51
|
Distribution of chlorine sanitizer in a flume tank: Numerical predictions and experimental validation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
52
|
Hamilton A, Ruiz-Llacsahuanga B, Mendoza M, Mattheis J, Hanrahan I, Critzer FJ. Persistence of Listeria innocua on Fresh Apples during Long-Term Controlled Atmosphere Cold Storage with Postharvest Fungal Decay. J Food Prot 2022; 85:133-141. [PMID: 34499733 DOI: 10.4315/jfp-21-232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/03/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Recent apple-related recall and outbreak events have exposed a need for better food safety controls along the supply chain. Following harvest, apples can be stored under a controlled atmosphere for up to 1 year after harvest before packing and distribution, making the crop susceptible to many opportunities for contamination that increase the quantity of postharvest losses. Botrytis cinerea and Penicillium expansum cause significant rot-associated losses to the apple industry. These fungi can colonize and destroy apple tissue as storage duration increases, which may also impact the growth of saprophytic foodborne pathogens like Listeria monocytogenes. Thus, the objective of this study was to observe population changes of Listeria innocua as a surrogate for L. monocytogenes on apples inoculated with B. cinerea or P. expansum under long-term controlled atmosphere cold storage conditions to identify the effect of postharvest mold growth on growth patterns of a microorganism relevant to food safety. 'Gala' and 'WA 38' apples (n = 1,080) were harvested, treated with pyrimethanil, and inoculated with L. innocua only or with L. innocua and one of the mold species on wounded and unwounded portions of the apple equator. Apples were treated with 1-methylcyclopropene and stored at a controlled atmosphere (2 kPa O2, 1 kPa CO2, 1°C) for 1 week and 1, 3, 6, 9, and 11 months before enumeration. After 3 months, L. innocua consistently fell below the limit of detection (2.35 Log CFU/g), and samples were enriched following a modified Bacteriological Analytical Manual method with PCR confirmation. Listeria persistence was dependent on the storage duration and type of fungal contamination (P ≤ 0.05). Surface wounding may impact these trends, depending on the apple variety. Prevalence of L. innocua was greater in Gala apples. Future studies should more closely examine the interactions on the fruit surface that occur during the seemingly critical time frame of 3 to 6 months in storage. HIGHLIGHTS
Collapse
Affiliation(s)
- Alexis Hamilton
- School of Food Science, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington 99350
| | - Blanca Ruiz-Llacsahuanga
- School of Food Science, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington 99350
| | - Manoella Mendoza
- Washington Tree Fruit Research Commission, 1719 Springwater Avenue, Wenatchee, Washington 98801
| | - James Mattheis
- U.S. Department of Agriculture, Agricultural Research Service, Physiology and Pathology of Tree Fruits Research Unit, 1104 North Western Avenue, Wenatchee, Washington 98801, USA
| | - Ines Hanrahan
- Washington Tree Fruit Research Commission, 1719 Springwater Avenue, Wenatchee, Washington 98801
| | - Faith J Critzer
- School of Food Science, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington 99350
| |
Collapse
|
53
|
Wang J, Huang K, Wu Z, Yu Y. Effects of ultrasound-assisted low-concentration chlorine washing on ready-to-eat winter jujube (Zizyphus jujuba Mill. cv. Dongzao): Cross-contamination prevention, decontamination efficacy, and fruit quality. ULTRASONICS SONOCHEMISTRY 2022; 82:105905. [PMID: 34974393 PMCID: PMC8799748 DOI: 10.1016/j.ultsonch.2021.105905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 05/09/2023]
Abstract
Wash water is circulated for use in the minimal processing industry, and inefficient disinfection methods can lead to pathogen cross-contamination. Moreover, few disinfection strategies are available for ready-to-eat fruits that do not need to be cut. In this study, the use of chlorine and ultrasound, two low-cost disinfection methods, were evaluated to disinfect winter jujube, a delicious, nutritious, and widely sold fruit in China. Ultrasound treatment (28 kHz) alone could not decrease the cross-contamination incidence of Escherichia coli O157:H7, non-O157 E. coli, and Salmonella Typhimurium, and free chlorine treatment at 10 ppm decreased the incidence from 55.00% to 5.00% for E. coli O157:H7, 65.00% to 6.67% for non-157 E. coli, and 70.00% to 6.67% for S. Typhimurium. The cross-contamination incidence was completely reduced (pathogens were not detected in sample) when the treatments were combined. The counts of aerobic mesophiles, aerobic psychrophiles, molds, yeasts, and three pathogens in the group subjected to combination treatment (28 kHz ultrasound + 10 ppm free chlorine) were significantly lower than those in the control, chlorine-treated, and ultrasound-treated groups during storage (0-7 d at 4 °C). Analysis of weight loss, sensory quality (crispness, color, and flavor), instrument color (a*/b*), soluble matter contents (total soluble solids, reducing sugar, total soluble sugar, and titratable acid), and nutritional properties (ascorbic acid and polyphenolic contents) indicated that treatment with ultrasound, chlorine, and their combination did not lead to additional quality loss compared with properties of the control. Additionally, the activities of phenylalanine ammonia-lyase and polyphenol oxidase were not significantly increased in the treatment group, consistent with the quality analysis results. These findings provide insights into disinfection of uncut ready-to-eat fruits using a minimum dose of disinfectant for cross-contamination prevention under ultrasonication. The use of ultrasound alone to decontaminate fresh produce is accompanied by a high risk of pathogen contamination, and the use of sanitizers to decrease cross-contamination incidence is recommended.
Collapse
Affiliation(s)
- Jiayi Wang
- Key Laboratory of New Eco-liquor-making Technology and Application of Hunan Universities, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Kun Huang
- Key Laboratory of New Eco-liquor-making Technology and Application of Hunan Universities, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | - Yougui Yu
- Key Laboratory of New Eco-liquor-making Technology and Application of Hunan Universities, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| |
Collapse
|
54
|
Guan J, Lacombe A, Rane B, Tang J, Sablani S, Wu VCH. A Review: Gaseous Interventions for Listeria monocytogenes Control in Fresh Apple Cold Storage. Front Microbiol 2021; 12:782934. [PMID: 34956148 PMCID: PMC8696023 DOI: 10.3389/fmicb.2021.782934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes) causes an estimated 1600 foodborne illnesses and 260 deaths annually in the U.S. These outbreaks are a major concern for the apple industry since fresh produce cannot be treated with thermal technologies for pathogen control before human consumption. Recent caramel apple outbreaks indicate that the current non-thermal sanitizing protocol may not be sufficient for pathogen decontamination. Federal regulations provide guidance to apple processors on sanitizer residue limits, organic production, and good manufacturing practices (GMPs). However, optimal methods to control L. monocytogenes on fresh apples still need to be determined. This review discusses L. monocytogenes outbreaks associated with caramel apples and the pathogen’s persistence in the environment. In addition, this review identifies and analyzes possible sources of contaminant for apples during cold storage and packing. Gaseous interventions are evaluated for their feasibility for L. monocytogenes decontamination on apples. For example, apple cold storage, which requires waterless interventions, may benefit from gaseous antimicrobials like chlorine dioxide (ClO2) and ozone (O3). In order to reduce the contamination risk during cold storage, significant research is still needed to develop effective methods to reduce microbial loads on fresh apples. This requires commercial-scale validation of gaseous interventions and intervention integration to the current existing apple cold storage. Additionally, the impact of the interventions on final apple quality should be taken into consideration. Therefore, this review intends to provide the apple industry suggestions to minimize the contamination risk of L. monocytogenes during cold storage and hence prevent outbreaks and reduce economic losses.
Collapse
Affiliation(s)
- Jiewen Guan
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States.,Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Alison Lacombe
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Bhargavi Rane
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States.,Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Shyam Sablani
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| |
Collapse
|
55
|
Application of a Bacteriophage–Sanitizer Combination in Post-Harvest Control of E. coli O157:H7 Contamination on Spinach Leaves in the Presence or Absence of a High Organic Load Produce Wash. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol2010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Foodborne illness due to the consumption of contaminated products continues to be a serious public health issue. Bacteriophages might provide a natural and effective way to control and reduce the pathogenic bacterial population on food products. Researchers have conducted various experiments to prove their effectiveness against different pathogens and their ability to act as a natural intervention to control pathogen populations, especially in the food industry. In this study, a cocktail of bacteriophages (phages) was added to wash water in the presence of a high organic load along with commercially used sanitizers (chlorine or Sanidate 5.0) to study the efficacy of the phage–sanitizer combination in the challenge water. It was determined that in the absence of organic loads, the sanitizer by itself or the combination with phages significantly (p < 0.001) reduced the contamination by 3.00–5.00 log CFU/mL. In the presence of organic loads, the sanitizer by itself did not contribute to a significant reduction (p > 0.05) compared to the control. However, the sanitizer–phage combination led to a 3.00-log and 6.00-log reduction (p < 0.001) of the pathogen at the end of 3 and 6 h, respectively, in the presence of high organic loads. Therefore, utilizing a combination treatment (phage–sanitizer) might be one solution to reduce pathogen contamination in the food industry, especially the fresh produce industry, thus providing safe food for consumption.
