51
|
Vangijzegem T, Lecomte V, Ternad I, Van Leuven L, Muller RN, Stanicki D, Laurent S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010236. [PMID: 36678868 PMCID: PMC9861355 DOI: 10.3390/pharmaceutics15010236] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/01/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Despite significant advances in cancer therapy over the years, its complex pathological process still represents a major health challenge when seeking effective treatment and improved healthcare. With the advent of nanotechnologies, nanomedicine-based cancer therapy has been widely explored as a promising technology able to handle the requirements of the clinical sector. Superparamagnetic iron oxide nanoparticles (SPION) have been at the forefront of nanotechnology development since the mid-1990s, thanks to their former role as contrast agents for magnetic resonance imaging. Though their use as MRI probes has been discontinued due to an unfavorable cost/benefit ratio, several innovative applications as therapeutic tools have prompted a renewal of interest. The unique characteristics of SPION, i.e., their magnetic properties enabling specific response when submitted to high frequency (magnetic hyperthermia) or low frequency (magneto-mechanical therapy) alternating magnetic field, and their ability to generate reactive oxygen species (either intrinsically or when activated using various stimuli), make them particularly adapted for cancer therapy. This review provides a comprehensive description of the fundamental aspects of SPION formulation and highlights various recent approaches regarding in vivo applications in the field of cancer therapy.
Collapse
Affiliation(s)
- Thomas Vangijzegem
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Correspondence: (T.V.); (S.L.)
| | - Valentin Lecomte
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Indiana Ternad
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Levy Van Leuven
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Robert N. Muller
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
| | - Dimitri Stanicki
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
- Correspondence: (T.V.); (S.L.)
| |
Collapse
|
52
|
A novel superparamagnetic iron oxide nanoparticles-based SPECT/MRI dual-modality probe for tumor imaging. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
53
|
Maji K, Pramanik K. Future of encapsulation in regenerative medicine. PRINCIPLES OF BIOMATERIALS ENCAPSULATION : VOLUME TWO 2023:749-772. [DOI: 10.1016/b978-0-12-824345-9.00003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
54
|
Lu F, Du L, Chen W, Jiang H, Yang C, Pu Y, Wu J, Zhu J, Chen T, Zhang X, Wu C. T 1- T 2 dual-modal magnetic resonance contrast-enhanced imaging for rat liver fibrosis stage. RSC Adv 2022; 12:35809-35819. [PMID: 36545112 PMCID: PMC9749127 DOI: 10.1039/d2ra05913d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/02/2022] [Indexed: 12/16/2022] Open
Abstract
The development of an effective method for staging liver fibrosis has always been a hot topic of research in the field of liver fibrosis. In this paper, PEGylated ultrafine superparamagnetic iron oxide nanocrystals (SPIO@PEG) were developed for T 1-T 2 dual-modal contrast-enhanced magnetic resonance imaging (MRI) and combined with Matrix Laboratory (MATLAB)-based image fusion for staging liver fibrosis in the rat model. Firstly, SPIO@PEG was synthesized and characterized with physical and biological properties as a T 1-T 2 dual-mode MRI contrast agent. Secondly, in the subsequent MR imaging of liver fibrosis in rats in vivo, conventional T 1 and T 2-weighted imaging, and T 1 and T 2 mapping of the liver pre- and post-intravenous administration of SPIO@PEG were systematically collected and analyzed. Thirdly, by creative design, we fused the T 1 and T 2 mapping images by MATLAB and quantitively measured each rat's hepatic fibrosis positive pixel ratio (PPR). SPIO@PEG was proved to have an ultrafine core size (4.01 ± 0.16 nm), satisfactory biosafety and T 1-T 2 dual-mode contrast effects under a 3.0 T MR scanner (r 2/r 1 = 3.51). According to the image fusion results, the SPIO@PEG contrast-enhanced PPR shows significant differences among different stages of liver fibrosis (P < 0.05). The combination of T 1-T 2 dual-modal SPIO@PEG and MATLAB-based image fusion technology could be a promising method for diagnosing and staging liver fibrosis in the rat model. PPR could also be used as a non-invasive biomarker to diagnose and discriminate the stages of liver fibrosis.
Collapse
Affiliation(s)
- Fulin Lu
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
- Department of Radiology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu 610072 China
| | - Liang Du
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Wei Chen
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Hai Jiang
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Chenwu Yang
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Yu Pu
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Jun Wu
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Jiang Zhu
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Tianwu Chen
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Xiaoming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Changqiang Wu
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| |
Collapse
|
55
|
Asad S, Jacobsen AC, Teleki A. Inorganic nanoparticles for oral drug delivery: opportunities, barriers, and future perspectives. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
56
|
Xie W, Zhang G, Guo Z, Huang H, Ye J, Gao X, Yue K, Wei Y, Zhao L. Shape-controllable and kinetically miscible Copper-Palladium bimetallic nanozymes with enhanced Fenton-like performance for biocatalysis. Mater Today Bio 2022; 16:100411. [PMID: 36186845 PMCID: PMC9520275 DOI: 10.1016/j.mtbio.2022.100411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
Bimetallic nanozymes have been emerging as essential catalysts due to their unique physicochemical properties from the monometallics. However, the access to optimize catalytic performance is often limited by the thermodynamic immiscibility and also heterogeneity. Thus, we present a one-step coreduction strategy to prepare the miscible Cu-Pd bimetallic nanozymes with controllable shape and homogeneously alloyed structure. The homogeneity is systematically explored and luckily, the homogeneous introduction of Cu successfully endows Cu-Pd bimetallic nanozymes with enhanced Fenton-like efficiency. Density functional theory (DFT) theoretical calculation reveals that Cu-Pd bimetallic nanozymes exhibit smaller d-band center compared with Pd nanozymes. Easier adsorption of H2O2 molecular contributed by the electronic structure of Cu significantly accelerate the catalytic process together with the strong repulsive interaction between H atom and Pd atom. In vitro cytotoxicity and intracellular ROS generation performance reveal the potential for in vivo biocatalysis. The strategy to construct kinetically miscible Cu-Pd bimetallic nanozymes will guide the development of bimetallic catalysts with excellent Fenton-like efficiency for biocatalytic nanomedicine.
Collapse
Affiliation(s)
- Wensheng Xie
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Genpei Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
- Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province, 528399, PR China
| | - Zhenhu Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Hongye Huang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Jielin Ye
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Xiaohan Gao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
- Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province, 528399, PR China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
57
|
Kobylinska N, Klymchuk D, Khaynakova O, Duplij V, Matvieieva N. Morphology-Controlled Green Synthesis of Magnetic Nanoparticles Using Extracts of 'Hairy' Roots: Environmental Application and Toxicity Evaluation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4231. [PMID: 36500853 PMCID: PMC9739509 DOI: 10.3390/nano12234231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Magnetic nanoparticles (MNPs) were "green" synthesized from a FeCl3/FeSO4/CoCl2 mixture using ethanolic extracts of Artemisia tilesii Ledeb 'hairy' roots. The effect of chemical composition and reducing power of ethanolic extracts on the morphology, size destribution and other features of obtained MNPs was evaluated. Depending on the extract properties, nanosized magnetic materials of spherical (8-11 nm), nanorod-like (15-24 nm) and cubic (14-24 nm) shapes were obtained via self-assembly. Microspherical MNPs composed of nanoclusters were observed when using extract of the control root line in the synthesis. Polyhedral magnetic nanoparticles with an average size of ~30 nm were formed using 'hairy' root ethanolic extract without any additive. Studied samples manifested excellent magnetic characteristics. Field-dependent magnetic measurements of most MNPs demonstrated a saturation magnetization of 42.0-72.9 emu/g with negligible coercivity (∼0.02-0.29 emu/g), indicating superparamagnetic behaviour only for solids with a magnetite phase. The synthesized MNPs were minimally aggregated and well-dispersed in aqueous medium, probably due to their stabilization by bioactive compounds in the initial extract. The nanoparticles were tested for magnetic solid-phase extraction of copper (Cu), cadmium (Cd) and arsenic (As) pollutants in aqueous solution, followed by ICP-OES analysis. The magnetic oxides, mainly magnetite, showed high adsorption capacity and effectively removed arsenic ions at pH 6.7. The maximum adsorption capacity was ~150 mg/g for As(III, V) on the selected MNPs with cubic morphology, which is higher than that of previously reported adsorbents. The best adsorption was achieved using Fe3O4-based nanomaterials with low crystallinity, non-spherical form and a large number of surface-localized organic molecules. The phytotoxicity of the obtained MNPs was estimated in vitro using lettuce and chicory as model plants. The obtained MNPs did not exhibit inhibitory activity. This work provides novel insights on the morphology of "green" synthesized magnetic nanoparticles that can be used for applications in adsorption technologies.
