51
|
Chen R, Zhang G, Sun K, Chen AF. Aging-Associated ALKBH5-m 6A Modification Exacerbates Doxorubicin-Induced Cardiomyocyte Apoptosis Via AT-Rich Interaction Domain 2. J Am Heart Assoc 2024; 13:e031353. [PMID: 38156523 PMCID: PMC10863816 DOI: 10.1161/jaha.123.031353] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Chemotherapy-induced cardiovascular disease is a growing concern in the elderly population who have survived cancer, yet the underlying mechanism remains poorly understood. We investigated the role of ALKBH5 (AlkB homolog 5), a primary N6-methyladenosine (m6A) demethylase, and its involvement in m6A methylation-mediated regulation of targets in aging-associated doxorubicin-induced cardiotoxicity. METHODS AND RESULTS To validate the relationship between doxorubicin-induced cardiotoxicity and aging, we established young and old male mouse models. ALKBH5 expression was modulated through adeno-associated virus 9 (in vivo), Lentivirus, and siRNAs (in vitro) to examine its impact on cardiomyocyte m6A modification, doxorubicin-induced cardiac dysfunction, and remodeling. We performed mRNA sequencing, methylated RNA immunoprecipitation sequencing, and molecular assays to unravel the mechanism of ALKBH5-m6A modification in doxorubicin-induced cardiotoxicity. Our data revealed an age-dependent increase in doxorubicin-induced cardiac dysfunction, remodeling, and injury. ALKBH5 expression was elevated in aging mouse hearts, leading to reduced global m6A modification levels. Through mRNA sequencing and methylated RNA immunoprecipitation sequencing analyses, we identified ARID2 (AT-rich interaction domain 2) as the downstream effector of ALKBH5-m6A modulation in cardiomyocytes. Further investigations revealed that ARID2 modulates DNA damage response and enhances doxorubicin-induced cardiomyocyte apoptosis. CONCLUSIONS Our findings provide insights into the role of ALKBH5-m6A modification in modulating doxorubicin-induced cardiac dysfunction, remodeling, and cardiomyocyte apoptosis in male mice. These results highlight the potential of ALKBH5-targeted treatments for elderly patients with cancer in clinical settings.
Collapse
Affiliation(s)
- Runtai Chen
- Center for Vascular Disease and Translational MedicineThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of CardiologyThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Guogang Zhang
- Center for Vascular Disease and Translational MedicineThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of CardiologyThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Kun Sun
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Alex F. Chen
- Center for Vascular Disease and Translational MedicineThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of CardiologyThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
52
|
Han W, Xiong W, Sun W, Liu W, Zhang Y, Li C, Gu N, Shen Y, Qiu Z, Li C, Zhao Y, Zhao R. YTHDC1 Mitigates Apoptosis in Bone Marrow Mesenchymal Stem Cells by Inhibiting NfƙBiα and Augmenting Cardiac Function Following Myocardial Infarction. Cell Transplant 2024; 33:9636897241290910. [PMID: 39466658 PMCID: PMC11528794 DOI: 10.1177/09636897241290910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
The therapeutic efficacy of bone marrow mesenchymal stem cells (BMSCs) in myocardial infarction (MI) is hindered by poor cell survival. This study explored the role of N6-methyladenosine (m6A) regulation, specifically YTHDC1, in improving BMSC transplantation for MI. By screening m6A-related regulators in hypoxia and serum deprivation (HSD)-induced BMSC apoptosis, YTHDC1 was found to be downregulated. Overexpression of Ythdc1 in BMSCs reduced apoptosis markers, reactive oxygen species (ROS) release, and improved cell survival under HSD conditions. Conversely, Ythdc1 knockdown enhanced apoptosis. In rat MI models, transplantation of Ythdc1-overexpressing BMSCs improved cardiac function and reduced myocardial fibrosis. Mechanistically, YTHDC1 interacts with nuclear factor kappa B (NF-κB) inhibitor-alpha mRNA, suggesting its involvement in BMSC survival pathways. This study identifies YTHDC1 as a potential target to enhance BMSC efficacy in MI therapy.
Collapse
Affiliation(s)
- Weiyu Han
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Weixing Sun
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Cardiology, People’s Hospital of Honghuagang District, Zunyi, China
| | - Weiwei Liu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ning Gu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Youcheng Shen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhimei Qiu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaozhong Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
53
|
Han J, Li S, Cao J, Han H, Lu B, Wen T, Bian W. SLC9A2, suppressing by the transcription suppressor ETS1, restrains growth and invasion of osteosarcoma via inhibition of aerobic glycolysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:238-251. [PMID: 37688782 DOI: 10.1002/tox.23963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
Recent studies have shown that Solute Carrier Family 9 Member A2 (SLC9A2) could serve as a biomarker for cancer. However, its mechanism of action in osteosarcoma (OS) was still unclear. In this study, the data sets GSE154530 and GSE99671 were downloaded from the Gene Expression Omnibus (GEO) database, and 31 differentially expressed genes (DEGs) related to methylation were screened by bioinformatics analysis tools. Subsequently, SLC9A2 was screened as a candidate gene from DEGs, which was significantly downregulated in OS. CCK-8, transwell, western blotting and Seahorse XFe24 Cell Metabolic Analyzer assays demonstrated that overexpression of SLC9A2 could constrain OS cell proliferation, invasion, and aerobic glycolysis. Dual-luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assays indicated ETS proto-oncogene 1 (ETS1) was a transcription suppressor of SLC9A2, and overexpression of ETS1 could promote methylation levels in specific regions of the SLC9A2 promoter. ETS1 could promote the proliferation, invasion, and aerobic glycolysis ability of OS cells, as well as tumor growth in vivo by inhibiting the expression of SLC9A2. In addition, SLC9A2, suppressing by ETS1, restrains growth and invasion of OS via inhibition of aerobic glycolysis. Thus, SLC9A2 can function as a key inhibitory factor in the aerobic glycolysis to inhibit proliferation and invasion of OS. This indicated that SLC9A2 has a potential targeted therapeutic effect on OS.
Collapse
Affiliation(s)
- Jiangbo Han
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Shen Li
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Jiongzhe Cao
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Hong Han
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Bin Lu
- Department of Anesthesiology, Xi'an Chang'an District Hospital, Xi'an, China
| | - Tao Wen
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Weiguo Bian
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
| |
Collapse
|
54
|
Bi CF, Liu J, Hu XD, Yang LS, Zhang JF. Novel insights into the regulatory role of N6-methyladenosine methylation modified autophagy in sepsis. Aging (Albany NY) 2023; 15:15676-15700. [PMID: 38112620 PMCID: PMC10781468 DOI: 10.18632/aging.205312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. It is characterized by high morbidity and mortality and one of the major diseases that seriously hang over global human health. Autophagy is a crucial regulator in the complicated pathophysiological processes of sepsis. The activation of autophagy is known to be of great significance for protecting sepsis induced organ dysfunction. Recent research has demonstrated that N6-methyladenosine (m6A) methylation is a well-known post-transcriptional RNA modification that controls epigenetic and gene expression as well as a number of biological processes in sepsis. In addition, m6A affects the stability, export, splicing and translation of transcripts involved in the autophagic process. Although it has been suggested that m6A methylation regulates the biological metabolic processes of autophagy and is more frequently seen in the progression of sepsis pathogenesis, the underlying molecular mechanisms of m6A-modified autophagy in sepsis have not been thoroughly elucidated. The present article fills this gap by providing an epigenetic review of the processes of m6A-modified autophagy in sepsis and its potential role in the development of novel therapeutics.
