51
|
Interference between copper transport systems and platinum drugs. Semin Cancer Biol 2021; 76:173-188. [PMID: 34058339 DOI: 10.1016/j.semcancer.2021.05.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/17/2021] [Indexed: 01/06/2023]
Abstract
Cisplatin, or cis-diamminedichloridoplatinum(II) cis-[PtCl2(NH3)2], is a platinum-based anticancer drug largely used for the treatment of various types of cancers, including testicular, ovarian and colorectal carcinomas, sarcomas, and lymphomas. Together with other platinum-based drugs, cisplatin triggers malignant cell death by binding to nuclear DNA, which appears to be the ultimate target. In addition to passive diffusion across the cell membrane, other transport systems, including endocytosis and some active or facilitated transport mechanisms, are currently proposed to play a pivotal role in the uptake of platinum-based drugs. In this review, an updated view of the current literature regarding the intracellular transport and processing of cisplatin will be presented, with special emphasis on the plasma membrane copper permease CTR1, the Cu-transporting ATPases, ATP7A and ATP7B, located in the trans-Golgi network, and the soluble copper chaperone ATOX1. Their role in eliciting cisplatin efficacy and their exploitation as pharmacological targets will be addressed.
Collapse
|
52
|
Li M, Chen R, Ji B, Fan C, Wang G, Yue C, Li G. Contribution of XPD and XPF Polymorphisms to Susceptibility of Non-Small Cell Lung Cancer in High-Altitude Areas. Public Health Genomics 2021; 24:189-198. [PMID: 33827099 DOI: 10.1159/000512641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/24/2020] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND We aimed to explore the relation of XPD and XPF variants with non-small cell lung cancer (NSCLC) risk and the effect of these variants on the sensitivity to cisplatin-based chemotherapy among the Chinese Han population in high-altitude areas. METHODS Eight single-nucleotide polymorphisms (SNPs) in XPD and XPF were genotyped by Agena MassARRAY platform among 506 NSCLC cases and 510 healthy controls. Correlation of XPD and XPF gene polymorphisms with NSCLC susceptibility and the response of cis-platin-based chemotherapy were analyzed with logistic regression by calculating odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS XPD rs13181 (OR = 1.53, 95% CI: 1.04-2.24, p = 0.029) and rs1052555 (OR = 1.63, 95% CI: 1.05-2.53, p = 0.029) possibly contributed to the increased risk of lung adenocarcinoma, while XPD rs238406 (OR = 0.63, 95% CI: 0.43-0.94, p = 0.024) was a protective factor for lung squamous cell carcinoma. Age, gender, BMI, smoking, and drinking might affect the correlation of XPD and XPF polymorphisms with NSCLC risk. More importantly, XPD rs13181 (OR = 2.91, p = 0.015), XPD rs1052555 (OR = 2.67, p = 0.022), and XPF rs231127 (OR = 4.15, p = 0.008) were associated with treatment response in NSCLC patients underwent cisplatin-based chemotherapy. CONCLUSION This study found that XPD and XPF variants might contribute to NSCLC risk and the response of cisplatin-based chemotherapy among the Chinese Han population in high-altitude areas.
Collapse
Affiliation(s)
- Miao Li
- Department of Medicine Oncology, The Fifth People's Hospital of Qinghai Province, Xining, China
| | - Rong Chen
- Department of Medicine Oncology, The Affiliated Hospital of Qinghai University, Xining, China
| | - Baoyan Ji
- Department of Medicine Oncology, The People's Hospital of Qinghai Province, Xining, China
| | - Chunmei Fan
- Department of Science and education, The Fifth People's Hospital of Qinghai Province, Xining, China
| | - Guanying Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenli Yue
- Department of Respiratory Medicine, Shaanxi Provincial Corps Hospital of Chinese People's Armed Police Force, Xi'an, China
| | - Guoquan Li
- Department of Medicine Oncology, The Fifth People's Hospital of Qinghai Province, Xining, China
| |
Collapse
|
53
|
Ferretti VA, León IE. Long Non-coding RNAs in Cisplatin Resistance in Osteosarcoma. Curr Treat Options Oncol 2021; 22:41. [PMID: 33745006 DOI: 10.1007/s11864-021-00839-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
OPINION STATEMENT Osteosarcoma (OS), the most common primary malignant bone tumor, is a vastly aggressive disease in children and adolescents. Although dramatic progress in therapeutic strategies have achieved over the past several decades, the outcome remains poor for most patients with metastatic or recurrent OS. Nowadays, conventional treatment for OS patients is surgery combined with multidrug chemotherapy including doxorubicin, methotrexate, and cisplatin (CDDP). In this sense, cisplatin (CDDP) is one of the most drugs used in the treatment of OS but drug resistance to CDDP appears as a serious problem in the use of this drug in the treatment of OS. Thus, we consider that the understanding the molecular mechanisms and the genes involved that lead to CDDP resistance is essential to developing more effective treatments against OS. In this review, we present an outline of the key role of the long non-coding RNAs (lncRNAs) in CDDP resistance in OS. This overview is expected to contribute to understand the mechanisms of CDDP resistance in OS and the relationship of the expression regulation of several lncRNAs.
Collapse
Affiliation(s)
- Valeria A Ferretti
- Centro de Química Inorgánica, CEQUINOR (CONICET-UNLP), Bv, 120 1465, La Plata, Argentina
| | - Ignacio E León
- Centro de Química Inorgánica, CEQUINOR (CONICET-UNLP), Bv, 120 1465, La Plata, Argentina.
| |
Collapse
|
54
|
Manyanga J, Ganapathy V, Bouharati C, Mehta T, Sadhasivam B, Acharya P, Zhao D, Queimado L. Electronic cigarette aerosols alter the expression of cisplatin transporters and increase drug resistance in oral cancer cells. Sci Rep 2021; 11:1821. [PMID: 33469038 PMCID: PMC7815770 DOI: 10.1038/s41598-021-81148-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/29/2020] [Indexed: 11/26/2022] Open
Abstract
Tobacco smoking is the leading preventable cause of cancer. Moreover, continued smoking during cancer therapy reduces overall survival. Aware of the negative consequences of tobacco smoking and the challenges of smoking cessation, cancer patients are inquiring whether they should switch to electronic cigarettes (e-cigarettes). To obtain evidence-based data to inform this decision, we examined the effects of e-cigarette aerosol exposure on cisplatin resistance in head and neck cancer cells. Our results show that cancer cells exposed to e-cigarette aerosol extracts and treated with cisplatin have a significant decrease in cell death, increase in viability, and increase in clonogenic survival when compared to non-exposed cells. Moreover, exposure to e-cigarette aerosol extracts increased the concentration of cisplatin needed to induce a 50% reduction in cell growth (IC50) in a nicotine-independent manner. Tobacco smoke extracts induced similar increases in cisplatin resistance. Changes in the expression of drug influx and efflux transporters, rather than activation of cell growth-promoting pathways or DNA damage repair, contribute to e-cigarette induced cisplatin resistance. These results suggest that like combustible tobacco, e-cigarette use might increase chemotherapy resistance, and emphasize the urgent need for rigorous evaluation of e-cigarettes health effects to ensure evidence-based public health policies.
Collapse
Affiliation(s)
- Jimmy Manyanga
- Department of Otolaryngology Head and Neck Surgery, The University of Oklahoma Health Sciences Center, 800 Research Parkway, Room 431, Oklahoma City, OK, 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vengatesh Ganapathy
- Department of Otolaryngology Head and Neck Surgery, The University of Oklahoma Health Sciences Center, 800 Research Parkway, Room 431, Oklahoma City, OK, 73104, USA
| | - Célia Bouharati
- Department of Otolaryngology Head and Neck Surgery, The University of Oklahoma Health Sciences Center, 800 Research Parkway, Room 431, Oklahoma City, OK, 73104, USA
| | - Toral Mehta
- Department of Otolaryngology Head and Neck Surgery, The University of Oklahoma Health Sciences Center, 800 Research Parkway, Room 431, Oklahoma City, OK, 73104, USA
| | - Balaji Sadhasivam
- Department of Otolaryngology Head and Neck Surgery, The University of Oklahoma Health Sciences Center, 800 Research Parkway, Room 431, Oklahoma City, OK, 73104, USA
| | - Pawan Acharya
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel Zhao
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- TSET Health Promotion Research Center, Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lurdes Queimado
- Department of Otolaryngology Head and Neck Surgery, The University of Oklahoma Health Sciences Center, 800 Research Parkway, Room 431, Oklahoma City, OK, 73104, USA.
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- TSET Health Promotion Research Center, Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
55
|
Fujita K, Motoyama S, Sato Y, Wakita A, Nagaki Y, Minamiya Y, Miura M. Effects of SLC31A1 and ATP7B polymorphisms on platinum resistance in patients with esophageal squamous cell carcinoma receiving neoadjuvant chemoradiotherapy. Med Oncol 2021; 38:6. [PMID: 33411033 DOI: 10.1007/s12032-020-01450-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/30/2020] [Indexed: 11/24/2022]
Abstract
The relationship between the SLC31A1 (protein: copper transporter 1) rs10981694 A > C and ATP7B (protein: P-type adenosine triphosphatase 7B) rs9535828 A > G polymorphisms on the overall survival and disease-free survival of 104 Japanese patients with esophageal squamous cell carcinoma (ESCC) receiving neoadjuvant chemoradiotherapy (CRT) was investigated. Chemotherapy consisted of protracted infusion of 5-fluoracil (800 mg/m2/day) on days 1-5 and cisplatin or nedaplatin (80 mg/m2/day) on day 1. The median (range) follow-up was 47 (6-127) months. The 5-year overall and disease-free survival rates were 71.2% and 60.6%, respectively. The 5-year overall survival rate was significantly higher in patients with the SLC31A1 rs10981694 C allele compared with the rs10981694 A/A genotype (91.7% vs. 65.0%, P = 0.018). The 5-year disease-free survival rate was significantly higher in patients with the SLC31A1 rs10981694 C allele compared with the rs10981694 A/A genotype (79.2% vs. 55.0%, P = 0.043). In addition, univariate and multivariate analyses showed the SLC31A1 rs10981694 A > C polymorphism to be a significant prognostic factor affecting 5-year overall survival after neoadjuvant CRT. However, the overall and disease-free survival rates after surgery did not differ significantly among the ATP7B rs9535828 genotypes. In conclusion, only the SLC31A1 rs10981694 A/A genotype was an independent predictor of a poorer 5-year overall survival. Therefore, in neoadjuvant CRT for ESCC patients, the effect of platinum was affected by the SLC31A1 rs10981694 A > C polymorphism. The presence of this polymorphism should be considered when devising neoadjuvant CRT regimens or treatment strategies for ESCC.