Collapse
Affiliation(s)
- Natalia Kobylinska
- Dumansky Institute of Colloid and Water Chemistry, National Academy of Science of Ukraine, 42 Akad. Vernadskoho Blvd., 03142 Kyiv, Ukraine
| | - Dmytro Klymchuk
- Kholodny Institute of Botany, National Academy of Science of Ukraine, 2 Tereshchenkivska Str., 02000 Kyiv, Ukraine
| | - Olena Khaynakova
- Faculty of Chemistry, University of Oviedo, 8 Julián Claveria Av., 33006 Oviedo, Spain
| | - Volodymyr Duplij
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, 148 Zabolotnogo Str., 03143 Kyiv, Ukraine
| | - Nadiia Matvieieva
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, 148 Zabolotnogo Str., 03143 Kyiv, Ukraine
| |
Collapse
|
58
|
Romero G, Park J, Koehler F, Pralle A, Anikeeva P. Modulating cell signalling in vivo with magnetic nanotransducers. NATURE REVIEWS. METHODS PRIMERS 2022; 2:92. [PMID: 38111858 PMCID: PMC10727510 DOI: 10.1038/s43586-022-00170-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 12/20/2023]
Abstract
Weak magnetic fields offer nearly lossless transmission of signals within biological tissue. Magnetic nanomaterials are capable of transducing magnetic fields into a range of biologically relevant signals in vitro and in vivo. These nanotransducers have recently enabled magnetic control of cellular processes, from neuronal firing and gene expression to programmed apoptosis. Effective implementation of magnetically controlled cellular signalling relies on careful tailoring of magnetic nanotransducers and magnetic fields to the responses of the intended molecular targets. This primer discusses the versatility of magnetic modulation modalities and offers practical guidelines for selection of appropriate materials and field parameters, with a particular focus on applications in neuroscience. With recent developments in magnetic instrumentation and nanoparticle chemistries, including those that are commercially available, magnetic approaches promise to empower research aimed at connecting molecular and cellular signalling to physiology and behaviour in untethered moving subjects.
Collapse
Affiliation(s)
- Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jimin Park
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnd Pralle
- Department of Physics, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
59
|
Chavan N, Dharmaraj D, Sarap S, Surve C. Magnetic nanoparticles – A new era in nanotechnology. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
60
|
Liquid metals: Preparation, surface engineering, and biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
61
|
Kulpa-Greszta M, Wnuk M, Tomaszewska A, Adamczyk-Grochala J, Dziedzic A, Rzeszutek I, Zarychta B, Błoniarz D, Lewińska A, Pązik R. Synergic Temperature Effect of Star-like Monodisperse Iron Oxide Nanoparticles and Their Related Responses in Normal and Cancer Cells. J Phys Chem B 2022; 126:8515-8531. [PMID: 36225102 DOI: 10.1021/acs.jpcb.2c06061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Magnetic nanoparticle (MNP) anisotropy has been tailored by the preparation of MNPs having different shapes (star-like, cubic, and polyhedral) using a self-modified rapid hot-injection process. The surface modification of MNPs was performed through etidronic ligand grafting with a strong binding affinity to mixed metal oxides, ensuring sufficient colloidal stability, surface protection, and minimized aggregation and interparticle interactions. The heating effect was induced by contactless external stimulation through the action of an alternating magnetic field and NIR laser radiation (808 nm). The efficacy of the energy conversion was evaluated as a function of the particle shape, concentration, and external stimuli parameters. In turn, the most efficient star-like particles have been selected to study their response in contact with normal and cancer cells. It was found that the star-like MNPs (Fe3O4 SL-NPs) at 2 mg/mL concentration induce necrosis and significantly alter cell cycle progression, while 0.5 mg/mL can stimulate the antioxidative and anti-inflammatory response in normal cells. A biologically relevant heating effect leading to heat-mediated cell death was achieved at a 2 mg/mL concentration of star-like particles and was enhanced by the addition of ascorbic acid (AA). AA-mediated photomagnetic hyperthermia can lead to the modulation of the heat-shock response in cancer cells that depends on the genotypic and phenotypic variations of cell lines.
Collapse
Affiliation(s)
- Magdalena Kulpa-Greszta
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland.,Faculty of Chemistry, Rzeszow University of Technology, Aleja Powstańców Warszawy 12, 35-959Rzeszow, Poland
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland
| | - Anna Tomaszewska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland
| | - Jagoda Adamczyk-Grochala
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland
| | - Andrzej Dziedzic
- Department of Spectroscopy and Materials, Institute of Physics, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland
| | - Iwona Rzeszutek
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland
| | - Bartosz Zarychta
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052Opole, Poland
| | - Dominika Błoniarz
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland
| | - Anna Lewińska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland
| | - Robert Pązik
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland
| |
Collapse
|
62
|
Aram E, Moeni M, Abedizadeh R, Sabour D, Sadeghi-Abandansari H, Gardy J, Hassanpour A. Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203567. [PMID: 36296756 PMCID: PMC9611246 DOI: 10.3390/nano12203567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 05/14/2023]
Abstract
Iron oxide nanoparticle (IONPs) have become a subject of interest in various biomedical fields due to their magnetism and biocompatibility. They can be utilized as heat mediators in magnetic hyperthermia (MHT) or as contrast media in magnetic resonance imaging (MRI), and ultrasound (US). In addition, their high drug-loading capacity enabled them to be therapeutic agent transporters for malignancy treatment. Hence, smartening them allows for an intelligent controlled drug release (CDR) and targeted drug delivery (TDD). Smart magnetic nanoparticles (SMNPs) can overcome the impediments faced by classical chemo-treatment strategies, since they can be navigated and release drug via external or internal stimuli. Recently, they have been synchronized with other modalities, e.g., MRI, MHT, US, and for dual/multimodal theranostic applications in a single platform. Herein, we provide an overview of the attributes of MNPs for cancer theranostic application, fabrication procedures, surface coatings, targeting approaches, and recent advancement of SMNPs. Even though MNPs feature numerous privileges over chemotherapy agents, obstacles remain in clinical usage. This review in particular covers the clinical predicaments faced by SMNPs and future research scopes in the field of SMNPs for cancer theranostics.
Collapse
Affiliation(s)
- Elham Aram
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan 49188-88369, Iran
| | - Masome Moeni
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Roya Abedizadeh
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
| | - Davood Sabour
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
| | - Hamid Sadeghi-Abandansari
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Jabbar Gardy
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (J.G.); (A.H.)
| | - Ali Hassanpour
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (J.G.); (A.H.)
| |
Collapse
|
63
|
Iron-Based Magnetic Nanosystems for Diagnostic Imaging and Drug Delivery: Towards Transformative Biomedical Applications. Pharmaceutics 2022; 14:pharmaceutics14102093. [PMID: 36297529 PMCID: PMC9607318 DOI: 10.3390/pharmaceutics14102093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
The advancement of biomedicine in a socioeconomically sustainable manner while achieving efficient patient-care is imperative to the health and well-being of society. Magnetic systems consisting of iron based nanosized components have gained prominence among researchers in a multitude of biomedical applications. This review focuses on recent trends in the areas of diagnostic imaging and drug delivery that have benefited from iron-incorporated nanosystems, especially in cancer treatment, diagnosis and wound care applications. Discussion on imaging will emphasise on developments in MRI technology and hyperthermia based diagnosis, while advanced material synthesis and targeted, triggered transport will be the focus for drug delivery. Insights onto the challenges in transforming these technologies into day-to-day applications will also be explored with perceptions onto potential for patient-centred healthcare.
Collapse
|
64
|
Malczyk P, Mandel M, Zienert T, Weigelt C, Krüger L, Hubalkova J, Schmidt G, Aneziris CG. Electrochemical Studies of Stainless Steel and Stainless Steel-TiO 2 Composite in Reference to Molten Aluminum Alloy Using a Solid-State BaCO 3 Electrolyte. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6723. [PMID: 36234065 PMCID: PMC9572515 DOI: 10.3390/ma15196723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The influence of TiO2 addition on the high-temperature electrochemical characteristics of stainless-steel-based materials was investigated by means of differential potential measurement, electrochemical polarization and impedance spectroscopy. A new three-electrode approach was utilized which incorporated a liquid aluminum alloy AlSi7Mg0.3 as the reference electrode, barium carbonate BaCO3 as the solid-state electrolyte, and stainless steel or a stainless steel-TiO2 composite as the working electrode. The potential differences between the steel-based working electrodes and the liquid-aluminum-alloy reference electrode were measured for 85 h throughout the whole experiment, including the heating and cooling period. The experiments were performed at 850 °C. The determination of the high-temperature open circuit potential (ECorr) in reference to the liquid aluminum alloy was carried out via potentiodynamic polarization. The polarization-related changes in the impedance characteristics were evaluated by the correlation of impedance responses before and after the polarization. The addition of 40 vol% TiO2 resulted in a reduction in the potential of the steel-TiO2 composite and led to the formation of a more uniform electrode-electrolyte interface. The reaction products on the surface of the working electrodes were investigated by means of SEM/EDS and XRD. They consisted of mixed oxides within the Fe-O, Ba-Fe-O and Ba-Cr-O systems.