Collapse
Affiliation(s)
- Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao-Dong Hu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|
55
|
Zheng X, Zhou B, Li Y, Zhong H, Huang Z, Gu M. Transcriptome-wide N 6-methyladenosine methylation profile of atherosclerosis in mice. BMC Genomics 2023; 24:774. [PMID: 38097926 PMCID: PMC10720251 DOI: 10.1186/s12864-023-09878-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a critical pathological event during the progression of cardiovascular diseases. It exhibits fibrofatty lesions on the arterial wall and lacks effective treatment. N6-methyladenosine (m6A) is the most common modification of eukaryotic RNA and plays an important role in regulating the development and progression of cardiovascular diseases. However, the role of m6A modification in AS remains largely unknown. Therefore, in this study, we explored the transcriptome distribution of m6A modification in AS and its potential mechanism. METHODS Methylation Quantification Kit was used to detect the global m6A levels in the aorta of AS mice. Western blot was used to analyze the protein level of methyltransferases. Methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were used to obtain the first transcriptome range analysis of the m6A methylene map in the aorta of AS mice, followed by bioinformatics analysis. qRT-PCR and MeRIP-qRT-PCR were used to measure the mRNA and m6A levels in target genes. RESULTS The global m6A and protein levels of methyltransferase METTL3 were significantly increased in the aorta of AS mice. However, the protein level of demethylase ALKBH5 was significantly decreased. Through MeRIP-seq, we obtained m6A methylation maps in AS and control mice. In total, 26,918 m6A peaks associated with 13,744 genes were detected in AS group, whereas 26,157 m6A peaks associated with 13,283 genes were detected in the control group. Peaks mainly appeared in the coding sequence (CDS) regions close to the stop codon with the RRACH motif. Moreover, functional enrichment analysis demonstrated that m6A-containing genes were significantly enriched in AS-relevant pathways. Interestingly, a negative correlation between m6A methylation abundance and gene expression level was found through the integrated analysis of MeRIP-seq and RNA-seq data. Among the m6A-modified genes, a hypo-methylated but up-regulated (hypo-up) gene Fabp5 may be a potential biomarker of AS. CONCLUSIONS Our study provides transcriptome-wide m6A methylation for the first time to determine the association between m6A modification and AS progression. Our study lays a foundation for further exploring the pathogenesis of AS and provides a new direction for the treatment of AS.
Collapse
Affiliation(s)
- Xinbin Zheng
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, 570203, Haikou, Hainan, P. R. China
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China
| | - Bo Zhou
- Department of Cardiology, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China
| | - Yuzhen Li
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China
| | - Hengren Zhong
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China
| | - Zhengxin Huang
- Department of Cardiology, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China.
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China.
| | - Minhua Gu
- Department of Cardiology, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China.
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China.
| |
Collapse
|
56
|
Han M, Sun H, Zhou Q, Liu J, Hu J, Yuan W, Sun Z. Effects of RNA methylation on Tumor angiogenesis and cancer progression. Mol Cancer 2023; 22:198. [PMID: 38053093 PMCID: PMC10698974 DOI: 10.1186/s12943-023-01879-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/09/2023] [Indexed: 12/07/2023] Open
Abstract
Tumor angiogenesis plays vital roles in the growth and metastasis of cancer. RNA methylation is one of the most common modifications and is widely observed in eukaryotes and prokaryotes. Accumulating studies have revealed that RNA methylation affects the occurrence and development of various tumors. In recent years, RNA methylation has been shown to play an important role in regulating tumor angiogenesis. In this review, we mainly elucidate the mechanisms and functions of RNA methylation on angiogenesis and progression in several cancers. We then shed light on the role of RNA methylation-associated factors and pathways in tumor angiogenesis. Finally, we describe the role of RNA methylation as potential biomarker and novel therapeutic target.
Collapse
Affiliation(s)
- Mingyu Han
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
57
|
Shao N, Ye T, Xuan W, Zhang M, Chen Q, Liu J, Zhou P, Song H, Cai B. The effects of N 6-methyladenosine RNA methylation on the nervous system. Mol Cell Biochem 2023; 478:2657-2669. [PMID: 36899139 DOI: 10.1007/s11010-023-04691-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Epitranscriptomics, also known as "RNA epigenetics", is a type of chemical modification that regulates RNA. RNA methylation is a significant discovery after DNA and histone methylation. The dynamic reversible process of m6A involves methyltransferases (writers), m6A binding proteins (readers), as well as demethylases (erasers). We summarized the current research status of m6A RNA methylation in the neural stem cells' growth, synaptic and axonal function, brain development, learning and memory, neurodegenerative diseases, and glioblastoma. This review aims to provide a theoretical basis for studying the mechanism of m6A methylation and finding its potential therapeutic targets in nervous system diseases.
Collapse
Affiliation(s)
- Nan Shao
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ting Ye
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weiting Xuan
- Department of Neurosurgery (Rehabilitation), Anhui Hospital of Integrated Chinese and Western Medicine, Hefei, 230031, China
| | - Meng Zhang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Qian Chen
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Juan Liu
- Department of Chinese Internal Medicine, Taihe County People's Hospital, Fuyang, 236699, China
| | - Peng Zhou
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Hang Song
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| |
Collapse
|
58
|
Gao X, Liang X, Liu B, Hong Y, He H, Shen Y, Chen J, Huang X, Hu B, Li W, Li X, Zhang Y. Downregulation of ALKBH5 rejuvenates aged human mesenchymal stem cells and enhances their therapeutic efficacy in myocardial infarction. FASEB J 2023; 37:e23294. [PMID: 37966425 DOI: 10.1096/fj.202301292r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/01/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Despite promising results in myocardial infarction (MI), mesenchymal stem cell (MSC)-based therapy is limited by cell senescence. N6-methyladenosine (m6A) messenger RNA methylation has been reported to be closely associated with cell senescence. Nonetheless, its role in the regulation of MSC senescence remains unclear. We examined the role of ALKB homolog 5 (ALKBH5) in regulating MSC senescence and determined whether ALKBH5 downregulation could rejuvenate aged MSCs (AMSCs) to improve their therapeutic efficacy for MI. RNA methylation was determined by m6A dot blotting assay. MSC senescence was evaluated by senescence-associated β-galactosidase (SA-β-gal) staining. A mouse model of acute MI was established by ligation of the left anterior decedent coronary artery (LAD). Compared with young MSCs (YMSCs), m6A level was significantly reduced but ALKBH5 was greatly increased in AMSCs. Overexpression of ALKBH5 reduced m6A modification and accelerated YMSC senescence. Conversely, ALKBH5 knockdown increased m6A modifications and alleviated AMSC senescence. Mechanistically, ALKBH5 regulated the m6A modification and stability of CDKN1C mRNA, which further upregulated CDKN1C expression, leading to MSC senescence. CDKN1C overexpression ameliorated the inhibition of cellular senescence of ALKBH5 siRNA-treated AMSCs. More importantly, compared with AMSCs, shALKBH5-AMSCs transplantation provided a superior cardioprotective effect against MI in mice by improving MSC survival and angiogenesis. We determined that ALKBH5 accelerated MSC senescence through m6A modification-dependent stabilization of the CDKN1C transcript, providing a potential target for MSC rejuvenation. ALKBH5 knockdown rejuvenated AMSCs and enhanced cardiac function when transplanted into the mouse heart following infarction.