Collapse
Affiliation(s)
- Kazuma Fujita
- Department of Pharmacy, Akita University Hospital, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Satoru Motoyama
- Department of Esophageal Surgery, Akita University Hospital, Akita, Japan.,Department of Comprehensive Cancer Control, Akita University Graduate School of Medicine, Akita, Japan
| | - Yusuke Sato
- Department of Esophageal Surgery, Akita University Hospital, Akita, Japan
| | - Akiyuki Wakita
- Department of Esophageal Surgery, Akita University Hospital, Akita, Japan
| | - Yushi Nagaki
- Department of Esophageal Surgery, Akita University Hospital, Akita, Japan
| | - Yoshihiro Minamiya
- Department of Esophageal Surgery, Akita University Hospital, Akita, Japan
| | - Masatomo Miura
- Department of Pharmacy, Akita University Hospital, 1-1-1 Hondo, Akita, 010-8543, Japan.
| |
Collapse
|
56
|
Wang L, Liu Z, He S, He S, Wang Y. Fighting against drug-resistant tumors by the inhibition of γ-glutamyl transferase with supramolecular platinum prodrug nano-assemblies. J Mater Chem B 2021; 9:4587-4595. [PMID: 34059856 DOI: 10.1039/d1tb00149c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt(ii)-based antitumor drugs (e.g. cisplatin and oxaliplatin) are one of the most successful and frequently used drugs in cancer chemotherapy at present. However, drug resistance and severe side effects are the major problems in the application of platinum drugs. Detoxification of Pt(ii) drugs is one of the most important mechanisms of drug resistance. Herein, a supramolecular Pt(iv) prodrug nano-assembly delivery system is designed and used to encapsulate a γ-glutamyl transferase (GGT) inhibitor (OU749) (Pt-CD/Dex-Ad@OU nano-assemblies) for the synergistic chemotherapy of cisplatin-resistant cancer. Pt-CD/Dex-Ad@OU nano-assemblies could be efficiently taken up by cisplatin-resistant cancer cells and release a drug in the intracellular reductive environment. The Pt-CD/Dex-Ad@OU nano-assemblies can efficiently suppress the expression of GGT, depleting GSH and augmenting ROS via the reduction of the Pt(iv) prodrug. Thereby, by breaking the redox balance the detoxification and antiapoptosis mechanisms of Pt(ii) drugs can be overcome. Thereafter, the excellent therapeutic efficacy of Pt-CD/Dex-Ad@OU nano-assemblies is validated on a cisplatin-resistant human non-small cell lung cancer (A549/DDP) model. Furthermore, the inhibition of GGT protein is expected to reduce the nephrotoxicity of cisplatin. Collectively, this study provides a promising strategy to break the redox balance for overcoming drug resistance and maximizing the efficacy of platinum-based cancer therapy.
Collapse
Affiliation(s)
- Lina Wang
- Testing and Analysis Center, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Zejun Liu
- Testing and Analysis Center, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Shumei He
- Testing and Analysis Center, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Yupeng Wang
- Department of Pharmacy, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, P. R. China.
| |
Collapse
|
57
|
John J, Kinra M, Mudgal J, Viswanatha GL, Nandakumar K. Animal models of chemotherapy-induced cognitive decline in preclinical drug development. Psychopharmacology (Berl) 2021; 238:3025-3053. [PMID: 34643772 PMCID: PMC8605973 DOI: 10.1007/s00213-021-05977-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/31/2021] [Indexed: 12/23/2022]
Abstract
RATIONALE Chemotherapy-induced cognitive impairment (CICI), chemobrain, and chemofog are the common terms for mental dysfunction in a cancer patient/survivor under the influence of chemotherapeutics. CICI is manifested as short/long term memory problems and delayed mental processing, which interferes with a person's day-to-day activities. Understanding CICI mechanisms help in developing therapeutic interventions that may alleviate the disease condition. Animal models facilitate critical evaluation to elucidate the underlying mechanisms and form an integral part of verifying different treatment hypotheses and strategies. OBJECTIVES A methodical evaluation of scientific literature is required to understand cognitive changes associated with the use of chemotherapeutic agents in different preclinical studies. This review mainly emphasizes animal models developed with various chemotherapeutic agents individually and in combination, with their proposed mechanisms contributing to the cognitive dysfunction. This review also points toward the analysis of chemobrain in healthy animals to understand the mechanism of interventions in absence of tumor and in tumor-bearing animals to mimic human cancer conditions to screen potential drug candidates against chemobrain. RESULTS Substantial memory deficit as a result of commonly used chemotherapeutic agents was evidenced in healthy and tumor-bearing animals. Spatial and episodic cognitive impairments, alterations in neurotrophins, oxidative and inflammatory markers, and changes in long-term potentiation were commonly observed changes in different animal models irrespective of the chemotherapeutic agent. CONCLUSION Dyscognition exists as one of the serious side effects of cancer chemotherapy. Due to differing mechanisms of chemotherapeutic agents with differing tendencies to alter behavioral and biochemical parameters, chemotherapy may present a significant risk in resulting memory impairments in healthy as well as tumor-bearing animals.
Collapse
Affiliation(s)
- Jeena John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| | - Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| | - G. L. Viswanatha
- Independent Researcher, Kengeri, Bangalore, Karnataka India 560060
| | - K. Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| |
Collapse
|
58
|
Liu R, Gao Y, Liu N, Suo Y. Nanoparticles loading porphyrin sensitizers in improvement of photodynamic therapy for ovarian cancer. Photodiagnosis Photodyn Ther 2020; 33:102156. [PMID: 33352314 DOI: 10.1016/j.pdpdt.2020.102156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/15/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ovarian cancer, the malignant tumor with the highest mortality rate in gynecological tumors, leads to a poor prognosis due to tumor metastasis. At present, the main treatment for ovarian cancer is the combination of cytoreduction surgery and chemotherapy. But the surgery is insufficient to solve the extensive transfer of tumor in the abdominal cavity and a large proportion of ovarian cancer cases have shown resistance to chemotherapy. Photodynamic therapy (PDT) is a viable treatment option for a wide range of applications, especially in malignant tumors. Porphyrin sensitizers, as the most widely used photosensitive agents, have the following advantages: short photosensitive period and high singlet oxygen production. However, most studies have found that it is difficult to achieve high loading rates of photosensitive agents, thus effective concentration in target tissue is suboptimal and the lethal ability is greatly reduced. In this article, we review several studies that nanoparticles loading porphyrin sensitizers for photodynamic therapy of ovarian cancer. METHODS We collected relevant literature from PUBMED and reviewed their research content. RESULTS The application of nanotechnology to PDT in ovarian cancer can reduce the non-specific toxicity of photosensitive agents and increase stability and delivery efficiency. CONCLUSIONS The combination with nanotechnology can cover the shortcomings of photodynamic therapy, but the specific efficacy still needs a large number of experiments to prove.
Collapse
Affiliation(s)
- Rui Liu
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| | - Yanxia Gao
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| | - Nannan Liu
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| | - Yuping Suo
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| |
Collapse
|
59
|
Bravo-Cuellar A, Ortiz-Lazareno PC, Sierra-Díaz E, Solorzano-Ibarra F, Méndez-Clemente AS, Aguilar-Lemarroy A, Jave-Suárez LF, Ruiz Velazco-Niño É, Hernández-Flores G. Pentoxifylline Sensitizes Cisplatin-Resistant Human Cervical Cancer Cells to Cisplatin Treatment: Involvement of Mitochondrial and NF-Kappa B Pathways. Front Oncol 2020; 10:592706. [PMID: 33680921 PMCID: PMC7931705 DOI: 10.3389/fonc.2020.592706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cervical cancer continues to be a major public health problem worldwide, and Cisplatin is used as first-line chemotherapy for this cancer; however, malignant cells exposed to CISplatin (CIS) become insensitive to the effects of this drug. PenToXifylline (PTX) is a xanthine that sensitizes several types of tumor cells to apoptosis induced by antitumor drugs, such as Adriamycin, Carboplatin, and CIS. The effects of PTX on tumor cells have been related to the disruption of the NF-κB pathway, thus preventing the activation of cell survival mechanisms such as the expression of anti-apoptotic genes, the secretion of proinflammatory interleukins, and growth factors. Objective In this work, we studied the antitumor proprieties of PTX in human SiHa cervical carcinoma cells resistant to CIS. Materials and Methods SiHa and HeLa cervical cancer cells and their CIS-resistant derived cell lines (SiHaCIS-R and HeLaCIS-R, respectively) were used as in-vitro models. We studied the effects of PTX alone or in combination with CIS on cell viability, apoptosis, caspase-3, caspase-8, and caspase-9 activity, cleaved PARP-1, anti-apoptotic protein (Bcl-2 and Bcl-xL) levels, p65 phosphorylation, cadmium chloride (CdCl2) sensitivity, Platinum (Pt) accumulation, and glutathione (GSH) levels, as well as on the gene expression of GSH and drug transporters (influx and efflux). Results PTX sensitized SiHaCIS-R cells to the effects of CIS by inducing apoptosis, caspase activation, and PARP-1 cleavage. PTX treatment also decreased p65 phosphorylation, increased Pt levels, depleted GSH, and downregulated the expression of the ATP7A, ATP7B, GSR, and MGST1 genes. Conclusion PTX reverses the acquired phenotype of CIS resistance close to the sensitivity of parental SiHa cells.