Collapse
Affiliation(s)
- Piotr Malczyk
- Institute of Ceramics, Refractories and Composite Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Marcel Mandel
- Institute of Materials Engineering, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Tilo Zienert
- Institute of Ceramics, Refractories and Composite Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Christian Weigelt
- Institute of Ceramics, Refractories and Composite Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Lutz Krüger
- Institute of Materials Engineering, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Jana Hubalkova
- Institute of Ceramics, Refractories and Composite Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Gert Schmidt
- Institute of Ceramics, Refractories and Composite Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Christos G. Aneziris
- Institute of Ceramics, Refractories and Composite Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| |
Collapse
|
65
|
Wu L, Wang C, Li Y. Iron oxide nanoparticle targeting mechanism and its application in tumor magnetic resonance imaging and therapy. Nanomedicine (Lond) 2022; 17:1567-1583. [PMID: 36458585 DOI: 10.2217/nnm-2022-0246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Iron oxide nanoparticles (IONPs) can be applied to targeted drug delivery, targeted diagnosis and treatment of tumors due to their easy preparation, good biocompatibility, low biotoxicity, high imaging quality, high magnetothermal sensitivity and stable targeting after certain surface modifications. However, the complexity of the mechanism of action and their properties has led to there being few clinical applications of IONPs. This review first describes the targeting mechanisms of IONPs and their toxicity issues, then discusses the applications of IONP targeting studies in tumor MRI. Finally, the applications of IONP targeting in tumor therapy are listed. The authors show the advantages of targeting IONPs and hope that the review will increase the possibility of converting IONPs from biomedical applications to clinical applications.
Collapse
Affiliation(s)
- Li Wu
- College of Medical Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.,Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 519000, China
| | - Chunting Wang
- College of Medical Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yu Li
- College of Medical Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| |
Collapse
|
66
|
Shahriari M, Liu S, Ebrahimi Z, Cao L. A strategy for the treatment of lung carcinoma by in situ immobilization of Ag nanoparticles on the surface of Fe3O4 nanoparticles that modified by lignin. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
67
|
Wang X, Qin J, Zhang Y, Ma J. Stimuli-responsive self-regulating magnetic-thermal materials for selective magnetic hyperthermia therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
68
|
Yang X, Xiao J, Jiang L, Ran L, Fan Y, Zhang M, Xu Y, Yao C, An B, Yang Y, Yang C, Tian G, Zhang G, Zhang Y. A Multifunctional Vanadium-Iron-Oxide Nanoparticle Eradicates Hepatocellular Carcinoma via Targeting Tumor and Endothelial Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28514-28526. [PMID: 35698257 DOI: 10.1021/acsami.2c03474] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticles are widely used in biological research and cancer therapy. In hepatocellular carcinoma, several nanoplatforms have been synthesized and studied to improve the drug efficacy; however, these nanoplatforms are still insufficient to eradicate tumors. Herein, we have synthesized a novel vanadium (V)-iron-oxide (ION) nanoparticle (VIO) that combines chemodynamic, photothermal, and diagnostic capacities to enhance the tumor suppression effect in one agent with multiple functions. In the in vitro models, hepatocellular carcinoma cells are significantly inhibited by VIO-based nanoagents. The mechanistic study validates that VIO increases reactive oxygen species (ROS), which led to apoptosis and ferroptosis resulting in cell death. To our surprise, VIO targets not only tumor cells but also endothelial cells. In addition to inducing cell death, VIO also blocks tube formation and cell migration in human umbilical vein endothelial cell (HUVEC) and C166 models, indicating an antiangiogenic potential. In mouse tumor models, VIO retards tumor growth and induces apoptosis in tumor tissues. Furthermore, a significant blood vessel regression is seen in VIO-treated groups accompanied with larger necrotic areas. More interestingly, the activation of photothermal therapy completely eradicates tumor tissues. Taken together, this VIO nanoplatform could be a powerful anticancer candidate for nanodrug development.
Collapse
Affiliation(s)
- Xiaoming Yang
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Jianmin Xiao
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Lingyu Jiang
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Lang Ran
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Yangyang Fan
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Minghui Zhang
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Yuxue Xu
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Cuifang Yao
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Baijiao An
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Yang Yang
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Chunhua Yang
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Geng Tian
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Guilong Zhang
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Yin Zhang
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| |
Collapse
|
69
|
Kumar I, Nayak R, Chaudhary LB, Pandey VN, Mishra SK, Singh NK, Srivastava A, Prasad S, Naik RM. Fabrication of α-Fe 2O 3 Nanostructures: Synthesis, Characterization, and Their Promising Application in the Treatment of Carcinoma A549 Lung Cancer Cells. ACS OMEGA 2022; 7:21882-21890. [PMID: 35785292 PMCID: PMC9245107 DOI: 10.1021/acsomega.2c02083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
In the present work, iron nanoparticles were synthesized in the α-Fe2O3 phase with the reduction of potassium hexachloroferrate(III) by using l-ascorbic acid as a reducing agent in the presence of an amphiphilic non-ionic polyethylene glycol surfactant in an aqueous solution. The synthesized α-Fe2O3 NPs were characterized by powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, atomic force microscopy, dynamic light scattering, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and ultraviolet-visible spectrophotometry. The powder X-ray diffraction analysis result confirmed the formation of α-Fe2O3 NPs, and the average crystallite size was found to be 45 nm. The other morphological studies suggested that α-Fe2O3 NPs were predominantly spherical in shape with a diameter ranges from 40 to 60 nm. The dynamic light scattering analysis revealed the zeta potential of α-Fe2O3 NPs as -28 ± 18 mV at maximum stability. The ultraviolet-visible spectrophotometry analysis shows an absorption peak at 394 nm, which is attributed to their surface plasmon vibration. The cytotoxicity test of synthesized α-Fe2O3 NPs was investigated against human carcinoma A549 lung cancer cells, and the biological adaptability exhibited by α-Fe2O3 NPs has opened a pathway to biomedical applications in the drug delivery system. Our investigation confirmed that l-ascorbic acid-coated α-Fe2O3 NPs with calculated IC50 ≤ 30 μg/mL are the best suited as an anticancer agent, showing the promising application in the treatment of carcinoma A549 lung cancer cells.
Collapse
Affiliation(s)
- Indresh Kumar
- Department
of Chemistry, University of Lucknow, Lucknow 226007, U.P., India
| | - Rashmi Nayak
- Plant
Diversity Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Lucknow 226001, U.P., India
| | - Lal Babu Chaudhary
- Plant
Diversity Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Lucknow 226001, U.P., India
| | - Vashist Narayan Pandey
- Experimental
Botany and Nutraceutical Laboratory, Department of Botany, DDU Gorakhpur University, Gorakhpur 273009, U.P., India
| | - Sheo K. Mishra
- Department
of Physics, Indira Gandhi National Tribal
University, Amarkantak 484887, M.P., India
| | | | | | - Surendra Prasad
- School of
Biological and Chemical Sciences, Faculty of Science, Technology and
Environment, University of the South Pacific, Suva, Fiji
| | - Radhey Mohan Naik
- Department
of Chemistry, University of Lucknow, Lucknow 226007, U.P., India
| |
Collapse
|
70
|
Fernández-Acosta R, Iriarte-Mesa C, Alvarez-Alminaque D, Hassannia B, Wiernicki B, Díaz-García AM, Vandenabeele P, Vanden Berghe T, Pardo Andreu GL. Novel Iron Oxide Nanoparticles Induce Ferroptosis in a Panel of Cancer Cell Lines. Molecules 2022; 27:molecules27133970. [PMID: 35807217 PMCID: PMC9268471 DOI: 10.3390/molecules27133970] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 12/19/2022] Open
Abstract
The use of nanomaterials rationally engineered to treat cancer is a burgeoning field that has reported great medical achievements. Iron-based polymeric nano-formulations with precisely tuned physicochemical properties are an expanding and versatile therapeutic strategy for tumor treatment. Recently, a peculiar type of regulated necrosis named ferroptosis has gained increased attention as a target for cancer therapy. Here, we show for the first time that novel iron oxide nanoparticles coated with gallic acid and polyacrylic acid (IONP–GA/PAA) possess intrinsic cytotoxic activity on various cancer cell lines. Indeed, IONP–GA/PAA treatment efficiently induces ferroptosis in glioblastoma, neuroblastoma, and fibrosarcoma cells. IONP–GA/PAA-induced ferroptosis was blocked by the canonical ferroptosis inhibitors, including deferoxamine and ciclopirox olamine (iron chelators), and ferrostatin-1, the lipophilic radical trap. These ferroptosis inhibitors also prevented the lipid hydroperoxide generation promoted by the nanoparticles. Altogether, we report on novel ferroptosis-inducing iron encapsulated nanoparticles with potent anti-cancer properties, which has promising potential for further in vivo validation.
Collapse
Affiliation(s)
- Roberto Fernández-Acosta
- Department of Pharmacy, Institute of Pharmaceutical and Food Sciences, University of Havana, 222 Street # 2317, La Coronela, La Lisa, Havana 13600, Cuba;
| | - Claudia Iriarte-Mesa
- Laboratory of Bioinorganic (LBI), Department of Inorganic and General Chemistry, Faculty of Chemistry, University of Havana, Zapata y G, Vedado, Plaza de la Revolución, Havana 10400, Cuba; (C.I.-M.); (A.M.D.-G.)
- Institute of Inorganic Chemistry—Functional Materials, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Daniel Alvarez-Alminaque
- Center for Research and Biological Evaluations, Institute of Pharmaceutical and Food Sciences, University of Havana, 222 Street # 2317, La Coronela, La Lisa, Havana 13600, Cuba;
| | - Behrouz Hassannia
- VIB Center for Inflammation Research (IRC), 9052 Ghent, Belgium; (B.H.); (B.W.); (P.V.); (T.V.B.)
