently translation.
Collapse
Affiliation(s)
- Kathrin Davari
- Institute for Diabetes and Obesity (IDO), German Center for Environmental Health GmbH, Munich 85748, Germany; German Center for Diabetes Research (DZD), German Center for Environmental Health GmbH, Munich 85764, Germany
| | - Johannes Lichti
- Institute for Diabetes and Obesity (IDO), German Center for Environmental Health GmbH, Munich 85748, Germany; German Center for Diabetes Research (DZD), German Center for Environmental Health GmbH, Munich 85764, Germany
| | - Christian Gallus
- Institute for Diabetes and Obesity (IDO), German Center for Environmental Health GmbH, Munich 85748, Germany; German Center for Diabetes Research (DZD), German Center for Environmental Health GmbH, Munich 85764, Germany
| | - Franziska Greulich
- Institute for Diabetes and Obesity (IDO), German Center for Environmental Health GmbH, Munich 85748, Germany
| | - N Henriette Uhlenhaut
- Institute for Diabetes and Obesity (IDO), German Center for Environmental Health GmbH, Munich 85748, Germany
| | - Matthias Heinig
- Institute for Computational Biology (ICB), German Center for Environmental Health GmbH, Munich 85764, Germany
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, Munich 80333, Germany.
| | - Elke Glasmacher
- Institute for Diabetes and Obesity (IDO), German Center for Environmental Health GmbH, Munich 85748, Germany; German Center for Diabetes Research (DZD), German Center for Environmental Health GmbH, Munich 85764, Germany.
| |
Collapse
|
77
|
Posttranscriptional chemical labeling of RNA by using bioorthogonal chemistry. Methods 2017; 120:28-38. [DOI: 10.1016/j.ymeth.2017.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 12/26/2022] Open
|
78
|
Knüppel R, Kuttenberger C, Ferreira-Cerca S. Toward Time-Resolved Analysis of RNA Metabolism in Archaea Using 4-Thiouracil. Front Microbiol 2017; 8:286. [PMID: 28286499 PMCID: PMC5323407 DOI: 10.3389/fmicb.2017.00286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
Archaea are widespread organisms colonizing almost every habitat on Earth. However, the molecular biology of archaea still remains relatively uncharacterized. RNA metabolism is a central cellular process, which has been extensively analyzed in both bacteria and eukarya. In contrast, analysis of RNA metabolism dynamic in archaea has been limited to date. To facilitate analysis of the RNA metabolism dynamic at a system-wide scale in archaea, we have established non-radioactive pulse labeling of RNA, using the nucleotide analog 4-thiouracil (4TU) in two commonly used model archaea: the halophile Euryarchaeota Haloferax volcanii, and the thermo-acidophile Crenarchaeota Sulfolobus acidocaldarius. In this work, we show that 4TU pulse labeling can be efficiently performed in these two organisms in a dose- and time-dependent manner. In addition, our results suggest that uracil prototrophy had no critical impact on the overall 4TU incorporation in RNA molecules. Accordingly, our work suggests that 4TU incorporation can be widely performed in archaea, thereby expanding the molecular toolkit to analyze archaeal gene expression network dynamic in unprecedented detail.
Collapse
Affiliation(s)
- Robert Knüppel
- Biochemistry III, Institute for Biochemistry, Genetics and Microbiology, University of Regensburg Regensburg, Germany
| | - Corinna Kuttenberger
- Biochemistry III, Institute for Biochemistry, Genetics and Microbiology, University of Regensburg Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Biochemistry III, Institute for Biochemistry, Genetics and Microbiology, University of Regensburg Regensburg, Germany
| |
Collapse
|
79
|
Namjoshi SV, Raab-Graham KF. Screening the Molecular Framework Underlying Local Dendritic mRNA Translation. Front Mol Neurosci 2017; 10:45. [PMID: 28286470 PMCID: PMC5323403 DOI: 10.3389/fnmol.2017.00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
In the last decade, bioinformatic analyses of high-throughput proteomics and transcriptomics data have enabled researchers to gain insight into the molecular networks that may underlie lasting changes in synaptic efficacy. Development and utilization of these techniques have advanced the field of learning and memory significantly. It is now possible to move from the study of activity-dependent changes of a single protein to modeling entire network changes that require local protein synthesis. This data revolution has necessitated the development of alternative computational and statistical techniques to analyze and understand the patterns contained within. Thus, the focus of this review is to provide a synopsis of the journey and evolution toward big data techniques to address still unanswered questions regarding how synapses are modified to strengthen neuronal circuits. We first review the seminal studies that demonstrated the pivotal role played by local mRNA translation as the mechanism underlying the enhancement of enduring synaptic activity. In the interest of those who are new to the field, we provide a brief overview of molecular biology and biochemical techniques utilized for sample preparation to identify locally translated proteins using RNA sequencing and proteomics, as well as the computational approaches used to analyze these data. While many mRNAs have been identified, few have been shown to be locally synthesized. To this end, we review techniques currently being utilized to visualize new protein synthesis, a task that has proven to be the most difficult aspect of the field. Finally, we provide examples of future applications to test the physiological relevance of locally synthesized proteins identified by big data approaches.