Collapse
Affiliation(s)
- Alejandro Bravo-Cuellar
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico.,Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| | - Erick Sierra-Díaz
- Departamento de Urología, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| | - Fabiola Solorzano-Ibarra
- Programa de Doctorado en Ciencias Biomédicas Orientación Inmunología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara, Mexico
| | - Anibal Samael Méndez-Clemente
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico.,Programa de Doctorado en Ciencias Biomédicas Orientación Inmunología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara, Mexico
| | - Adriana Aguilar-Lemarroy
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| | - Édgar Ruiz Velazco-Niño
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| | - Georgina Hernández-Flores
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| |
Collapse
|
60
|
Genetic polymorphisms of GSTP1, XRCC1, XPC and ERCC1: prediction of clinical outcome of platinum-based chemotherapy in advanced non-small cell lung cancer patients of Bangladesh. Mol Biol Rep 2020; 47:7073-7082. [PMID: 32880833 DOI: 10.1007/s11033-020-05771-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Inter-individual genetic makeup can trigger variability in platinum-based chemotherapeutic responses and corresponding adverse drug reactions and toxicities. Exploring the genetic causes behind these inter-individual variabilities in platinum-based chemotherapeutic responses by investigating the effects of GSTP1 (rs1695), XRCC1 (rs25487), XPC (rs2228001) and ERCC1 (rs11615) genetic polymorphisms on toxicity and therapeutic response of this treatment among Bangladeshi advanced non-small cell lung cancer (NSCLC) patients was the aim of this study. 285 Clinically proven either stage IIIB or IV (advanced) NSCLC patients aging not less than 18 years old and receiving platinum-based chemotherapy were recruited to assess the influence of these four single nucleotide polymorphisms (SNPs) on peripheral leukocytes. Toxicity and response were evaluated by multivariate regression analyses using SPSS statistical software (version 17.0). XRCC1 (rs25487) polymorphism was found to act as a predictive factor for not only grade 3 and 4 anemia (p = 0.008), neutropenia (p = 0.010), thrombocytopenia (p = 0.025) and gastrointestinal toxicity (p = 0.002) but also for therapeutic response (p = 0.012) in platinum-based chemotherapy. Although GSTP1 (rs1695) polymorphism might serve as prognostic factor regarding grade 3 or 4 neutropenia, a significant (p = 0.044) improvement in response to platinum-based chemotherapy was observed. However, XPC (rs2228001) and ERCC1 (rs11615) polymorphisms could not establish any significant relation with toxicity or therapeutic response. XRCC1 (rs2228001) and GSTP1 (rs1695) polymorphisms might explain platinum-induced clinical outcomes in terms of both toxicity and therapeutic response variations among Bangladeshi advanced NSCLC patients.
Collapse
|
61
|
Dcona MM, Mitra K, Hartman MCT. Photocontrolled activation of small molecule cancer therapeutics. RSC Med Chem 2020; 11:982-1002. [PMID: 33479692 PMCID: PMC7513389 DOI: 10.1039/d0md00107d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide. Conventional treatment of the disease is comprised of chemotherapy, radiation and surgery among other treatment approaches. Chemotherapy is plagued by multiple side-effects caused due to non-specific drug action. Light-based therapies offer an alternative treatment approach that can be fine tuned to achieve the desired effect to treat the disease and address challenges posed by chemotherapeutic side-effects. Photodynamic therapy (PDT) is one of the light mediated treatment modalities that has been successfully applied to treat superficial malignancies with high-efficiency, although its dependence on normoxic conditions limits its efficiency to treat deep-seated tumors. On the other hand, light-sensitive drug-mimetics and drug-release platforms have been deemed efficient in preclinical settings to induce cancer cell death with minimal collateral damage. Drawing from about a decade's worth of examples, we highlight the application of photosensitive molecules as an alternative therapeutic option to PDT and describe their designs that influence the biology of the cancer cells, in turn affecting their viability with high spatio-temporal control.
Collapse
Affiliation(s)
- M Michael Dcona
- Department of Internal Medicine , Virginia Commonwealth University , 1201 East Marshall Street , Richmond , 23298 , Virginia , USA .
- Massey Cancer Center , 401 College St. , Richmond , 23219 , Virginia , USA
| | - Koushambi Mitra
- Massey Cancer Center , 401 College St. , Richmond , 23219 , Virginia , USA
- Department of Chemistry , Virginia Commonwealth University , 1001 W Main St , Richmond , 23284 , Virginia , USA
| | - Matthew C T Hartman
- Massey Cancer Center , 401 College St. , Richmond , 23219 , Virginia , USA
- Department of Chemistry , Virginia Commonwealth University , 1001 W Main St , Richmond , 23284 , Virginia , USA
| |
Collapse
|
62
|
McMullen M, Madariaga A, Lheureux S. New approaches for targeting platinum-resistant ovarian cancer. Semin Cancer Biol 2020; 77:167-181. [DOI: 10.1016/j.semcancer.2020.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
|
63
|
Cabeza L, Perazzoli G, Mesas C, Jiménez-Luna C, Prados J, Rama AR, Melguizo C. Nanoparticles in Colorectal Cancer Therapy: Latest In Vivo Assays, Clinical Trials, and Patents. AAPS PharmSciTech 2020; 21:178. [PMID: 32591920 DOI: 10.1208/s12249-020-01731-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Its poor response to current treatment options in advanced stages and the need for efficient diagnosis in early stages call for the development of new therapeutic and diagnostic strategies. Some of them are based on the use of nanometric materials as carriers and releasers of therapeutic agents and fluorescent molecules, or even on the utilization of magnetic materials that provide very interesting properties. These nanoformulations present several advantages compared with the free molecular cargo, including increased drug solubility, bioavailability, stability, and tumor specificity. Moreover, tumor multidrug resistance has been decreased in some cases, leading to improved treatment effectiveness by reducing drug dose and potential side effects. Here, we present an updated overview of the latest advances in clinical research, in vivo studies, and patents regarding the application of nanoformulations in the treatment of CRC. Based on the information gathered, a wide variety of nanomaterials are being investigated in clinical research, even in advanced phases, i.e., close to reaching the market. In sum, these novel materials can offer remarkable advantages with respect to current therapies, which could be complemented or even replaced by these nanosystems in the near future.
Collapse
|
64
|
Copper transporter 1 affinity as a delivery strategy to improve the cytotoxic profile of rationally designed copper(II) complexes for cancer treatment. Toxicol In Vitro 2020; 67:104922. [PMID: 32590028 DOI: 10.1016/j.tiv.2020.104922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022]
Abstract
Cisplatin is widely used to treat different types of cancer, but its severe side effects are the major disadvantage of this treatment. Therefore, other metals are currently the subject of research in the rational development of anticancer drugs, such as copper, that has been demonstrated to be promising in this scenario. Here, we evaluated the effects of two novel copper complexes against breast cancer cell lines, and also examined the influence of overexpressing copper transporter 1 (CTR1) on the cytotoxicity of these complexes. Complex (1) [Cu(sdmx-)2(phen)] showed low IC50 values, induced intense cell morphological changes and arrested the cell cycle at the sub-G1 phase in cancer cells. Complex (1) was tested in transfected cells overexpressing the CTR1 receptor in order to compare its steric effects with a less bulky ligand and more labile complex (2) [CuCl2(impy)]. A significant reduction of IC50 value was observed in CTR1 overexpressing cells for complex (2) (32 μM to 20 μM) as compared to (1) (2.78 μM to 3.41 μM), evidencing a possible uptake through copper reduction (Cu+2 → Cu+1) mediated by CTR1. Thus, considering that CTR1 is a mediator of metallodrugs uptake, the development of strategies that use rational drug design is important in order to improve the therapeutic efficacy through greater specificity and consecutive reduction of side effects. Here we show the example for the case of copper(II) complexes.
Collapse
|
65
|
McMullen M, Karakasis K, Madariaga A, Oza AM. Overcoming Platinum and PARP-Inhibitor Resistance in Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12061607. [PMID: 32560564 PMCID: PMC7352566 DOI: 10.3390/cancers12061607] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Platinum chemotherapy remains the cornerstone of treatment for epithelial ovarian cancer (OC) and Poly (ADP-ribose) polymerase inhibitors (PARPi) now have an established role as maintenance therapy. The mechanisms of action of these agents is, in many ways, complementary, and crucially reliant on the intracellular DNA Damage Repair (DDR) response. Here, we review mechanisms of primary and acquired resistance to treatment with platinum and PARPi, examining the interplay between both classes of agents. A key resistance mechanism appears to be the restoration of the Homologous Recombination (HR) repair pathway, through BRCA reversion mutations and epigenetic upregulation of BRCA1. Alterations in non-homologous end-joint (NHEJ) repair, replication fork protection, upregulation of cellular drug efflux pumps, reduction in PARP1 activity and alterations to the tumour microenvironment have also been described. These resistance mechanisms reveal molecular vulnerabilities, which may be targeted to re-sensitise OC to platinum or PARPi treatment. Promising therapeutic strategies include ATR inhibition, epigenetic re-sensitisation through DNMT inhibition, cell cycle checkpoint inhibition, combination with anti-angiogenic therapy, BET inhibition and G-quadruplex stabilisation. Translational studies to elucidate mechanisms of treatment resistance should be incorporated into future clinical trials, as understanding these biologic mechanisms is crucial to developing new and effective therapeutic approaches in advanced OC.
Collapse
Affiliation(s)
| | | | | | - Amit M. Oza
- Correspondence: ; Tel.: +1-416-946-4450; Fax: +1-416-946-4467
| |
Collapse
|
66
|
Bengamide Analogues Show A Potent Antitumor Activity against Colon Cancer Cells: A Preliminary Study. Mar Drugs 2020; 18:md18050240. [PMID: 32370307 PMCID: PMC7281506 DOI: 10.3390/md18050240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
The limited success and side effects of the current chemotherapeutic strategies against colorectal cancer (CRC), the third most common cancer worldwide, demand an assay with new drugs. The prominent antitumor activities displayed by the bengamides (Ben), a family of natural products isolated from marine sponges of the Jaspidae family, were explored and investigated as a new option to improve CRC treatment. To this end, two potent bengamide analogues, Ben I (5) and Ben V (10), were selected for this study, for which they were synthesized according to a new synthetic strategy recently developed in our laboratories. Their antitumor effects were analyzed in human and mouse colon cell lines, using cell cycle analysis and antiproliferative assays. In addition, the toxicity of the selected analogues was tested in human blood cells. These biological studies revealed that Ben I and V produced a significant decrease in CRC cell proliferation and induced a significant cell cycle alteration with a greater antiproliferative effect on tumor cell lines than normal cells. Interestingly, no toxicity effects were detected in blood cells for both compounds. All these biological results render the bengamide analogues Ben I and Ben V as promising antitumoral agents for the treatment of CRC.