- Department of Biomedical Molecular Biology (DBMB), Ghent University, 9052 Ghent, Belgium
| | - Bartosz Wiernicki
- VIB Center for Inflammation Research (IRC), 9052 Ghent, Belgium; (B.H.); (B.W.); (P.V.); (T.V.B.)
- Department of Biomedical Molecular Biology (DBMB), Ghent University, 9052 Ghent, Belgium
| | - Alicia M. Díaz-García
- Laboratory of Bioinorganic (LBI), Department of Inorganic and General Chemistry, Faculty of Chemistry, University of Havana, Zapata y G, Vedado, Plaza de la Revolución, Havana 10400, Cuba; (C.I.-M.); (A.M.D.-G.)
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), 9052 Ghent, Belgium; (B.H.); (B.W.); (P.V.); (T.V.B.)
- Department of Biomedical Molecular Biology (DBMB), Ghent University, 9052 Ghent, Belgium
- Methusalem Program, Ghent University, 9052 Ghent, Belgium
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), 9052 Ghent, Belgium; (B.H.); (B.W.); (P.V.); (T.V.B.)
- Department of Biomedical Molecular Biology (DBMB), Ghent University, 9052 Ghent, Belgium
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
- Ferroptosis and Inflammation Research (FAIR), VIB Research Center, Ghent University, 9052 Ghent, Belgium
- Ferroptosis and Inflammation Research (FAIR), University of Antwerp, 2000 Antwerp, Belgium
| | - Gilberto L. Pardo Andreu
- Center for Research and Biological Evaluations, Institute of Pharmaceutical and Food Sciences, University of Havana, 222 Street # 2317, La Coronela, La Lisa, Havana 13600, Cuba;
- Correspondence:
| |
Collapse
|
71
|
Ghaznavi H, Hajinezhad MR, Shirvaliloo M, Shahraki S, Shahraki K, Saravani R, Shirvalilou S, Shahraki O, Nazarlou Z, Sheervalilou R, Sargazi S. Effects of folate-conjugated Fe 2O 3@Au core-shell nanoparticles on oxidative stress markers, DNA damage, and histopathological characteristics: evidence from in vitro and in vivo studies. Med Oncol 2022; 39:122. [PMID: 35716197 DOI: 10.1007/s12032-022-01713-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
Abstract
The aim of this work was to assess the cytotoxicity, genotoxicity, and histopathological effects of Fe2O3@Au-FA NPs using in vitro and in vivo models. Cytotoxicity and cellular uptake of nanoparticles (NPs) by HUVECs were examined via 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and inductively coupled plasma-mass-spectrometry (ICP-MS). This safe dose was then used for cytotoxicity assays, including total protein, total antioxidant capacity, lipid peroxidation, cell membrane integrity, reactive oxygen species, enzyme activity, and DNA damage. In the animal model, 32 Wistar rats were randomly categorized into 4 groups and received intraperitoneal injections of NPs. Blood samples for biochemical properties and histopathological changes were investigated. MTT results indicated 20 μg/ml as the safe dose for NPs. According to ICP-MS, treated cells showed significantly higher levels of the intracellular content of Fe (p < 0.001) and Au (p < 0.01) compared with the control group. In vitro tests did not show any significant cytotoxicity or genotoxicity at the safe dose of NPs. We found no significant elevation in intracellular γ-H2AX levels after treatment of HUVEC cells with Fe2O3@Au core-shell NPs (P > 0.05). As for the in vivo analysis, we observed no marked difference in serum biochemical parameters of rats treated with 50 mg/kg and 100 mg/kg doses of our NPs. Histopathological assessments indicated that liver, kidney, and testis tissues were not significantly affected at 50 mg/kg (liver), 50 mg/kg, and 100 mg/kg (kidney and testis) on NPs administration. These findings imply that the nanotoxicity of Fe2O3@Au-FA NPs in HUVECs and animals depends largely on the administrated dose. Our study suggests that Fe2O3@Au-FA NPs at a safe dose could be considered as new candidates in nanobiomedicine.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Postal Code: 9816743463, Zahedan, Iran
| | - Mohammad Reza Hajinezhad
- Basic Veterinary Science Department, Veterinary medicine Faculty, University of Zabol, Postal Code: 9861335856, Zabol, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Postal Code: 5166614766, Tabriz, Iran
| | - Sheida Shahraki
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Postal Code: 9816743463, Zahedan, Iran
| | - Kourosh Shahraki
- Noor Ophthalmology Research Center, Noor Eye Hospital, Tehran, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Postal Code: 9816743463, Zahedan, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Postal Code: 1449614535, Tehran, Iran
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Postal Code: 9816743463, Zahedan, Iran
| | - Ziba Nazarlou
- Material Engineering Department, College of Science Koç University, Istanbul, 34450, 1449614535, Turkey
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Postal Code: 9816743463, Zahedan, Iran. .,Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Postal Code: 9816743463, Zahedan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Postal Code: 9816743463, Zahedan, Iran.
| |
Collapse
|
72
|
Diaz-Diestra DM, Palacios-Hernandez T, Liu Y, Smith DE, Nguyen AK, Todorov T, Gray PJ, Zheng J, Skoog SA, Goering PL. Impact of surface chemistry of ultrasmall superparamagnetic iron oxide nanoparticles on protein corona formation and endothelial cell uptake, toxicity, and barrier function. Toxicol Sci 2022; 188:261-275. [PMID: 35708658 DOI: 10.1093/toxsci/kfac058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ultrasmall superparamagnetic iron oxide nanoparticles (USPION) have been investigated for biomedical applications, including novel contrast agents, magnetic tracers for tumor imaging, targeted drug delivery vehicles, and magneto-mechanical actuators for hyperthermia and thrombolysis. Despite significant progress, recent clinical reports have raised concerns regarding USPION safety related to endothelial cell dysfunction; however, there is limited information on factors contributing to these clinical responses. The influence of USPION surface chemistry on nanoparticle interactions with proteins may impact endothelial cell function leading to adverse responses. Therefore, the goal of this study was to assess the effects of carboxyl-functionalized USPION (CU) or amine-functionalized USPION (AU) (∼30 nm diameter) on biological responses in human coronary artery endothelial cells. Increased protein adsorption was observed for AU compared to CU after exposure to serum proteins. Exposure to CU, but not AU, resulted in a concentration-dependent decrease in cell viability and perinuclear accumulation inside cytoplasmic vesicles. Internalization of CU was correlated with endothelial cell functional changes under non-cytotoxic conditions, as evidenced by a marked decreased expression of endothelial-specific adhesion proteins (e.g., VE-cadherin and PECAM-1) and increased endothelial permeability. Evaluation of downstream signaling indicated endothelial permeability is associated with actin cytoskeleton remodeling, possibly elicited by intracellular events involving reactive oxygen species, calcium ions, and the nanoparticle cellular uptake pathway. This study demonstrated that USPION surface chemistry significantly impacts protein adsorption and endothelial cell uptake, viability, and barrier function. This information will advance the current toxicological profile of USPION and improve development, safety assessment, and clinical outcomes of USPION-enabled medical products.
Collapse
Affiliation(s)
- Daysi M Diaz-Diestra
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Teresa Palacios-Hernandez
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Yizhong Liu
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Diane E Smith
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Alexander K Nguyen
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Todor Todorov
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland
| | - Patrick J Gray
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland
| | - Jiwen Zheng
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Shelby A Skoog
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Peter L Goering
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| |
Collapse
|
73
|
A Dual-Mode Imaging Nanoparticle Probe Targeting PD-L1 for Triple-Negative Breast Cancer. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:2431026. [PMID: 35694705 PMCID: PMC9173980 DOI: 10.1155/2022/2431026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/18/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022]
Abstract
Chemotherapy has remained the mainstay of treatment of triple-negative breast cancer; however, it is significantly limited by the associated side effects. PD-1/PD-L1 immune checkpoint inhibition therapy (ICI) has been a breakthrough for this patient population in recent years. PD-L1 expression is crucial in immunotherapy since it is a major predictor of PD-1/PD-L1 antibody response, emphasizing the significance of monitoring PD-L1 expression. Nonetheless, it is hard to assess the expression of PD-L1 before surgery, which has highlighted the urgency for a precise and noninvasive approach. Herein, we prepared a dual-mode imaging nanoparticle probe to detect PD-L1. The particle size, zeta potential, biocompatibility, and imaging ability of NPs were characterized. The synthesized NPs showed slight cytotoxicity and good T2 relaxivity. The targeted NPs accumulated more in 4T1 cells than nontargeted NPs in vitro. The in vivo experiment further demonstrated the distribution of targeted NPs in tumor tissues, with changes in NIRF and MR signals observed. Our study indicated that SPIO-aPD-L1-Cy5.5 NPs can be used to monitor PD-L1 expression in breast cancer as NIRF/MR contrast agents.