Collapse
Affiliation(s)
- Xiaoyan Gao
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiaoting Liang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baojuan Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yimei Hong
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Haiwei He
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ying Shen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiaqi Chen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bei Hu
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Weifeng Li
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xin Li
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuelin Zhang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
59
|
Yang Q, Liang Y, Shi Y, Shang J, Huang X. The ALKBH5/SOX4 axis promotes liver cancer stem cell properties via activating the SHH signaling pathway. J Cancer Res Clin Oncol 2023; 149:15499-15510. [PMID: 37646828 DOI: 10.1007/s00432-023-05309-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Hepatocellular carcinoma (HCC), featured with high prevalence and poor prognosis, is the major cause of cancer-related deaths worldwide. As a subgroup of liver cancer cells capable of differentiation, tumorigenesis and self-renewal, liver cancer stem cells (LCSCs) serve as one of the reasons leading to HCC progression and therapeutic resistance. Therefore, in-depth exploration of novel molecular biomarkers related to LSCSs is of great necessity. In our study, we found that human AlkB homolog H5 (ALKBH5) expression was enriched in LCSCs, which could foster proliferation, invasion and migration of the HCC cells. Mechanically, ALKBH5 positively mediated the expression of SOX4 via demethylation, and SOX4 promoted SHH expression at the transcriptional level to activate sonic hedgehog (SHH) signaling pathway. Furthermore, exosomes derived from CD133+ HCC cells could transmit ALKBH5 into THP-1 cells, which might be associated with M2 polarization of macrophages. In summary, the ALKBH5/SOX4 axis plays a significant role in exacerbating LCSC properties via activating SHH signaling pathway, and ALKBH5 could be a critical effector related to macrophage M2 polarization. These findings might provide a promising new biomarker for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Qinyan Yang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuxin Liang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Shi
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jin Shang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xiaolun Huang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
60
|
Wang C, Hou X, Guan Q, Zhou H, Zhou L, Liu L, Liu J, Li F, Li W, Liu H. RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:412. [PMID: 37884527 PMCID: PMC10603151 DOI: 10.1038/s41392-023-01638-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world, with a high incidence and a youth-oriented tendency. RNA modification is ubiquitous and indispensable in cell, maintaining cell homeostasis and function by dynamically regulating gene expression. Accumulating evidence has revealed the role of aberrant gene expression in CVD caused by dysregulated RNA modification. In this review, we focus on nine common RNA modifications: N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, adenosine-to-inosine (A-to-I) RNA editing, and modifications of U34 on tRNA wobble. We summarize the key regulators of RNA modification and their effects on gene expression, such as RNA splicing, maturation, transport, stability, and translation. Then, based on the classification of CVD, the mechanisms by which the disease occurs and progresses through RNA modifications are discussed. Potential therapeutic strategies, such as gene therapy, are reviewed based on these mechanisms. Herein, some of the CVD (such as stroke and peripheral vascular disease) are not included due to the limited availability of literature. Finally, the prospective applications and challenges of RNA modification in CVD are discussed for the purpose of facilitating clinical translation. Moreover, we look forward to more studies exploring the mechanisms and roles of RNA modification in CVD in the future, as there are substantial uncultivated areas to be explored.
Collapse
Affiliation(s)
- Cong Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuyang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Guan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jijia Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
61
|
Gong C, Wu J, Li H, Luo C, Ji G, Guan X, Liu J, Wang M. METTL3 achieves lipopolysaccharide-induced myocardial injury via m 6A-dependent stabilization of Myh3 mRNA. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119503. [PMID: 37245538 DOI: 10.1016/j.bbamcr.2023.119503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
Septic cardiomyopathy (SCM) was an important pathological component of severe sepsis and septic shock. N6-methyladenosine (m6A) modification was a common RNA modification in both mRNA and non-coding RNAs and was proved to be involved in sepsis and immune disorders. Therefore, the purpose of this study was to investigate the role and mechanism of METTL3 in lipopolysaccharide-induced myocardial injury. We firstly analyzed the expression changes of various m6A-related regulators in human samples in the GSE79962 data and the Receiver Operating Characteristic curve of significantly changed m6A enzymes, showing that METTL3 had a high diagnostic ability in patients with SCM. Western blotting confirmed the high expression of METTL3 in LPS-treated H9C2 cells, which was consistent with the above results in human samples. In vitro and in vivo, the deficiency of METTL3 could improve the cardiac function, cardiac tissue damage, myocardial cell apoptosis and reactive oxygen species levels in LPS-treated H9C2 cells and LPS-induced sepsis rats, respectively. In addition, we obtained 213 differential genes through transcriptome RNA-seq analysis, and conducted GO enrichment analysis and KEGG pathway analysis through DAVID. We also found that the half-life of Myh3 mRNA was significantly reduced after METTL3 deletion and that Myh3 carried several potential m6A modification sites. In conclusion, we found that downregulation of METTL3 reversed LPS-induced myocardial cell and tissue damage and reduced cardiac function, mainly by increasing Myh3 stability. Our study revealed a key role of METTL3-mediated m6A methylation in septic cardiomyopathy, which may offer a potential mechanism for the therapy of septic cardiomyopathy.
Collapse
Affiliation(s)
- Chengwu Gong
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jinlong Wu
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Hao Li
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Congcong Luo
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Xin Guan
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Jichun Liu
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
62
|
Droste P, Wong DWL, Hohl M, von Stillfried S, Klinkhammer BM, Boor P. Semiautomated pipeline for quantitative analysis of heart histopathology. J Transl Med 2023; 21:666. [PMID: 37752535 PMCID: PMC10523682 DOI: 10.1186/s12967-023-04544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Heart diseases are among the leading causes of death worldwide, many of which lead to pathological cardiomyocyte hypertrophy and capillary rarefaction in both patients and animal models, the quantification of which is both technically challenging and highly time-consuming. Here we developed a semiautomated pipeline for quantification of the size of cardiomyocytes and capillary density in cardiac histology, termed HeartJ, by generating macros in ImageJ, a broadly used, open-source, Java-based software. METHODS We have used modified Gomori silver staining, which is easy to perform and digitize in high throughput, or Fluorescein-labeled lectin staining. The latter can be easily combined with other stainings, allowing additional quantitative analysis on the same section, e.g., the size of cardiomyocyte nuclei, capillary density, or single-cardiomyocyte protein expression. We validated the pipeline in a mouse model of cardiac hypertrophy induced by transverse aortic constriction, and in autopsy samples of patients with and without aortic stenosis. RESULTS In both animals and humans, HeartJ-based histology quantification revealed significant hypertrophy of cardiomyocytes reflecting other parameters of hypertrophy and rarefaction of microvasculature and enabling the analysis of protein expression in individual cardiomyocytes. The analysis also revealed that murine and human cardiomyocytes had similar diameters in health and extent of hypertrophy in disease confirming the translatability of our murine cardiac hypertrophy model. HeartJ enables a rapid analysis that would not be feasible by manual methods. The pipeline has little hardware requirements and is freely available. CONCLUSIONS In summary, our analysis pipeline can facilitate effective and objective quantitative histological analyses in preclinical and clinical heart samples.
Collapse
Affiliation(s)
- Patrick Droste
- LaBooratory of Nephropathology, Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Division of Nephrology and Clinical Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Dickson W L Wong
- LaBooratory of Nephropathology, Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mathias Hohl
- Department of Internal Medicine III, University Hospital, Saarland University, Homburg, Germany
| | - Saskia von Stillfried
- LaBooratory of Nephropathology, Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Barbara M Klinkhammer
- LaBooratory of Nephropathology, Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Peter Boor
- LaBooratory of Nephropathology, Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
- Division of Nephrology and Clinical Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
63
|
Dong S, Sun Y, Liu C, Li Y, Yu S, Zhang Q, Xu Y. Stage-specific requirement for m 6A RNA methylation during cardiac differentiation of pluripotent stem cells. Differentiation 2023; 133:77-87. [PMID: 37506593 DOI: 10.1016/j.diff.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Precise spatiotemporal control of gene expression patterns is critical for normal development. Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), with the ability of unlimited self-renewal and differentiation into any cell type, provide a unique tool for understanding the underlying mechanism of development and disease in a dish. N6-methyl-adenosine (m6A) modification is the most extensive internal mRNA modification, which regulates almost all aspects of mRNA metabolism and thus extensively participates in gene expression regulation. However, the role of m6A during cardiogenesis still needs to be fully elucidated. Here, we found that core components of m6A methyltransferase decreased during cardiomyocyte differentiation. Impeding m6A deposition, by either deleting the m6A methyltransferase Mettl3 or overexpressing m6A demethylase alkB homolog 5 (Alkbh5), at early stages of cardiac differentiation of mouse pluripotent stem cells, led to inhibition of cardiac gene activation and retardation of the outgrowth of embryoid bodies, whereas interfering m6A modification at later stages of differentiation had minimal effects. Consistently, stage-specific inhibition of METTL3 with METTL3 inhibitor STM2457 during human ESCs (hESCs) cardiac differentiation demonstrated a similarly pivotal role of METTL3 for the induction of mesodermal cells while dispensable function for later stages. In summary, our study reveals a stage-specific requirement of m6A on the cardiac differentiation of pluripotent stem cells and demonstrates that precise tuning of m6A level is critical for cardiac differentiation.