Collapse
|
67
|
English K, Shepherd A, Uzor NE, Trinh R, Kavelaars A, Heijnen CJ. Astrocytes rescue neuronal health after cisplatin treatment through mitochondrial transfer. Acta Neuropathol Commun 2020; 8:36. [PMID: 32197663 PMCID: PMC7082981 DOI: 10.1186/s40478-020-00897-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/13/2020] [Indexed: 12/28/2022] Open
Abstract
Neurodegenerative disorders, including chemotherapy-induced cognitive impairment, are associated with neuronal mitochondrial dysfunction. Cisplatin, a commonly used chemotherapeutic, induces neuronal mitochondrial dysfunction in vivo and in vitro. Astrocytes are key players in supporting neuronal development, synaptogenesis, axonal growth, metabolism and, potentially mitochondrial health. We tested the hypothesis that astrocytes transfer healthy mitochondria to neurons after cisplatin treatment to restore neuronal health.We used an in vitro system in which astrocytes containing mito-mCherry-labeled mitochondria were co-cultured with primary cortical neurons damaged by cisplatin. Culture of primary cortical neurons with cisplatin reduced neuronal survival and depolarized neuronal mitochondrial membrane potential. Cisplatin induced abnormalities in neuronal calcium dynamics that were characterized by increased resting calcium levels, reduced calcium responses to stimulation with KCl, and slower calcium clearance. The same dose of cisplatin that caused neuronal damage did not affect astrocyte survival or astrocytic mitochondrial respiration. Co-culture of cisplatin-treated neurons with astrocytes increased neuronal survival, restored neuronal mitochondrial membrane potential, and normalized neuronal calcium dynamics especially in neurons that had received mitochondria from astrocytes which underlines the importance of mitochondrial transfer. These beneficial effects of astrocytes were associated with transfer of mitochondria from astrocytes to cisplatin-treated neurons. We show that siRNA-mediated knockdown of the Rho-GTPase Miro-1 in astrocytes reduced mitochondrial transfer from astrocytes to neurons and prevented the normalization of neuronal calcium dynamics.In conclusion, we showed that transfer of mitochondria from astrocytes to neurons rescues neurons from the damage induced by cisplatin treatment. Astrocytes are far more resistant to cisplatin than cortical neurons. We propose that transfer of functional mitochondria from astrocytes to neurons is an important repair mechanism to protect the vulnerable cortical neurons against the toxic effects of cisplatin.
Collapse
Affiliation(s)
- Krystal English
- Division of Internal Medicine, Department of Symptom Research, Laboratories of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Andrew Shepherd
- Division of Internal Medicine, Department of Symptom Research, Laboratories of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Ndidi-Ese Uzor
- Department of Neurobiology & Anatomy, The University of Texas McGovern Medical School, Houston, TX 77030 USA
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX 77030 USA
| | - Ronnie Trinh
- Division of Internal Medicine, Department of Symptom Research, Laboratories of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Annemieke Kavelaars
- Division of Internal Medicine, Department of Symptom Research, Laboratories of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Cobi J. Heijnen
- Division of Internal Medicine, Department of Symptom Research, Laboratories of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
68
|
Links between cancer metabolism and cisplatin resistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:107-164. [PMID: 32475471 DOI: 10.1016/bs.ircmb.2020.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cisplatin is one of the most potent and widely used chemotherapeutic agent in the treatment of several solid tumors, despite the high toxicity and the frequent relapse of patients due to the onset of drug resistance. Resistance to chemotherapeutic agents, either intrinsic or acquired, is currently one of the major problems in oncology. Thus, understanding the biology of chemoresistance is fundamental in order to overcome this challenge and to improve the survival rate of patients. Studies over the last 30 decades have underlined how resistance is a multifactorial phenomenon not yet completely understood. Recently, tumor metabolism has gained a lot of interest in the context of chemoresistance; accumulating evidence suggests that the rearrangements of the principal metabolic pathways within cells, contributes to the sensitivity of tumor to the drug treatment. In this review, the principal metabolic alterations associated with cisplatin resistance are highlighted. Improving the knowledge of the influence of metabolism on cisplatin response is fundamental to identify new possible metabolic targets useful for combinatory treatments, in order to overcome cisplatin resistance.
Collapse
|
69
|
Baldari S, Di Rocco G, Toietta G. Current Biomedical Use of Copper Chelation Therapy. Int J Mol Sci 2020; 21:1069. [PMID: 32041110 PMCID: PMC7037088 DOI: 10.3390/ijms21031069] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Copper is an essential microelement that plays an important role in a wide variety of biological processes. Copper concentration has to be finely regulated, as any imbalance in its homeostasis can induce abnormalities. In particular, excess copper plays an important role in the etiopathogenesis of the genetic disease Wilson's syndrome, in neurological and neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases, in idiopathic pulmonary fibrosis, in diabetes, and in several forms of cancer. Copper chelating agents are among the most promising tools to keep copper concentration at physiological levels. In this review, we focus on the most relevant compounds experimentally and clinically evaluated for their ability to counteract copper homeostasis deregulation. In particular, we provide a general overview of the main disorders characterized by a pathological increase in copper levels, summarizing the principal copper chelating therapies adopted in clinical trials.
Collapse
Affiliation(s)
- Silvia Baldari
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy; (S.B.); (G.D.R.)
- Department of Medical Surgical Sciences and Biotechnologies, University of Rome “La Sapienza”, C.so della Repubblica 79, 04100 Latina, Italy
| | - Giuliana Di Rocco
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy; (S.B.); (G.D.R.)
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy; (S.B.); (G.D.R.)
| |
Collapse
|
70
|
Chen A, Jiang P, Zeb F, Wu X, Xu C, Chen L, Feng Q. EGCG regulates CTR1 expression through its pro-oxidative property in non-small-cell lung cancer cells. J Cell Physiol 2020; 235:7970-7981. [PMID: 31943177 DOI: 10.1002/jcp.29451] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/03/2020] [Indexed: 12/21/2022]
Abstract
Copper transporter 1 (CTR1) plays an important role in increasing cisplatin intake. Our previous studies showed that CTR1 expression was upregulated by (-)-epigallocatechin-3-gallate (EGCG), a green tea polyphenol, therefore enhanced cisplatin sensitivity in ovary cancer and non-small-cell lung cancer (NSCLC) cells. In the current study in the non-small-cell lung cancer cells, we uncovered a potential mechanism of EGCG-induced CTR1 through its pro-oxidative property. We found that EGCG increased reactive oxygen species (ROS) generation, while in the presence of ROS scavenger N-acetyl-cysteine (NAC), ROS production was eliminated. Changes of CTR1 expression were consistent with the ROS level. Simultaneously, EGCG downregulated ERK1/2 while upregulated lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) through ROS to induce CTR1 expression. Besides, in a nude mouse xenografts model, EGCG treatment raised ROS level, expression of CTR1 and NEAT1 in tumor tissue. Also, ERK1/2 and p-ERK1/2 were suppressed as well. Taken together, these results suggested a novel mechanism that EGCG mediated ROS to regulate CTR1 expression through the ERK1/2/NEAT1 signaling pathway, which provided more possibilities for EGCG as a natural agent in adjuvant therapy of lung cancer.
Collapse
Affiliation(s)
- Aochang Chen
- Key Laboratory of Toxicology, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pan Jiang
- Key Laboratory of Toxicology, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Falak Zeb
- Key Laboratory of Toxicology, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyue Wu
- Key Laboratory of Toxicology, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuyue Xu
- Key Laboratory of Toxicology, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lijun Chen
- Key Laboratory of Toxicology, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Feng
- Key Laboratory of Toxicology, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
71
|
Yu Z, Cao W, Ren Y, Zhang Q, Liu J. ATPase copper transporter A, negatively regulated by miR-148a-3p, contributes to cisplatin resistance in breast cancer cells. Clin Transl Med 2020; 10:57-73. [PMID: 32508020 PMCID: PMC7240853 DOI: 10.1002/ctm2.19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Breast cancer is the leading cause of death among women. Cisplatin is an effective drug for breast cancer, but resistance often develops during long term chemotherapy. While the mechanism of chemotherapy resistance is still not fully understood. METHODS Survival analyses of ATP7A and ATP7B were used to evaluate their effects on the development of Breast invasive carcinoma (BRCA). Immunostaining, flow cytometry, and IC50 assay were utilized to examine the effects of ATP7A-siRNA combined with cisplatin on apoptosis in breast cancer cells. Q-PCR, western blotting, and dual-luciferase assay were employed to confirm ATP7A is a novel target gene of miR-148a-3p. RESULTS In this current study, we identified knocking-down ATP7A could enhance cytotoxicity treatment of cisplatin in breast cancer cells. We also demonstrated miR-148a-3p overexpression in BRCA cells increased the sensitivity to cisplatin, and subsequently enhanced DNA damage and apoptosis. Moreover, we found ATP7A is a novel target gene of miR-148a-3p. In brief, our results showed miR-148a could accelerate chemotherapy induced-apoptosis in breast cancer cells by inhibiting ATP7A expression. CONCLUSIONS Our results highlight that inhibition of ATP7A is a potential strategy for targeting breast cancer resistant to cisplatin, and we provided an interesting method to compare the involvement of various genes in the assessment of cisplatin resistance.
