51
|
Mirankó M, Megyesi M, Miskolczy Z, Tóth J, Feczkó T, Biczók L. Encapsulation of Metronidazole in Biocompatible Macrocycles and Structural Characterization of Its Nano Spray-Dried Nanostructured Composite. Molecules 2021; 26:molecules26237335. [PMID: 34885915 PMCID: PMC8659152 DOI: 10.3390/molecules26237335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
Due to the great potential of biocompatible cucurbit[7]uril (CB7) and 4-sulfonatocalix[4]arene (SCX4) macrocycles in drug delivery, the confinement of the pharmaceutically important metronidazole as an ionizable model drug has been systematically studied in these cavitands. Absorption and fluorescence spectroscopic measurements gave 1.9 × 105 M−1 and 1.0 × 104 M−1 as the association constants of the protonated metronidazole inclusion in CB7 and SCX4, whereas the unprotonated guests had values more than one order of magnitude lower, respectively. The preferential binding of the protonated metronidazole resulted in 1.91 pH unit pKa diminution upon encapsulation in CB7, but the complexation with SCX4 led to a pKa decrease of only 0.82 pH unit. The produced protonated metronidazole–SCX4 complex induced nanoparticle formation with protonated chitosan by supramolecular crosslinking of the polysaccharide chains. The properties of the aqueous nanoparticle solutions and the micron-sized solid composite produced therefrom by nano spray drying were unraveled. The results of the present work may find application in the rational design of tailor-made self-assembled drug carrier systems.
Collapse
Affiliation(s)
- Mirella Mirankó
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem St. 10, 8200 Veszprém, Hungary; (M.M.); (J.T.)
| | - Mónika Megyesi
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network (ELKH), P.O. Box 286, 1519 Budapest, Hungary; (M.M.); (Z.M.)
| | - Zsombor Miskolczy
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network (ELKH), P.O. Box 286, 1519 Budapest, Hungary; (M.M.); (Z.M.)
| | - Judit Tóth
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem St. 10, 8200 Veszprém, Hungary; (M.M.); (J.T.)
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network (ELKH), P.O. Box 286, 1519 Budapest, Hungary; (M.M.); (Z.M.)
| | - Tivadar Feczkó
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem St. 10, 8200 Veszprém, Hungary; (M.M.); (J.T.)
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network (ELKH), P.O. Box 286, 1519 Budapest, Hungary; (M.M.); (Z.M.)
- Correspondence: (T.F.); (L.B.)
| | - László Biczók
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network (ELKH), P.O. Box 286, 1519 Budapest, Hungary; (M.M.); (Z.M.)
- Correspondence: (T.F.); (L.B.)
| |
Collapse
|
52
|
|
53
|
Shurpik DN, Aleksandrova YI, Mostovaya OA, Nazmutdinova VA, Zelenikhin PV, Subakaeva EV, Mukhametzyanov TA, Cragg PJ, Stoikov II. Water-soluble pillar[5]arene sulfo-derivatives self-assemble into biocompatible nanosystems to stabilize therapeutic proteins. Bioorg Chem 2021; 117:105415. [PMID: 34673453 DOI: 10.1016/j.bioorg.2021.105415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Pillar[5]arenes containing sulfonate fragments have been shown to form supramolecular complexes with therapeutic proteins to facilitate targeted transport with an increased duration of action and enhanced bioavailability. Regioselective synthesis was used to obtain a water-soluble pillar[5]arene containing the fluorescent label FITC and nine sulfoethoxy fragments. The pillar[5]arene formed complexes with the therapeutic proteins binase, bleomycin, and lysozyme in a 1:2 ratio as demonstrated by UV-vis and fluorescence spectroscopy. The formation of stable spherical nanosized macrocycle/binase complexes with an average particle size of 200 nm was established by dynamic light scattering and transmission electron microscopy. Flow cytometry demonstrated the ability of macrocycle/binase complexes to penetrate into tumor cells where they exhibited significant cytotoxicity towards A549 cells at 10-5-10-6 M while maintaining the enzymatic activity of binase.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| | - Yulia I Aleksandrova
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Olga A Mostovaya
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Viktoriya A Nazmutdinova
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Pavel V Zelenikhin
- Kazan Federal University, Institute of Fundamental Medicine and Biology, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Evgenia V Subakaeva
- Kazan Federal University, Institute of Fundamental Medicine and Biology, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Timur A Mukhametzyanov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Peter J Cragg
- School of Applied Sciences, University of Brighton, Huxley Building, Moulsecoomb, Brighton, East Sussex BN2 4GJ, UK
| | - Ivan I Stoikov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| |
Collapse
|
54
|
Abstract