Collapse
Affiliation(s)
- Shuai Dong
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuetong Sun
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang Liu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanli Li
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Yu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
64
|
Yang H, Yang Y, Kiskin FN, Shen M, Zhang JZ. Recent advances in regulating the proliferation or maturation of human-induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2023; 14:228. [PMID: 37649113 PMCID: PMC10469435 DOI: 10.1186/s13287-023-03470-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
In the last decade, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM)-based cell therapy has drawn broad attention as a potential therapy for treating injured hearts. However, mass production of hiPSC-CMs remains challenging, limiting their translational potential in regenerative medicine. Therefore, multiple strategies including cell cycle regulators, small molecules, co-culture systems, and epigenetic modifiers have been used to improve the proliferation of hiPSC-CMs. On the other hand, the immaturity of these proliferative hiPSC-CMs could lead to lethal arrhythmias due to their limited ability to functionally couple with resident cardiomyocytes. To achieve functional maturity, numerous methods such as prolonged culture, biochemical or biophysical stimulation, in vivo transplantation, and 3D culture approaches have been employed. In this review, we summarize recent approaches used to promote hiPSC-CM proliferation, and thoroughly review recent advances in promoting hiPSC-CM maturation, which will serve as the foundation for large-scale production of mature hiPSC-CMs for future clinical applications.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Fedir N Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
65
|
Castillo-Casas JM, Caño-Carrillo S, Sánchez-Fernández C, Franco D, Lozano-Velasco E. Comparative Analysis of Heart Regeneration: Searching for the Key to Heal the Heart-Part II: Molecular Mechanisms of Cardiac Regeneration. J Cardiovasc Dev Dis 2023; 10:357. [PMID: 37754786 PMCID: PMC10531542 DOI: 10.3390/jcdd10090357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, among which ischemic heart disease is the most representative. Myocardial infarction results from occlusion of a coronary artery, which leads to an insufficient blood supply to the myocardium. As it is well known, the massive loss of cardiomyocytes cannot be solved due the limited regenerative ability of the adult mammalian hearts. In contrast, some lower vertebrate species can regenerate the heart after an injury; their study has disclosed some of the involved cell types, molecular mechanisms and signaling pathways during the regenerative process. In this 'two parts' review, we discuss the current state-of-the-art of the main response to achieve heart regeneration, where several processes are involved and essential for cardiac regeneration.
Collapse
Affiliation(s)
- Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Cristina Sánchez-Fernández
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| |
Collapse
|
66
|
Liu XH, Liu Z, Ren ZH, Chen HX, Zhang Y, Zhang Z, Cao N, Luo GZ. Co-effects of m6A and chromatin accessibility dynamics in the regulation of cardiomyocyte differentiation. Epigenetics Chromatin 2023; 16:32. [PMID: 37568210 PMCID: PMC10416456 DOI: 10.1186/s13072-023-00506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Cardiomyocyte growth and differentiation rely on precise gene expression regulation, with epigenetic modifications emerging as key players in this intricate process. Among these modifications, N6-methyladenosine (m6A) stands out as one of the most prevalent modifications on mRNA, exerting influence over mRNA metabolism and gene expression. However, the specific function of m6A in cardiomyocyte differentiation remains poorly understood. RESULTS We investigated the relationship between m6A modification and cardiomyocyte differentiation by conducting a comprehensive profiling of m6A dynamics during the transition from pluripotent stem cells to cardiomyocytes. Our findings reveal that while the overall m6A modification level remains relatively stable, the m6A levels of individual genes undergo significant changes throughout cardiomyocyte differentiation. We discovered the correlation between alterations in chromatin accessibility and the binding capabilities of m6A writers, erasers, and readers. The changes in chromatin accessibility influence the recruitment and activity of m6A regulatory proteins, thereby impacting the levels of m6A modification on specific mRNA transcripts. CONCLUSION Our data demonstrate that the coordinated dynamics of m6A modification and chromatin accessibility are prominent during the cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Xue-Hong Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhun Liu
- Zhongshan School of Medicine, Sun Yat-sen University, No.74 Zhongshan Rd.2, Guangzhou, 510080, China
| | - Ze-Hui Ren
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hong-Xuan Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ying Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, No.74 Zhongshan Rd.2, Guangzhou, 510080, China
| | - Zhang Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Nan Cao
- Zhongshan School of Medicine, Sun Yat-sen University, No.74 Zhongshan Rd.2, Guangzhou, 510080, China.
| | - Guan-Zheng Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
67
|
Wang D, Zheng T, Zhou S, Liu M, Liu Y, Gu X, Mao S, Yu B. Promoting axon regeneration by inhibiting RNA N6-methyladenosine demethylase ALKBH5. eLife 2023; 12:e85309. [PMID: 37535403 PMCID: PMC10400074 DOI: 10.7554/elife.85309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/04/2023] [Indexed: 08/04/2023] Open
Abstract
A key limiting factor of successful axon regeneration is the intrinsic regenerative ability in both the peripheral nervous system (PNS) and central nervous system (CNS). Previous studies have identified intrinsic regenerative ability regulators that act on gene expression in injured neurons. However, it is less known whether RNA modifications play a role in this process. Here, we systematically screened the functions of all common m6A modification-related enzymes in axon regeneration and report ALKBH5, an evolutionarily conserved RNA m6A demethylase, as a regulator of axonal regeneration in rodents. In PNS, knockdown of ALKBH5 enhanced sensory axonal regeneration, whereas overexpressing ALKBH5 impaired axonal regeneration in an m6A-dependent manner. Mechanistically, ALKBH5 increased the stability of Lpin2 mRNA and thus limited regenerative growth associated lipid metabolism in dorsal root ganglion neurons. Moreover, in CNS, knockdown of ALKBH5 enhanced the survival and axonal regeneration of retinal ganglion cells after optic nerve injury. Together, our results suggest a novel mechanism regulating axon regeneration and point ALKBH5 as a potential target for promoting axon regeneration in both PNS and CNS.
Collapse
Affiliation(s)
- Dong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Tiemei Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Mingwen Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| |
Collapse
|
68
|
Shi DL. RNA-Binding Proteins as Critical Post-Transcriptional Regulators of Cardiac Regeneration. Int J Mol Sci 2023; 24:12004. [PMID: 37569379 PMCID: PMC10418649 DOI: 10.3390/ijms241512004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Myocardial injury causes death to cardiomyocytes and leads to heart failure. The adult mammalian heart has very limited regenerative capacity. However, the heart from early postnatal mammals and from adult lower vertebrates can fully regenerate after apical resection or myocardial infarction. Thus, it is of particular interest to decipher the mechanism underlying cardiac regeneration that preserves heart structure and function. RNA-binding proteins, as key regulators of post-transcriptional gene expression to coordinate cell differentiation and maintain tissue homeostasis, display dynamic expression in fetal and adult hearts. Accumulating evidence has demonstrated their importance for the survival and proliferation of cardiomyocytes following neonatal and postnatal cardiac injury. Functional studies suggest that RNA-binding proteins relay damage-stimulated cell extrinsic or intrinsic signals to regulate heart regenerative capacity by reprogramming multiple molecular and cellular processes, such as global protein synthesis, metabolic changes, hypertrophic growth, and cellular plasticity. Since manipulating the activity of RNA-binding proteins can improve the formation of new cardiomyocytes and extend the window of the cardiac regenerative capacity in mammals, they are potential targets of therapeutic interventions for cardiovascular disease. This review discusses our evolving understanding of RNA-binding proteins in regulating cardiac repair and regeneration, with the aim to identify important open questions that merit further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Department of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Laboratory of Developmental Biology (CNRS-UMR7622), Institute de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France
| |
Collapse
|
69
|
Zhao Y, Che Y, Liu Q, Zhou S, Xiao Y. Analyses of m6A regulatory genes and subtype classification in atrial fibrillation. Front Cell Neurosci 2023; 17:1073538. [PMID: 37435047 PMCID: PMC10330950 DOI: 10.3389/fncel.2023.1073538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Objective To explore the role of m6A regulatory genes in atrial fibrillation (AF), we classified atrial fibrillation patients into subtypes by two genotyping methods associated with m6A regulatory genes and explored their clinical significance. Methods We downloaded datasets from the Gene Expression Omnibus (GEO) database. The m6A regulatory gene expression levels were extracted. We constructed and compared random forest (RF) and support vector machine (SVM) models. Feature genes were selected to develop a nomogram model with the superior model. We identified m6A subtypes based on significantly differentially expressed m6A regulatory genes and identified m6A gene subtypes based on m6A-related differentially expressed genes (DEGs). Comprehensive evaluation of the two m6A modification patterns was performed. Results The data of 107 samples from three datasets, GSE115574, GSE14975 and GSE41177, were acquired from the GEO database for training models, comprising 65 AF samples and 42 sinus rhythm (SR) samples. The data of 26 samples from dataset GSE79768 comprising 14 AF samples and 12 SR samples were acquired from the GEO database for external validation. The expression levels of 23 regulatory genes of m6A were extracted. There were correlations among the m6A readers, erasers, and writers. Five feature m6A regulatory genes, ZC3H13, YTHDF1, HNRNPA2B1, IGFBP2, and IGFBP3, were determined (p < 0.05) to establish a nomogram model that can predict the incidence of atrial fibrillation with the RF model. We identified two m6A subtypes based on the five significant m6A regulatory genes (p < 0.05). Cluster B had a lower immune infiltration of immature dendritic cells than cluster A (p < 0.05). On the basis of six m6A-related DEGs between m6A subtypes (p < 0.05), two m6A gene subtypes were identified. Both cluster A and gene cluster A scored higher than the other clusters in terms of m6A score computed by principal component analysis (PCA) algorithms (p < 0.05). The m6A subtypes and m6A gene subtypes were highly consistent. Conclusion The m6A regulatory genes play non-negligible roles in atrial fibrillation. A nomogram model developed by five feature m6A regulatory genes could be used to predict the incidence of atrial fibrillation. Two m6A modification patterns were identified and evaluated comprehensively, which may provide insights into the classification of atrial fibrillation patients and guide treatment.