Collapse
|
74
|
Mousa AH, Mohammad SA. Potential role of chitosan, PLGA and iron oxide nanoparticles in Parkinson’s disease therapy. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Parkinson's disease (PD) is a debilitating disease that alters an individual's functionality. Parkinsonism is a complex symptom consisting of numerous motor and non-motor features, and although several disorders are responsible, PD remains the most important. Several theories have been proposed for the characteristic pathological changes, the most important of which is the loss of dopaminergic neurons associated with a reduced ability to perform voluntary movements. Many drugs have been developed over the years to treat the condition and prevent its progression, but drug delivery is still a challenge due to the blood–brain barrier, which prevents the passage of drugs into the central nervous system. However, with the advances in nanotechnology in the medical field, there is growing hope of overcoming this challenge.
Summary
Our review highlights the potential role of three commonly studied nanoparticles in laboratory-induced animal models of PD: chitosan, PLGA, and iron oxide nanoparticles as potential PD therapy in humans.
Collapse
|
75
|
Zhao Z, Li M, Zeng J, Huo L, Liu K, Wei R, Ni K, Gao J. Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioact Mater 2022; 12:214-245. [PMID: 35310380 PMCID: PMC8897217 DOI: 10.1016/j.bioactmat.2021.10.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 02/09/2023] Open
Abstract
Iron oxide nanoparticle (IONP) with unique magnetic property and high biocompatibility have been widely used as magnetic resonance imaging (MRI) contrast agent (CA) for long time. However, a review which comprehensively summarizes the recent development of IONP as traditional T2 CA and its new application for different modality of MRI, such as T1 imaging, simultaneous T2/T1 or MRI/other imaging modality, and as environment responsive CA is rare. This review starts with an investigation of direction on the development of high-performance MRI CA in both T2 and T1 modal based on quantum mechanical outer sphere and Solomon–Bloembergen–Morgan (SBM) theory. Recent rational attempts to increase the MRI contrast of IONP by adjusting the key parameters, including magnetization, size, effective radius, inhomogeneity of surrounding generated magnetic field, crystal phase, coordination number of water, electronic relaxation time, and surface modification are summarized. Besides the strategies to improve r2 or r1 values, strategies to increase the in vivo contrast efficiency of IONP have been reviewed from three different aspects, those are introducing second imaging modality to increase the imaging accuracy, endowing IONP with environment response capacity to elevate the signal difference between lesion and normal tissue, and optimizing the interface structure to improve the accumulation amount of IONP in lesion. This detailed review provides a deep understanding of recent researches on the development of high-performance IONP based MRI CAs. It is hoped to trigger deep thinking for design of next generation MRI CAs for early and accurate diagnosis. T2 contrast capacity of iron oxide nanoparticles (IONPs) could be improved based on quantum mechanical outer sphere theory. IONPs could be expand to be used as effective T1 CAs by improving q value, extending τs, and optimizing interface structure. Environment responsive MRI CAs have been developed to improve the diagnosis accuracy. Introducing other imaging contrast moiety into IONPs could increase the contrast efficiency. Optimizing in vivo behavior of IONPs have been proved to enlarge the signal difference between normal tissue and lesion.
Collapse
|
76
|
Optimizing the Antibacterial Activity of Iron Oxide Nanoparticles Using Central Composite Design. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
77
|
Xie W, Ye J, Guo Z, Lu J, Gao X, Wei Y, Zhao L. Ultrafast Fabrication of Iron/Manganese Co-Doped Bismuth Trimetallic Nanoparticles: A Thermally Aided Chemodynamic/Radio-Nanoplatform for Low-Dose Radioresistance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21931-21944. [PMID: 35511491 DOI: 10.1021/acsami.2c02484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Low-dose radioresistance continues to be one of the major limitations for clinical curative treatment of cancer. Luckily, nanotechnology mediated by multifunctional nanomaterials provides potential opportunity to relieve the radioresistance via increasing the radiosensitivity of cancer cells. Herein, an ultrafast fabrication strategy is reported to prepare iron/manganese co-doped bismuth trimetallic nanoparticles (pFMBi NPs) as a multifunctional radiosensitizer for combined therapy. The bismuth matrix provides the intrinsic radiosensitization effect under the low and safe radiation dose via Auger electrons, photoelectrons, and Rayleigh scattering. Meanwhile, co-doping of iron and manganese ions endows pFMBi NPs with both the Fenton reaction property for reactive oxygen species (ROS) generation and photothermal conversion performance for heat production. Additional ROS generation enhances the radiosensitization effect by collaborating with Rayleigh scattering-mediated water radiolysis, and endogenous heat production under near-infrared 808 nm laser irradiation makes DNA more sensitive to radiation and ROS damage. Both in vitro and in vivo evaluations demonstrate the effective antitumor and radiosensitization effects via thermally aided chemodynamic/radiotreatment with a low radiation dose (6 Gy). Therefore, this work provides a potential strategy for overcoming the low-dose radioresistance in cancer therapy.
Collapse
Affiliation(s)
- Wensheng Xie
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Jielin Ye
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhenhu Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Powder Metallurgy, Powder Metallurgy Research Institute, Central South University, Changsha 410083, P. R. China
| | - Jingsong Lu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaohan Gao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
78
|
Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK. Smart nanomaterials for cancer diagnosis and treatment. NANO CONVERGENCE 2022; 9:21. [PMID: 35569081 PMCID: PMC9108129 DOI: 10.1186/s40580-022-00313-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 05/14/2023]
Abstract
Innovations in nanomedicine has guided the improved outcomes for cancer diagnosis and therapy. However, frequent use of nanomaterials remains challenging due to specific limitations like non-targeted distribution causing low signal-to-noise ratio for diagnostics, complex fabrication, reduced-biocompatibility, decreased photostability, and systemic toxicity of nanomaterials within the body. Thus, better nanomaterial-systems with controlled physicochemical and biological properties, form the need of the hour. In this context, smart nanomaterials serve as promising solution, as they can be activated under specific exogenous or endogenous stimuli such as pH, temperature, enzymes, or a particular biological molecule. The properties of smart nanomaterials make them ideal candidates for various applications like biosensors, controlled drug release, and treatment of various diseases. Recently, smart nanomaterial-based cancer theranostic approaches have been developed, and they are displaying better selectivity and sensitivity with reduced side-effects in comparison to conventional methods. In cancer therapy, the smart nanomaterials-system only activates in response to tumor microenvironment (TME) and remains in deactivated state in normal cells, which further reduces the side-effects and systemic toxicities. Thus, the present review aims to describe the stimulus-based classification of smart nanomaterials, tumor microenvironment-responsive behaviour, and their up-to-date applications in cancer theranostics. Besides, present review addresses the development of various smart nanomaterials and their advantages for diagnosing and treating cancer. Here, we also discuss about the drug targeting and sustained drug release from nanocarriers, and different types of nanomaterials which have been engineered for this intent. Additionally, the present challenges and prospects of nanomaterials in effective cancer diagnosis and therapeutics have been discussed.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Ayush Sharma
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Joel Saji
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Akhela Umapathi
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Hemant Kumar Daima
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India.
| |
Collapse
|
79
|
Idris AH, Che Abdullah CA, Yusof NA, Abdul Rahman MB. One-pot synthesis of iron oxide nanoparticles: Effect of stirring rate and reaction time on its physical characteristics. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2072339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Auni Hamimi Idris
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
| | - Che Azurahanim Che Abdullah
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
80
|
Li A, Peng X, Jiang M, Wu T, Chen K, Yang Z, Chen S, Zhou X, Zheng X, Jiang ZX. Synthesis of trifluoromethylated aza-BODIPYs as fluorescence- 19F MRI dual imaging and photodynamic agents. Org Biomol Chem 2022; 20:3335-3341. [PMID: 35352080 DOI: 10.1039/d2ob00297c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual-imaging agents with highly sensitive fluorescence (FL) imaging and highly selective fluorine-19 magnetic resonance imaging (19F MRI) are valuable for biomedical research. At the same time, photosensitizers with a high reactive oxygen species (ROS) generating capability are crucial for photodynamic therapy (PDT) of cancer. Herein, a series of tetra-trifluoromethylated aza-boron dipyrromethenes (aza-BODIPYs) were conveniently synthesized from readily available building blocks and their physicochemical properties, including ultraviolet-visible (UV-Vis) absorption, FL emission, photothermal efficacy, ROS generating efficacy, and 19F MRI sensitivity, were systematically investigated. An aza-BODIPY with 12 symmetrical fluorines was identified as a potent FL-19F MRI dual-imaging traceable photodynamic agent. It was found that the selective introduction of trifluoromethyl (CF3) groups into aza-BODIPYs may considerably improve their UV absorption, FL emission, photothermal efficacy, and ROS generating properties, which lays the foundation for the rational design of trifluoromethylated aza-BODIPYs in biomedical applications.