The fields of precision imaging and drug delivery have revealed a number of tools to improve target specificity and increase efficacy in diagnosing and treating disease. Biological molecules, such as antibodies, continue to be the primary means of assuring active targeting of various payloads. However, molecular-scale recognition motifs have emerged in recent decades to achieve specificity through the design of interacting chemical motifs. In this regard, an assortment of bioorthogonal covalent conjugations offer possibilities for in situ complexation under physiological conditions. Herein, a related concept is discussed that leverages interactions from noncovalent or supramolecular motifs to facilitate in situ recognition and complex formation in the body. Classic supramolecular motifs based on host-guest complexation offer one such means of facilitating recognition. In addition, synthetic bioinspired motifs based on oligonucleotide hybridization and coiled-coil peptide bundles afford other routes to form complexes in situ. The architectures to include recognition of these various motifs for targeting enable both monovalent and multivalent presentation, seeking high affinity or engineered avidity to facilitate conjugation even under dilute conditions of the body. Accordingly, supramolecular "click chemistry" offers a complementary tool in the growing arsenal targeting improved healthcare efficacy.
Collapse
Affiliation(s)
| | | | - Matthew J. Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556 USA
| |
Collapse
|
55
|
Lim S, Kuang Y, Ardoña HAM. Evolution of Supramolecular Systems Towards Next-Generation Biosensors. Front Chem 2021; 9:723111. [PMID: 34490210 PMCID: PMC8416679 DOI: 10.3389/fchem.2021.723111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Supramolecular materials, which rely on dynamic non-covalent interactions, present a promising approach to advance the capabilities of currently available biosensors. The weak interactions between supramolecular monomers allow for adaptivity and responsiveness of supramolecular or self-assembling systems to external stimuli. In many cases, these characteristics improve the performance of recognition units, reporters, or signal transducers of biosensors. The facile methods for preparing supramolecular materials also allow for straightforward ways to combine them with other functional materials and create multicomponent sensors. To date, biosensors with supramolecular components are capable of not only detecting target analytes based on known ligand affinity or specific host-guest interactions, but can also be used for more complex structural detection such as chiral sensing. In this Review, we discuss the advancements in the area of biosensors, with a particular highlight on the designs of supramolecular materials employed in analytical applications over the years. We will first describe how different types of supramolecular components are currently used as recognition or reporter units for biosensors. The working mechanisms of detection and signal transduction by supramolecular systems will be presented, as well as the important hierarchical characteristics from the monomers to assemblies that contribute to selectivity and sensitivity. We will then examine how supramolecular materials are currently integrated in different types of biosensing platforms. Emerging trends and perspectives will be outlined, specifically for exploring new design and platforms that may bring supramolecular sensors a step closer towards practical use for multiplexed or differential sensing, higher throughput operations, real-time monitoring, reporting of biological function, as well as for environmental studies.
Collapse
Affiliation(s)
- Sujeung Lim
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Yuyao Kuang
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Herdeline Ann M Ardoña
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, CA, United States.,Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
56
|
Hayashida O, Tomita T, Miyazaki T. Self-aggregation, Temperature-responsive Agglutination, and pH-induced Disaggregation of Amphiphilic Cyclophane Dimer Having a PEG Linkage. CHEM LETT 2021. [DOI: 10.1246/cl.210348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Osamu Hayashida
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Tensho Tomita
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Takaaki Miyazaki
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| |
Collapse
|
57
|
Riebe J, Niemeyer J. Mechanically Interlocked Molecules for Biomedical Applications. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jan Riebe
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen Universitätsstr. 7 45141 Essen Germany
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen Universitätsstr. 7 45141 Essen Germany
| |
Collapse
|
58
|
Liu Y, Zhang Q, Crespi S, Chen S, Zhang X, Xu T, Ma C, Zhou S, Shi Z, Tian H, Feringa BL, Qu D. Motorized Macrocycle: A Photo‐responsive Host with Switchable and Stereoselective Guest Recognition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Stefano Crespi