Collapse
Affiliation(s)
- Sanjeev V Namjoshi
- Center for Learning and Memory, The University of Texas at Austin, AustinTX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, AustinTX, USA
| | - Kimberly F Raab-Graham
- Center for Learning and Memory, The University of Texas at Austin, AustinTX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, AustinTX, USA; Department of Physiology and Pharmacology, Wake Forest Health Sciences, Medical Center Boulevard, Winston-SalemNC, USA
| |
Collapse
|
80
|
Metabolic labeling and recovery of nascent RNA to accurately quantify mRNA stability. Methods 2017; 120:39-48. [PMID: 28219744 DOI: 10.1016/j.ymeth.2017.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/26/2022] Open
Abstract
Changes in the rate of mRNA decay are closely coordinated with transcriptional changes and together these events have profound effects on gene expression during development and disease. Traditional approaches to assess mRNA decay have relied on inhibition of transcription, which can alter mRNA decay rates and confound interpretation. More recently, metabolic labeling combined with chemical modification and fractionation of labeled RNAs has allowed the isolation of nascent transcripts and the subsequent calculation of mRNA decay rates. This approach has been widely adopted for measuring mRNA half-lives on a global scale, but has proven challenging to use for analysis of single genes. We present a series of normalization and quality assurance steps to be used in combination with 4-thiouridine pulse labeling of cultured eukaryotic cells. Importantly, we demonstrate how the relative amount of 4sU-labeled nascent RNA influences accurate quantification. The approach described facilitates reproducible measurement of individual mRNA half-lives using 4-thiouridine and could be adapted for use with other nucleoside analogs.
Collapse
|
81
|
Abstract
Isolation of newly transcribed RNA is an invaluable approach that can be used to study the dynamic life of RNA in cellulo. Traditional methods of whole-cell RNA extraction limit subsequent gene expression analyses to the steady-state levels of RNA abundance, which often masks changes in RNA synthesis and processing. This chapter describes a methodology with low cytotoxicity that permits the labeling and isolation of nascent pre-mRNA in cell culture. The resulting isolate is suitable for use in a series of downstream applications aimed at studying changes in RNA synthesis, processing, or stability.
Collapse
|
82
|
Beckmann BM. RNA interactome capture in yeast. Methods 2016; 118-119:82-92. [PMID: 27993706 PMCID: PMC5421583 DOI: 10.1016/j.ymeth.2016.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) are key players in post-transcriptional regulation of gene expression in eukaryotic cells. To be able to unbiasedly identify RBPs in Saccharomyces cerevisiae, we developed a yeast RNA interactome capture protocol which employs RNA labeling, covalent UV crosslinking of RNA and proteins at 365 nm wavelength (photoactivatable-ribonucleoside-enhanced crosslinking, PAR-CL) and finally purification of the protein-bound mRNA. The method can be easily implemented in common workflows and takes about 3 days to complete. Next to a comprehensive explanation of the method, we focus on our findings about the choice of crosslinking in yeast and discuss the rationale of individual steps in the protocol.