Collapse
Affiliation(s)
- Ze Yu
- Institute of tumor immunologyAffiliated Tumor HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Weifan Cao
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Yuan Ren
- Pediatric LaboratoryFirst affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Qijia Zhang
- Hepatobiliary Internal MedicineZhuhai Integrated Traditional Chinese and Western Medicine HospitalZhuhaiChina
| | - Jia Liu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhenChina
| |
Collapse
|
72
|
Kakuda M, Matsuzaki S, Ueda Y, Shiomi M, Matsuzaki S, Kimura T, Fujita M, Egawa-Takata T, Kobayashi E, Serada S, Yoshino K, Naka T, Kimura T. Copper ions are novel therapeutic agents for uterine leiomyosarcoma. Am J Obstet Gynecol 2020; 222:64.e1-64.e16. [PMID: 31351063 DOI: 10.1016/j.ajog.2019.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Multidrug resistance is a major concern in uterine leiomyosarcoma treatment. Development of effective chemotherapies and management of drug resistance in patients is necessary. The copper efflux transporter adenosine triphosphatase copper transporting beta is a member of the P-type adenosine triphosphatase family and is also known as a strong platinum efflux transporter. Various reports have shown the association between adenosine triphosphatase copper transporting beta and platinum resistance; however, suitable inhibitors or methods for inhibiting platinum efflux via adenosine triphosphatase copper transporting beta are not developed. OBJECTIVE Our study focused on platinum resistance in uterine leiomyosarcoma. The role of adenosine triphosphatase copper transporting beta in uterine leiomyosarcoma resistance to platinum drugs was investigated both in vitro and in vivo. STUDY DESIGN Adenosine triphosphatase copper transporting beta expression was investigated by Western blotting and the efficacy of copper sulfate pretreatment and cisplatin administration in adenosine triphosphatase copper transporting beta-expressing cells was investigated both in vitro and in vivo. RESULTS Western blot analysis of SK-LMS-1 cells (uterine leiomyosarcoma cell line) revealed strong adenosine triphosphatase copper transporting beta expression. A permanent SK-LMS-ATPase copper transporting beta-suppressed cell line (SK-LMS-7B cells) was generated, and cisplatin exhibited a significant antitumor effect in SK-LMS-7B cells, both in vitro (SK-LMS-1 cells, half-maximal inhibitory concentration, 17.2 μM; SK-LMS-7B cells, half-maximal inhibitory concentration, 4.2 μM, P < .01) and in xenografts compared with that in SK-LMS-1 cells (5.8% vs 62.8%, P < .01). Copper sulfate was identified as a preferential inhibitor of platinum efflux via adenosine triphosphatase copper transporting beta. In SK-LMS-1 cells pretreated with 15 μM copper sulfate for 3 hours, the cisplatin half-maximal inhibitory concentration decreased significantly compared with that in untreated cells and resulted in significantly increased intracellular platinum accumulation (1.9 pg/cell vs 8.6 pg/cell, P < .01). The combination of copper sulfate pretreatment with cisplatin administration was also effective in vivo and caused cisplatin to exhibit significantly increased antitumor effects in mice with SK-LMS-1 xenografts (3.1% vs 62.7%, P < .01). CONCLUSION Our study demonstrates that adenosine triphosphatase copper transporting beta is overexpressed in uterine leiomyosarcoma cells and that copper sulfate, which acts as an inhibitor of platinum efflux via adenosine triphosphatase copper transporting beta, may be a therapeutic agent in the treatment of uterine leiomyosarcoma.
Collapse
Affiliation(s)
- Mamoru Kakuda
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan; Department of Obstetrics and Gynecology, Sakai Medical Center, Osaka, Japan
| | - Shinya Matsuzaki
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan.
| | - Yutaka Ueda
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan.
| | - Mayu Shiomi
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | | | - Toshihiro Kimura
- Department of Gynecology, Osaka International Cancer Institute, Osaka, Japan
| | - Masami Fujita
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Tomomi Egawa-Takata
- Department of Obstetrics and Gynecology, Osaka Keisatsu Hospital, Osaka, Japan
| | - Eiji Kobayashi
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Satoshi Serada
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan
| | - Kiyoshi Yoshino
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan; Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Tetsuji Naka
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| |
Collapse
|
73
|
Kozłowska E, Vallius T, Hynninen J, Hietanen S, Färkkilä A, Hautaniemi S. Virtual clinical trials identify effective combination therapies in ovarian cancer. Sci Rep 2019; 9:18678. [PMID: 31822719 PMCID: PMC6904444 DOI: 10.1038/s41598-019-55068-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023] Open
Abstract
A major issue in oncology is the high failure rate of translating preclinical results in successful clinical trials. Using a virtual clinical trial simulations approach, we present a mathematical framework to estimate the added value of combinatorial treatments in ovarian cancer. This approach was applied to identify effective targeted therapies that can be combined with the platinum-taxane regimen and overcome platinum resistance in high-grade serous ovarian cancer. We modeled and evaluated the effectiveness of three drugs that target the main platinum resistance mechanisms, which have shown promising efficacy in vitro, in vivo, and early clinical trials. Our results show that drugs resensitizing chemoresistant cells are superior to those aimed at triggering apoptosis or increasing the bioavailability of platinum. Our results further show that the benefit of using biomarker stratification in clinical trials is dependent on the efficacy of the drug and tumor composition. The mathematical framework presented herein is suitable for systematically testing various drug combinations and clinical trial designs in solid cancers.
Collapse
Affiliation(s)
- Emilia Kozłowska
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Tuulia Vallius
- Department of Oncology and Radiotherapy, Turku University Hospital, University of Turku, Turku, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital, University of Turku, Turku, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynecology, Turku University Hospital, University of Turku, Turku, Finland
| | - Anniina Färkkilä
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA. .,Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland.
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
74
|
Abstract
Electrochemotherapy is gaining recognition as an effective local therapy that uses systemically or intratumorally injected bleomycin or cisplatin with electroporation as a delivery system that brings drugs into the cells to exert their cytotoxic effects. Preclinical work is still ongoing, testing new drugs, seeking the best treatment combination with other treatment modalities, and exploring new sets of pulses for effective tissue electroporation. The applications of electrochemotherapy are being fully exploited in veterinary oncology, where electrochemotherapy, because of its simple execution, has a relatively good cost-benefit ratio and is used in the treatment of cutaneous tumors. In human oncology, electrochemotherapy is fully recognized as a local therapy for cutaneous tumors and metastases. Its effectiveness is being explored in combination with immunomodulatory drugs. However, the development of electrochemotherapy is directed into the treatment of deep-seated tumors with a percutaneous approach. Because of the vast number of reports, this review discusses the articles published in the past 5 years.
Collapse
Affiliation(s)
- Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
75
|
Ghaffari R, Richburg JH. Mice with a Sertoli cell-specific knockout of the Ctr1 gene exhibit a reduced sensitivity to cisplatin-induced testicular germ cell apoptosis. Toxicol Res (Camb) 2019; 8:972-978. [PMID: 32665841 PMCID: PMC7344760 DOI: 10.1039/c9tx00142e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
Exposure to the chemotherapeutic agent cis-diamminedichloroplatinum(ii) (cDDP) is well known to instigate acute and prolonged testicular injury in male patients.
Exposure to the chemotherapeutic agent cis-diamminedichloroplatinum(ii) (cDDP) is well known to instigate acute and prolonged testicular injury in male patients. Many investigators have hypothesized that cDDP-induced dysfunction of Sertoli cells (SCs) may, in part, account for the cDDP-induced lasting testicular injury. Nevertheless, the relative contribution of cDDP-induced SC injury versus direct effects on germ cells (GCs) to the pathogenesis of GC loss remains to be elucidated. The expression of the copper transporter 1 (CTR1) protein in cells directly corresponds with cDDP uptake and its cellular toxicity. Therefore, to discern the role of SCs in the pathogenic mechanism, mice were developed with a SC-specific disruption of the Ctr1 gene (SCΔCtr1) as a strategy to prevent their exposure to cDDP. Adult mice at postnatal day (PND) 60 were treated with 5 mg kg–1 cDDP and then testis collected at 48 hours. A two-fold increase in GC-apoptosis occurred in the testis of cDDP-treated wildtype (WT) mice as compared to saline-treated WT mice. In contrast, cDDP-treated SCΔCtr1 mice exhibited only a half-fold increase in GC-apoptosis as compared to the saline-treated SCΔCtr1 mice. This reduced incidence of GC apoptosis in the SCΔCtr1 mice corresponded to a significantly lower level of platinum within the testis. Taken together, these findings reveal that the uptake of cDDP by CTR1 in SCs accounts for the accumulation of cDDP in the testis and plays a pivotal role in the pathogenic sequence of events leading to the loss of germ cells via apoptosis.
Collapse
Affiliation(s)
- Rashin Ghaffari
- Institute of Cellular and Molecular Biology , College of Natural Sciences , The University of Texas at Austin , Austin , TX , USA .
| | - John H Richburg
- Institute of Cellular and Molecular Biology , College of Natural Sciences , The University of Texas at Austin , Austin , TX , USA . .,The Center for Molecular Carcinogenesis and Toxicology , Division of Pharmacology & Toxicology , College of Pharmacy , The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
76
|
Levy A, Leynes C, Baig M, Chew SA. The Application of Biomaterials in the Treatment of Platinum‐Resistant Ovarian Cancer. ChemMedChem 2019; 14:1810-1827. [DOI: 10.1002/cmdc.201900450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Arkene Levy
- Department of Pharmacology, College of Medical Sciences Nova Southeastern University 3200 South University Drive Davie FL 33328 USA
| | - Carolina Leynes
- Department Health and Biomedical Sciences University of Texas Rio Grande Valley One West University Boulevard Brownsville TX 78520 USA
| | - Mirza Baig
- Dr. Kiran C. Patel College of Osteopathic Medicine Nova Southeastern University 3200 South University Drive Davie FL 33328 USA
| | - Sue Anne Chew
- Department Health and Biomedical Sciences University of Texas Rio Grande Valley One West University Boulevard Brownsville TX 78520 USA
| |
Collapse
|
77
|
Ryumon S, Okui T, Kunisada Y, Kishimoto K, Shimo T, Hasegawa K, Ibaragi S, Akiyama K, Thu Ha NT, Monsur Hassan NM, Sasaki A. Ammonium tetrathiomolybdate enhances the antitumor effect of cisplatin via the suppression of ATPase copper transporting beta in head and neck squamous cell carcinoma. Oncol Rep 2019; 42:2611-2621. [PMID: 31638244 PMCID: PMC6826331 DOI: 10.3892/or.2019.7367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
Platinum‑based antitumor agents have been widely used to treat head and neck squamous cell carcinoma (HNSCC) and numerous other malignancies. Cisplatin is the most frequently used platinum‑based antitumor agent, however drug resistance and numerous undesirable side effects limit its clinical efficacy for cancer patients. Cancer cells discharge cisplatin into the extracellular space via copper transporters such as ATPase copper transporting beta (ATP7B) in order to escape from cisplatin‑induced cell death. In the present study, it was demonstrated for the first time that the copper chelator ammonium tetrathiomolybdate (TM) has several promising effects on cisplatin and HNSCC. First, TM suppressed the ATP7B expression in HNSCC cell lines in vitro, thereby enhancing the accumulation and apoptotic effect of cisplatin in the cancer cells. Next, it was revealed that TM enhanced the antitumor effect of cisplatin in HNSCC cell tumor progression in a mouse model of bone invasion, which is important since HNSCC cells frequently invade to facial bone. Finally, it was demonstrated that TM was able to overcome the cisplatin resistance of a human cancer cell line, A431, via ATP7B depression in vitro.