Collapse
|
56
|
Whitney BM, McCLURE M, Hassan R, Pomeroy M, Seelman SL, Singleton LN, Blessington T, Hardy C, Blankenship J, Pereira E, Davidson CN, Luo Y, Pettengill J, Curry P, McCONNELL T, Gieraltowski L, Schwensohn C, Basler C, Fritz K, McKENNA C, Nieves K, Oliveira J, Sandoval AL, Crosby A, Williams D, Crocker K, Thomas D, Fulton T, Muetter L, Li L, Omoregie E, Holloman K, Brennan C, Thomas N, Barnes A, Viazis S. A Series of Papaya-Associated Salmonella Illness Outbreak Investigations in 2017 and 2019: A Focus on Traceback, Laboratory, and Collaborative Efforts. J Food Prot 2021; 84:2002-2019. [PMID: 34265065 DOI: 10.4315/jfp-21-082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/07/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT In 2017 and 2019, five outbreaks of infections from multiple strains of Salmonella linked to the consumption of whole, fresh Maradol papayas were reported in the United States, resulting in 325 ill persons. Traceback, laboratory, and epidemiologic evidence indicated papayas as the likely vehicle for each of these outbreaks and identified the source of papayas. State and U.S. Food and Drug Administration (FDA) laboratories recovered Salmonella from papaya samples from various points of distribution, including at import entry, and conducted serotyping, pulsed-field gel electrophoresis, and phylogenetic analyses of whole genome sequencing data. Federal and state partners led traceback investigations to determine the source of papayas. Four different suppliers of papayas were linked by traceback and laboratory results to five separate outbreaks of Salmonella infections associated with papayas. In 2017, multiple states tested papaya samples collected at retail, and Maryland and Virginia investigators recovered strains of Salmonella associated with one outbreak. FDA collected 183 papaya samples in 2017, and 11 samples yielded 62 isolates of Salmonella. Eleven serotypes of Salmonella were recovered from FDA papaya samples, and nine serotypes were closely related genetically by pulsed-field gel electrophoresis and whole genome sequencing to clinical isolates of four outbreaks, including the outbreak associated with positive state sample results. Four farms in Mexico were identified, and their names were released to the general public, retailers, and foreign authorities. In 2019, FDA collected 119 papaya samples, three of which yielded Salmonella; none yielded the 2019 outbreak strain. Investigators determined that papayas of interest had been sourced from a single farm in Campeche, Mexico, through traceback. This information was used to protect public health through public guidance, recalls, and import alerts and helped FDA collaborate with Mexican regulatory partners to enhance the food safety requirements for papayas imported from Mexico. HIGHLIGHTS
Collapse
Affiliation(s)
- Brooke M Whitney
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740
| | - Monica McCLURE
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740
| | - Rashida Hassan
- Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| | - Mary Pomeroy
- Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| | - Sharon L Seelman
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740
| | - Lauren N Singleton
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740
| | - Tyann Blessington
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740
| | - Cerisé Hardy
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740
| | - Joseph Blankenship
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740
| | - Evelyn Pereira
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740
| | - Chelsea N Davidson
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740
| | - Yan Luo
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740
| | - James Pettengill
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740
| | - Phillip Curry
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740
| | - Terri McCONNELL
- Office of Regulatory Affairs, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | | | - Colin Schwensohn
- Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| | - Colin Basler
- Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| | - Kevin Fritz
- Office of Regulatory Affairs, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Crystal McKENNA
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740
| | - Kenneth Nieves
- Office of the Commissioner, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Janete Oliveira
- Office of the Commissioner, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Ana Lilia Sandoval
- Office of the Commissioner, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Alvin Crosby
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740
| | - D'Ann Williams
- State of Maryland Rapid Response Team, Maryland Department of Health, Baltimore, Maryland 21201
| | - Kia Crocker
- State of Maryland Rapid Response Team, Maryland Department of Health, Baltimore, Maryland 21201
| | - Deepam Thomas
- New Jersey Department of Health, Trenton, New Jersey 08625
| | - Tara Fulton
- New Jersey Department of Health, Trenton, New Jersey 08625
| | - Loel Muetter
- New Jersey Department of Health, Trenton, New Jersey 08625
| | - Lan Li
- Bureau of Communicable Disease, New York City Department of Health and Mental Hygiene, Queens, New York 11101
| | - Enoma Omoregie
- Public Health Laboratory, New York City Department of Health and Mental Hygiene, Queens, New York 11101
| | | | - Christy Brennan
- Virginia Department of Agriculture and Consumer Services, Richmond, Virginia 23219
| | - Nikeya Thomas
- Virginia Department of Agriculture and Consumer Services, Richmond, Virginia 23219
| | - Amber Barnes
- California Department of Public Health, Sacramento, California 95899, USA
| | - Stelios Viazis
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740
| |
Collapse
|
57
|
Jang AR, Han A, Lee S, Jo S, Song H, Kim D, Lee SY. Evaluation of microbiological quality and safety of fresh-cut fruit products at retail levels in Korea. Food Sci Biotechnol 2021; 30:1393-1401. [PMID: 34691806 DOI: 10.1007/s10068-021-00974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/15/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022] Open
Abstract
The risk of foodborne illnesses caused by pathogens could be increased in fresh-cut fruit products owing to contamination during processing. Therefore, this study was conducted to investigate the microbiological quality and safety of commercial fresh-cut fruit products in Korea. Additionally, the growth of Listeria monocytogenes in selected fresh-cut fruits was evaluated, and their growth curves were analyzed using predictive growth modeling. The mean count of total aerobic bacteria, coliforms, and yeast/mold was 3.67±1.73 log10 CFU/g, 1.54±1.01 log10 CFU/g, and 3.81±1.51 log10 CFU/g, respectively. Escherichia coli, Staphylococcus aureus, Escherichia coli O157:H7, L. monocytogenes, Salmonella spp., and Cyclospora spp. were not detected in any of the tested samples. Only Bacillus cereus was detected in a few samples at the mean level of 1.72±0.13 log10 CFU/g. The growth of L. monocytogenes varied depending on the type of fruit; they grew well in non-acidic fresh-cut fruit products during storage at 10 °C.
Collapse
Affiliation(s)
- A-Ra Jang
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do Republic of Korea
| | - Areum Han
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do Republic of Korea
| | - Soyul Lee
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do Republic of Korea
| | - Suyoung Jo
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do Republic of Korea
| | - Hana Song
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do Republic of Korea
| | - Danbi Kim
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do Republic of Korea
| |
Collapse
|
58
|
Bertoldi B, Bardsley CA, Baker CA, Pabst CR, Gutierrez A, De J, Luo Y, Schneider KR. Determining Bacterial Load and Water Quality Parameters of Chlorinated Tomato Flume Tanks in Florida Packinghouses. J Food Prot 2021; 84:1784-1792. [PMID: 34086886 DOI: 10.4315/jfp-21-100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/01/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Monitoring and maintenance of water quality in dump tanks or flume systems is crucial to maintaining proper sanitizer levels to prevent pathogen cross-contamination during postharvest washing of tomatoes, but there is limited information on how organic matter influences sanitizer efficacy in the water. The main objective of this study was to monitor water quality in flume tanks and evaluate the efficacy of postharvest washing of tomatoes in commercial packinghouses. Flume tank water samples (n = 3) were collected on an hourly basis from three packinghouses in Florida and analyzed for pH, total dissolved solids (TDS), free chlorine, chemical oxygen demand (COD), oxidation-reduction potential, and turbidity. Additionally, three flume-water samples were collected and tested for total aerobic plate count (APC), total coliforms (TC), and Escherichia coli. Fresh tomatoes (n = 3), both before and after washing, were collected and analyzed for the same bacterial counts. Turbidity, COD, and TDS levels in flume water increased over time in all packinghouses. Correlations observed include COD and turbidity (r = 0.631), turbidity and TDS (r = 0.810), and oxidation-reduction potential and chlorine (r = 0.660). APC for water samples had an average range of 0.0 to 4.7 log CFU/mL and TC average range of 0.0 to 4.7 log CFU/mL. All water samples were negative for E. coli. The average APC for pre- and postflume tomatoes from the three packinghouses was 6.0 log CFU per tomato and ranged from 2.2 to 7.4 log CFU per tomato. The average TC count was <1.5 and 7.0 log CFU per tomato for pre- and postwash tomatoes, respectively. There was no significant effect (P > 0.05) of postharvest washing on the microbiological qualities of tomatoes. Water quality in flume tanks deteriorated over time in all packinghouses during a typical operational day of 4 to 8 h. HIGHLIGHTS
Collapse
Affiliation(s)
- Bruna Bertoldi
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida 32611
| | - Cameron A Bardsley
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida 32611
| | - Christopher A Baker
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida 32611
| | - Christopher R Pabst
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida 32611
| | - Alan Gutierrez
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida 32611
| | - Jaysankar De
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida 32611
| | - Yaguang Luo
- Environmental Microbial and Food Safety Laboratories, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, USA
| | - Keith R Schneider
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
59
|
Rajalingam N, Chae HB, Chu HJ, Kim SR, Hwang I, Hyun JE, Choi SY. Development of Strategies to Minimize the Risk of Listeria monocytogenes Contamination in Radish, Oriental Melon, and Carrots. Foods 2021; 10:foods10092135. [PMID: 34574243 PMCID: PMC8472131 DOI: 10.3390/foods10092135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
Contamination by Listeria monocytogenes in packaged produce is a major concern. The purpose of this study was to find natural and affordable sanitizers to reduce L. monocytogenes contamination in agricultural products. Organic acids, ultraviolet-C (UV-C), and ethanol were analyzed either alone or in combination to assess their ability to reduce L. monocytogenes population in radish, oriental melon, and carrot samples. In radish samples, 3% malic acid combined with UV-C at a dosage of 144 mj/cm2 significantly reduced (>4 log CFU/g) the population of L. monocytogenes (1.44 ± 0.5) compared to the control sample (5.14 ± 0.09). In the case of the melon samples, exposure to UV-C at a dosage of 144 mj/cm2 combined with 3% lactic acid (2.73 ± 0.75) or 50% ethanol (2.30 ± 0.01) was effective against L. monocytogenes compared to the control sample (5.10 ± 0.19). In carrot samples, 3% lactic acid combined with 144 mj/cm2 dosage UV-C reduced L. monocytogenes population (4.48 ± 0.25) more than in the control sample (5.85 ± 0.08). These results reveal that sanitizers that are effective for one crop are less effective for another crop indicating that effective prevention methods should be customized for each crop to prevent pathogen cross contamination during postharvest washing.