Collapse
Affiliation(s)
- Benedikt M Beckmann
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; IRI for Life Sciences & Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany.
| |
Collapse
|
83
|
Duffy EE, Simon MD. Enriching s 4 U-RNA Using Methane Thiosulfonate (MTS) Chemistry. ACTA ACUST UNITED AC 2016; 8:234-250. [PMID: 27925666 DOI: 10.1002/cpch.12] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic labeling of cellular RNA is a useful approach to study RNA biology. 4-Thiouridine (s4 U) is a convenient nucleoside for metabolic labeling because it is cell permeable and is incorporated into newly transcribed RNA, and the sulfur moiety provides a handle for biochemical purification. However, a critical step in the purification of s4 U-RNA is the efficiency of the chemistry used to enrich s4 U-RNA. Here, we present a protocol for s4 U-RNA enrichment that includes efficient and reversible covalent chemistry to biotinylate s4 U-RNA using the activated disulfide methane thiosulfonate conjugated to biotin (MTS-biotin), followed by enrichment on streptavidin beads. The efficiency of this chemistry reduces enrichment bias and requires less starting material, thereby expanding the utility of s4 U to study RNA biology. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Erin E Duffy
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut
| | - Matthew D Simon
- Chemical Biology Institute, Yale University, West Haven, Connecticut
| |
Collapse
|
84
|
Abstract
We give an overview of experimental and computational methods to estimate RNA metabolism rates genome-wide. We then advocate a local definition of RNA metabolism rate at the level of individual phosphodiester bonds. Rates of formation and disappearance of individual bonds are unambiguously defined, in contrast to rates of complete transcripts. We show that over previous approaches, the recently developed transient transcriptome sequencing (TT-seq) protocol allows for estimation of metabolism rates of individual bonds with least positional bias.
Collapse
Affiliation(s)
- Leonhard Wachutka
- a Department of Informatics , Technical University of Munich, Garching bei München , Germany
| | - Julien Gagneur
- a Department of Informatics , Technical University of Munich, Garching bei München , Germany
| |
Collapse
|
85
|
Pollum M, Jockusch S, Crespo-Hernández CE. Increase in the photoreactivity of uracil derivatives by doubling thionation. Phys Chem Chem Phys 2016; 17:27851-61. [PMID: 26439833 DOI: 10.1039/c5cp04822b] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability of 4-thiouracil to strongly absorb UVA radiation and to populate a reactive triplet state in high yield has enabled its use as a versatile photocrosslinker for nearly 50 years. In this contribution, we present a detailed spectroscopic and photochemical investigation of the 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil series in an effort to further advance this chemistry and to scrutinize the photoreactivity of 2,4-dithiouracil. Our results reveal that excitation of 2,4-dithiouracil leads to intersystem crossing to the triplet manifold in 220 ± 40 fs, which enables the population of the reactive triplet state with near unity yield (ΦT = 0.90 ± 0.15) and ultimately leads to a ca. 50% singlet oxygen generation (ΦΔ = 0.49 ± 0.02)-one of the highest singlet oxygen yields reported to date for a photoexcited thiobase. In addition, the long-lived triplet state of 2,4-dithiouracil reacts efficiently with the nucleic acid base adenine 5'-monophosphate through a direct, oxygen-independent photocycloaddition mechanism and at a rate that is at least 3-fold faster than that of 4-thiouracil under equal conditions. The new physico-chemical insights reported for these RNA-thiobase derivatives are compared to those of the DNA and RNA bases and the DNA-thiobase derivatives. Furthermore, the strong near-visible absorption and increased photoreactivity measured for 2,4-dithiouracil lays a solid foundation for developing RNA-targeted photocrosslinking and phototherapeutic agents that are more effective than those currently available.