Collapse
Affiliation(s)
- Shoji Ryumon
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Yuki Kunisada
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Koji Kishimoto
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061‑0293, Japan
| | - Kazuaki Hasegawa
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Kentaro Akiyama
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Nguyen Thi Thu Ha
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | | | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| |
Collapse
|
78
|
Manogaran P, Beeraka NM, Huang CY, Vijaya Padma V. Neferine and isoliensinine enhance ‘intracellular uptake of cisplatin’ and induce ‘ROS-mediated apoptosis’ in colorectal cancer cells – A comparative study. Food Chem Toxicol 2019; 132:110652. [DOI: 10.1016/j.fct.2019.110652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 12/31/2022]
|
79
|
Chandra A, Pius C, Nabeel M, Nair M, Vishwanatha JK, Ahmad S, Basha R. Ovarian cancer: Current status and strategies for improving therapeutic outcomes. Cancer Med 2019; 8:7018-7031. [PMID: 31560828 PMCID: PMC6853829 DOI: 10.1002/cam4.2560] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 12/14/2022] Open
Abstract
Of all the gynecologic tumors, ovarian cancer (OC) is known to be the deadliest. Advanced‐stages of OC are linked with high morbidity and low survival rates despite the immense amount of research in the field. Shortage of promising screening tools for early‐stage detection is one of the major challenges linked with the poor survival rate for patients with OC. In OC, therapeutic management is used with multidisciplinary approaches that includes debulking surgery, chemotherapy, and (rarely) radiotherapy. Recently, there is an increasing interest in using immunomodulation for treating OC. Relapse rates are high in this malignancy and averages around every 2‐years. Further treatments after the relapse are more intense, increasing the toxicity, resistance to chemotherapy drugs, and financial burden to patients with poor quality‐of‐life. A procedure that has been studied to help reduce the morbidity rate involves pre‐sensitizing cancer cells with standard therapy in order to produce optimal results with minimum dosage. Utilizing such an approach, platinum‐based agents are effective due to their increased response to platinum‐based chemotherapy in relapsed cases. These chemo‐drugs also help address the issue of drug resistance. After conducting an extensive search with available literature and the resources for clinical trials, information is precisely documented on current research, biomarkers, options for treatment and clinical trials. Several schemes for enhancing the therapeutic responses for OC are discussed systematically in this review with an attempt in summarizing the recent developments in this exciting field of translational/clinical research.
Collapse
Affiliation(s)
- Ashwin Chandra
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX, USA
| | - Cima Pius
- Miami Medical School, Miami, FL, USA
| | - Madiha Nabeel
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Maya Nair
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Jamboor K Vishwanatha
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | | | - Riyaz Basha
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX, USA.,Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
80
|
Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, Saponara S, Sarmento-Ribeiro AB, Xavier CP, Vasconcelos MH. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat 2019; 46:100645. [PMID: 31585396 DOI: 10.1016/j.drup.2019.100645] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
|
81
|
Friedman JR, Richbart SD, Merritt JC, Perry HE, Brown KC, Akers AT, Nolan NA, Stevenson CD, Hurley JD, Miles SL, Tirona MT, Valentovic MA, Dasgupta P. Capsaicinoids enhance chemosensitivity to chemotherapeutic drugs. Adv Cancer Res 2019; 144:263-298. [PMID: 31349900 DOI: 10.1016/bs.acr.2019.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cytotoxic chemotherapy is the mainstay of cancer treatment. Conventional chemotherapeutic agents do not distinguish between normal and neoplastic cells. This leads to severe toxic side effects, which may necessitate the discontinuation of treatment in some patients. Recent research has identified key molecular events in the initiation and progression of cancer, promoting the design of targeted therapies to selectively kill tumor cells while sparing normal cells. Although, the side effects of such drugs are typically milder than conventional chemotherapies, some off-target effects still occur. Another serious challenge with all chemotherapies is the acquisition of chemoresistance upon prolonged exposure to the drug. Therefore, identifying supplementary agents that sensitize tumor cells to chemotherapy-induced apoptosis and help minimize drug resistance would be valuable for improving patient tolerance and response to chemotherapy. The use of effective supplementary agents provides a twofold advantage in combination with standard chemotherapy. First, by augmenting the activity of the chemotherapeutic drug it can lower the dose needed to kill tumor cells and decrease the incidence and severity of treatment-limiting side effects. Second, adjuvant therapies that lower the effective dose of chemotherapy may delay/prevent the development of chemoresistance in tumors. Capsaicinoids, a major class of phytochemical compounds isolated from chili peppers, have been shown to improve the efficacy of several anti-cancer drugs in cell culture and animal models. The present chapter summarizes the current knowledge about the chemosensitizing activity of capsaicinoids with conventional and targeted chemotherapeutic drugs, highlighting the potential use of capsaicinoids in novel combination therapies to improve the therapeutic indices of conventional and targeted chemotherapeutic drugs in human cancers.
Collapse
Affiliation(s)
- Jamie R Friedman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Haley E Perry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Austin T Akers
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nicholas A Nolan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Cathryn D Stevenson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - John D Hurley
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Maria T Tirona
- Department of Hematology, Oncology, Edwards Comprehensive Cancer Center, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Monica A Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States.
| |
Collapse
|
82
|
Allantoin reduces cell death induced by cisplatin: possible implications for tumor lysis syndrome management. J Biol Inorg Chem 2019; 24:547-562. [PMID: 31030325 DOI: 10.1007/s00775-019-01661-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
Abstract
Massive lysis of tumor mass in cancer patients under chemotherapy regimens generates high levels of uric acid, leading to what is known as tumor lysis syndrome (TLS). Rasburicase, a recombinant urate oxidase, converts urate to allantoin, which is readily excreted by the kidneys. Even though there is a high production of allantoin from urate in cancer patients following rasburicase treatment, there are no studies on how allantoin excess could interfere with chemotherapy. We have evaluated allantoin interference with cisplatin efficiency on the lung cancer cell line H460 in vitro. The cells were treated with cisplatin (33 µM), with or without allantoin, for 48 h, in the presence or absence of UV light, and N-acetyl-L-cysteine (NAC) for 24 h. Cell viability, cell cycle, ROS production, apoptosis and immunoblot assays were performed. We showed that allantoin reduced the apoptosis induced by cisplatin in the H460 cell line. However, the activity of carboplatin and oxaliplatin, betulinic acid, TIBA, UV and H2O2 was not affected by allantoin. NMR spectroscopy showed that allantoin reduces cisplatin activity through direct interaction with cisplatin.
Collapse
|
83
|
CRISP-R/Cas9 Mediated Deletion of Copper Transport Genes CTR1 and DMT1 in NSCLC Cell Line H1299. Biological and Pharmacological Consequences. Cells 2019; 8:cells8040322. [PMID: 30959888 PMCID: PMC6523758 DOI: 10.3390/cells8040322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022] Open
Abstract
Copper, the highly toxic micronutrient, plays two essential roles: it is a catalytic and structural cofactor for Cu-dependent enzymes, and it acts as a secondary messenger. In the cells, copper is imported by CTR1 (high-affinity copper transporter 1), a transmembrane high-affinity copper importer, and DMT1 (divalent metal transporter). In cytosol, enzyme-specific chaperones receive copper from CTR1 C-terminus and deliver it to their apoenzymes. DMT1 cannot be a donor of catalytic copper because it does not have a cytosol domain which is required for copper transfer to the Cu-chaperons that assist the formation of cuproenzymes. Here, we assume that DMT1 can mediate copper way required for a regulatory copper pool. To verify this hypothesis, we used CRISPR/Cas9 to generate H1299 cell line with CTR1 or DMT1 single knockout (KO) and CTR1/DMT1 double knockout (DKO). To confirm KOs of the genes qRT-PCR were used. Two independent clones for each gene were selected for further studies. In CTR1 KO cells, expression of the DMT1 gene was significantly increased and vice versa. In subcellular compartments of the derived cells, copper concentration dropped, however, in nuclei basal level of copper did not change dramatically. CTR1 KO cells, but not DMT1 KO, demonstrated reduced sensitivity to cisplatin and silver ions, the agents that enter the cell through CTR1. Using single CTR1 and DMT1 KO, we were able to show that both, CTR1 and DMT1, provided the formation of vital intracellular cuproenzymes (SOD1, COX), but not secretory ceruloplasmin. The loss of CTR1 resulted in a decrease in the level of COMMD1, XIAP, and NF-κB. Differently, the DMT1 deficiency induced increase of the COMMD1, HIF1α, and XIAP levels. The possibility of using CTR1 KO and DMT1 KO cells to study homeodynamics of catalytic and signaling copper selectively is discussed.
Collapse
|
84
|
The modulatory effect of green tea catechin on drug resistance in human ovarian cancer cells. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02324-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
85
|
Delivery of platinum (II) drugs with bulky ligands in trans-geometry for overcoming cisplatin drug resistance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:96-104. [DOI: 10.1016/j.msec.2018.10.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/02/2018] [Accepted: 10/30/2018] [Indexed: 10/28/2022]
|
86
|
Characterisation of an Isogenic Model of Cisplatin Resistance in Oesophageal Adenocarcinoma Cells. Pharmaceuticals (Basel) 2019; 12:ph12010033. [PMID: 30791601 PMCID: PMC6469161 DOI: 10.3390/ph12010033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum) is widely used for the treatment of solid malignancies; however, the development of chemoresistance hinders the success of this chemotherapeutic in the clinic. This study provides novel insights into the molecular and phenotypic changes in an isogenic oesophageal adenocarcinoma (OAC) model of acquired cisplatin resistance. Key differences that could be targeted to overcome cisplatin resistance are highlighted. We characterise the differences in treatment sensitivity, gene expression, inflammatory protein secretions, and metabolic rate in an isogenic cell culture model of acquired cisplatin resistance in OAC. Cisplatin-resistant cells (OE33 Cis R) were significantly more sensitive to other cytotoxic modalities, such as 2 Gy radiation (p = 0.0055) and 5-fluorouracil (5-FU) (p = 0.0032) treatment than parental cisplatin-sensitive cells (OE33 Cis P). Gene expression profiling identified differences at the gene level between cisplatin-sensitive and cisplatin-resistant cells, uncovering 692 genes that were significantly altered between OE33 Cis R cells and OE33 Cis P cells. OAC is an inflammatory-driven cancer, and inflammatory secretome profiling identified 18 proteins secreted at significantly altered levels in OE33 Cis R cells compared to OE33 Cis P cells. IL-7 was the only cytokine to be secreted at a significantly higher levels from OE33 Cis R cells compared to OE33 Cis P cells. Additionally, we profiled the metabolic phenotype of OE33 Cis P and OE33 Cis R cells under normoxic and hypoxic conditions. The oxygen consumption rate, as a measure of oxidative phosphorylation, is significantly higher in OE33 Cis R cells under normoxic conditions. In contrast, under hypoxic conditions of 0.5% O2, the oxygen consumption rate is significantly lower in OE33 Cis R cells than OE33 Cis P cells. This study provides novel insights into the molecular and phenotypic changes in an isogenic OAC model of acquired cisplatin resistance, and highlights therapeutic targets to overcome cisplatin resistance in OAC.