Collapse
|
60
|
Petri E, Virto R, Mottura M, Parra J. Comparison of Peracetic Acid and Chlorine Effectiveness during Fresh-Cut Vegetable Processing at Industrial Scale. J Food Prot 2021; 84:1592-1602. [PMID: 34015109 DOI: 10.4315/jfp-20-448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/16/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study was conducted to compare the efficacy of two sanitizing agents, chlorine and peracetic acid (PAA), in reducing spoilage and pathogenic microorganisms and disinfection by-products in the washing stage of three types of minimally processed vegetables: iceberg lettuce, carrots, and baby leaves. These fresh-cut products are consumed uncooked; thus, proper sanitation is essential in preventing foodborne illness outbreaks. The comparison was done at industrial scale with equipment already used in the fresh-cut industry and with washers designed and manufactured for this purpose. Results showed that for washing water hygiene and final product microbial quality, the use of PAA or chlorine had similar efficacy. Different scenarios combining PAA, chlorine, and water were tested, simulating the current industrial processes for each of the tested vegetables. Overall, results confirmed that the use of a sanitizer, PAA or chlorine, in the washing water is effective for the prevention of cross-contamination during the washing process and hence for produce food safety. For final product microbiological quality and shelf life, the use of chlorine or PAA showed no significant differences in lettuce or baby leaves. Chlorinated disinfection by-products in processing water were not formed in significant amounts when washing water was treated with PAA in all scenarios and for all tested vegetables, whereas washing with chlorine (80 mg/L) generated important amounts of trihalomethanes, chlorates, and chlorites. Although chlorates and chlorites were always below the recommended levels or legal limits established for drinking water, trihalomethanes exceeded the legal limits. For perchlorates, values were below the quantification limit in all scenarios. Our results show that PAA is a reliable alternative to chlorine disinfection strategies in the fresh-cut industry. HIGHLIGHTS
Collapse
Affiliation(s)
- E Petri
- R&D&I Area, Centro Nacional de Tecnología y Seguridad Alimentaria (CNTA), Carretera NA-134, Km. 53, 31570 Navarra, Spain
| | - R Virto
- R&D&I Area, Centro Nacional de Tecnología y Seguridad Alimentaria (CNTA), Carretera NA-134, Km. 53, 31570 Navarra, Spain
| | - M Mottura
- Productos Citrosol S.A., Partida Alameda, Parcela C, 46721 Potries, Valencia, Spain
| | - J Parra
- Productos Citrosol S.A., Partida Alameda, Parcela C, 46721 Potries, Valencia, Spain
| |
Collapse
|
61
|
Degradation of boscalid, pyraclostrobin, fenbuconazole, and glyphosate residues by an advanced oxidative process utilizing ultraviolet light and hydrogen peroxide. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
62
|
Truchado P, Gil MI, Allende A. Peroxyacetic acid and chlorine dioxide unlike chlorine induce viable but non-culturable (VBNC) stage of Listeria monocytogenes and Escherichia coli O157:H7 in wash water. Food Microbiol 2021; 100:103866. [PMID: 34416966 DOI: 10.1016/j.fm.2021.103866] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/07/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
The elaboration of guidelines for the industry to establish minimum concentration to prevent cross-contamination during washing practices based on operational limits is the core of the recommended criteria for the use of sanitizers. Several studies have evidenced that sanitizers reduced the levels of foodborne pathogens. However, they might lead to the progress into a viable but non-culturable (VBNC) state of the cells. This evidence has raised concerns regarding the effectiveness of the recommended washing practices for the inactivation of microbial cells present in the process wash water (PWW). The present study evaluated if the most commonly used sanitizers, including sodium hypochlorite (chlorine), peroxyacetic acid (PAA) and chlorine dioxide (ClO2) at established operational limits induced the VBNC stage of Listeria monocytogenes and Escherichia coli O157:H7. Prevention of cross-contamination was examined in four different types of PWW from washing shredded lettuce and cabbage, diced onions, and baby spinach under simulated commercial conditions of high organic matter and 1 min contact time. The results obtained for chlorine showed that recommended operational limits (20-25 mg/L free chlorine) were effective in inactivating L. monocytogenes and E. coli O157:H7 in the different PWWs. However, the operational limits established for PAA (80 mg/L) and ClO2 (3 mg/L) reduced the levels of culturable pathogenic bacteria but induced the VBNC state of the remaining cells. Consequently, the operational limits for chlorine are satisfactory to inactivate foodborne pathogens present in PWW and prevent cross-contamination but higher concentrations or longer contact times should be needed for PAA and ClO2 to reduce the likelihood of the induction of VBNC bacteria cells, as it represents a hazard.
Collapse
Affiliation(s)
- Pilar Truchado
- Research Group on Quality and Safety of Fruit and Vegetables, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain.
| | - Maria I Gil
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus, Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Ana Allende
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus, Universitario de Espinardo, 25, 30100, Murcia, Spain
| |
Collapse
|
63
|
Wang J, Zhang Y, Yu Y, Wu Z, Wang H. Combination of ozone and ultrasonic-assisted aerosolization sanitizer as a sanitizing process to disinfect fresh-cut lettuce. ULTRASONICS SONOCHEMISTRY 2021; 76:105622. [PMID: 34126525 PMCID: PMC8202344 DOI: 10.1016/j.ultsonch.2021.105622] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/09/2021] [Accepted: 06/04/2021] [Indexed: 05/24/2023]
Abstract
Reduction of sanitizer dosage and development of non-immersion disinfection methods have become major focuses of research. Here, we examined the disinfection efficacy of combining gaseous ozone (4 and 8 ppm) with aerosolized oxidizing sanitizer [sodium hypochlorite (SH, 100 and 200 ppm)] and aerosolized organic acid [acetic acid (AA, 1% and 2%) and lactic acid (LA, 1% and 2%)]. Notably, 1% AA and 4 ppm gaseous ozone were ineffective for disinfecting Salmonella Typhimurium, and treatment with 1% AA + 8 ppm ozone caused browning of lettuce leaves and stimulated increases in aerobic mesophilic count (AMC), aerobic psychrotrophic count (APC), S. Typhimurium, and Escherichia coli O157:H7. Treatment with 2% LA + 8 ppm ozone resulted in the lowest S. Typhimurium, E. coli O157:H7, Listeria monocytogenes, AMC, APC, and molds and yeasts during storage (0-7 days at 4 °C). Quality analysis indicates that LA + 8 ppm ozone and SH + 8 ppm ozone did not negatively affect L*, a*, b*, polyphenolic content, weight loss, and sensory properties; however, the levels of two individual phenolic compounds (3,4-dihydroxybenzoic acid and vanillin), responsible for phenylpropanoid synthesis, were significantly increased after treatment with 2% LA + 8 ppm ozone. These findings provided insights into the use of LA combined with gaseous ozone for application in disinfecting fresh produce.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Yangyang Zhang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Yougui Yu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | | |
Collapse
|
64
|
Fate of Salmonella spp. in fresh-cut papaya (Carica papaya L.) at different storage temperature and relative humidity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
65
|
López-Gálvez F, Gómez PA, Artés F, Artés-Hernández F, Aguayo E. Interactions between Microbial Food Safety and Environmental Sustainability in the Fresh Produce Supply Chain. Foods 2021; 10:foods10071655. [PMID: 34359525 PMCID: PMC8307063 DOI: 10.3390/foods10071655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Improving the environmental sustainability of the food supply chain will help to achieve the United Nations Sustainable Development Goals (SDGs). This environmental sustainability is related to different SDGs, but mainly to SDG 2 (Zero Hunger), SDG 12 (Responsible Production and Consumption), SDG 13 (Climate Action), and SDG 15 (Life on Land). The strategies and measures used to improve this aspect of the food supply chain must remain in balance with other sustainability aspects (economic and social). In this framework, the interactions and possible conflicts between food supply chain safety and sustainability need to be assessed. Although priority must be given to safety aspects, food safety policies should be calibrated in order to avoid unnecessary deleterious effects on the environment. In the present review, a number of potential tensions and/or disagreements between the microbial safety and environmental sustainability of the fresh produce supply chain are identified and discussed. The addressed issues are spread throughout the food supply chain, from primary production to the end-of-life of the products, and also include the handling and processing industry, retailers, and consumers. Interactions of fresh produce microbial safety with topics such as food waste, supply chain structure, climate change, and use of resources have been covered. Finally, approaches and strategies that will prove useful to solve or mitigate the potential contradictions between fresh produce safety and sustainability are described and discussed. Upon analyzing the interplay between microbial safety and the environmental sustainability of the fresh produce supply chain, it becomes clear that decisions that are taken to ensure fresh produce safety must consider the possible effects on environmental, economic, and social sustainability aspects. To manage these interactions, a global approach considering the interconnections between human activities, animals, and the environment will be required.