Collapse
Affiliation(s)
- M Pollum
- Department of Chemistry and Center for Chemical Dynamics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
86
|
Atwood BL, Woolnough JL, Lefevre GM, Saint Just Ribeiro M, Felsenfeld G, Giles KE. Human Argonaute 2 Is Tethered to Ribosomal RNA through MicroRNA Interactions. J Biol Chem 2016; 291:17919-28. [PMID: 27288410 DOI: 10.1074/jbc.m116.725051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 11/06/2022] Open
Abstract
The primary role of the RNAi machinery is to promote mRNA degradation within the cytoplasm in a microRNA-dependent manner. However, both Dicer and the Argonaute protein family have expanded roles in gene regulation within the nucleus. To further our understanding of this role, we have identified chromatin binding sites for AGO2 throughout the 45S region of the human rRNA gene. The location of these sites was mirrored by the positions of AGO2 cross-linking sites identified via PAR-CLIP-seq. AGO2 binding to the rRNA within the nucleus was confirmed by RNA immunoprecipitation and quantitative-PCR. To explore a possible mechanism by which AGO2 could be recruited to the rRNA, we identified 1174 regions within the 45S rRNA transcript that have the ability to form a perfect duplex with position 2-6 (seed sequence) of each microRNA expressed in HEK293T cells. Of these potential AGO2 binding sites, 479 occurred within experimentally verified AGO2-rRNA cross-linking sites. The ability of AGO2 to cross-link to rRNA was almost completely lost in a DICER knock-out cell line. The transfection of miR-92a-2-3p into the noDICE cell line facilitated AGO2 cross-linking at a region of the rRNA that has a perfect seed match at positions 3-8, including a single G-U base pair. Knockdown of AGO2 within HEK293T cells causes a slight, but statistically significant increase in the overall rRNA synthesis rate but did not impact the ratio of processing intermediates or the recruitment of the Pol I transcription factor UBTF.
Collapse
Affiliation(s)
- Blake L Atwood
- From the UAB Stem Cell Institute, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35209 and
| | - Jessica L Woolnough
- From the UAB Stem Cell Institute, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35209 and
| | - Gaelle M Lefevre
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland
| | - Mariana Saint Just Ribeiro
- From the UAB Stem Cell Institute, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35209 and
| | - Gary Felsenfeld
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland
| | - Keith E Giles
- From the UAB Stem Cell Institute, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35209 and
| |
Collapse
|
87
|
Steinkraus BR, Toegel M, Fulga TA. Tiny giants of gene regulation: experimental strategies for microRNA functional studies. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:311-62. [PMID: 26950183 PMCID: PMC4949569 DOI: 10.1002/wdev.223] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/19/2015] [Accepted: 11/28/2015] [Indexed: 12/11/2022]
Abstract
The discovery over two decades ago of short regulatory microRNAs (miRNAs) has led to the inception of a vast biomedical research field dedicated to understanding these powerful orchestrators of gene expression. Here we aim to provide a comprehensive overview of the methods and techniques underpinning the experimental pipeline employed for exploratory miRNA studies in animals. Some of the greatest challenges in this field have been uncovering the identity of miRNA-target interactions and deciphering their significance with regard to particular physiological or pathological processes. These endeavors relied almost exclusively on the development of powerful research tools encompassing novel bioinformatics pipelines, high-throughput target identification platforms, and functional target validation methodologies. Thus, in an unparalleled manner, the biomedical technology revolution unceasingly enhanced and refined our ability to dissect miRNA regulatory networks and understand their roles in vivo in the context of cells and organisms. Recurring motifs of target recognition have led to the creation of a large number of multifactorial bioinformatics analysis platforms, which have proved instrumental in guiding experimental miRNA studies. Subsequently, the need for discovery of miRNA-target binding events in vivo drove the emergence of a slew of high-throughput multiplex strategies, which now provide a viable prospect for elucidating genome-wide miRNA-target binding maps in a variety of cell types and tissues. Finally, deciphering the functional relevance of miRNA post-transcriptional gene silencing under physiological conditions, prompted the evolution of a host of technologies enabling systemic manipulation of miRNA homeostasis as well as high-precision interference with their direct, endogenous targets. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Bruno R Steinkraus
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Markus Toegel
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tudor A Fulga
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
88
|
Marzi MJ, Ghini F, Cerruti B, de Pretis S, Bonetti P, Giacomelli C, Gorski MM, Kress T, Pelizzola M, Muller H, Amati B, Nicassio F. Degradation dynamics of microRNAs revealed by a novel pulse-chase approach. Genome Res 2016; 26:554-65. [PMID: 26821571 PMCID: PMC4817778 DOI: 10.1101/gr.198788.115] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
Abstract
The regulation of miRNAs is critical to the definition of cell identity and behavior in normal physiology and disease. To date, the dynamics of miRNA degradation and the mechanisms involved in remain largely obscure, in particular, in higher organisms. Here, we developed a pulse-chase approach based on metabolic RNA labeling to calculate miRNA decay rates at genome-wide scale in mammalian cells. Our analysis revealed heterogeneous miRNA half-lives, with many species behaving as stable molecules (T1/2 > 24 h), while others, including passenger miRNAs and a number (25/129) of guide miRNAs, are quickly turned over (T1/2 = 4–14 h). Decay rates were coupled with other features, including genomic organization, transcription rates, structural heterogeneity (isomiRs), and target abundance, measured through quantitative experimental approaches. This comprehensive analysis highlighted functional mechanisms that mediate miRNA degradation, as well as the importance of decay dynamics in the regulation of the miRNA pool under both steady-state conditions and during cell transitions.