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Shaoyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Xiu‐Kang Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Tian‐Yi Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chang‐Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shang‐Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
59
|
Liu Y, Zhang Q, Crespi S, Chen S, Zhang X, Xu T, Ma C, Zhou S, Shi Z, Tian H, Feringa BL, Qu D. Motorized Macrocycle: A Photo-responsive Host with Switchable and Stereoselective Guest Recognition. Angew Chem Int Ed Engl 2021; 60:16129-16138. [PMID: 33955650 PMCID: PMC8361693 DOI: 10.1002/anie.202104285] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Designing photo-responsive host-guest systems can provide versatile supramolecular tools for constructing smart systems and materials. We designed photo-responsive macrocyclic hosts, modulated by light-driven molecular rotary motors enabling switchable chiral guest recognition. The intramolecular cyclization of the two arms of a first-generation molecular motor with flexible oligoethylene glycol chains of different lengths resulted in crown-ether-like macrocycles with intrinsic motor function. The octaethylene glycol linkage enables the successful unidirectional rotation of molecular motors, simultaneously allowing the 1:1 host-guest interaction with ammonium salt guests. The binding affinity and stereoselectivity of the motorized macrocycle can be reversibly modulated, owing to the multi-state light-driven switching of geometry and helicity of the molecular motors. This approach provides an attractive strategy to construct stimuli-responsive host-guest systems and dynamic materials.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Stefano Crespi
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Shaoyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Xiu‐Kang Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Tian‐Yi Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Chang‐Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Shang‐Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
60
|
Higginbotham HF, Maniam S, Hsia T, Isaacs L, Langford SJ, Bell TDM. Self-assembled, optically-active {naphthalene diimide}U{cucurbit[8]uril} ensembles in an aqueous environment. Phys Chem Chem Phys 2021; 23:13434-13439. [PMID: 34105550 DOI: 10.1039/d1cp00659b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naphthalene diimides (NDIs) are shown to arrange spontaneously co-facially with cucurbit[8]uril (CB[8]) in an aqueous environment through purely non-covalent interactions. The resultant 2 : 2 supramolecular complex of NDI and CB[8] is highly fluorescent (>30 times more than the constituent NDIs) due to the formation of NDI-NDI excimers within the supramolecular complex.
Collapse
Affiliation(s)
| | - Subashani Maniam
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Tina Hsia
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Steven J Langford
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Victoria 3122, Australia.
| | - Toby D M Bell
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
61
|
Webber MJ, Pashuck ET. (Macro)molecular self-assembly for hydrogel drug delivery. Adv Drug Deliv Rev 2021; 172:275-295. [PMID: 33450330 PMCID: PMC8107146 DOI: 10.1016/j.addr.2021.01.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023]
Abstract
Hydrogels prepared via self-assembly offer scalable and tunable platforms for drug delivery applications. Molecular-scale self-assembly leverages an interplay of attractive and repulsive forces; drugs and other active molecules can be incorporated into such materials by partitioning in hydrophobic domains, affinity-mediated binding, or covalent integration. Peptides have been widely used as building blocks for self-assembly due to facile synthesis, ease of modification with bioactive molecules, and precise molecular-scale control over material properties through tunable interactions. Additional opportunities are manifest in stimuli-responsive self-assembly for more precise drug action. Hydrogels can likewise be fabricated from macromolecular self-assembly, with both synthetic polymers and biopolymers used to prepare materials with controlled mechanical properties and tunable drug release. These include clinical approaches for solubilization and delivery of hydrophobic drugs. To further enhance mechanical properties of hydrogels prepared through self-assembly, recent work has integrated self-assembly motifs with polymeric networks. For example, double-network hydrogels capture the beneficial properties of both self-assembled and covalent networks. The expanding ability to fabricate complex and precise materials, coupled with an improved understanding of biology, will lead to new classes of hydrogels specifically tailored for drug delivery applications.
Collapse
Affiliation(s)
- Matthew J Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556, USA.
| | - E Thomas Pashuck
- Lehigh University, Department of Bioengineering, Bethlehem, PA 18015, USA.