Collapse
Affiliation(s)
- Francisco López-Gálvez
- Postharvest and Refrigeration Group, Escuela Técnica Superior de Ingeniería Agronómica (ETSIA), Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (F.L.-G.); (F.A.); (F.A.-H.)
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain;
| | - Perla A. Gómez
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain;
| | - Francisco Artés
- Postharvest and Refrigeration Group, Escuela Técnica Superior de Ingeniería Agronómica (ETSIA), Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (F.L.-G.); (F.A.); (F.A.-H.)
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain;
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Escuela Técnica Superior de Ingeniería Agronómica (ETSIA), Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (F.L.-G.); (F.A.); (F.A.-H.)
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain;
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Escuela Técnica Superior de Ingeniería Agronómica (ETSIA), Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (F.L.-G.); (F.A.); (F.A.-H.)
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain;
- Correspondence:
| |
Collapse
|
66
|
Liu X, Li Y, Wang S, Huangfu L, Zhang M, Xiang Q. Synergistic antimicrobial activity of plasma-activated water and propylparaben: Mechanism and applications for fresh produce sanitation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
67
|
Bolten S, Gu G, Gulbronson C, Kramer M, Luo Y, Zografos A, Nou X. Evaluation of DNA barcode abiotic surrogate as a predictor for inactivation of E. coli O157:H7 during spinach washing. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
68
|
Yi J, Huang K, Ma Y, Sun G, Young GM, Nitin N. Antimicrobial N-Halamine incorporated Poly(Vinyl alcohol-co-ethylene) films for reducing cross-contamination of fresh produce. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
69
|
DeFlorio W, Liu S, White AR, Taylor TM, Cisneros-Zevallos L, Min Y, Scholar EMA. Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross-contamination of food contact surfaces by bacteria. Compr Rev Food Sci Food Saf 2021; 20:3093-3134. [PMID: 33949079 DOI: 10.1111/1541-4337.12750] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 12/29/2022]
Abstract
Illness as the result of ingesting bacterially contaminated foodstuffs represents a significant annual loss of human quality of life and economic impact globally. Significant research investment has recently been made in developing new materials that can be used to construct food contacting tools and surfaces that might minimize the risk of cross-contamination of bacteria from one food item to another. This is done to mitigate the spread of bacterial contamination and resultant foodborne illness. Internet-based literature search tools such as Web of Science, Google Scholar, and Scopus were utilized to investigate publishing trends within the last 10 years related to the development of antimicrobial and antifouling surfaces with potential use in food processing applications. Technologies investigated were categorized into four major groups: antimicrobial agent-releasing coatings, contact-based antimicrobial coatings, superhydrophobic antifouling coatings, and repulsion-based antifouling coatings. The advantages for each group and technical challenges remaining before wide-scale implementation were compared. A diverse array of emerging antimicrobial and antifouling technologies were identified, designed to suit a wide range of food contact applications. Although each poses distinct and promising advantages, significant further research investment will likely be required to reliably produce effective materials economically and safely enough to equip large-scale operations such as farms, food processing facilities, and kitchens.
Collapse
Affiliation(s)
- William DeFlorio
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Shuhao Liu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Andrew R White
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | | | - Luis Cisneros-Zevallos
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.,Department of Horticultural Sciences, Texas A&M University, College Station, Texas, USA
| | - Younjin Min
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Ethan M A Scholar
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
70
|
Use of mathematic models to describe the microbial inactivation on baby carrots by gaseous chlorine dioxide. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
71
|
Recent progress on the management of the industrial washing of fresh produce with a focus on microbiological risks. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
72
|
Bhullar MS, Shaw A, Mendonca A, Monge A, Nabwire L, Thomas-Popo E. Shiga Toxin-Producing Escherichia coli in the Long-Term Survival Phase Exhibit Higher Chlorine Tolerance and Less Sublethal Injury Following Chlorine Treatment of Romaine Lettuce. Foodborne Pathog Dis 2021; 18:276-282. [PMID: 33471590 DOI: 10.1089/fpd.2020.2873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The extent of chlorine inactivation and sublethal injury of stationary-phase (STAT) and long-term survival-phase (LTS) cells of Shiga toxin-producing Escherichia coli (STEC) in vitro and in a lettuce postharvest wash model was investigated. Four STEC strains were cultured in tryptic soy broth supplemented with 0.6% (w/v) yeast extract (TSBYE; 35°C) for 24 h and 21 d to obtain STAT and LTS cells, respectively. Minimum bactericidal concentration (MBC) and dose-response assays were performed to determine chlorine's antibacterial efficacy against STAT and LTS cells. Chlorine solutions (pH 6.5) and romaine lettuce were each inoculated with STAT and LTS cells to obtain initial populations of ∼7.8 log colony-forming units (CFU)/mL. Survivors in chlorine solutions were determined after 30 s. Inoculated lettuce samples were held at 22°C ± 1°C for 2 h or 20 h and then exposed to chlorine (10-40 ppm) for 60 s. Survivors were enumerated on nonselective and selective agar media following incubation (35°C, 48 h). The MBC for STAT and LTS cells was 0.04 and 0.08 ppm, respectively. Following exposure (30 s) to chlorine at 2.5, 5.0, and 10 ppm, STAT cells were reduced to <1.0 log CFU/mL, whereas LTS survivors were at 5.10 (2.5 ppm), 3.71 (5.0 ppm), and 2.55 (10 ppm) log CFU/mL. At 20 and 40 ppm chlorine, greater log CFU reductions of STAT cells (1.64 and 1.85) were observed compared with LTS cells (0.94 and 0.83) after 2 h of cell contact with lettuce (p < 0.05), but not after 20 h. Sublethal injury in STEC after chlorine (40 ppm) treatment was lower in LTS compared with STAT survivors (p < 0.05). Compared with STAT cells, LTS cells of STEC seem to have higher chlorine tolerance as planktonic cells and as attached cells depending on cell contact time on lettuce. In addition, a higher percentage of LTS cells, compared with STAT cells, survive in a noninjured state after chlorine (40 ppm) treatment of lettuce.
Collapse
Affiliation(s)
- Manreet Singh Bhullar
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Angela Shaw
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Aubrey Mendonca
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Ana Monge
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Lillian Nabwire
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Emalie Thomas-Popo
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
73
|
Suehr QJ, Marks BP, Ryser ET, Jeong S. Modeling the Propagation of Salmonella within Bulk Almond Using Discrete Element Method Particle Simulation Technique. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
74
|
Practical applications of sensor-based methodologies for monitoring peracetic acid (PAA) as a disinfectant of fresh produce wash water. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
75
|
Marín A, Tudela JA, Garrido Y, Albolafio S, Hernández N, Andújar S, Allende A, Gil MI. Chlorinated wash water and pH regulators affect chlorine gas emission and disinfection by-products. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102533] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
76
|
Gu G, Bolten S, Mendes-Oliveira G, Zhou B, Teng Z, Pearlstein D, Luo Y, Millner P, Nou X. Salmonella inactivation and sponge/microfiber mediated cross-contamination during papaya wash with chlorine or peracetic acid as sanitizer. Food Microbiol 2020; 95:103677. [PMID: 33397611 DOI: 10.1016/j.fm.2020.103677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022]
Abstract
Imported papayas from Mexico have been implicated in multiple salmonellosis outbreaks in the United States in recent years. While postharvest washing is a critical process to remove latex, dirt, and microbes, it also has the potential of causing cross-contamination by foodborne pathogens, with sponge or other fibrous rubbing tools often questioned as potential harboring or transmitting risk. In this study, Salmonella inactivation and cross-contamination via sponges and microfiber wash mitts during simulated papaya washing and cleaning were investigated. Seven washing treatments (wash without sanitizer; wash at free chlorine 25, 50, and 100 mg/L, and at peracetic acid 20, 40, and 80 mg/L), along with unwashed control, were evaluated, using Salmonella strains with unique antibiotic markers differentially inoculated on papaya rind (serovars Typhimurium, Heidelberg, and Derby) and on wash sponge or microfiber (serovars Typhimurium, Newport, and Braenderup). Salmonella survival and transfer on papaya and on sponge/microfiber, and in wash water were detected using selective plating or enrichment. The washing and cleaning process reduced Salmonella on inoculated papayas by 1.69-2.66 and 0.69-1.74 log for sponge and microfiber cleaning, respectively, with the reduction poorly correlated to sanitizer concentration. Salmonella on inoculated sponge or microfiber was under detection limit (1.00 log CFU/cm2) by plate count, but remained recoverable by selective enrichment. Transference of Salmonella from inoculated papaya to sponge/microfiber, and vice versa, could be detected sporadically by selective enrichment. Sponge/microfiber mediated Salmonella cross-contamination from inoculated to uninoculated papayas was frequently detectable by selective enrichment, but rendered undetectable by wetting sponge/microfiber in sanitizing wash water (FC 25-100 mg/L or PAA 20-80 mg/L) between washing different papaya fruits. Therefore, maintaining adequate sanitizer levels and frequently wetting sponge/microfiber in sanitizing wash water can effectively mitigate risks of Salmonella cross-contamination associated with postharvest washing, especially with regard to the use of sponge or microfiber wash mitts.