Collapse
Affiliation(s)
- Matteo J Marzi
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Francesco Ghini
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Benedetta Cerruti
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Stefano de Pretis
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Paola Bonetti
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Chiara Giacomelli
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Marcin M Gorski
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Theresia Kress
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy; Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Heiko Muller
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Bruno Amati
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy; Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| |
Collapse
|
89
|
Burger K, Eick D. A Nonradioactive Assay to Measure Production and Processing of Ribosomal RNA by 4sU-Tagging. Methods Mol Biol 2016; 1455:121-31. [PMID: 27576715 DOI: 10.1007/978-1-4939-3792-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In vivo metabolic pulse labeling is a classical approach to assess production and processing of ribosomal RNA (rRNA). However, conventional labeling techniques can be indirect and require work with radioactivity. Here, we describe in detail a protocol for in vivo metabolic labeling, purification, and readout of nascent rRNA by 4-thiouridine (4sU). We propose 4sU labeling as standard nonradioactive technique for the analysis of rRNA metabolism during ribosome biogenesis.
Collapse
Affiliation(s)
- Kaspar Burger
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, Oxford, UK
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377, Munich, Germany.
| |
Collapse
|
90
|
Barrass JD, Reid JEA, Huang Y, Hector RD, Sanguinetti G, Beggs JD, Granneman S. Transcriptome-wide RNA processing kinetics revealed using extremely short 4tU labeling. Genome Biol 2015; 16:282. [PMID: 26679539 PMCID: PMC4699367 DOI: 10.1186/s13059-015-0848-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 11/30/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND RNA levels detected at steady state are the consequence of multiple dynamic processes within the cell. In addition to synthesis and decay, transcripts undergo processing. Metabolic tagging with a nucleotide analog is one way of determining the relative contributions of synthesis, decay and conversion processes globally. RESULTS By improving 4-thiouracil labeling of RNA in Saccharomyces cerevisiae we were able to isolate RNA produced during as little as 1 minute, allowing the detection of nascent pervasive transcription. Nascent RNA labeled for 1.5, 2.5 or 5 minutes was isolated and analyzed by reverse transcriptase-quantitative polymerase chain reaction and RNA sequencing. High kinetic resolution enabled detection and analysis of short-lived non-coding RNAs as well as intron-containing pre-mRNAs in wild-type yeast. From these data we measured the relative stability of pre-mRNA species with different high turnover rates and investigated potential correlations with sequence features. CONCLUSIONS Our analysis of non-coding RNAs reveals a highly significant association between non-coding RNA stability, transcript length and predicted secondary structure. Our quantitative analysis of the kinetics of pre-mRNA splicing in yeast reveals that ribosomal protein transcripts are more efficiently spliced if they contain intron secondary structures that are predicted to be less stable. These data, in combination with previous results, indicate that there is an optimal range of stability of intron secondary structures that allows for rapid splicing.
Collapse
Affiliation(s)
- J David Barrass
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Jane E A Reid
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Yuanhua Huang
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Ralph D Hector
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3BF, UK
- Present Address: Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QB, UK
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Jean D Beggs
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| | - Sander Granneman
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
91
|
Abstract
In an age of next-generation sequencing, the ability to purify RNA transcripts has become a critical issue. In this issue, Duffy et al. (2015) improve on a pre-existing technique of RNA labeling and purification by 4-thiouridine tagging. By increasing the efficiency of RNA capture, this method will enhance the ability to study RNA dynamics, especially for transcripts normally inefficiently captured by previous methods.