| |
Collapse
|
62
|
Abstract
Hydrogels comprise a class of soft materials which are extremely useful in a number of contexts, for example as matrix-mimetic biomaterials for applications in regenerative medicine and drug delivery. One particular subclass of hydrogels consists of materials prepared through non-covalent physical crosslinking afforded by supramolecular recognition motifs. The dynamic, reversible, and equilibrium-governed features of these molecular-scale motifs often transcend length-scales to endow the resulting hydrogels with these same properties on the bulk scale. In efforts to engineer hydrogels of all types with more precise or application-specific uses, inclusion of stimuli-responsive sol-gel transformations has been broadly explored. In the context of biomedical uses, temperature is an interesting stimulus which has been the focus of numerous hydrogel designs, supramolecular or otherwise. Most supramolecular motifs are inherently temperature-sensitive, with elevated temperatures commonly disfavoring motif formation and/or accelerating its dissociation. In addition, supramolecular motifs have also been incorporated for physical crosslinking in conjunction with polymeric or macromeric building blocks which themselves exhibit temperature-responsive changes to their properties. Through molecular-scale engineering of supramolecular recognition, and selection of a particular motif or polymeric/macromeric backbone, it is thus possible to devise a number of supramolecular hydrogel materials to empower a variety of future biomedical applications.
Collapse
Affiliation(s)
- Sijie Xian
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
63
|
Olvera D, Monaghan MG. Electroactive material-based biosensors for detection and drug delivery. Adv Drug Deliv Rev 2021; 170:396-424. [PMID: 32987096 DOI: 10.1016/j.addr.2020.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Electroactive materials are employed at the interface of biology and electronics due to their advantageous intrinsic properties as soft organic electronics. We examine the most recent literature of electroactive material-based biosensors and their emerging role as theranostic devices for the delivery of therapeutic agents. We consider electroactive materials through the lens of smart drug delivery systems as materials that enable the release of therapeutic cargo in response to specific physiological and external stimuli and discuss the way these mechanisms are integrated into medical devices with examples of the latest advances. Studies that harness features unique to conductive polymers are emphasized; lastly, we highlight new perspectives and future research direction for this emerging technology and the challenges that remain to overcome.
Collapse
|
64
|
|
65
|
A novel salt-responsive hydrogel on the base of calixresorcinarene–mPEG amide conjugate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
66
|
Li XX, Xu WT, Deng XY, Tian LF, Huang Y, Tao Z. Selective Identification of Phenylalanine Using Cucurbit[7,8]uril-Based Fluorescent Probes. Aust J Chem 2021. [DOI: 10.1071/ch20029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The interactions of two host–guest inclusion complexes comprised of cucurbit[7]uril (Q[7]) and cucurbit[8]uril (Q[8]) with a derivative of toluidine blue O (TB) have been investigated using 1H NMR and fluorescence spectroscopy. The experimental results revealed that the Q[7] host interacts with a TB molecule to form a 1:1 inclusion complex and the Q[8] host interacts with two TB guest molecules to form a 1:2 inclusion complex. The inclusion of the TB guest molecule within the Q[7] host gave rise to significant fluorescence enhancement, whereas the inclusion of the TB guest molecule within the Q[8] host resulted in significant fluorescence quenching. Further recognition experiments involving a series of l-α-amino acids revealed that the TB@Q[7] inclusion fluorescence probe exhibits high selectivity for the recognition of phenylalanine via significant fluorescence quenching in an aqueous solution, whereas the TB@Q[8] inclusion fluorescence probe also exhibited high selectivity for phenylalanine recognition via fluorescence enhancement in an aqueous solution.
Collapse
|
67
|
Cheng G, Luo J, Liu Y, Chen X, Wu Z, Chen T. Cucurbituril-Oriented Nanoplatforms in Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:8211-8240. [PMID: 35019600 DOI: 10.1021/acsabm.0c01061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cucucrbituril (CB) belongs to a family of macrocycles that are easily accessible. Their structural specificity provides excellent molecular recognition capabilities, with the ability to be readily chemically modified. Because of these properties, researchers have found CB to be a useful molecular carrier for delivering drug molecules and therapeutic biomolecules. Their significance lies in the fact that CB not only increases the solubility and stability of an encapsulated guest but also provides the possibility to achieve targeted delivery of the guest molecule. Therefore, the emergence of CB undoubtedly provides opportunities for the development of targeted drug delivery in an era where intelligent drugs have attracted considerable attention. It has also been found that CB can enhance fluorescent dyes, allowing the preparation of biosensors with enhanced sensitivity for use in clinical settings. In the present review, the acquisition, properties, and structural modifications of CB are first comprehensively described, and then the value of this macrocycle in applications within the medical field is discussed. In addition, we have also summarized patent applications of CB in this field over recent years, aiming to illustrate the current status of developments of this molecule. Finally, we discuss the challenges faced by CB in the medical field and future trends in its development.