Collapse
Affiliation(s)
- Ganyu Gu
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Samantha Bolten
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Gabriella Mendes-Oliveira
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Bin Zhou
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Zi Teng
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Daniel Pearlstein
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Yaguang Luo
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Patricia Millner
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA.
| |
Collapse
|
77
|
A Closer Look at Changes in High-Risk Food-Handling Behaviors and Perceptions of Primary Food Handlers at Home in South Korea across Time. Foods 2020; 9:foods9101457. [PMID: 33066300 PMCID: PMC7602069 DOI: 10.3390/foods9101457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Food-handling behaviors and risk perceptions among primary food handlers were investigated by consumer surveys from different subjects in 2010 (N = 609; 1st survey will be called here “Year 2010”) and 2019 (N = 605; 2nd survey will be called here “Year 2019”). Year 2010 was characterized by consumers’ risk perception-behavior gap (i.e., consumers knew safe methods for food-handling, but responses regarding the behaviors did not support their confidence in food safety): they (1) did not wash/trim foods before storage, (2) thawed frozen foods at room temperature, and (3) exposed leftovers to danger zone temperatures. These trends were not improved and the gaps in Year 2010 remained in Year 2019. Year 2010 was also characterized by other common high-risk behaviors improved during 8 years for the following aspects: (1) 70.0% of consumers divided a large portion of food into smaller pieces for storage, but few consumers (12.5%) labeled divided foods with relevant information, and (2) they excessively reused kitchen utensils. Whereas in Year 2019, more consumers (25.7%) labeled food and usage periods for kitchen utensils were shortened. Consumers usually conformed to food safety rules in both Year 2010 and 2019: (1) separate storage of foods, (2) storage of foods in the proper places/periods, (3) washing fruits/vegetables before eating, (4) washing hands after handling potentially hazardous foods, and (5) cooking foods and reheating leftovers to eat. Our findings provided resources for understanding consumers’ high-risk behaviors/perceptions at home, highlighting the importance of behavioral control.
Collapse
|
78
|
Sheng L, Shen X, Su Y, Korany A, Knueven CJ, Zhu MJ. The efficacy of sodium acid sulfate on controlling Listeria monocytogenes on apples in a water system with organic matter. Food Microbiol 2020; 92:103595. [PMID: 32950137 DOI: 10.1016/j.fm.2020.103595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 11/29/2022]
Abstract
During fresh apple packing, wash water in the dump tank and flume systems is reused during daily production, resulting in high levels of organic matter in the wash water. This study evaluated the antimicrobial efficacy of sodium acid sulfate (SAS), a Generally Recognized as Safe compound, against Listeria monocytogenes on fresh apples in a water system with high organic load. SAS at 1.0% reduced L. monocytogenes population in water with 1000 ppm chemical oxygen demand (COD) by more than 5.0 Log10 CFU/ml in 5 min, 2.0-3.0% SAS reduced L. monocytogenes to undetectable levels (10 CFU/ml) within 2 min regardless of organic levels. When applied on apples, a 2-min wash with SAS at 1.0, 1.5, 2.0, and 3.0% reduced L. monocytogenes by ~1.3, 1.9, 2.3, and 3.0 Log10 CFU/apple in clean water, respectively. High organic load in wash water up to 4000 ppm COD had no impact on the bactericidal effect of SAS against L. monocytogenes on fresh apples regardless of SAS concentrations. Shortening the contact time from 2 min to 30 s significantly reduced the antimicrobial efficacy of 25 ppm chlorine and 1.0-2.0% SAS but not that of 3.0% SAS. In addition, SAS at 1.0% demonstrated a better efficacy than 25 ppm chlorine in reducing fruit-to-water cross-contamination regardless of organic matter. SAS also showed a comparable efficacy as 25 ppm chlorine in reducing fruit-to-fruit cross-contamination in water with organic matter. The collective data indicate that SAS, as an enviroment-friendly compound, has the potential to be used as an alternative antimicrobial washing aid in dump tank process water intervention in apple packing facilities.
Collapse
Affiliation(s)
- Lina Sheng
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Xiaoye Shen
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Yuan Su
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Ahmed Korany
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | | | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
79
|
Mandal P, Yadav MK, Gupta AK, Dubey BK. Chlorine mediated indirect electro-oxidation of ammonia using non-active PbO2 anode: Influencing parameters and mechanism identification. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116910] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
80
|
Survival of Salmonella enterica and shifts in the culturable mesophilic aerobic bacterial community as impacted by tomato wash water particulate size and chlorine treatment. Food Microbiol 2020; 90:103470. [DOI: 10.1016/j.fm.2020.103470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/21/2022]
|
81
|
Hasani M, Wu F, Warriner K. Validation of a vapor-phase advanced oxidation process for inactivating Listeria monocytogenes, its surrogate Lactobacillus fructivorans, and spoilage molds associated with green or red table grapes. J Food Sci 2020; 85:2645-2655. [PMID: 32839995 DOI: 10.1111/1750-3841.15387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022]
Abstract
A method based on vapor-phase advanced oxidation process (AOP) for decontaminating red or green grapes was validated for inactivating Listeria monocytogenes and spoilage molds. A Central Composite Design (CCD) and Response Surface Methodology (RSM) were applied to determine the contribution of UV-C (254 nm) dose, hydrogen peroxide, and ozone concentration on the lethality toward Aspergillus niger spores (biodensiometer) and changes to the grape quality (firmness and color over 14-day post-treatment storage at 4 °C). A high UV-C dose (>129 mJ/cm2 ) or >4.0 % v/v hydrogen peroxide induced-blistering and darkening of grapes at the end of the storage period. Yet, an optimized AOP treatment (with regards to preserving grape quality) was derived to be 1.3% v/v hydrogen peroxide (5 mL/10 berries) with 9-mg ozone gas and a UV-C dose of 123 mJ/cm2 (10 s at UV-C intensity of 12 mW/cm2 ). A predictive model was constructed and verified based on the log reduction of A. niger spores and changes in quality characteristics of red grapes. The optimal AOP treatment supported a 1.6-log CFU/g reduction of Aspergillus spores and decreased L. monocytogenes counts by 3.92 ± 0.17 and 4.77 ± 0.30 log CFU/g on green and red grapes, respectively, that were not significantly different to the surrogate, Lactobacillus fructivorans. There was no significant difference in the reduction of L. monocytogenes with grapes arranged in a single or double layer. Botrytis cinerea counts were reduced by 1.08 to 1.35 log CFU/g using the optimized AOP treatment with no change in grape color or firmness during storage. A sensory panel could not differentiate AOP-treated grapes from nontreated controls although 3 of 15 panelists did note subtle flavor notes. PRACTICAL APPLICATION: Postharvest washing of fresh produce has limited efficacy in removing foodborne pathogens and spoilage microbes. This is especially relevant to berries, such as grapes, that are susceptible to spoilage following washing. The vapor-phase AOP treatment provides a supplemental or alternative approach for produce decontamination. However, the operating parameters need to be optimized to ensure that decontamination of grapes is not at the expense of quality. In the current study, this was achieved by ensuring a balance between hydrogen peroxide, ozone, and UV-C dose that form the elements of an AOP treatment.