Collapse
Affiliation(s)
- Yingliang Zhao
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yanyun Che
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
70
|
Chen XZ, Li XM, Xu SJ, Hu S, Wang T, Li RF, Liu CY, Xue JQ, Zhou LY, Wang YH, Li PF, Wang K. TMEM11 regulates cardiomyocyte proliferation and cardiac repair via METTL1-mediated m 7G methylation of ATF5 mRNA. Cell Death Differ 2023:10.1038/s41418-023-01179-0. [PMID: 37286744 DOI: 10.1038/s41418-023-01179-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
The mitochondrial transmembrane (TMEM) protein family has several essential physiological functions. However, its roles in cardiomyocyte proliferation and cardiac regeneration remain unclear. Here, we detected that TMEM11 inhibits cardiomyocyte proliferation and cardiac regeneration in vitro. TMEM11 deletion enhanced cardiomyocyte proliferation and restored heart function after myocardial injury. In contrast, TMEM11-overexpression inhibited neonatal cardiomyocyte proliferation and regeneration in mouse hearts. TMEM11 directly interacted with METTL1 and enhanced m7G methylation of Atf5 mRNA, thereby increasing ATF5 expression. A TMEM11-dependent increase in ATF5 promoted the transcription of Inca1, an inhibitor of cyclin-dependent kinase interacting with cyclin A1, which suppressed cardiomyocyte proliferation. Hence, our findings revealed that TMEM11-mediated m7G methylation is involved in the regulation of cardiomyocyte proliferation, and targeting the TMEM11-METTL1-ATF5-INCA1 axis may serve as a novel therapeutic strategy for promoting cardiac repair and regeneration.
Collapse
Affiliation(s)
- Xin-Zhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xin-Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Shi-Jun Xu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029, Beijing, China
| | - Shen Hu
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, 100730, Beijing, China
| | - Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Rui-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Cui-Yun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Jun-Qiang Xue
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lu-Yu Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yun-Hong Wang
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 100037, Beijing, China.
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
71
|
Zhang X, Cai H, Xu H, Dong S, Ma H. Critical roles of m 6A methylation in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1187514. [PMID: 37273867 PMCID: PMC10235536 DOI: 10.3389/fcvm.2023.1187514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) have been established as a major cause of mortality globally. However, the exact pathogenesis remains obscure. N6-methyladenosine (m6A) methylation is the most common epigenetic modification on mRNAs regulated by methyltransferase complexes (writers), demethylase transferases (erasers) and binding proteins (readers). It is now understood that m6A is a major player in physiological and pathological cardiac processes. m6A methylation are potentially involved in many mechanisms, for instance, regulation of calcium homeostasis, endothelial function, different forms of cell death, autophagy, endoplasmic reticulum stress, macrophage response and inflammation. In this review, we will summarize the molecular functions of m6A enzymes. We mainly focus on m6A-associated mechanisms and functions in CVDs, especially in heart failure and ischemia heart disease. We will also discuss the potential application and clinical transformation of m6A modification.
Collapse
Affiliation(s)
- Xinmin Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
- The Public Laboratory Platform of the First Hospital of Jilin University, Changchun, China
| | - He Cai
- The Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - He Xu
- Department of Integrative Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, China
| | - Su Dong
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Haichun Ma
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
72
|
Li S, Shen S, Xu H, Cai S, Yuan X, Wang C, Zhang X, Chen S, Chen J, Shi DL, Zhang L. IGF2BP3 promotes adult myocardial regeneration by stabilizing MMP3 mRNA through interaction with m6A modification. Cell Death Discov 2023; 9:164. [PMID: 37188676 DOI: 10.1038/s41420-023-01457-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
Myocardial infarction that causes damage to heart muscle can lead to heart failure. The identification of molecular mechanisms promoting myocardial regeneration represents a promising strategy to improve cardiac function. Here we show that IGF2BP3 plays an important role in regulating adult cardiomyocyte proliferation and regeneration in a mouse model of myocardial infarction. IGF2BP3 expression progressively decreases during postnatal development and becomes undetectable in the adult heart. However, it becomes upregulated after cardiac injury. Both gain- and loss-of-function analyses indicate that IGF2BP3 regulates cardiomyocyte proliferation in vitro and in vivo. In particular, IGF2BP3 promotes cardiac regeneration and improves cardiac function after myocardial infarction. Mechanistically, we demonstrate that IGF2BP3 binds to and stabilizes MMP3 mRNA through interaction with N6-methyladenosine modification. The expression of MMP3 protein is also progressively downregulated during postnatal development. Functional analyses indicate that MMP3 acts downstream of IGF2BP3 to regulate cardiomyocyte proliferation. These results suggest that IGF2BP3-mediated post-transcriptional regulation of extracellular matrix and tissue remodeling contributes to cardiomyocyte regeneration. They should help to define therapeutic strategy for ameliorating myocardial infarction by inducing cell proliferation and heart repair.
Collapse
Affiliation(s)
- Simeng Li
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Zhanjiang Key Laboratory of Organ Function Injury and Protection, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Siman Shen
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Zhanjiang Key Laboratory of Organ Function Injury and Protection, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hao Xu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Zhanjiang Key Laboratory of Organ Function Injury and Protection, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuyun Cai
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Zhanjiang Key Laboratory of Organ Function Injury and Protection, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaodong Yuan
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Zhanjiang Key Laboratory of Organ Function Injury and Protection, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Changsen Wang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Zhanjiang Key Laboratory of Organ Function Injury and Protection, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaojun Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Zhanjiang Key Laboratory of Organ Function Injury and Protection, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Suyun Chen
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Zhanjiang Key Laboratory of Organ Function Injury and Protection, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jianning Chen
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Zhanjiang Key Laboratory of Organ Function Injury and Protection, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - De-Li Shi
- Zhanjiang Key Laboratory of Organ Function Injury and Protection, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005, Paris, France.