Collapse
Affiliation(s)
- Sophie Martin
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeff Coller
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
92
|
Duffy EE, Rutenberg-Schoenberg M, Stark CD, Kitchen RR, Gerstein MB, Simon MD. Tracking Distinct RNA Populations Using Efficient and Reversible Covalent Chemistry. Mol Cell 2015; 59:858-66. [PMID: 26340425 DOI: 10.1016/j.molcel.2015.07.023] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 06/11/2015] [Accepted: 07/20/2015] [Indexed: 12/21/2022]
Abstract
We describe a chemical method to label and purify 4-thiouridine (s(4)U)-containing RNA. We demonstrate that methanethiosulfonate (MTS) reagents form disulfide bonds with s(4)U more efficiently than the commonly used HPDP-biotin, leading to higher yields and less biased enrichment. This increase in efficiency allowed us to use s(4)U labeling to study global microRNA (miRNA) turnover in proliferating cultured human cells without perturbing global miRNA levels or the miRNA processing machinery. This improved chemistry will enhance methods that depend on tracking different populations of RNA, such as 4-thiouridine tagging to study tissue-specific transcription and dynamic transcriptome analysis (DTA) to study RNA turnover.
Collapse
Affiliation(s)
- Erin E Duffy
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Michael Rutenberg-Schoenberg
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Catherine D Stark
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Robert R Kitchen
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Mark B Gerstein
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA.
| |
Collapse
|
93
|
Schwarzl T, Higgins DG, Kolch W, Duffy DJ. Measuring Transcription Rate Changes via Time-Course 4-Thiouridine Pulse-Labelling Improves Transcriptional Target Identification. J Mol Biol 2015; 427:3368-74. [PMID: 26362006 DOI: 10.1016/j.jmb.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
Abstract
Identifying changes in the transcriptional regulation of target genes from high-throughput studies is important for unravelling molecular mechanisms controlled by a given perturbation. When measuring global transcript levels only, the effect of the perturbation [e.g., transcription factor (TF) overexpression or drug treatment] on its target genes is often obscured by delayed feedback and secondary effects until the changes are fully propagated. As a proof of principle, we show that selective measuring of transcripts that are only synthesised after a perturbation [4-thiouridine (4sU) sequencing (4sU-seq)] is a more sensitive method to identify targets and time-dependent transcriptional responses than global transcript profiling. By metabolically labelling RNA in a time-course setup, we could vastly increase the sensitivity of MYCN target gene detection compared to traditional RNA sequencing. The validity of targets identified by 4sU-seq was demonstrated using chromatin immunoprecipitation sequencing and neuroblastoma microarray tumour data. Here, we describe the methodology, both molecular biology and computational aspects, required to successfully apply this 4sU-seq approach.
Collapse
Affiliation(s)
- Thomas Schwarzl
- Systems Biology Ireland, Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin Conway Institute, Belfield, Dublin 4, Ireland.
| | - Desmond G Higgins
- Systems Biology Ireland, Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin Conway Institute, Belfield, Dublin 4, Ireland
| | - Walter Kolch
- Systems Biology Ireland, Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin Conway Institute, Belfield, Dublin 4, Ireland
| | - David J Duffy
- Systems Biology Ireland, Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin Conway Institute, Belfield, Dublin 4, Ireland
| |
Collapse
|
94
|
Nussbacher JK, Batra R, Lagier-Tourenne C, Yeo GW. RNA-binding proteins in neurodegeneration: Seq and you shall receive. Trends Neurosci 2015; 38:226-36. [PMID: 25765321 PMCID: PMC4403644 DOI: 10.1016/j.tins.2015.02.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 12/13/2022]
Abstract
As critical players in gene regulation, RNA binding proteins (RBPs) are taking center stage in our understanding of cellular function and disease. In our era of bench-top sequencers and unprecedented computational power, biological questions can be addressed in a systematic, genome-wide manner. Development of high-throughput sequencing (Seq) methodologies provides unparalleled potential to discover new mechanisms of disease-associated perturbations of RNA homeostasis. Complementary to candidate single-gene studies, these innovative technologies may elicit the discovery of unexpected mechanisms, and enable us to determine the widespread influence of the multifunctional RBPs on their targets. Given that the disruption of RNA processing is increasingly implicated in neurological diseases, these approaches will continue to provide insights into the roles of RBPs in disease pathogenesis.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecule Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ranjan Batra
- Department of Cellular and Molecule Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA.