Collapse
Affiliation(s)
- Anfeng Li
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China. .,Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Xingxing Peng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China. .,Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Mou Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tingjuan Wu
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China. .,Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Kexin Chen
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China. .,Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xing Zheng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China. .,State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
81
|
Cheng G, Liu Y, Ma R, Cheng G, Guan Y, Chen X, Wu Z, Chen T. Anti-Parkinsonian Therapy: Strategies for Crossing the Blood-Brain Barrier and Nano-Biological Effects of Nanomaterials. NANO-MICRO LETTERS 2022; 14:105. [PMID: 35426525 PMCID: PMC9012800 DOI: 10.1007/s40820-022-00847-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD), a neurodegenerative disease that shows a high incidence in older individuals, is becoming increasingly prevalent. Unfortunately, there is no clinical cure for PD, and novel anti-PD drugs are therefore urgently required. However, the selective permeability of the blood-brain barrier (BBB) poses a huge challenge in the development of such drugs. Fortunately, through strategies based on the physiological characteristics of the BBB and other modifications, including enhancement of BBB permeability, nanotechnology can offer a solution to this problem and facilitate drug delivery across the BBB. Although nanomaterials are often used as carriers for PD treatment, their biological activity is ignored. Several studies in recent years have shown that nanomaterials can improve PD symptoms via their own nano-bio effects. In this review, we first summarize the physiological features of the BBB and then discuss the design of appropriate brain-targeted delivery nanoplatforms for PD treatment. Subsequently, we highlight the emerging strategies for crossing the BBB and the development of novel nanomaterials with anti-PD nano-biological effects. Finally, we discuss the current challenges in nanomaterial-based PD treatment and the future trends in this field. Our review emphasizes the clinical value of nanotechnology in PD treatment based on recent patents and could guide researchers working in this area in the future.
Collapse
Affiliation(s)
- Guowang Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Yujing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Rui Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Guopan Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Yucheng Guan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, People's Republic of China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
82
|
Harvell-Smith S, Tung LD, Thanh NTK. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. NANOSCALE 2022; 14:3658-3697. [PMID: 35080544 DOI: 10.1039/d1nr05670k] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body. These characteristics enable various biomedical applications of clinical interest. In the opening sections of this review, the principles of image generation are introduced, along with a detailed comparison of the fundamental properties of this technique with other common imaging modalities. The main feature is a presentation on the up-to-date literature for the development of SPIONs tailored for improved imaging performance, and developments in the current and promising biomedical applications of this emerging technique, with a specific focus on theranostics, cell tracking and perfusion imaging. Finally, we will discuss recent progress in the clinical translation of MPI. As signal detection in MPI is almost entirely dependent on the properties of the SPION employed, this work emphasises the importance of tailoring the synthetic process to produce SPIONs demonstrating specific properties and how this impacts imaging in particular applications and MPI's overall performance.
Collapse
Affiliation(s)
- Stanley Harvell-Smith
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
83
|
Green Supported Cu nanoparticles on modified Fe3O4 nanoparticles using Thymbra spicata flower extract: Investigation of its antioxidant and the anti-human lung cancer properties. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
84
|
Cerqueira M, Belmonte-Reche E, Gallo J, Baltazar F, Bañobre-López M. Magnetic Solid Nanoparticles and Their Counterparts: Recent Advances towards Cancer Theranostics. Pharmaceutics 2022; 14:pharmaceutics14030506. [PMID: 35335882 PMCID: PMC8950239 DOI: 10.3390/pharmaceutics14030506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is currently a leading cause of death worldwide. The World Health Organization estimates an increase of 60% in the global cancer incidence in the next two decades. The inefficiency of the currently available therapies has prompted an urgent effort to develop new strategies that enable early diagnosis and improve response to treatment. Nanomedicine formulations can improve the pharmacokinetics and pharmacodynamics of conventional therapies and result in optimized cancer treatments. In particular, theranostic formulations aim at addressing the high heterogeneity of tumors and metastases by integrating imaging properties that enable a non-invasive and quantitative assessment of tumor targeting efficiency, drug delivery, and eventually the monitoring of the response to treatment. However, in order to exploit their full potential, the promising results observed in preclinical stages need to achieve clinical translation. Despite the significant number of available functionalization strategies, targeting efficiency is currently one of the major limitations of advanced nanomedicines in the oncology area, highlighting the need for more efficient nanoformulation designs that provide them with selectivity for precise cancer types and tumoral tissue. Under this current need, this review provides an overview of the strategies currently applied in the cancer theranostics field using magnetic nanoparticles (MNPs) and solid lipid nanoparticles (SLNs), where both nanocarriers have recently entered the clinical trials stage. The integration of these formulations into magnetic solid lipid nanoparticles—with different composition and phenotypic activity—constitutes a new generation of theranostic nanomedicines with great potential for the selective, controlled, and safe delivery of chemotherapy.
Collapse
Affiliation(s)
- Mónica Cerqueira
- Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Efres Belmonte-Reche
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Correspondence: (F.B.); (M.B.-L.)
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
- Correspondence: (F.B.); (M.B.-L.)
| |
Collapse
|
85
|
Polymeric Composite of Magnetite Iron Oxide Nanoparticles and Their Application in Biomedicine: A Review. Polymers (Basel) 2022; 14:polym14040752. [PMID: 35215665 PMCID: PMC8878751 DOI: 10.3390/polym14040752] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
A broad spectrum of nanomaterials has been investigated for multiple purposes in recent years. Some of these studied materials are magnetics nanoparticles (MNPs). Iron oxide nanoparticles (IONPs) and superparamagnetic iron oxide nanoparticles (SPIONs) are MNPs that have received extensive attention because of their physicochemical and magnetic properties and their ease of combination with organic or inorganic compounds. Furthermore, the arresting of these MNPs into a cross-linked matrix known as hydrogel has attracted significant interest in the biomedical field. Commonly, MNPs act as a reinforcing material for the polymer matrix. In the present review, several methods, such as co-precipitation, polyol, hydrothermal, microemulsion, and sol-gel methods, are reported to synthesize magnetite nanoparticles with controllable physical and chemical properties that suit the required application. Due to the potential of magnetite-based nanocomposites, specifically in hydrogels, processing methods, including physical blending, in situ precipitation, and grafting methods, are introduced. Moreover, the most common characterization techniques employed to study MNPs and magnetic gel are discussed.
Collapse
|
86
|
Honecker D, Bersweiler M, Erokhin S, Berkov D, Chesnel K, Venero DA, Qdemat A, Disch S, Jochum JK, Michels A, Bender P. Using small-angle scattering to guide functional magnetic nanoparticle design. NANOSCALE ADVANCES 2022; 4:1026-1059. [PMID: 36131777 PMCID: PMC9417585 DOI: 10.1039/d1na00482d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/15/2022] [Indexed: 05/14/2023]
Abstract
Magnetic nanoparticles offer unique potential for various technological, biomedical, or environmental applications thanks to the size-, shape- and material-dependent tunability of their magnetic properties. To optimize particles for a specific application, it is crucial to interrelate their performance with their structural and magnetic properties. This review presents the advantages of small-angle X-ray and neutron scattering techniques for achieving a detailed multiscale characterization of magnetic nanoparticles and their ensembles in a mesoscopic size range from 1 to a few hundred nanometers with nanometer resolution. Both X-rays and neutrons allow the ensemble-averaged determination of structural properties, such as particle morphology or particle arrangement in multilayers and 3D assemblies. Additionally, the magnetic scattering contributions enable retrieving the internal magnetization profile of the nanoparticles as well as the inter-particle moment correlations caused by interactions within dense assemblies. Most measurements are used to determine the time-averaged ensemble properties, in addition advanced small-angle scattering techniques exist that allow accessing particle and spin dynamics on various timescales. In this review, we focus on conventional small-angle X-ray and neutron scattering (SAXS and SANS), X-ray and neutron reflectometry, gracing-incidence SAXS and SANS, X-ray resonant magnetic scattering, and neutron spin-echo spectroscopy techniques. For each technique, we provide a general overview, present the latest scientific results, and discuss its strengths as well as sample requirements. Finally, we give our perspectives on how future small-angle scattering experiments, especially in combination with micromagnetic simulations, could help to optimize the performance of magnetic nanoparticles for specific applications.
Collapse
Affiliation(s)
- Dirk Honecker
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Mathias Bersweiler
- Department of Physics and Materials Science, University of Luxembourg 162A Avenue de La Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| | - Sergey Erokhin
- General Numerics Research Lab Moritz-von-Rohr-Straße 1A D-07745 Jena Germany
| | - Dmitry Berkov
- General Numerics Research Lab Moritz-von-Rohr-Straße 1A D-07745 Jena Germany
| | - Karine Chesnel
- Brigham Young University, Department of Physics and Astronomy Provo Utah 84602 USA
| | - Diego Alba Venero
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Asma Qdemat
- Universität zu Köln, Department für Chemie Luxemburger Straße 116 D-50939 Köln Germany
| | - Sabrina Disch
- Universität zu Köln, Department für Chemie Luxemburger Straße 116 D-50939 Köln Germany
| | - Johanna K Jochum
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstraße 1 85748 Garching Germany
| | - Andreas Michels
- Department of Physics and Materials Science, University of Luxembourg 162A Avenue de La Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| | - Philipp Bender
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstraße 1 85748 Garching Germany
| |
Collapse
|
87
|
Enhanced fluorescence/magnetic resonance dual imaging and gene therapy of liver cancer using cationized amylose nanoprobe. Mater Today Bio 2022; 13:100220. [PMID: 35243295 PMCID: PMC8861411 DOI: 10.1016/j.mtbio.2022.100220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/22/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022] Open
Abstract
Recently, various technologies for targeted gene release in cancer treatment have emerged. However, most of these strategies are facing the challenge of untraceable distribution and poor antitumour treatment effects. In this study, we constructed a gene delivery system that integrated a series of components to assemble multifunctional NPs, providing a promising theranostic nanoplatform for hepatocellular carcinoma (HCC) therapy. Cationized amylose (CA), superparamagnetic iron oxide (SPIO) nanoparticles (NPs), and tetraphenylethylene (TPE) were self-assembled to form nanospheres (CSP/TPE). The prepared NPs was modified with SP94 pepide through amidation reaction, and then survivin small interfering RNA (siRNA) were loaded into the NPs to form CSP/TPE@siRNA-SP94 NPs. Our results showed that the prepared NPs had good size distribution, high RNA condensation and transfection ability. CSP/TPE@siRNA-SP94 NPs exhibited excellent fluorescence and magnetic resonance (MR) imaging properties in vitro and in vivo. The prepared targeted NPs improved Huh-7 cellular uptake in vitro, and the biodistribution of CSP/TPE@siRNA-SP94 in vivo was observed through in/ex vivo fluorescence imaging system and MRI. As survivin siRNA effectively retained in tumour cells, CSP/TPE@siRNA-SP94 NPs considerably inhibited tumour growth in vivo. In addition, H&E staining results showed that all the prepared CSP-based NPs had good biocompatibilities, as few histological changes or tumour metastasis were observed in major organs of the mice in the treatment group. Therefore, we envisage that the prepared CSP/TPE@siRNA-SP94 NPs can represent a promising strategy for HCC diagnosis and treatment.