Collapse
Affiliation(s)
- Mahdiyeh Hasani
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Fan Wu
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
82
|
Buitenhuis R, Poleatewich A, Jandricic M, Brownbridge M. Risk of Spreading Soft Rot Through Cutting Dips Against Whiteflies in Greenhouse-Grown Poinsettia. PLANT DISEASE 2020; 104:2262-2268. [PMID: 32568631 DOI: 10.1094/pdis-12-19-2632-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dipping is a quick and cost-effective technique to reduce pest infestations on unrooted cuttings of greenhouse ornamental crops. Large numbers of cuttings are immersed in an insecticidal treatment, e.g., biopesticides and/or insecticidal soap, before they are stuck in the growing medium and rooted. This research investigated the risk of cross-contamination of poinsettia cuttings with Pectobacterium carotovorum subsp. carotovorum, a potentially devastating pathogen causing soft rot, through the dipping process. Sampling at four commercial greenhouses showed that P. carotovorum subsp. carotovorum was present in all dip suspensions during and after processing poinsettia cuttings; concentrations up to 1 × 105 CFU/ml were detected. A laboratory experiment determined that P. carotovorum subsp. carotovorum-infected cuttings could contaminate clean dip suspensions to similar levels. These results indicated that there is potential for disease transfer during dipping. The potential for cross-contamination of healthy cuttings was evaluated by immersing poinsettia cuttings in dip suspensions artificially inoculated with P. carotovorum subsp. carotovorum (from 1 × 103 to 1 × 107 CFU/ml). Disease incidence increased as P. carotovorum subsp. carotovorum concentrations in the dip suspension increased and the variety 'Prestige Red' was more susceptible than 'Freedom White.' However, even at the highest P. carotovorum subsp. carotovorum concentration of 1 × 107 CFU/ml, the proportion of diseased cuttings was low at 6% for var. 'Freedom White,' but higher at 21% for var. 'Prestige Red.' We conclude that P. carotovorum subsp. carotovorum transfer among unrooted poinsettia cuttings through the dipping process is relatively low although some varieties are sensitive to high levels of inoculum. Even so, strict sanitation practices are still important to prevent build-up of inoculum in the dip treatment.
Collapse
Affiliation(s)
| | - Anissa Poleatewich
- Vineland Research and Innovation Centre, Vineland Station, ON, L0R 2E0, Canada
| | - Mark Jandricic
- Vineland Research and Innovation Centre, Vineland Station, ON, L0R 2E0, Canada
| | - Michael Brownbridge
- Vineland Research and Innovation Centre, Vineland Station, ON, L0R 2E0, Canada
| |
Collapse
|
83
|
Qi H, Wang L, Huang Q, Hung YC. Effect of organic load on the efficacy of activated persulfate in inactivating Escherichia coli O157:H7 and the production of halogenated by-products. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
84
|
Shen X, Su Y, Hua Z, Cong J, Dhowlaghar N, Sun Q, Lin S, Green T, Perrault M, Galeni M, Hanrahan I, Suslow TV, Zhu MJ. Verification of peroxyacetic acid treatment against L. monocytogenes on fresh apples using E. faecium NRRL B-2354 as a surrogate in commercial spray-bar operations. Food Microbiol 2020; 92:103590. [PMID: 32950134 DOI: 10.1016/j.fm.2020.103590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 10/23/2022]
Abstract
Peroxyacetic acid (PAA) is a commonly used antimicrobial in apple spray bar interventions during post-harvest packing. However, limited information is available about its efficacy against foodborne pathogens on fresh apples under commercial packing conditions. In this study, the practical efficacies of PAA against Listeria monocytogenes on fresh apples during spray bar operation at ambient and elevated temperature were validated in three commercial packing facilities using Enterococcus faecium NRRL B-2354 as a surrogate strain. Apples were inoculated with E. faecium at ~6.5 Log10 CFU/apple and subjected to PAA spray bar interventions per commercial packing line practice. At each temperature and contact time intervention combination, 20-24 inoculated apples were processed together with 72-80 non-inoculated apples. Applying 80 ppm PAA at ambient temperature (17-21 °C) achieved a similar log reduction (P > 0.05) of E. faecium on Granny Smith apples (GSA) in three apple packing facilities, which caused 1.12-1.23 and 1.18-1.32 Log10 CFU/apple reductions of E. faecium on GSA for 30-sec and 60-sec intervention, respectively. Increasing the temperature of the PAA solution to 43-45 °C enhanced its bactericidal effect against E. faecium, causing 1.45, 1.86 and 2.19 Log10 CFU/apple reductions in three packing facilities for a 30-sec contact, and 1.50, 2.24, and 2.29 Log10 CFU/apple reductions for a 60-sec contact, respectively. Similar efficacies (P > 0.05) of PAA at both ambient and elevated temperature were also observed on Fuji apples. Spraying PAA on apples at ambient or elevated temperature reduced the level of E. faecium cross-contamination from inoculated apples to non-inoculated apples but could not eliminate cross-contamination. Data from this study provides valuable technical information and a reference point for the apple industry in controlling L. monocytogenes and verifying the effectiveness of their practices.
Collapse
Affiliation(s)
- Xiaoye Shen
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Yuan Su
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Zi Hua
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Jian Cong
- School of Food Science, Washington State University, Pullman, WA, 99164, USA; School of Public Administration, Shanghai Open University, Shanghai, 200433, PR China
| | - Nitin Dhowlaghar
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Qi Sun
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Shengnan Lin
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Tonia Green
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | | | - Marcella Galeni
- Washington Tree Fruit Research Commission, Wenatchee, WA, 98801, USA
| | - Ines Hanrahan
- Washington Tree Fruit Research Commission, Wenatchee, WA, 98801, USA
| | - Trevor V Suslow
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
85
|
Lippman B, Yao S, Huang R, Chen H. Evaluation of the combined treatment of ultraviolet light and peracetic acid as an alternative to chlorine washing for lettuce decontamination. Int J Food Microbiol 2020; 323:108590. [PMID: 32200156 DOI: 10.1016/j.ijfoodmicro.2020.108590] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/21/2020] [Accepted: 03/12/2020] [Indexed: 12/27/2022]
Abstract
The potential of using ultraviolet light (UV) in combination of peracetic acid (PAA) as an alternative to chlorine washing for lettuce was evaluated. Shredded iceberg lettuce was dip-inoculated with a four-strain Salmonella cocktail to final levels of 6-7.5 log CFU/g, following by air-drying and overnight cold storage. The inoculated lettuce (80 g) was then washed in turbid tap water containing 6% lettuce juice extract and silicon dioxide (turbidity of ~60 NTU; COD of ~2000 mg/L) while being treated with 1) 10 or 20 ppm free chlorine, 2) PAA solution (40 and 80 ppm), 3) UV (10, 20 and 30 mW/cm2), 4) a combination of UV and PAA for 1, 2, and 5 min. Among all the single treatments, the 30 mW/cm2 UV treatment achieved the highest Salmonella reduction on lettuce. For the 2-min treatment group, the 30 mW/cm2 UV treatment achieved 1.98 log reduction, while the 80 ppm PAA and 20 ppm free chlorine resulted in 1.52 and 1.23 log reduction, respectively. The combined treatment of 30 mW/cm2 UV and 80 ppm PAA achieved significantly higher (P < .05) Salmonella reduction than the 20 ppm free chlorine washing. For the 5-min treatment group, the combined treatment resulted in 3.24 log reduction, while the 20 ppm free chlorine washing only achieved 1.24 log reduction. The effect of the combined treatment of 30 mW/cm2 UV and 80 ppm PAA was also compared with 20 ppm free chlorine washing on larger sample sizes of 200, 500, and 1000 g lettuce. The increase of sample size from 80 g to 1000 g did not significantly (P < .05) affect the inactivation of Salmonella on lettuce for the combined treatment. In addition, the combined treatment of 80 ppm PAA and 30 mW/cm2 UV was able to maintain the Salmonella population in wash water under the detection limit of 0.3 log CFU/mL. It was therefore concluded that the combined treatment of 30 mW/cm2 UV and 80 ppm PAA could be used as an alternative to chlorine washing for lettuce decontamination.
Collapse
Affiliation(s)
- Beth Lippman
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716-2150, USA
| | - Shiyun Yao
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716-2150, USA
| | - Runze Huang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716-2150, USA
| | - Haiqiang Chen
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716-2150, USA.
| |
Collapse
|
86
|
Gu G, Bolten S, Mowery J, Luo Y, Gulbronson C, Nou X. Susceptibility of foodborne pathogens to sanitizers in produce rinse water and potential induction of viable but non-culturable state. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
87
|
López-Gálvez F, Truchado P, Tudela JA, Gil MI, Allende A. Critical points affecting the microbiological safety of bell peppers washed with peroxyacetic acid in a commercial packinghouse. Food Microbiol 2020; 88:103409. [DOI: 10.1016/j.fm.2019.103409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 11/28/2022]
|
88
|
Truchado P, Gil MI, Larrosa M, Allende A. Detection and Quantification Methods for Viable but Non-culturable (VBNC) Cells in Process Wash Water of Fresh-Cut Produce: Industrial Validation. Front Microbiol 2020; 11:673. [PMID: 32431672 PMCID: PMC7214806 DOI: 10.3389/fmicb.2020.00673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
The significance of viable but non-culturable (VBNC) cells in the food industry is not well known, mainly because of the lack of suitable detection methodologies to distinguish them from dead cells. The study aimed at the selection of the method to differentiate dead and VBNC cells of Listeria monocytogenes in process wash water (PWW) from the fruit and vegetable industry. Different methodologies were examined including (i) flow cytometry, (ii) viability quantitative polymerase chain reaction (v-qPCR) using an improved version of the propidium monoazide (PMAxx) dye as DNA amplificatory inhibitor, and (iii) v-qPCR combining ethidium monoazide (EMA) and PMAxx. The results showed that the flow cytometry, although previously recommended, was not a suitable methodology to differentiate between dead and VBNC cells in PWW, probably because of the complex composition of the water, causing interferences and leading to an overestimation of the dead cells. Based on results obtained, the v-qPCR combined with EMA and PMAxx was the most suitable technique for the detection and quantification of VBNC cells in PWW. Concentrations of 10 μM EMA and 75 μM PMAxx incubated at 40°C for 40 min followed by a 15-min light exposure inhibited most of the qPCR amplification from dead cells. For the first time, this methodology was validated in an industrial processing line for shredded lettuce washed with chlorine (10 mg/L). The analysis of PWW samples allowed the differentiation of dead and VBNC cells. Therefore, this method can be considered as a rapid and reliable one recommended for the detection of VBNC cells in complex water matrixes such as those of the food industry. However, the complete discrimination of dead and VBNC cells was not achieved, which led to a slight overestimation of the percentage of VBNC cells in PWW, mostly, due to the complex composition of this type of water. More studies are needed to determine the significance of VBNC cells in case of potential cross-contamination of fresh produce during washing.