Collapse
Affiliation(s)
- Guowang Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
68
|
Tao Y, Chan HF, Shi B, Li M, Leong KW. Light: A Magical Tool for Controlled Drug Delivery. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005029. [PMID: 34483808 PMCID: PMC8415493 DOI: 10.1002/adfm.202005029] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 05/04/2023]
Abstract
Light is a particularly appealing tool for on-demand drug delivery due to its noninvasive nature, ease of application and exquisite temporal and spatial control. Great progress has been achieved in the development of novel light-driven drug delivery strategies with both breadth and depth. Light-controlled drug delivery platforms can be generally categorized into three groups: photochemical, photothermal, and photoisomerization-mediated therapies. Various advanced materials, such as metal nanoparticles, metal sulfides and oxides, metal-organic frameworks, carbon nanomaterials, upconversion nanoparticles, semiconductor nanoparticles, stimuli-responsive micelles, polymer- and liposome-based nanoparticles have been applied for light-stimulated drug delivery. In view of the increasing interest in on-demand targeted drug delivery, we review the development of light-responsive systems with a focus on recent advances, key limitations, and future directions.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Kam W Leong
- Department of Biomedical Engineering, Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
69
|
Ai Q, Fu Q, Liang F. pH-Mediated Single Molecule Conductance of Cucurbit[7]uril. Front Chem 2020; 8:736. [PMID: 33195012 PMCID: PMC7477741 DOI: 10.3389/fchem.2020.00736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Recognition tunneling technique owns the capability for investigating and characterizing molecules at single molecule level. Here, we investigated the conductance value of cucurbit[7]uril (CB[7]) and melphalan@CB[7] (Mel@CB[7]) complex molecular junctions by using recognition tunneling technique. The conductances of CB[7] and Mel@CB[7] with different pH values were studied in aqueous media as well as organic solvent. Both pH value and guest molecule have an impact on the conductance of CB[7] molecular junction. The conductances of CB[7] and Mel@CB[7] both showed slightly difference on the conductance under different measurement systems. This work extends the molecular conductance measurement to aqueous media and provides new insights of pH-responsive host-guest system for single molecule detection through electrical measurements.
Collapse
Affiliation(s)
- Qiushuang Ai
- The State Key Laboratory for Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Qiang Fu
- Jiangxi College of Traditional Chinese Medicine, Fuzhou, China
| | - Feng Liang
- The State Key Laboratory for Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
70
|
Olson JE, Braegelman AS, Zou L, Webber MJ, Camden JP. Capture of Phenylalanine and Phenylalanine-Terminated Peptides Using a Supramolecular Macrocycle for Surface-Enhanced Raman Scattering Detection. APPLIED SPECTROSCOPY 2020; 74:1374-1383. [PMID: 32508116 DOI: 10.1177/0003702820937333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The cucurbit[n]uril (CB[n]) family of macrocycles are known to bind a variety of small molecules with high affinity. These motifs thus have promise in an ever-growing list of trace detection methods. Surface-enhanced Raman scattering (SERS) detection schemes employing CB[n] motifs exhibit increased sensitivity due to selective concentration of the analyte at the nanoparticle surface, coupled with the ability of CB[n] to facilitate the formation of well-defined electromagnetic hot spots. Herein, we report a CB[7] SERS assay for quantification of phenylalanine (Phe) and further demonstrate its utility for detecting peptides with an N-terminal Phe. The CB[7]-guest interaction improves the sensitivity 5-25-fold over direct detection of Phe using citrate-capped silver nanoparticle aggregates, enabling use of a portable Raman system. We further illustrate detection of insulin via binding of CB[7] to the N-terminal Phe residue on its B-chain, suggesting a general strategy for detecting Phe-terminated peptides of clinically relevant biomolecules.