Collapse
|
88
|
A possible theranostic approach of chitosan-coated iron oxide nanoparticles against human colorectal carcinoma (HCT-116) cell line. Saudi J Biol Sci 2022; 29:154-160. [PMID: 35002403 PMCID: PMC8717146 DOI: 10.1016/j.sjbs.2021.08.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/12/2021] [Accepted: 08/22/2021] [Indexed: 12/19/2022] Open
Abstract
Iron oxides have become increasingly popular for their use as a diagnostic and therapeutic tool in oncology. This study aimed to improve pharmacological valuable of Fe3O4, which may be use to diagnosis colorectal cancers (CRC). Here, we have developed chitosan (CS) coated Fe3O4 through a cost-effective procedure. First, we determined the characterization of OA-C-Fe3O4 by FTIR, UV–Vis spectra, and TEM. Then, we evaluated the photodynamic therapeutic (PDT) activity of OA-C-Fe3O4 in human colorectal carcinoma cell lines (HCT 116). Current results revealed that the light-induced enhanced reactive oxygen species (ROS) activity of the nanoparticles (NPs) and caused cell death via the activity of caspase 9/3. The in vitro magnetic resonance imaging (MRI) experiments in (HCT 116) and human embryonic kidney cells (HEK 293) illustrated that nanohybrid is an effective MRI contrasting agents for the diagnosis of colorectal cancer.
Collapse
|
89
|
Fernández-Bertólez N, Costa C, Brandão F, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Toxicological Aspects of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:303-350. [DOI: 10.1007/978-3-030-88071-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
90
|
Liu Z, Wang K, Wang T, Wang Y, Ge Y. Copper nanoparticles supported on polyethylene glycol-modified magnetic Fe3O4 nanoparticles: Its anti-human gastric cancer investigation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
91
|
SI-ATRP Decoration of Magnetic Nanoparticles with PHEMA and Post-Polymerization Modification with Folic Acid for Tumor Cells' Specific Targeting. Int J Mol Sci 2021; 23:ijms23010155. [PMID: 35008582 PMCID: PMC8745432 DOI: 10.3390/ijms23010155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Targeted nanocarriers could reach new levels of drug delivery, bringing new tools for personalized medicine. It is known that cancer cells overexpress folate receptors on the cell surface compared to healthy cells, which could be used to create new nanocarriers with specific targeting moiety. In addition, magnetic nanoparticles can be guided under the influence of an external magnetic field in different areas of the body, allowing their precise localization. The main purpose of this paper was to decorate the surface of magnetic nanoparticles with poly(2-hydroxyethyl methacrylate) (PHEMA) by surface-initiated atomic transfer radical polymerization (SI-ATRP) followed by covalent bonding of folic acid to side groups of the polymer to create a high specificity magnetic nanocarrier with increased internalization capacity in tumor cells. The biocompatibility of the nanocarriers was demonstrated by testing them on the NHDF cell line and folate-dependent internalization capacity was tested on three tumor cell lines: MCF-7, HeLa and HepG2. It has also been shown that a higher concentration of folic acid covalently bound to the polymer leads to a higher internalization in tumor cells compared to healthy cells. Last but not least, magnetic resonance imaging was used to highlight the magnetic properties of the functionalized nanoparticles obtained.
Collapse
|
92
|
Farinha P, Coelho JMP, Reis CP, Gaspar MM. A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3432. [PMID: 34947781 PMCID: PMC8706278 DOI: 10.3390/nano11123432] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Magnetic nanoparticles (MNPs) have been studied for diagnostic purposes for decades. Their high surface-to-volume ratio, dispersibility, ability to interact with various molecules and superparamagnetic properties are at the core of what makes MNPs so promising. They have been applied in a multitude of areas in medicine, particularly Magnetic Resonance Imaging (MRI). Iron oxide nanoparticles (IONPs) are the most well-accepted based on their excellent superparamagnetic properties and low toxicity. Nevertheless, IONPs are facing many challenges that make their entry into the market difficult. To overcome these challenges, research has focused on developing MNPs with better safety profiles and enhanced magnetic properties. One particularly important strategy includes doping MNPs (particularly IONPs) with other metallic elements, such as cobalt (Co) and manganese (Mn), to reduce the iron (Fe) content released into the body resulting in the creation of multimodal nanoparticles with unique properties. Another approach includes the development of MNPs using other metals besides Fe, that possess great magnetic or other imaging properties. The future of this field seems to be the production of MNPs which can be used as multipurpose platforms that can combine different uses of MRI or different imaging techniques to design more effective and complete diagnostic tests.
Collapse
Affiliation(s)
- Pedro Farinha
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
93
|
Kulpa-Koterwa A, Ossowski T, Niedziałkowski P. Functionalized Fe 3O 4 Nanoparticles as Glassy Carbon Electrode Modifiers for Heavy Metal Ions Detection-A Mini Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7725. [PMID: 34947318 PMCID: PMC8709283 DOI: 10.3390/ma14247725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 01/15/2023]
Abstract
Over the past few decades, nanoparticles of iron oxide Fe3O4 (magnetite) gained significant attention in both basic studies and many practical applications. Their unique properties such as superparamagnetism, low toxicity, synthesis simplicity, high surface area to volume ratio, simple separation methodology by an external magnetic field, and renewability are the reasons for their successful utilisation in environmental remediation, biomedical, and agricultural applications. Moreover, the magnetite surface modification enables the successful binding of various analytes. In this work, we discuss the usage of core-shell nanoparticles and nanocomposites based on Fe3O4 for the modification of the GC electrode surface. Furthermore, this review focuses on the heavy metal ions electrochemical detection using Fe3O4-based nanoparticles-modified electrodes. Moreover, the most frequently used electrochemical methods, such as differential pulse anodic stripping voltammetry and measurement conditions, including deposition potential, deposition time, and electrolyte selection, are discussed.
Collapse
Affiliation(s)
- Amanda Kulpa-Koterwa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | | | - Paweł Niedziałkowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| |
Collapse
|
94
|
Swami S, Sahu SN, Shrivastava R. Nanomaterial catalyzed green synthesis of tetrazoles and its derivatives: a review on recent advancements. RSC Adv 2021; 11:39058-39086. [PMID: 35492456 PMCID: PMC9044536 DOI: 10.1039/d1ra05955f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022] Open
Abstract
Tetrazoles are indispensable nitrogen containing heterocyclic scaffolds that offer a broad spectrum of applications in various domains such as medicinal chemistry, high energy material science, biochemistry, pharmacology etc. Owing to their useful applications, a wide range of catalysts have been explored for green synthesis of tetrazole derivatives. In recent times, nanomaterials have been emerged as extremely efficient catalysts for different organic transformations because of their high surface area-to-volume ratio, easy surface modification, simple fabrications, easy recovery and reusability. In this article, we have presented an overview of utilization of various nano-catalysts, nanocomposites and other solid-supported nanomaterials as an efficient environmental benign catalytic system for green synthesis of tetrazoles and derivatives. This review will provide an exclusive emphasis on boehmite, magnetic, copper, carbon, MCM-41, and composite based nanomaterials that have been developed since the year 2010 for the synthesis of tetrazole derivatives. In addition, we have briefly discussed the fabrication, functionalization and characterization of some novel nanomaterials and their advantages in the synthesis of tetrazole and its derivatives along with the reaction mechanism that involves synthesis of tetrazole derivatives via nanomaterials catalysed reactions.