| | - Gene W Yeo
- Department of Cellular and Molecule Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA; Department of Physiology, National University of Singapore, Singapore.
| |
Collapse
|
95
|
Kellner M, Rohrmoser M, Forné I, Voss K, Burger K, Mühl B, Gruber-Eber A, Kremmer E, Imhof A, Eick D. DEAD-box helicase DDX27 regulates 3' end formation of ribosomal 47S RNA and stably associates with the PeBoW-complex. Exp Cell Res 2015; 334:146-59. [PMID: 25825154 DOI: 10.1016/j.yexcr.2015.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
Abstract
PeBoW, a trimeric complex consisting of pescadillo (Pes1), block of proliferation (Bop1), and the WD repeat protein 12 (WDR12), is essential for processing and maturation of mammalian 5.8S and 28S ribosomal RNAs. Applying a mass spectrometric analysis, we identified the DEAD-box helicase DDX27 as stably associated factor of the PeBoW-complex. DDX27 interacts with the PeBoW-complex via an evolutionary conserved F×F motif in the N-terminal domain and is recruited to the nucleolus via its basic C-terminal domain. This recruitment is RNA-dependent and occurs independently of the PeBoW-complex. Interestingly, knockdown of DDX27, but not of Pes1, induces the accumulation of an extended form of the primary 47S rRNA. We conclude that DDX27 can interact specifically with the Pes1 and Bop1 but fulfils critical function(s) for proper 3' end formation of 47S rRNA independently of the PeBoW-complex.
Collapse
Affiliation(s)
- Markus Kellner
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Michaela Rohrmoser
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Ignasi Forné
- Adolf Butenandt Institute, Ludwig Maximilians University of Munich, Center for Integrated Protein Science Munich (CIPSM), Schillerstr. 44, Munich 80336, Germany
| | - Kirsten Voss
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Kaspar Burger
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Bastian Mühl
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Anita Gruber-Eber
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Center Munich, Marchioninistr. 25, Munich 81377, Germany
| | - Axel Imhof
- Adolf Butenandt Institute, Ludwig Maximilians University of Munich, Center for Integrated Protein Science Munich (CIPSM), Schillerstr. 44, Munich 80336, Germany
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany.
| |
Collapse
|
96
|
Vaz-Drago R, Pinheiro MT, Martins S, Enguita FJ, Carmo-Fonseca M, Custódio N. Transcription-coupled RNA surveillance in human genetic diseases caused by splice site mutations. Hum Mol Genet 2015; 24:2784-95. [PMID: 25652404 DOI: 10.1093/hmg/ddv039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/31/2015] [Indexed: 12/15/2022] Open
Abstract
Current estimates indicate that approximately one-third of all disease-causing mutations are expected to disrupt splicing. Abnormal splicing often leads to disruption of the reading frame with introduction of a premature termination codon (PTC) that targets the mRNA for degradation in the cytoplasm by nonsense mediated decay (NMD). In addition to NMD there are RNA surveillance mechanisms that act in the nucleus while transcripts are still associated with the chromatin template. However, the significance of nuclear RNA quality control in the context of human genetic diseases is unknown. Here we used patient-derived lymphoblastoid cell lines as disease models to address how biogenesis of mRNAs is affected by splice site mutations. We observed that most of the mutations analyzed introduce PTCs and trigger mRNA degradation in the cytoplasm. However, for some mutant transcripts, RNA levels associated with chromatin were found down-regulated. Quantification of nascent transcripts further revealed that a subset of genes containing splicing mutations (SM) have reduced transcriptional activity. Following treatment with the translation inhibitor cycloheximide the cytoplasmic levels of mutant RNAs increased, while the levels of chromatin-associated transcripts remained unaltered. These results suggest that transcription-coupled surveillance mechanisms operate independently from NMD to reduce cellular levels of abnormal RNAs caused by SM.