Collapse
Affiliation(s)
- Jacob E Olson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, USA
| | - Adam S Braegelman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, USA
| | - Lei Zou
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, USA
| | - Matthew J Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, USA
| |
Collapse
|
71
|
Zhang B, Yu Q, Liu Y. Alternating Magnetic Field Controlled Targeted Drug Delivery Based on Graphene Oxide‐Grafted Nanosupramolecules. Chemistry 2020; 26:13698-13703. [DOI: 10.1002/chem.202003328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Bing Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology Ministry of Education College of Life Sciences Nankai University Tianjin 300071 P.R. China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| |
Collapse
|
72
|
Wang K, Wang MN, Wang QQ, Liu C, Du YH, Xing S, Zhu B. UV Accelerated Assemblies Constructed Using Calixpyridinium in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11161-11168. [PMID: 32844659 DOI: 10.1021/acs.langmuir.0c02356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, an irregular calixpyridinium-suramin sodium supramolecular assembly was constructed by the strong host-guest electrostatic interactions. More interestingly, a novel regular spherical supramolecular assembly was also fabricated by the hydrogen bonding interactions between suramin sodium and the UV accelerated addition product of deprotonated calixpyridinium in water. The same principle was also applied to construct a UV accelerated regular spherical self-assembly by the addition product of deprotonated calixpyridinium in water. Compared with the complicated and irreversible covalent connection of the light-responsive groups to the building block, which is one of the common means of obtaining light-responsive supramolecular systems, this finding not only provides a smart, facile, and universally applicable method to construct deprotonated calixpyridinium-based light-responsive host-guest systems but also provides a new idea for the development of other novel light-responsive building blocks.
Collapse
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Mi-Ni Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qi-Qi Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Chang Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yu-Han Du
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
73
|
Zou L, Addonizio CJ, Su B, Sis MJ, Braegelman AS, Liu D, Webber MJ. Supramolecular Hydrogels via Light-Responsive Homoternary Cross-Links. Biomacromolecules 2020; 22:171-182. [PMID: 32804483 DOI: 10.1021/acs.biomac.0c00950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Host-guest physical cross-linking has been used to prepare supramolecular hydrogels for various biomedical applications. More recent efforts to endow these materials with stimuli-responsivity offers an opportunity to precisely tune their function for a target use. In the context of light-responsive materials, azobenzenes are one prevailing motif. Here, an asymmetric azobenzene was explored for its ability to form homoternary complexes with the cucurbit[8]uril macrocycle, exhibiting an affinity (Keq) of 6.21 × 1010 M-2 for sequential binding, though having negative cooperativity. Copolymers were first prepared from different and tunable ratios of NIPAM and DMAEA, and DMAEA groups were then postsynthetically modified with this asymmetric azobenzene. Upon macrocycle addition, these polymers formed supramolecular hydrogels; relaxation dynamics increased with temperature due to temperature-dependent affinity reduction for the ternary complex. Application of UV light disrupted the supramolecular motif through azobenzene photoisomerization, prompting a gel-to-sol transition in the hydrogel. Excitingly, within several minutes at room temperature, thermal relaxation of azobenzene to its trans state afforded rapid hydrogel recovery. By revealing this supramolecular motif and employing facile means for its attachment onto pre-synthesized polymers, the approach described here may further enable stimuli-directed control of supramolecular hydrogels for a number of applications.
Collapse
Affiliation(s)
- Lei Zou
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Christopher J Addonizio
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Bo Su
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Matthew J Sis
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Adam S Braegelman
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Dongping Liu
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Matthew J Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| |
Collapse
|
74
|
Yang G, Wu P, Yu C, Zhang J, Song J. Facile Engineering of Anti‐Inflammatory Nanotherapies by Host‐Guest Self‐Assembly. ChemistrySelect 2020. [DOI: 10.1002/slct.202001590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guoyu Yang
- College of Stomatology Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Medical University 426 Songshibei Road Chongqing 401147 China
| | - Peng Wu
- Department of Pharmaceutics College of PharmacyThird Military Medical University (Army Medical University) 30 Gaotanyan Main Street Chongqing 400038 China
| | - Cong Yu
- College of Stomatology Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Medical University 426 Songshibei Road Chongqing 401147 China
| | - Jianxiang Zhang
- Department of Pharmaceutics College of PharmacyThird Military Medical University (Army Medical University) 30 Gaotanyan Main Street Chongqing 400038 China
| | - Jinlin Song
- College of Stomatology Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Medical University 426 Songshibei Road Chongqing 401147 China
| |
Collapse
|
75
|
Azobenzene-grafted carboxymethyl cellulose hydrogels with photo-switchable, reduction-responsive and self-healing properties for a controlled drug release system. Int J Biol Macromol 2020; 163:824-832. [PMID: 32653370 DOI: 10.1016/j.ijbiomac.2020.07.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 01/05/2023]
Abstract
In this study, multifunctional hydrogels containing host-guest complex formation between azobenzene-grafted carboxymethyl cellulose (CMC-Azo) and β-cyclodextrin (CD) dimers connected by disulfide bonds with agarose for structural support were prepared. The obtained hydrogels exhibited self-healing properties by host-guest complexation as well as gel-sol phase transition in response to ultraviolet (UV) light and reducing agents. Photo-switchable properties of the hydrogels depend on changes in the complex formation of CD-dimers through the trans(450 nm) to cis(365 nm) photo-isomerization of azobenzene. The tensile and strain sweep tests confirmed that the hydrogel's self-healing ability was 79.44% and 81.59%, respectively. In addition, drug release from the hydrogels was controlled to accelerate to 80% in 3 h using UV light or reducing agent. Since the suggested photo-switchable, reduction-responsive, and self-healable hydrogels are non-cytotoxic, they can be potentially applied as biomedical materials in the development of hydrogel-based drug release systems.