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Zhanjiang Key Laboratory of Organ Function Injury and Protection, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
73
|
Xu P, Li X, Fan J, Wang C, Lin A, Lian H. Comprehensive Identification and Expression Analysis of the YTH Family of RNA-Binding Proteins in Strawberry. PLANTS (BASEL, SWITZERLAND) 2023; 12:1449. [PMID: 37050075 PMCID: PMC10097400 DOI: 10.3390/plants12071449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Plant growth and development processes are tightly regulated at multiple levels, including transcriptional and post-transcriptional levels, and the RNA-binding protein YTH regulates gene expression during growth and development at the post-transcriptional level by regulating RNA splicing, processing, stability, and translation. We performed a systematic characterization of YTH genes in diploid forest strawberry and identified a total of nine YTH genes. With the help of phylogenetic analysis, these nine genes were found to belong to two different groups, YTHDC and YTHDF, with YTHDF being further subdivided into three subfamilies. Replication analysis showed that YTH3 and YTH4 are a gene pair generated by tandem repeat replication. These two genes have similarities in gene structure, number of motifs, and distribution patterns. Promoter analysis revealed the presence of multiple developmental, stress response, and hormone-response-related cis-elements. Analysis of available transcriptome data showed that the expression levels of most of the YTH genes were stable with no dramatic changes during development in different tissues. However, YTH3 maintained high expression levels in all tissues and during fruit development, and YTH4 was expressed at higher levels in tissues such as flowers, leaves, and seedlings, while it was significantly lower than YTH3 in white fruits and ripening fruits with little fluctuation. Taken together, our study provides insightful and comprehensive basic information for the study of YTH genes in strawberry.
Collapse
|
74
|
Chen L, Gao Y, Xu S, Yuan J, Wang M, Li T, Gong J. N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms. Front Immunol 2023; 14:1162607. [PMID: 36999016 PMCID: PMC10043241 DOI: 10.3389/fimmu.2023.1162607] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
As the most abundant and conserved internal modification in eukaryote RNAs, N6-methyladenosine (m6A) is involved in a wide range of physiological and pathological processes. The YT521-B homology (YTH) domain-containing family proteins (YTHDFs), including YTHDF1, YTHDF2, and YTHDF3, are a class of cytoplasmic m6A-binding proteins defined by the vertebrate YTH domain, and exert extensive functions in regulating RNA destiny. Distinct expression patterns of the YTHDF family in specific cell types or developmental stages result in prominent differences in multiple biological processes, such as embryonic development, stem cell fate, fat metabolism, neuromodulation, cardiovascular effect, infection, immunity, and tumorigenesis. The YTHDF family mediates tumor proliferation, metastasis, metabolism, drug resistance, and immunity, and possesses the potential of predictive and therapeutic biomarkers. Here, we mainly summary the structures, roles, and mechanisms of the YTHDF family in physiological and pathological processes, especially in multiple cancers, as well as their current limitations and future considerations. This will provide novel angles for deciphering m6A regulation in a biological system.
Collapse
Affiliation(s)
- Lin Chen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simiao Xu
- Division of Endocrinology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Branch of National Clinical Research Center for Metabolic Disease, Wuhan, China
| | - Jinxiong Yuan
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Gong,
| |
Collapse
|
75
|
Zare A, Salehpour A, Khoradmehr A, Bakhshalizadeh S, Najafzadeh V, Almasi-Turk S, Mahdipour M, Shirazi R, Tamadon A. Epigenetic Modification Factors and microRNAs Network Associated with Differentiation of Embryonic Stem Cells and Induced Pluripotent Stem Cells toward Cardiomyocytes: A Review. Life (Basel) 2023; 13:life13020569. [PMID: 36836926 PMCID: PMC9965891 DOI: 10.3390/life13020569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 02/22/2023] Open
Abstract
More research is being conducted on myocardial cell treatments utilizing stem cell lines that can develop into cardiomyocytes. All of the forms of cardiac illnesses have shown to be quite amenable to treatments using embryonic (ESCs) and induced pluripotent stem cells (iPSCs). In the present study, we reviewed the differentiation of these cell types into cardiomyocytes from an epigenetic standpoint. We also provided a miRNA network that is devoted to the epigenetic commitment of stem cells toward cardiomyocyte cells and related diseases, such as congenital heart defects, comprehensively. Histone acetylation, methylation, DNA alterations, N6-methyladenosine (m6a) RNA methylation, and cardiac mitochondrial mutations are explored as potential tools for precise stem cell differentiation.
Collapse
Affiliation(s)
- Afshin Zare
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Aria Salehpour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vahid Najafzadeh
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Sahar Almasi-Turk
- Department of Basic Sciences, School of Medicine, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
- Correspondence: (M.M.); (R.S.); (A.T.)
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence: (M.M.); (R.S.); (A.T.)
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz 7135644144, Iran
- Correspondence: (M.M.); (R.S.); (A.T.)
| |
Collapse
|
76
|
The Effect of N6-Methyladenosine Regulators and m6A Reader YTHDC1-Mediated N6-Methyladenosine Modification Is Involved in Oxidative Stress in Human Aortic Dissection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3918393. [PMID: 36819785 PMCID: PMC9935809 DOI: 10.1155/2023/3918393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 11/24/2022] [Indexed: 02/11/2023]
Abstract
Aortic dissection (AD) develops pathological changes in the separation of the true and false aortic lumen, with high lethality. m6A methylation and oxidative stress have also been shown to be involved in the onset of AD. Through bioinformatics methods, three differentially expressed m6A regulators (YTHDC1, YTHDC2, and RBM15) were excavated from the GSE52093 dataset in the Gene Expression Omnibus (GEO) database, and functional enrichment analysis of the differentially expressed genes (DEGs) regulated by m6A regulators was performed. Then, the genes with oxidative stress-related functions among these genes were found. The protein interaction network of the oxidative stress-related genes and the competing endogenous RNA- (ceRNA-) miRNA-mRNA network were constructed. Among them, DHCR24, P4HB, and PDGFRA, which have m6A differences in AD samples, were selected as key genes. We also performed immune infiltration analysis, as well as cell-gene correlation analysis, on samples from the dataset. The results showed that YTHDC1 was positively correlated with macrophage M1 and negatively correlated with macrophage M2. Finally, we extracted AD and healthy aorta RNA and protein from human tissues that were taken from AD patients and patients who received heart transplants, performed quantitative real-time PCR (qRT-PCR) on YTHDC2 and RBM15, and performed qRT-PCR and western blot (WB) detection on YTHDC1 to verify their differences in AD. The mRNA and protein levels of YTHDC1 were consistent with the results of bioinformatics analysis and were downregulated in AD. Immunofluorescence (IF) was used to colocalize YTHDC1 and endothelial cell marker CD31. After knocking down YTHDC1 in human umbilical vein endothelial cells (HUVECs), reactive oxygen species (ROS) levels had a tendency to increase and the expression of peroxide dismutase SOD2 was decreased. This study provides assistance in discovering the role of m6A regulator YTHDC1 in AD. In particular, m6A modification participates in oxidative stress and jointly affects AD.
Collapse
|
77
|
Zhu X, Tang H, Yang M, Yin K. N6-methyladenosine in macrophage function: a novel target for metabolic diseases. Trends Endocrinol Metab 2023; 34:66-84. [PMID: 36586778 DOI: 10.1016/j.tem.2022.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent internal transcriptional modifications. Evidence has highlighted changes in m6A in metabolic disorders and various metabolic diseases. However, the precise mechanisms of these m6A changes in such conditions are not understood. Macrophages are crucial for the innate immune system and exert either beneficial or harmful roles in metabolic disease. Notably, m6A was found to be closely related to macrophage phenotype and dysfunction. In this review, we summarize m6A in macrophage function from the perspective of macrophage development, activation, and polarization, pyroptosis, and metabolic disorders. Furthermore, we discuss how m6A-mediated macrophage function affects metabolic diseases, including atherosclerosis and nonalcoholic fatty liver disease (NAFLD). Finally, we discuss challenges and prospects for m6A in macrophage and metabolic diseases with the aim of providing guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541100, China; Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi 541199, China
| | - HaoJun Tang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541100, China
| | - Min Yang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541100, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541100, China; Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi 541199, China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, China.
| |
Collapse
|
78
|
Zhu Y, Li J, Yang H, Yang X, Zhang Y, Yu X, Li Y, Chen G, Yang Z. The potential role of m6A reader YTHDF1 as diagnostic biomarker and the signaling pathways in tumorigenesis and metastasis in pan-cancer. Cell Death Dis 2023; 9:34. [PMID: 36707507 PMCID: PMC9883452 DOI: 10.1038/s41420-023-01321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/29/2023]
Abstract
m6A is an important RNA methylation in progression of various human cancers. As the m6A reader protein, YTHDF1 is reported to accelerate m6A-modified mRNAs translation in cytoplasm. It is highly expressed in various human cancers and contributes to the progression and metastasis of cancers. YTHDF1 was closely associated with poor prognosis and also used as a molecular marker for clinical diagnosis or therapy in human cancers. It has been reported to promote chemoresistance to Adriamycin, Cisplatin and Olaparib by increasing mRNA stability of its target molecule. Moreover, it contributes to CSC-like characteristic of tumor cells and inducing the antitumor immune microenvironment. Here, we reviewed the clinical diagnostic and prognostic values of YTHDF1, as well as the molecular mechanisms of YTHDF1 in progression and metastasis of human cancers.