Collapse
Affiliation(s)
- Rita Vaz-Drago
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Marco T Pinheiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Sandra Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Noélia Custódio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| |
Collapse
|
97
|
Zhang Y, Xie S, Xu H, Qu L. CLIP: viewing the RNA world from an RNA-protein interactome perspective. SCIENCE CHINA-LIFE SCIENCES 2015; 58:75-88. [DOI: 10.1007/s11427-014-4764-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/13/2014] [Indexed: 12/20/2022]
|
98
|
Lu YC, Chang SH, Hafner M, Li X, Tuschl T, Elemento O, Hla T. ELAVL1 modulates transcriptome-wide miRNA binding in murine macrophages. Cell Rep 2014; 9:2330-43. [PMID: 25533351 DOI: 10.1016/j.celrep.2014.11.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 09/17/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022] Open
Abstract
Posttranscriptional gene regulation by miRNAs and RNA binding proteins (RBP) is important in development, physiology, and disease. To examine the interplay between miRNAs and the RBP ELAVL1 (HuR), we mapped miRNA binding sites at the transcriptome-wide scale in wild-type and Elavl1 knockout murine bone-marrow-derived macrophages. Proximity of ELAVL1 binding sites attenuated miRNA binding to transcripts and promoted gene expression. Transcripts that regulate angiogenesis and macrophage/endothelial crosstalk were preferentially targeted by miRNAs, suggesting that ELAVL1 promotes angiogenesis, at least in part by antagonism of miRNA function. We found that ELAVL1 antagonized binding of miR-27 to the 3' UTR of Zfp36 mRNA and alleviated miR-27-mediated suppression of the RBP ZFP36 (Tristetraprolin). Thus, the miR-27-regulated mechanism synchronizes the expression of ELAVL1 and ZFP36. This study provides a resource for systems-level interrogation of posttranscriptional gene regulation in macrophages, a key cell type in inflammation, angiogenesis, and tissue homeostasis.
Collapse
Affiliation(s)
- Yi-Chien Lu
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Sung-Hee Chang
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Markus Hafner
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Xi Li
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
99
|
Landes Highlights. Nucleus 2014. [DOI: 10.4161/nucl.27495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
100
|
Schaughency P, Merran J, Corden JL. Genome-wide mapping of yeast RNA polymerase II termination. PLoS Genet 2014; 10:e1004632. [PMID: 25299594 PMCID: PMC4191890 DOI: 10.1371/journal.pgen.1004632] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/21/2014] [Indexed: 12/22/2022] Open
Abstract
Yeast RNA polymerase II (Pol II) terminates transcription of coding transcripts through the polyadenylation (pA) pathway and non-coding transcripts through the non-polyadenylation (non-pA) pathway. We have used PAR-CLIP to map the position of Pol II genome-wide in living yeast cells after depletion of components of either the pA or non-pA termination complexes. We show here that Ysh1, responsible for cleavage at the pA site, is required for efficient removal of Pol II from the template. Depletion of Ysh1 from the nucleus does not, however, lead to readthrough transcription. In contrast, depletion of the termination factor Nrd1 leads to widespread runaway elongation of non-pA transcripts. Depletion of Sen1 also leads to readthrough at non-pA terminators, but in contrast to Nrd1, this readthrough is less processive, or more susceptible to pausing. The data presented here provide delineation of in vivo Pol II termination regions and highlight differences in the sequences that signal termination of different classes of non-pA transcripts. Transcription termination is an important regulatory event for both non-coding and coding transcripts. Using high-throughput sequencing, we have mapped RNA Polymerase II's position in the genome after depletion of termination factors from the nucleus. We found that depletion of Ysh1 and Sen1 cause build up of polymerase directly downstream of coding and non-coding genes, respectively. Depletion of Nrd1 causes an increase in polymerase that is distributed up to 1,000 bases downstream of non-coding genes. The depletion of Nrd1 helped us to identify more than 250 unique termination regions for non-coding RNAs. Within this set of newly identified non-coding termination regions, we are further able to classify them based on sequence motif similarities, suggesting a functional role for different terminator motifs. The role of these factors in transcriptional termination of coding and/or non-coding transcripts can be inferred from the effect of polymerase's position downstream of given termination sites. This method of depletion and sequencing can be used to further elucidate other factors whose importance to transcription has yet to be determined.
Collapse
Affiliation(s)
- Paul Schaughency
- Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
| | - Jonathan Merran
- Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
| | - Jeffry L. Corden
- Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|