Collapse
Affiliation(s)
- Pilar Truchado
- Research Group on Quality, Safety and Bioactivity of Plant Foods, The Centre of Edafology and Applied Biology of Segura, Spanish National Research Council (CEBAS-CSIC), Murcia, Spain
| | - Maria I. Gil
- Research Group on Quality, Safety and Bioactivity of Plant Foods, The Centre of Edafology and Applied Biology of Segura, Spanish National Research Council (CEBAS-CSIC), Murcia, Spain
| | - Mar Larrosa
- Faculty of Biomedical and Health Sciences, Nutrition, Microbiota and Health Group, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, The Centre of Edafology and Applied Biology of Segura, Spanish National Research Council (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
89
|
López-Gálvez F, Tudela JA, Gil MI, Allende A. Use of Chlorine Dioxide to Treat Recirculated Process Water in a Commercial Tomato Packinghouse: Microbiological and Chemical Risks. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
90
|
Koutsoumanis K, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Jordan K, Sampers I, Wagner M, Da Silva Felicio MT, Georgiadis M, Messens W, Mosbach‐Schulz O, Allende A. The public health risk posed by Listeria monocytogenes in frozen fruit and vegetables including herbs, blanched during processing. EFSA J 2020; 18:e06092. [PMID: 32874300 PMCID: PMC7448082 DOI: 10.2903/j.efsa.2020.6092] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A multi-country outbreak of Listeria monocytogenes ST6 linked to blanched frozen vegetables (bfV) took place in the EU (2015-2018). Evidence of food-borne outbreaks shows that L. monocytogenes is the most relevant pathogen associated with bfV. The probability of illness per serving of uncooked bfV, for the elderly (65-74 years old) population, is up to 3,600 times greater than cooked bfV and very likely lower than any of the evaluated ready-to-eat food categories. The main factors affecting contamination and growth of L. monocytogenes in bfV during processing are the hygiene of the raw materials and process water; the hygienic conditions of the food processing environment (FPE); and the time/Temperature (t/T) combinations used for storage and processing (e.g. blanching, cooling). Relevant factors after processing are the intrinsic characteristics of the bfV, the t/T combinations used for thawing and storage and subsequent cooking conditions, unless eaten uncooked. Analysis of the possible control options suggests that application of a complete HACCP plan is either not possible or would not further enhance food safety. Instead, specific prerequisite programmes (PRP) and operational PRP activities should be applied such as cleaning and disinfection of the FPE, water control, t/T control and product information and consumer awareness. The occurrence of low levels of L. monocytogenes at the end of the production process (e.g. < 10 CFU/g) would be compatible with the limit of 100 CFU/g at the moment of consumption if any labelling recommendations are strictly followed (i.e. 24 h at 5°C). Under reasonably foreseeable conditions of use (i.e. 48 h at 12°C), L. monocytogenes levels need to be considerably lower (not detected in 25 g). Routine monitoring programmes for L. monocytogenes should be designed following a risk-based approach and regularly revised based on trend analysis, being FPE monitoring a key activity in the frozen vegetable industry.
Collapse
|
91
|
Li K, Chiu YC, Jiang W, Jones L, Etienne X, Shen C. Comparing the Efficacy of Two Triple-Wash Procedures With Sodium Hypochlorite, a Lactic–Citric Acid Blend, and a Mix of Peroxyacetic Acid and Hydrogen Peroxide to Inactivate Salmonella, Listeria monocytogenes, and Surrogate Enterococcus faecium on Cucumbers and Tomatoes. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
92
|
Ghostlaw T, Corradini MG, Autio WR, Kinchla AJ. Impact of various postharvest wash water conditions on the performance of peracetic acid against Escherichia coli O157:H7 over time. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
93
|
Tudela JA, López-Gálvez F, Allende A, Gil MI. Chlorination management in commercial fresh produce processing lines. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106760] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
94
|
Guo S, Huang R, Chen H. Evaluating a Combined Method of UV and Washing for Sanitizing Blueberries, Tomatoes, Strawberries, Baby Spinach, and Lettuce. J Food Prot 2019; 82:1879-1889. [PMID: 31622165 DOI: 10.4315/0362-028x.jfp-18-524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We assessed a fresh produce decontamination system using a combined method of UV and washing (water-assisted UV [WUV]) in different scales. The system used tap water to wash fresh produce while exposing it to UV light. First, the reduction of Salmonella in tap water under UV treatment (1 to 1,740 mJ/cm2) was determined. Increasing the UV dose significantly (P < 0.05) increased the Salmonella reduction in wash water, and UV intensity of more than 2 mW/cm2 could reduce Salmonella in tap water to below 1 CFU/mL given enough processing time (more than 1 min; UV dose of 120 mJ/cm2). Then, the decontamination effectiveness of a small WUV system was tested on blueberries (50 g). Blueberries were spot or dip inoculated with a Salmonella cocktail and treated by the small WUV system (200 mL of water). In general, WUV treatments achieved significantly better Salmonella inactivation than tap water wash; tap water wash (10 min) and 2 mW/cm2 WUV treatment (with a UV dose of 1,200 mJ/cm2) reduced populations of spot-inoculated Salmonella on blueberries by 2.44 and 5.45 log, respectively. Compared with spot-inoculated Salmonella on blueberries, dip-inoculated Salmonella was more difficult to be inactivated by WUV treatments. Then, the decontamination effectiveness of WUV treatments was tested on blueberries (170 g), tomatoes (290 g), strawberries (170 g), baby spinach (60 g), and lettuce (60 g) using a larger WUV system. In general, 10 min of 29 mW/cm2 WUV treatment (a high UV dose of 17,400 mJ/cm2) resulted in significantly better Salmonella inactivation than tap water wash (for 10 min) regardless the inoculation method, agreeing with the results of the small-scale study. For both spot- and dip-inoculated lettuce, no significant difference (P > 0.05) in Salmonella inactivation by WUV treatments was observed when the quantity of lettuce increased from 50 to 100 g.
Collapse
Affiliation(s)
- Shuanghuan Guo
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716-2150, USA
| | - Runze Huang
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716-2150, USA
| | - Haiqiang Chen
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716-2150, USA
| |
Collapse
|
95
|
Machado-Moreira B, Richards K, Brennan F, Abram F, Burgess CM. Microbial Contamination of Fresh Produce: What, Where, and How? Compr Rev Food Sci Food Saf 2019; 18:1727-1750. [PMID: 33336968 DOI: 10.1111/1541-4337.12487] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/07/2019] [Accepted: 07/10/2019] [Indexed: 01/02/2023]
Abstract
Promotion of healthier lifestyles has led to an increase in consumption of fresh produce. Such foodstuffs may expose consumers to increased risk of foodborne disease, as often they are not subjected to processing steps to ensure effective removal or inactivation of pathogenic microorganisms before consumption. Consequently, reports of ready-to-eat fruit and vegetable related disease outbreak occurrences have increased substantially in recent years, and information regarding these events is often not readily available. Identifying the nature and source of microbial contamination of these foodstuffs is critical for developing appropriate mitigation measures to be implemented by food producers. This review aimed to identify the foodstuffs most susceptible to microbial contamination and the microorganisms responsible for disease outbreaks from information available in peer-reviewed scientific publications. A total of 571 outbreaks were identified from 1980 to 2016, accounting for 72,855 infections and 173 deaths. Contaminated leafy green vegetables were responsible for 51.7% of reported outbreaks. Contaminated soft fruits caused 27.8% of infections. Pathogenic strains of Escherichia coli and Salmonella, norovirus, and hepatitis A accounted for the majority of cases. Large outbreaks resulted in particular biases such as the observation that contaminated sprouted plants caused 31.8% of deaths. Where known, contamination mainly occurred via contaminated seeds, water, and contaminated food handlers. There is a critical need for standardized datasets regarding all aspects of disease outbreaks, including how foodstuffs are contaminated with pathogenic microorganisms. Providing food business operators with this knowledge will allow them to implement better strategies to improve safety and quality of fresh produce.