Collapse
|
87
|
Delineation of proapoptotic signaling of anthracene-shelled M2L4 metallacapsules and their synergistic activity with curcumin in cisplatin-sensitive and resistant tumor cell lines. Invest New Drugs 2019; 37:1117-1126. [DOI: 10.1007/s10637-019-00738-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/31/2019] [Indexed: 11/25/2022]
|
88
|
Zakelj MN, Prevc A, Kranjc S, Cemazar M, Todorovic V, Savarin M, Scancar J, Kosjek T, Groselj B, Strojan P, Sersa G. Electrochemotherapy of radioresistant head and neck squamous cell carcinoma cells and tumor xenografts. Oncol Rep 2019; 41:1658-1668. [PMID: 30628709 PMCID: PMC6365705 DOI: 10.3892/or.2019.6960] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
Electrochemotherapy is an established local ablative method used for the treatment of different tumor types, including tumors of the head and neck area. Clinical studies have demonstrated a lower response rate of tumors that recur in pre-irradiated area. The aim of the present study was to explore the response of experimentally induced radioresistant cells and tumors to electrochemotherapy with cisplatin or bleomycin. The radioresistant cells (FaDu-RR) were established by fractionated irradiation of parental human squamous cell carcinoma cell line, FaDu. We compared the 2 cell lines in response to chemotherapy and electrochemotherapy with cisplatin or bleomycin in vitro and in vivo. Using specific mass spectrometry-based analytical methods we determined the difference in the uptake of chemotherapeutics in tumors after electrochemotherapy. Additionally, we compared the capacity of the cells to repair DNA double-strand breaks (DSB) after exposure to the drugs used in electrochemotherapy with the γH2AX foci resolution determined by immunofluorescence microscopy. Our results indicate radio- and cisplatin cross-resistance, confirmed with the lower response rate of radioresistant tumors after electrochemotherapy with cisplatin. On the other hand, the sensitivity to electrochemotherapy with bleomycin was similar in both cell lines and tumors. While the uptake of chemotherapeutics after electrochemotherapy was comparable in both tumor models, there was a difference between the cell lines in capacity to repair DNA DSB-the radioresistant cells had a lower level of DSB and faster DNA repair rate after exposure to both, cisplatin or bleomycin. Due to the higher complete response rate after electrochemotherapy with bleomycin than with cisplatin, we conclude that the results favor bleomycin-over cisplatin-based electrochemotherapy for treatment of radioresistant tumors and/or tumors that regrow after radiotherapy.
Collapse
Affiliation(s)
- Martina Niksic Zakelj
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Ajda Prevc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Simona Kranjc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Vesna Todorovic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Monika Savarin
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Janez Scancar
- Department of Environmental Sciences, Jozef Stefan Institute, SI‑1000 Ljubljana, Slovenia
| | - Tina Kosjek
- Department of Environmental Sciences, Jozef Stefan Institute, SI‑1000 Ljubljana, Slovenia
| | - Blaz Groselj
- Department of Radiation Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Primoz Strojan
- Faculty of Medicine, University of Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| |
Collapse
|
89
|
Poon AC, Inkol JM, Luu AK, Mutsaers AJ. Effects of the potassium-sparing diuretic amiloride on chemotherapy response in canine osteosarcoma cells. J Vet Intern Med 2018; 33:800-811. [PMID: 30556178 PMCID: PMC6430882 DOI: 10.1111/jvim.15382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
Background Osteosarcoma (OSA) is a common bone tumor of mesenchymal origin in dogs. Chemotherapy delays metastasis, yet most dogs die of this disease within 1 year of diagnosis. The high metabolic demand of cancer cells promotes proton pump upregulation, leading to acidification of the tumor microenvironment and chemoresistance. The potassium‐sparing diuretic amiloride is among a class of proton pump inhibitors prescribed for refractory heart failure treatment in dogs. Objective We hypothesized that amiloride treatment improves chemotherapy response by reducing acidification in canine OSA cells. Our objective was to assess the in vitro effects of amiloride on cell viability, apoptosis, and metabolism. Methods In vitro study. Assessments of cell viability and apoptosis were performed after single agent or combination treatment, along with calculations of pharmacological synergism using the combination index. Protein signaling during apoptosis was evaluated by Western blotting. Metabolic profiling was performed using a Seahorse bioanalyzer. Results Amiloride strongly synergized with doxorubicin in combination treatment and exhibited additive or antagonistic effects with carboplatin in canine OSA cells. Combination treatment with doxorubicin significantly upregulated p53‐mitochondrial signaling to activate apoptosis and downregulate Akt phosphorylation. Amiloride‐treated cells further exhibited metabolic switching with reductions in glycolytic capacity and maximal respiration. Conclusion and Clinical Importance Amiloride synergized with doxorubicin to potentiate apoptosis in canine OSA cells. These results justify further investigation into repurposing of amiloride as an oncology drug for the treatment of OSA in dogs.
Collapse
Affiliation(s)
- Andrew C Poon
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jordon M Inkol
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anita K Luu
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anthony J Mutsaers
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
90
|
Arnesano F, Nardella MI, Natile G. Platinum drugs, copper transporters and copper chelators. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
91
|
Ammonium tetrathiomolybdate treatment targets the copper transporter ATP7A and enhances sensitivity of breast cancer to cisplatin. Oncotarget 2018; 7:84439-84452. [PMID: 27806319 PMCID: PMC5341295 DOI: 10.18632/oncotarget.12992] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/12/2016] [Indexed: 11/25/2022] Open
Abstract
Cisplatin is an effective breast cancer drug but resistance often develops over prolonged chemotherapy. Therefore, we performed a candidate approach RNAi screen in combination with cisplatin treatment to identify molecular pathways conferring survival advantages. The screen identified ATP7A as a therapeutic target. ATP7A is a copper ATPase transporter responsible for intercellular movement and sequestering of cisplatin. Pharmaceutical replacement for ATP7A by ammonium tetrathiomolybdate (TM) enhanced cisplatin treatment in breast cancer cells. Allograft and xenograft models in athymic nude mice treated with cisplatin/TM exhibited retarded tumor growth, reduced accumulation of cancer stem cells and decreased cell proliferation as compared to mono-treatment with cisplatin or TM. Cisplatin/TM treatment of cisplatin-resistant tumors reduced ATP7A protein levels, attenuated cisplatin sequestering by ATP7A, increased nuclear availability of cisplatin, and subsequently enhanced DNA damage and apoptosis. Microarray analysis of gene ontology pathways that responded uniquely to cisplatin/TM double treatment depicted changes in cell cycle regulation, specifically in the G1/S transition. These findings offer the potential to combat platinum-resistant tumors and sensitize patients to conventional breast cancer treatment by identifying and targeting the resistant tumors' unique molecular adaptations.
Collapse
|
92
|
Desferal regulates hCtr1 and transferrin receptor expression through Sp1 and exhibits synergistic cytotoxicity with platinum drugs in oxaliplatin-resistant human cervical cancer cells in vitro and in vivo. Oncotarget 2018; 7:49310-49321. [PMID: 27384479 PMCID: PMC5226510 DOI: 10.18632/oncotarget.10336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/13/2016] [Indexed: 01/05/2023] Open
Abstract
The development of resistance to platinum drugs in cancer cells severely reduces the efficacy of these drugs. Thus, the discovery of novel drugs or combined strategies to overcome drug resistance is imperative. In addition to our previous finding that combined D-penicillamine with platinum drugs exerts synergistic cytotoxicity, we recently identified a novel therapeutic strategy by combining an iron chelating agent desferal with platinum drugs to overcome platinum resistance in an oxaliplatin-resistant human cervical cancer cell line, S3. Further study demonstrated that the level of platinum–DNA adduct formation positively correlated with cell death in combination of desferal with platinums than that of each drug alone in S3 cells. Decrement of human copper transporter 1 (hCtr1) and transferrin receptor 1 (TfR1) expression involved in the development of platinum resistance in S3 cells. Moreover, desferal promoted the expression of hCtr1 through the upregulation of Sp1. The overexpression of Sp1 increased the expression of NF-κB and translocated it into the nucleus to bind to the TfR1 promoter region, which subsequently increased the expression of TfR1. Importantly, the cotreatment of oxaliplatin with desferal significantly potentiated the oxaliplatin-elicited antitumoral effect in the oxaliplatin-resistant xenograft animal model without any toxic effect observed. Taken together, these results demonstrated that the combination of desferal with oxaliplatin can overcome oxaliplatin resistance through the regulation of hCtr1 and TfR1, and may have beneficial effect for treatment of patient with oxaliplatin-refractory tumors.
Collapse
|
93
|
Hassan I, Khan AA, Aman S, Qamar W, Ebaid H, Al-Tamimi J, Alhazza IM, Rady AM. Restrained management of copper level enhances the antineoplastic activity of imatinib in vitro and in vivo. Sci Rep 2018; 8:1682. [PMID: 29374195 PMCID: PMC5786010 DOI: 10.1038/s41598-018-19410-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
The present study was designed to investigate if elevated copper level can be targeted to enhance the efficacy of a significant anticancer drug, imatinib (ITB). The antineoplastic activity of this drug was assessed in the HepG2, HEK-293, MCF-7 and MDA-MD-231 cells targeting elevated copper level as their common drug target. The cell lines were treated with the different doses of copper chloride (Cu II) and disulfiram (DSF) alone as well as in their combinations with the drug for 24 h in standard culture medium and conditions. The treated cells were subjected to various assays including MTT, PARP, p-53, caspase-7, caspase-3, LDH and single cell electrophoresis. The study shows that DSF and Cu (II) synergizes the anticancer activity of ITB to a significant extent in a dose-specific way as evidenced by the combinations treated groups. Furthermore, the same treatment strategy was employed in cancer-induced rats in which the combinations of ITB-DSF and ITB-Cu II showed enhanced antineoplastic activity as compared to ITB alone. However, DSF was more effective than Cu (II) as an adjuvant to the drug. Hence, restrained manipulation of copper level in tumor cells can orchestrate the redox and molecular dispositions inside the cells favoring the induction of apoptosis.