Collapse
Affiliation(s)
- Yanan Zhu
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Jing Li
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Hang Yang
- grid.415444.40000 0004 1800 0367Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, 650106 Kunming, Yunnan China
| | - Xinyi Yang
- grid.413458.f0000 0000 9330 9891Guizhou Medical University, 550004 Guiyang, Guizhou China
| | - Ya Zhang
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Xinchao Yu
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Ying Li
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Gangxian Chen
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Zuozhang Yang
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| |
Collapse
|
79
|
Rigaud VOC, Hoy RC, Kurian J, Zarka C, Behanan M, Brosious I, Pennise J, Patel T, Wang T, Johnson J, Kraus LM, Mohsin S, Houser SR, Khan M. RNA-Binding Protein LIN28a Regulates New Myocyte Formation in the Heart Through Long Noncoding RNA-H19. Circulation 2023; 147:324-337. [PMID: 36314132 PMCID: PMC9870945 DOI: 10.1161/circulationaha.122.059346] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/17/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Developmental cardiac tissue holds remarkable capacity to regenerate after injury and consists of regenerative mononuclear diploid cardiomyocytes. On maturation, mononuclear diploid cardiomyocytes become binucleated or polyploid and exit the cell cycle. Cardiomyocyte metabolism undergoes a profound shift that coincides with cessation of regeneration in the postnatal heart. However, whether reprogramming metabolism promotes persistence of regenerative mononuclear diploid cardiomyocytes enhancing cardiac function and repair after injury is unknown. Here, we identify a novel role for RNA-binding protein LIN28a, a master regulator of cellular metabolism in cardiac repair after injury. METHODS LIN28a overexpression was tested using mouse transgenesis on postnatal cardiomyocyte numbers, cell cycle, and response to apical resection injury. With the use of neonatal and adult cell culture systems and adult and Mosaic Analysis with Double Markers myocardial injury models in mice, the effect of LIN28a overexpression on cardiomyocyte cell cycle and metabolism was tested. Last, isolated adult cardiomyocytes from LIN28a and wild-type mice 4 days after myocardial injury were used for RNA-immunoprecipitation sequencing. RESULTS LIN28a was found to be active primarily during cardiac development and rapidly decreases after birth. LIN28a reintroduction at postnatal day (P) 1, P3, P5, and P7 decreased maturation-associated polyploidization, nucleation, and cell size, enhancing cardiomyocyte cell cycle activity in LIN28a transgenic pups compared with wild-type littermates. Moreover, LIN28a overexpression extended cardiomyocyte cell cycle activity beyond P7 concurrent with increased cardiac function 30 days after apical resection. In the adult heart, LIN28a overexpression attenuated cardiomyocyte apoptosis, enhanced cell cycle activity, cardiac function, and survival in mice 12 weeks after myocardial infarction compared with wild-type littermate controls. Instead, LIN28a small molecule inhibitor attenuated the proreparative effects of LIN28a on the heart. Neonatal rat ventricular myocytes overexpressing LIN28a mechanistically showed increased glycolysis, ATP production, and levels of metabolic enzymes compared with control. LIN28a immunoprecipitation followed by RNA-immunoprecipitation sequencing in cardiomyocytes isolated from LIN28a-overexpressing hearts after injury identified long noncoding RNA-H19 as its most significantly altered target. Ablation of long noncoding RNA-H19 blunted LIN28a-induced enhancement on cardiomyocyte metabolism and cell cycle activity. CONCLUSIONS Collectively, LIN28a reprograms cardiomyocyte metabolism and promotes persistence of mononuclear diploid cardiomyocytes in the injured heart, enhancing proreparative processes, thereby linking cardiomyocyte metabolism to regulation of ploidy/nucleation and repair in the heart.
Collapse
Affiliation(s)
- Vagner Oliveira Carvalho Rigaud
- Center for Metabolic Disease Research (V.0.C.R., R.C.H., J.K., C.Z., M.B., I.B., J.P., T.P., M.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Robert C Hoy
- Center for Metabolic Disease Research (V.0.C.R., R.C.H., J.K., C.Z., M.B., I.B., J.P., T.P., M.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Justin Kurian
- Center for Metabolic Disease Research (V.0.C.R., R.C.H., J.K., C.Z., M.B., I.B., J.P., T.P., M.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Clare Zarka
- Center for Metabolic Disease Research (V.0.C.R., R.C.H., J.K., C.Z., M.B., I.B., J.P., T.P., M.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Michael Behanan
- Center for Metabolic Disease Research (V.0.C.R., R.C.H., J.K., C.Z., M.B., I.B., J.P., T.P., M.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Isabella Brosious
- Center for Metabolic Disease Research (V.0.C.R., R.C.H., J.K., C.Z., M.B., I.B., J.P., T.P., M.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jennifer Pennise
- Center for Metabolic Disease Research (V.0.C.R., R.C.H., J.K., C.Z., M.B., I.B., J.P., T.P., M.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Tej Patel
- Center for Metabolic Disease Research (V.0.C.R., R.C.H., J.K., C.Z., M.B., I.B., J.P., T.P., M.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Tao Wang
- Center for Cardiovascular Research (T.W., J.J., L.M.K., S.M., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jaslyn Johnson
- Center for Cardiovascular Research (T.W., J.J., L.M.K., S.M., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Lindsay M Kraus
- Center for Cardiovascular Research (T.W., J.J., L.M.K., S.M., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Sadia Mohsin
- Center for Cardiovascular Research (T.W., J.J., L.M.K., S.M., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Steven R Houser
- Center for Cardiovascular Research (T.W., J.J., L.M.K., S.M., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Mohsin Khan
- Center for Metabolic Disease Research (V.0.C.R., R.C.H., J.K., C.Z., M.B., I.B., J.P., T.P., M.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
- Department of Cardiovascular Sciences (M.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
80
|
ALKBH5 ALLEVIATES HYPOXIA POSTCONDITIONING INJURY IN d -GALACTOSE-INDUCED SENESCENT CARDIOMYOCYTES BY REGULATING STAT3. Shock 2023; 59:91-98. [PMID: 36609501 DOI: 10.1097/shk.0000000000002031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABSTRACT Ischemic postconditioning (I/Post) reduces I/R injury by activating endogenous cardioprotection mechanisms, such as the JAK/signal transducer and activator of transcription 3 (STAT3) and PI3K/Akt pathways, which offer a traditional approach to myocardial protection. According to a previous study, cardioprotection by I/Post may be lost in aged mice, and in our previous research, hypoxic postconditioning (H/Post) lacked a protective effect in senescent cardiomyocytes, which was associated with low expression of long noncoding RNA H19. The N6-methyladenosine (m 6 A) modification is a dynamic and reversible process that has been confirmed to play a role in cardiovascular diseases. However, the mechanisms of m 6 A modification in myocardial I/Post remain to be explored. Neonatal cardiomyocytes were isolated from 2-day-old Sprague-Dawley rats, and senescence was induced by d -galactose, followed by stimulation of hypoxia-reoxygenation and H/Post. Hypoxic injury was evaluated by cell viability and the Bcl-2/Bax protein ratio. Total m 6 A levels were measured using a colorimetric m 6 A RNA Methylation Quantification Kit, and the m 6 A modified and differentially expressed mRNA was determined by MeRIP (methylated RNA immunoprecipitation). We found that H/Post increased m 6 A methylation and decreased RNA mA demethylase alkB homolog 5 (ALKBH5) expression in aged cardiomyocytes. Furthermore, ALKBH5 knockdown exacerbated injury following H/Post in senescent cardiomyocytes. In addition, ALKBH5 regulated STAT3 expression by mediating its m 6 A modification and long noncoding RNA H19/miR-124-3p. ALKBH5 also alleviated the H/Post injury induced by the low expression of STAT3 in senescent cardiomyocytes.