Collapse
|
76
|
Hayashida O, Tanaka H. Guest Capture and Separation by Temperature Responsive Cyclophane-PNIPAM Conjugates. CHEM LETT 2020. [DOI: 10.1246/cl.200135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Osamu Hayashida
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Haruna Tanaka
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| |
Collapse
|
77
|
Hayashida O, Shibata K. Stimuli-Responsive Supramolecular Coaggregation and Disaggregation of Host-Guest Conjugates Having a Disulfide Linkage. J Org Chem 2020; 85:5493-5502. [PMID: 32233372 DOI: 10.1021/acs.joc.0c00237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Water-soluble cationic and anionic cyclophanes (1a and 2a, respectively) having a dabsyl group with a cleavable disulfide linkage were synthesized as a host-guest conjugate covalently bound with both host and guest components. Self-inclusion phenomena but not self-aggregation behaviors were observed for each cyclophane in aqueous media. Each cyclophane includes its own dabsyl moiety (guest component) in its macrocyclic cavity (host component) through hydrophobic interaction. When 1 equiv. of cationic 1a was added to an aqueous solution of anionic 2a, however, supramolecular coaggregates formed spontaneously through host-guest complexation. As regard the supramolecular coaggregates, the existence of larger particles was confirmed by DLS measurements and TEM observation. The hydrophobic interaction between the dabsyl moiety and macrocyclic cavity and electrostatic interactions between 1a and 2a play important roles in the supramolecular coaggregate formation. Each cyclophane having a cleavable disulfide linkage was easily transformed to the corresponding thiols by reducing reagents such as DTT, which was confirmed by MALDI-TOF MS. Disaggregation of the supramolecular coaggregates composed of 1a and 2a was successfully performed upon addition of DTT, with release of the thiol derivative of dabsyl. Such disaggregation of the coaggregates was also conducted by other external stimuli such as salts and competitive guests.
Collapse
Affiliation(s)
- Osamu Hayashida
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Fukuoka 814-0180, Japan
| | - Kana Shibata
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Fukuoka 814-0180, Japan
| |
Collapse
|
78
|
Yang J, Dai D, Lou X, Ma L, Wang B, Yang YW. Supramolecular nanomaterials based on hollow mesoporous drug carriers and macrocycle-capped CuS nanogates for synergistic chemo-photothermal therapy. Theranostics 2020; 10:615-629. [PMID: 31903141 PMCID: PMC6929989 DOI: 10.7150/thno.40066] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/06/2019] [Indexed: 01/05/2023] Open
Abstract
Multifunctional supramolecular nanoplatforms that integrate the advantages of different therapeutic techniques can trigger multimodal synergistic treatment of tumors, thus representing an emerging powerful tool for cancer therapeutics. Methods: In this work, we design and fabricate a multifunctional supramolecular drug delivery platform, namely Fa-mPEG@CP5-CuS@HMSN-Py nanoparticles (FaPCH NPs), consisting of a pyridinium (Py)-modified hollow mesoporous silica nanoparticles-based drug reservoir (HMSN-Py) with high loading capacity, a layer of NIR-operable carboxylatopillar[5]arene (CP5)-functionalized CuS nanoparticles (CP5-CuS) on the surface of HMSN-Py connected through supramolecular host-guest interactions between CP5 rings and Py stalks, and another layer of folic acid (Fa)-conjugated polyethylene glycol (Fa-PEG) antennas by electrostatic interactions capable of active targeting at tumor lesions, in a controlled, highly integrated fashion for synergistic chemo-photothermal therapy. Results: Fa-mPEG antennas endowed the enhanced active targeting effect toward cancer cells, and CP5-CuS served as not only a quadruple-stimuli responsive nanogate for controllable drug release but also a special agent for NIR-guided photothermal therapy. Meanwhile, anticancer drug doxorubicin (DOX) could be released from the HMSN-Py reservoirs under tumor microenvironments for chemotherapy, thus realizing multimodal synergistic therapeutics. Such a supramolecular drug delivery platform showed effective synergistic chemo-photothermal therapy both in vitro and in vivo. Conclusion: This novel supramolecular nanoplatform possesses great potential in controlled drug delivery and tumor cellular internalization for synergistic chemo-photothermal therapy, providing a promising approach for multimodal synergistic cancer treatment.