Collapse
Affiliation(s)
- Suman Swami
- Department of Chemistry, Manipal University Jaipur VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way Jaipur Rajasthan India-303007
| | - Satya Narayan Sahu
- School of Chemistry, Sambalpur University Jyoti Vihar, Burla Sambalpur Orissa India-768019
| | - Rahul Shrivastava
- Department of Chemistry, Manipal University Jaipur VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way Jaipur Rajasthan India-303007
| |
Collapse
|
95
|
Irrsack E, Schuller J, Petters C, Willmann W, Dringen R, Koch M. Effects of Local Administration of Iron Oxide Nanoparticles in the Prefrontal Cortex, Striatum, and Hippocampus of Rats. Neurotox Res 2021; 39:2056-2071. [PMID: 34705254 PMCID: PMC8639550 DOI: 10.1007/s12640-021-00432-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 10/26/2022]
Abstract
Iron oxide nanoparticles (IONPs) are used for diverse medical approaches, although the potential health risks, for example adverse effects on brain functions, are not fully clarified. Several in vitro studies demonstrated that the different types of brain cells are able to accumulate IONPs and reported a toxic potential for IONPs, at least for microglia. However, little information is available for the in vivo effects of direct application of IONPs into the brain over time. Therefore, we examined the cellular responses and the distribution of iron in the rat brain at different time points after local infusion of IONPs into selected brain areas. Dispersed IONPs or an equivalent amount of low molecular weight iron complex ferric ammonium citrate or vehicle were infused into the medial prefrontal cortex (mPFC), the caudate putamen (CPu), or the dorsal hippocampus (dHip). Rats were sacrificed 1 day, 1 week, or 4 weeks post-infusion and brain sections were histologically examined for treatment effects on astrocytes, microglia, and neurons. Glial scar formation was observed in the mPFC and CPu 1 week post-infusion independent of the substance and probably resulted from the infusion procedure. Compared to vehicle, IONPs did not cause any obvious additional adverse effects and no additional tissue damage, while the infusion of ferric ammonium citrate enhanced neurodegeneration in the mPFC. Results of iron staining indicate that IONPs were mainly accumulated in microglia. Our results demonstrate that local infusions of IONPs in selected brain areas do not cause any additional adverse effects or neurodegeneration compared to vehicle.
Collapse
Affiliation(s)
- Ellen Irrsack
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, 28334, Bremen, Germany.
| | - Julia Schuller
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| | - Charlotte Petters
- Centre for Biomolecular Interactions Bremen (CBIB), and Centre for Environmental Research and Sustainable Technology, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| | - Wiebke Willmann
- Centre for Biomolecular Interactions Bremen (CBIB), and Centre for Environmental Research and Sustainable Technology, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen (CBIB), and Centre for Environmental Research and Sustainable Technology, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| | - Michael Koch
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| |
Collapse
|
96
|
He M, Liang Q, Tang L, Liu Z, Shao B, He Q, Wu T, Luo S, Pan Y, Zhao C, Niu C, Hu Y. Advances of covalent organic frameworks based on magnetism: Classification, synthesis, properties, applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214219] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
97
|
Jeong M, Lee S, Song DY, Kang S, Shin TH, Choi JS. Hyperthermia Effect of Nanoclusters Governed by Interparticle Crystalline Structures. ACS OMEGA 2021; 6:31161-31167. [PMID: 34841158 PMCID: PMC8613861 DOI: 10.1021/acsomega.1c04632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 06/02/2023]
Abstract
Magnetic nanoparticles have an important role as heat generators in magnetic fluid hyperthermia, a type of next-generation cancer treatment. Despite various trials to improve the heat generation capability of magnetic nanoparticles, iron oxide nanoparticles are the only approved heat generators for clinical applications, which require a large injection dose due to their low hyperthermia efficiency. In this study, iron oxide nanoclusters (NCs) with a highly enhanced hyperthermia effect and adjustable size were synthesized through a facile and simple solvothermal method. Among the samples, the NCs with a size of 25 nm showed the highest hyperthermia efficiency. Differently sized NCs exhibit inconsistent interparticle crystalline alignments, which affect their magnetic properties (e.g., coercivity and saturation magnetization). As a result, the optimal NCs exhibited a significantly enhanced heat generation efficiency compared with that of isolated iron oxide nanoparticles (ca. 7 nm), and their hyperthermia effect on skin cancer cells was confirmed.
Collapse
Affiliation(s)
- Miseon Jeong
- Department
of Chemical and Biological Engineering, Hanbat National University, 34158 Daejeon, Republic of Korea
| | - Sanghoon Lee
- Department
of Chemical and Biological Engineering, Hanbat National University, 34158 Daejeon, Republic of Korea
| | - Dae Young Song
- Department
of Chemical and Biological Engineering, Hanbat National University, 34158 Daejeon, Republic of Korea
| | - Sunghwi Kang
- Center
for Nanomedicine, Institute for Basic Science
(IBS), 03722 Seoul, Republic of Korea
- Department
of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Tae-Hyun Shin
- Research
Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 03722 Seoul, Republic of Korea
| | - Jin-sil Choi
- Department
of Chemical and Biological Engineering, Hanbat National University, 34158 Daejeon, Republic of Korea
| |
Collapse
|
98
|
Ren S, Song L, Tian Y, Zhu L, Guo K, Zhang H, Wang Z. Emodin-Conjugated PEGylation of Fe 3O 4 Nanoparticles for FI/MRI Dual-Modal Imaging and Therapy in Pancreatic Cancer. Int J Nanomedicine 2021; 16:7463-7478. [PMID: 34785894 PMCID: PMC8579871 DOI: 10.2147/ijn.s335588] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) remains a difficult tumor to diagnose and treat. It is often diagnosed as advanced by reason of the anatomical structure of the deep retroperitoneal layer of the pancreas, lack of typical symptoms and effective screening methods to detect this malignancy, resulting in a low survival rate. Emodin (EMO) is an economical natural product with effective treatment and few side effects of cancer treatment. Magnetic nanoparticles (MNPs) can achieve multiplexed imaging and targeted therapy by loading a wide range of functional materials such as fluorescent dyes and therapeutic agents. PURPOSE The purpose of this study was to design and evaluate a multifunctional theranostic nanoplatform for PC diagnosis and treatment. METHODS In this study, we successfully developed EMO-loaded, Cy7-functionalized, PEG-coated Fe3O4 (Fe3O4-PEG-Cy7-EMO). Characteristics including morphology, hydrodynamic size, zeta potentials, stability, and magnetic properties of Fe3O4-PEG-Cy7-EMO were evaluated. Fluorescence imaging (FI)/magnetic resonance imaging (MRI) and therapeutic treatment were examined in vitro and in vivo. RESULTS Fe3O4-PEG-Cy7-EMO nanoparticles had a core size of 9.9 ± 1.2 nm, which showed long-time stability and FI/MRI properties. Bio-transmission electron microscopy (bio-TEM) results showed that Fe3O4-PEG-Cy7-EMO nanoparticles were endocytosed into BxPC-3 cells, while few were observed in hTERT-HPNE cells. Prussian blue staining also confirmed that BxPC-3 cells have a stronger phagocytic ability as compared to hTERT-HPNE cells. Additionally, Fe3O4-PEG-Cy7-EMO had a stronger inhibition effect on BxPC-3 cells than Fe3O4-PEG and EMO. The hemolysis experiment proved that Fe3O4-PEG-Cy7-EMO can be used in vivo experiments. In vivo analysis demonstrated that Fe3O4-PEG-Cy7-EMO enabled FI/MRI dual-modal imaging and targeted therapy in pancreatic tumor xenografted mice. CONCLUSION Fe3O4-PEG-Cy7-EMO may serve as a potential theranostic nanoplatform for PC.
Collapse
Affiliation(s)
- Shuai Ren
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Lina Song
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Ying Tian
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Li Zhu
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Kai Guo
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Huifeng Zhang
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Zhongqiu Wang
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| |
Collapse
|
99
|
Iron, Copper, and Zinc Homeostasis: Physiology, Physiopathology, and Nanomediated Applications. NANOMATERIALS 2021; 11:nano11112958. [PMID: 34835722 PMCID: PMC8620808 DOI: 10.3390/nano11112958] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Understanding of how the human organism functions has preoccupied researchers in medicine for a very long time. While most of the mechanisms are well understood and detailed thoroughly, medicine has yet much to discover. Iron (Fe), Copper (Cu), and Zinc (Zn) are elements on which organisms, ranging from simple bacteria all the way to complex ones such as mammals, rely on these divalent ions. Compounded by the continuously evolving biotechnologies, these ions are still relevant today. This review article aims at recapping the mechanisms involved in Fe, Cu, and Zn homeostasis. By applying the knowledge and expanding on future research areas, this article aims to shine new light of existing illness. Thanks to the expanding field of nanotechnology, genetic disorders such as hemochromatosis and thalassemia can be managed today. Nanoparticles (NPs) improve delivery of ions and confer targeting capabilities, with the potential for use in treatment and diagnosis. Iron deficiency, cancer, and sepsis are persisting major issues. While targeted delivery using Fe NPs can be used as food fortifiers, chemotherapeutic agents against cancer cells and microbes have been developed using both Fe and Cu NPs. A fast and accurate means of diagnosis is a major impacting factor on outcome of patients, especially when critically ill. Good quality imaging and bed side diagnostic tools are possible using NPs, which may positively impact outcome.
Collapse
|
100
|
Designing magnetic nanoparticles for in vivo applications and understanding their fate inside human body. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|