Collapse
Affiliation(s)
- Bernardino Machado-Moreira
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland.,Functional Environmental Microbiology, National Univ. of Ireland Galway, Galway, Ireland
| | - Karl Richards
- Teagasc Johnstown Castle Environmental Research Centre, Wexford, Ireland
| | - Fiona Brennan
- Teagasc Johnstown Castle Environmental Research Centre, Wexford, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, National Univ. of Ireland Galway, Galway, Ireland
| | | |
Collapse
|
96
|
Perinban S, Orsat V, Raghavan V. Nonthermal Plasma–Liquid Interactions in Food Processing: A Review. Compr Rev Food Sci Food Saf 2019; 18:1985-2008. [DOI: 10.1111/1541-4337.12503] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Sellam Perinban
- Faculty of Agricultural and Environmental Sciences, Dept. of Bioresource EngineeringMcGill Univ. 21111 Lakeshore Road Sainte‐Anne‐de‐Bellevue QC H9X 3V9 Canada
| | - Valérie Orsat
- Faculty of Agricultural and Environmental Sciences, Dept. of Bioresource EngineeringMcGill Univ. 21111 Lakeshore Road Sainte‐Anne‐de‐Bellevue QC H9X 3V9 Canada
| | - Vijaya Raghavan
- Faculty of Agricultural and Environmental Sciences, Dept. of Bioresource EngineeringMcGill Univ. 21111 Lakeshore Road Sainte‐Anne‐de‐Bellevue QC H9X 3V9 Canada
| |
Collapse
|
97
|
Tudela JA, López-Gálvez F, Allende A, Hernández N, Andújar S, Marín A, Garrido Y, Gil MI. Operational limits of sodium hypochlorite for different fresh produce wash water based on microbial inactivation and disinfection by-products (DBPs). Food Control 2019. [DOI: 10.1016/j.foodcont.2019.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
98
|
Abnavi MD, Alradaan A, Munther D, Kothapalli CR, Srinivasan P. Modeling of Free Chlorine Consumption and Escherichia coli O157:H7 Cross-Contamination During Fresh-Cut Produce Wash Cycles. J Food Sci 2019; 84:2736-2744. [PMID: 31573690 DOI: 10.1111/1750-3841.14774] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 12/01/2022]
Abstract
Controlling the free chlorine (FC) availability in wash water during sanitization of fresh produce enhances our ability to reduce microbial levels and prevent cross-contamination. However, maintaining an ideal concentration of FC that could prevent the risk of contamination within the wash system is still a technical challenge in the industry, indicating the need to better understand wash water chemistry dynamics. Using bench-scale experiments and modeling approaches, we developed a comprehensive mathematical model to predict the FC concentration during fresh-cut produce wash processes for different lettuce types (romaine, iceberg, green leaf, and red leaf), carrots, and green cabbage as well as Escherichia coli O157:H7 cross-contamination during fresh-cut iceberg lettuce washing. Fresh-cut produce exudates, as measured by chemical oxygen demand (COD) levels, appear to be the primary source of consumption of FC in wash water, with an apparent reaction rate ranging from 4.74 × 10 - 4 to 7.42 × 10 - 4 L/mg·min for all produce types tested, at stable pH levels (6.5 to 7.0) in the wash water. COD levels increased over time as more produce was washed and the lettuce type impacted the rate of increase in organic load. The model parameters from our experimental data were compared to those obtained from a pilot-plant scale study for lettuce, and similar reaction rate constant (5.38 × 10-4 L/mg·min) was noted, supporting our hypothesis that rise in COD is the main cause of consumption of FC levels in the wash water. We also identified that the bacterial transfer mechanism described by our model is robust relative to experimental scale and pathogen levels in the wash water. Finally, we proposed functions that quantify an upper bound on pathogen levels in the water and on cross-contaminated lettuce, indicating the maximum potential of water-mediated cross-contamination. Our model results could help indicate the limits of FC control to prevent cross-contamination during lettuce washing.
Collapse
Affiliation(s)
- Mohammadreza Dehghan Abnavi
- Dept. of Chemical and Biomedical Engineering, Cleveland State Univ., 2121 Euclid Ave., Cleveland, OH, 44115, U.S.A
| | - Ali Alradaan
- Dept. of Chemical and Biomedical Engineering, Cleveland State Univ., 2121 Euclid Ave., Cleveland, OH, 44115, U.S.A
| | - Daniel Munther
- Dept. of Mathematics, Cleveland State Univ., 2121 Euclid Ave., Cleveland, OH, 44115, U.S.A
| | - Chandrasekhar R Kothapalli
- Dept. of Chemical and Biomedical Engineering, Cleveland State Univ., 2121 Euclid Ave., Cleveland, OH, 44115, U.S.A
| | | |
Collapse
|
99
|
Li J, Teng Z, Weng S, Zhou B, Turner ER, Vinyard BT, Luo Y. Dynamic changes in the physicochemical properties of fresh-cut produce wash water as impacted by commodity type and processing conditions. PLoS One 2019; 14:e0222174. [PMID: 31557181 PMCID: PMC6762053 DOI: 10.1371/journal.pone.0222174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/22/2019] [Indexed: 01/26/2023] Open
Abstract
Organic materials in fresh-cut produce wash water deplete free chlorine that is required to prevent pathogen survival and cross-contamination. This research evaluated water quality parameters frequently used to describe organic load for their fitness to predict chlorine demand (CLD) and chemical oxygen demand (COD), which are major needs identified by the industry-led produce food safety taskforce. Batches of romaine lettuce, iceberg lettuce, or carrot of different cut sizes and shapes were washed in 40 liters of water. Physicochemical properties of wash water including CLD, COD, total organic carbon (TOC), total suspended solids (TSS), total dissolved solids (TDS), turbidity, total sugar content, and pH, were monitored. Results indicate that pH is primarily commodity dependent, while organic load is additionally impacted by cutting and washing conditions. Significant linear increases in COD, TOC, CLD, TDS, and turbidity resulted from increasing product-to-water ratio, and decreasing cut size. Physicochemical parameters, excluding pH, showed significant positive correlation across different cut sizes within a commodity. High correlations were obtained between CLD and COD and between COD and TOC for pooled products. The convenient measurement of TDS, along with its strong correlation with COD and CLD, suggests the potential of TDS for predicting organic load and chlorine reactivity. Finally, the potential application and limitation of the proposed models in practical produce processing procedures are discussed extensively.
Collapse
Affiliation(s)
- Jie Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural, Research Center, Environmental Microbiology and Food Safety Laboratory, Beltsville, MD, United States of America
| | - Zi Teng
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural, Research Center, Environmental Microbiology and Food Safety Laboratory, Beltsville, MD, United States of America
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States of America
| | - ShihChi Weng
- JHU/MWH Alliance, 615 N. Wolfe St., Johns Hopkins University, Baltimore, MD
| | - Bin Zhou
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural, Research Center, Environmental Microbiology and Food Safety Laboratory, Beltsville, MD, United States of America
| | - Ellen R. Turner
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural, Research Center, Environmental Microbiology and Food Safety Laboratory, Beltsville, MD, United States of America
| | - Bryan T. Vinyard
- Statistics Group, Northeast Area Office, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Yaguang Luo
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural, Research Center, Environmental Microbiology and Food Safety Laboratory, Beltsville, MD, United States of America
| |
Collapse
|
100
|
Wang J, Wang S, Sun Y, Li C, Li Y, Zhang Q, Wu Z. Reduction of Escherichia coli O157:H7 and naturally present microbes on fresh-cut lettuce using lactic acid and aqueous ozone. RSC Adv 2019; 9:22636-22643. [PMID: 35519499 PMCID: PMC9067095 DOI: 10.1039/c9ra03544c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022] Open
Abstract
Lactic acid (LA) is an effective sanitizer for disinfection of fresh produce. Tap water is generally used to wash disinfected fresh produce because sanitizer residues negatively affect the quality and organoleptic properties of the produce. However, tap water is ineffective for secondary disinfection compared with sanitizers. Thus, we propose a disinfection method using LA plus aqueous ozone (AO), an oxidizing sanitizer that does not lead to secondary residue. We compared the proposed method of 1% LA (90 s) plus 1 mg L-1 AO (30 s) or 2 mg L-1 AO (30 s) with the traditional method of 100 ppm chlorine (120 s) or 1% LA (120 s) plus tap water (30 s) and 2 mg L-1 AO (150 s). Microbial analysis showed that LA plus AO led to the greatest reductions in microbes (Escherichia coli O157:H7, aerobic mesophilic counts, aerobic psychrophilic counts, moulds, and yeasts) during storage (0-5 days at 5 °C). Quality analysis (colour, sensory qualities, electrolyte leakage, polyphenolic content, and weight loss) showed that LA + AO did not cause additional quality loss compared with tap water treatment. These results indicate that the hurdle technology proposed (LA plus AO) has a good potential for use in fresh produce disinfection.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| | - Shan Wang
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| | - Yeting Sun
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
| | - Chen Li
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| | - Yanru Li
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| | - Qi Zhang
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| |
Collapse
|