Collapse
Affiliation(s)
- Jie Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, and Department of Endoscopics, China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130012, P. R. China
| | - Dihua Dai
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, and Department of Endoscopics, China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130012, P. R. China
| | - Xinyue Lou
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, and Department of Endoscopics, China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130012, P. R. China
| | - Lianjun Ma
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, and Department of Endoscopics, China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130012, P. R. China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, and Department of Endoscopics, China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130012, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
79
|
Facile construction of shape-regulated β-cyclodextrin-based supramolecular self-assemblies for drug delivery. Carbohydr Polym 2019; 231:115714. [PMID: 31888845 DOI: 10.1016/j.carbpol.2019.115714] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022]
Abstract
Although supramolecular prodrug self-assemblies have been proven as efficient nanocarriers for cancer therapy, tedious synthesis procedures have made their practical applications more difficult. In this paper, β-cyclodextrin-based supramolecular self-assemblies (SSAs) were directly constructed by utilizing β-cyclodextrin trimer (β-CD3) as the host unit and unmodified curcumin as the guest unit. Due to the adjustment of host-guest inclusion and hydrophilic-hydrophobic interactions occurring in the SSAs, their morphology could be readily tuned by changing the ratio of the two components. Different self-assembly morphologies, such as spherical complex micelles, spindle-like complex micelles and multi-compartment vesicles, were obtained. Furthermore, basic cell experiments were performed to study the corresponding effects of the SSA shape on their biological properties. Compared to the other micelles, the spindle-like complex micelles exhibited enhanced cellular toxicity, uptake behaviors and apoptosis rates, and the spherical complex micelles exhibited poor performance. The performance of the multi-compartment vesicles was similar to that of the spindle-like complex micelles. The facile construction of these shape-regulated SSAs and their different cellular biological properties might be valuable in the controlled drug release field.
Collapse
|
80
|
Zou L, Su B, Addonizio CJ, Pramudya I, Webber MJ. Temperature-Responsive Supramolecular Hydrogels by Ternary Complex Formation with Subsequent Photo-Cross-linking to Alter Network Dynamics. Biomacromolecules 2019; 20:4512-4521. [DOI: 10.1021/acs.biomac.9b01267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lei Zou
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Bo Su
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Christopher J. Addonizio
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Irawan Pramudya
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Matthew J. Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| |
Collapse
|
81
|
Nanoscale metal–organic frameworks as key players in the context of drug delivery: evolution toward theranostic platforms. Anal Bioanal Chem 2019; 412:37-54. [DOI: 10.1007/s00216-019-02217-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/27/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
|
82
|
Chen X, Zheng G, Cheng J, Yang YY. Supramolecular Nanotheranostics. Am J Cancer Res 2019; 9:3014-3016. [PMID: 31244939 PMCID: PMC6567977 DOI: 10.7150/thno.36788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023] Open
Abstract
This supramolecular nanotheranostics special issue collected a total of 17 review articles and 3 research articles broadly covering the current and emerging supramolecular nanotheranostics.
Collapse
|
83
|
Chen LX, Liu M, Zhang YQ, Zhu QJ, Liu JX, Zhu BX, Tao Z. Outer surface interactions to drive cucurbit[8]uril-based supramolecular frameworks: possible application in gold recovery. Chem Commun (Camb) 2019; 55:14271-14274. [DOI: 10.1039/c9cc07147d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Q[8]-based honeycomb-like frameworks could be obtained in [AuCl4]− free aqueous HNO3 solution, aqueous HCl and HNO3 solutions that contain [AuCl4]−. These frameworks exhibit a high selectivity for imprisoning [AuCl4]−.
Collapse
Affiliation(s)
- Li-Xia Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Ming Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Yun-Qian Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Qian-Jiang Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering
- Anhui University of Technology
- Maanshan 243002
- China
| | - Bi-Xue Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| |
Collapse
|