Collapse
Affiliation(s)
- Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shazia Aman
- Department of Biochemistry, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, India
| | - Wajhul Qamar
- Biological Unit, Central Laboratory, Research Center, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.,Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jameel Al-Tamimi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ibrahim M Alhazza
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed M Rady
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
94
|
Norouzi-Barough L, Sarookhani MR, Sharifi M, Moghbelinejad S, Jangjoo S, Salehi R. Molecular mechanisms of drug resistance in ovarian cancer. J Cell Physiol 2018; 233:4546-4562. [PMID: 29152737 DOI: 10.1002/jcp.26289] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the most lethal malignancy among the gynecological cancers, with a 5-year survival rate, mainly due to being diagnosed at advanced stages, recurrence and resistance to the current chemotherapeutic agents. Drug resistance is a complex phenomenon and the number of known involved genes and cross-talks between signaling pathways in this process is growing rapidly. Thus, discovering and understanding the underlying molecular mechanisms involved in chemo-resistance are crucial for management of treatment and identifying novel and effective drug targets as well as drug discovery to improve therapeutic outcomes. In this review, the major and recently identified molecular mechanisms of drug resistance in ovarian cancer from relevant literature have been investigated. In the final section of the paper, new approaches for studying detailed mechanisms of chemo-resistance have been briefly discussed.
Collapse
Affiliation(s)
- Leyla Norouzi-Barough
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Moghbelinejad
- Department of Biochemistry and Genetic, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Saranaz Jangjoo
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
95
|
Blagden S, Abdel Mouti M, Chettle J. Ancient and modern: hints of a core post-transcriptional network driving chemotherapy resistance in ovarian cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1432. [PMID: 28762650 PMCID: PMC5763387 DOI: 10.1002/wrna.1432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 01/04/2023]
Abstract
RNA-binding proteins (RBPs) and noncoding (nc)RNAs (such as microRNAs, long ncRNAs, and others) cooperate within a post-transcriptional network to regulate the expression of genes required for many aspects of cancer behavior including its sensitivity to chemotherapy. Here, using an RBP-centric approach, we explore the current knowledge surrounding contributers to post-transcriptional gene regulation (PTGR) in ovarian cancer and identify commonalities that hint at the existence of an evolutionarily conserved core PTGR network. This network regulates survival and chemotherapy resistance in the contemporary context of the cancer cell. There is emerging evidence that cancers become dependent on PTGR factors for their survival. Further understanding of this network may identify innovative therapeutic targets as well as yield crucial insights into the hard-wiring of many malignancies, including ovarian cancer. WIREs RNA 2018, 9:e1432. doi: 10.1002/wrna.1432 This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Mechanisms RNA in Disease and Development > RNA in Disease.
Collapse
|
96
|
Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett 2017; 413:122-134. [PMID: 29113871 DOI: 10.1016/j.canlet.2017.11.002] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
Several epidemiological observations have shown an inverse relation between consumption of plant-based foods, rich in phytochemicals, and incidence of cancer. Phytochemicals, secondary plant metabolites, via their antioxidant property play a key role in cancer chemoprevention by suppressing oxidative stress-induced DNA damage. In addition, they modulate several oxidative stress-mediated signaling pathways through their anti-oxidant effects, and ultimately protect cells from undergoing molecular changes that trigger carcinogenesis. In several instances, however, the pro-oxidant property of these phytochemicals has been observed with respect to cancer treatment. Further, in vitro and in vivo studies show that several phytochemicals potentiate the efficacy of chemotherapeutic agents by exacerbating oxidative stress in cancer cells. Therefore, we reviewed multiple studies investigating the role of dietary phytochemicals such as, curcumin (turmeric), epigallocatechin gallate (EGCG; green tea), resveratrol (grapes), phenethyl isothiocyanate (PEITC), sulforaphane (cruciferous vegetables), hesperidin, quercetin and 2'-hydroxyflavanone (2HF; citrus fruits) in regulating oxidative stress and associated signaling pathways in the context of cancer chemoprevention and treatment.
Collapse
Affiliation(s)
- Shireen Chikara
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Lokesh Dalasanur Nagaprashantha
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Medical Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
97
|
Tan LM, Qiu CF, Zhu T, Jin YX, Li X, Yin JY, Zhang W, Zhou HH, Liu ZQ. Genetic Polymorphisms and Platinum-based Chemotherapy Treatment Outcomes in Patients with Non-Small Cell Lung Cancer: A Genetic Epidemiology Study Based Meta-analysis. Sci Rep 2017; 7:5593. [PMID: 28717179 PMCID: PMC5514117 DOI: 10.1038/s41598-017-05642-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 06/01/2017] [Indexed: 12/16/2022] Open
Abstract
Data regarding genetic polymorphisms and platinum-based chemotherapy (PBC) treatment outcomes in patients with NSCLC are published at a growing pace, but the results are inconsistent. This meta-analysis integrated eligible candidate genes to better evaluate the pharmacogenetics of PBC in NSCLC patients. Relevant studies were retrieved from PubMed, Chinese National Knowledge Infrastructure and WANFANG databases. A total of 111 articles comprising 18,196 subjects were included for this study. The associations of genetic polymorphisms with treatment outcomes of PBC including overall response rate (ORR), overall survival (OS) and progression-free survival (PFS) were determined by analyzing the relative risk (RR), hazard ration (HR), corresponding 95% confidence interval (CI). Eleven polymorphisms in 9 genes, including ERCC1 rs11615 (OS), rs3212986 (ORR), XPA rs1800975 (ORR), XPD rs1052555 (OS, PFS), rs13181 (OS, PFS), XPG rs2296147 (OS), XRCC1 rs1799782 (ORR), XRCC3 rs861539 (ORR), GSTP1 rs1695 (ORR), MTHFR rs1801133 (ORR) and MDR1 rs1045642 (ORR), were found significantly associated with PBC treatment outcomes. These variants were mainly involved in DNA repair (EXCC1, XPA, XPD, XPG, XRCC1 and XRCC3), drug influx and efflux (MDR1), metabolism and detoxification (GSTP1) and DNA synthesis (MTHFR), and might be considered as potential prognostic biomarkers for assessing objective response and progression risk in NSCLC patients receiving platinum-based regimens.
Collapse
Affiliation(s)
- Li-Ming Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Department of Pharmacy, The First People's Hospital of Huaihua City, Huaihua, 418000, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Cheng-Feng Qiu
- Department of Pharmacy, The First People's Hospital of Huaihua City, Huaihua, 418000, P.R. China
| | - Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Yuan-Xiang Jin
- Department of Pharmacy, The First People's Hospital of Huaihua City, Huaihua, 418000, P.R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China. .,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China.
| |
Collapse
|
98
|
Sommerfeld NS, Gülzow J, Roller A, Cseh K, Jakupec MA, Grohmann A, Galanski M, Keppler BK. Antiproliferative Copper(II) and Platinum(II) Complexes with Bidentate N,N-Donor Ligands. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nadine S. Sommerfeld
- Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| | - Jana Gülzow
- Institute of Chemistry; Berlin University of Technology; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Alexander Roller
- Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| | - Klaudia Cseh
- Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| | - Michael A. Jakupec
- Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
- Research Cluster “Translational Cancer Therapy Research”; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| | - Andreas Grohmann
- Institute of Chemistry; Berlin University of Technology; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Markus Galanski
- Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
- Research Cluster “Translational Cancer Therapy Research”; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| |
Collapse
|
99
|
Kotelevets L, Chastre E, Desmaële D, Couvreur P. Nanotechnologies for the treatment of colon cancer: From old drugs to new hope. Int J Pharm 2016; 514:24-40. [DOI: 10.1016/j.ijpharm.2016.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 12/15/2022]
|
100
|
Cetraz M, Sen V, Schoch S, Streule K, Golubev V, Hartwig A, Köberle B. Platinum(IV)-nitroxyl complexes as possible candidates to circumvent cisplatin resistance in RT112 bladder cancer cells. Arch Toxicol 2016; 91:785-797. [PMID: 27307157 DOI: 10.1007/s00204-016-1754-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 06/08/2016] [Indexed: 11/27/2022]
Abstract
The therapeutic efficacy of the anticancer drug cisplatin is limited by the development of resistance. We therefore investigated newly synthesized platinum-nitroxyl complexes (PNCs) for their potential to circumvent cisplatin resistance. The complexes used were PNCs with bivalent cis-PtII(R·NH2)(NH3)Cl2 and cis-PtII(DAPO)Ox and four-valent platinum cis,trans,cis-PtIV(R·NH2)(NH3)(OR)2Cl2 and cis,trans,cis-PtIV(DAPO)(OR)2Ox, where R· are TEMPO or proxyl nitroxyl radicals, DAPO is trans-3,4-diamino-2,2,6,6-tetramethylpiperidine-1-oxyl, and OR and Ox are carboxylato and oxalato ligands, respectively. The complexes were characterized by spectroscopic methods, HPLC, log P ow data and elemental analysis. We studied intracellular platinum accumulation, DNA platination and cytotoxicity upon treatment with the PNCs in a model system of the bladder cancer cell line RT112 and its cisplatin-resistant subline RT112-CP. Platinum accumulation and DNA platination were similar in RT112 and RT112-CP cells for both bivalent and four-valent PNCs, in contrast to cisplatin for which a reduction in intracellular accumulation and DNA platination was observed in the resistant subline. The PNCs were found to platinate DNA in relation to the length of their axial RO-ligands. Furthermore, the PNCs were increasingly toxic in relation to the elongation of their axial RO-ligands, with similar toxicities in RT112 and its cisplatin-resistant subline. Using a cell-free assay, we observed induction of oxidative DNA damage by cisplatin but not PNCs suggesting that cisplatin exerts its toxic action by platination and oxidative DNA damage, while cells treated with PNCs are protected against oxidatively induced lesions. Altogether, our study suggests that PNCs may provide a more effective treatment for tumors which have developed resistance toward cisplatin.
Collapse
Affiliation(s)
- Maria Cetraz
- Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Vasily Sen
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow, Russian Federation, 142432
| | - Sarah Schoch
- Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Karolin Streule
- Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Valery Golubev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow, Russian Federation, 142432
| | - Andrea Hartwig
- Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Beate Köberle
- Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131, Karlsruhe, Germany.
| |
Collapse
|