Collapse
|
81
|
Liu L, Liu Z. m 6A eraser ALKBH5 mitigates the apoptosis of cardiomyocytes in ischemia reperfusion injury through m 6A/SIRT1 axis. PeerJ 2023; 11:e15269. [PMID: 37193033 PMCID: PMC10183170 DOI: 10.7717/peerj.15269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 05/18/2023] Open
Abstract
Recent studies have shown that the potential regulatory role of N6-methyladenine (m6A) modification may affect the occurrence and development of various cardiovascular diseases. However, the regulatory mechanism of m6A modification on myocardial ischemia reperfusion injury (MIRI) is rarely reported. A mouse model of myocardial ischemia reperfusion (I/R) was established by ligation and perfusion of the left anterior descending coronary artery, and a cellular model of hypoxia/reperfusion (H/R) was conducted in cardiomyocytes (CMs). We found that the protein expression of ALKBH5 in myocardial tissues and cells were decreased, accompanied by increased m6A modification level. Overexpression of ALKBH5 significantly inhibited H/R-induced oxidative stress and apoptosis in CMs. Mechanistically, there was an enriched m6A motif in the 3'-UTR of SIRT1 genome, and ALKBH5 overexpression promoted the stability of SIRT1 mRNA. Furthermore, results using overexpression or knockdown of SIRT1 confirmed the protective effect of SIRT1 on H/R induced CMs apoptosis. Together, our study reveals a critical role of ALKBH5-medicated m6A on CM apoptosis, supplying an important regulating effect of m6A methylation in ischemic heart disease.
Collapse
|
82
|
Ouyang H, Zhang J, Chi D, Zhang K, Huang Y, Huang J, Huang W, Bai X. The YTHDF1-TRAF6 pathway regulates the neuroinflammatory response and contributes to morphine tolerance and hyperalgesia in the periaqueductal gray. J Neuroinflammation 2022; 19:310. [PMID: 36550542 PMCID: PMC9784087 DOI: 10.1186/s12974-022-02672-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Long-term use of opioids such as morphine has negative side effects, such as morphine analgesic tolerance and morphine-induced hyperalgesia (MIH). These side effects limit the clinical use and analgesic efficacy of morphine. Elucidation of the mechanisms and identification of feasible and effective methods or treatment targets to solve this clinical phenomenon are important. Here, we discovered that YTHDF1 and TNF receptor-associated factor 6 (TRAF6) are crucial for morphine analgesic tolerance and MIH. The m6A reader YTHDF1 positively regulated the translation of TRAF6 mRNA, and chronic morphine treatments enhanced the m6A modification of TRAF6 mRNA. TRAF6 protein expression was drastically reduced by YTHDF1 knockdown, although TRAF6 mRNA levels were unaffected. By reducing inflammatory markers such as IL-1β, IL-6, TNF-α and NF-κB, targeted reduction of YTHDF1 or suppression of TRAF6 activity in ventrolateral periaqueductal gray (vlPAG) slows the development of morphine analgesic tolerance and MIH. Our findings provide new insights into the mechanism of morphine analgesic tolerance and MIH indicating that YTHDF1 regulates inflammatory factors such as IL-1β, IL-6, TNF-α and NF-κB by enhancing TRAF6 protein expression.
Collapse
Affiliation(s)
- Handong Ouyang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Jianxing Zhang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Dongmei Chi
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Kun Zhang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Yongtian Huang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Jingxiu Huang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Wan Huang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Xiaohui Bai
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China ,grid.412536.70000 0004 1791 7851Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yangjiang Road West, Guangzhou, China
| |
Collapse
|
83
|
Semenovykh D, Benak D, Holzerova K, Cerna B, Telensky P, Vavrikova T, Kolar F, Neckar J, Hlavackova M. Myocardial m6A regulators in postnatal development: effect of sex. Physiol Res 2022. [DOI: 10.33549/physiolres.934970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
N6-methyladenosine (m6A) is an abundant mRNA modification affecting mRNA stability and protein expression. It is a highly dynamic process, and its outcomes during postnatal heart development are poorly understood. Here we studied m6A machinery in the left ventricular myocardium of Fisher344 male and female rats (postnatal days one to ninety; P1-P90) using Western Blot. A downward pattern of target protein levels (demethylases FTO and ALKBH5, methyltransferase METTL3, reader YTHDF2) was revealed in male and female rat during postnatal development. On P1, the FTO protein level was significantly higher in male compared to females.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - M Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. E-mail:
| |
Collapse
|
84
|
Abstract
RNA is not always a faithful copy of DNA. Advances in tools enabling the interrogation of the exact RNA sequence have permitted revision of how genetic information is transferred. We now know that RNA is a dynamic molecule, amenable to chemical modifications of its four canonical nucleotides by dedicated RNA-binding enzymes. The ever-expanding catalogue of identified RNA modifications in mammals has led to a burst of studies in the past 5 years that have explored the biological relevance of the RNA modifications, also known as epitranscriptome. These studies concluded that chemical modification of RNA nucleotides alters several properties of RNA molecules including sequence, secondary structure, RNA-protein interaction, localization and processing. Importantly, a plethora of cellular functions during development, homeostasis and disease are controlled by RNA modification enzymes. Understanding the regulatory interface between a single-nucleotide modification and cellular function will pave the way towards the development of novel diagnostic, prognostic and therapeutic tools for the management of diseases, including cardiovascular disease. In this Review, we use two well-studied and abundant RNA modifications - adenosine-to-inosine RNA editing and N6-methyladenosine RNA methylation - as examples on which to base the discussion about the current knowledge on installation or removal of RNA modifications, their effect on biological processes related to cardiovascular health and disease, and the potential for development and application of epitranscriptome-based prognostic, diagnostic and therapeutic tools for cardiovascular disease.
Collapse
|
85
|
Lin W, Liu Y, Zhou Y, Lin M, Liu C, Tang Y, Wu B, Lin C. Methyltransferase-like 3 modulates visceral hypersensitivity through regulating the nuclear export of circKcnk9 in YTHDC1-dependent manner. Mol Pain 2022; 18:17448069221144540. [PMID: 36443649 PMCID: PMC9730012 DOI: 10.1177/17448069221144540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: Accumulating evidence shows that N6-methyladenosine (m6A) modulators contribute to the process of chronic pain. However, the exact mechanisms of m6A writers involved in visceral hypersensitivity of Irritable bowel syndrome (IBS) remain unclear. This article aimed to reveal a new mechanism for the progression of IBS. Methods: The IBS-like model was established by neonatal colorectal distention (CRD). The relationship between m6A and circKcnk9 was analyzed by bioinformatics, immunofluorescence and RNA fluorescence in situ hybridization (FISH) assays. Visceral hypersensitivity was assessed based on the electromyography (EMG) response of the abdominal external oblique muscle to CRD. In vivo and in vitro studies (including EMG stereotactic infusion, Western blot and qRT-PCR) were utilized to explore the biological functions of related indicators. The bioinformatics, RIP experiments and RNA pull-down assays were used to explore the potential molecular mechanisms. Results: We identified that neonatal CRD increased the level of the m6A via methyltransferase-like 3 (METTL3) in the hippocampal neurons. Subsequently, knockdown of METTL3 could alleviate visceral hypersensitivity in IBS-like rats. By contrast, overexpression of METTL3 could induce visceral hypersensitivity and activate hippocampal neurons in control rats. Moreover, YTHDC1, the only m6A-associated protein predicted by bioinformatics to bind to circKcnk9, modulated visceral hypersensitivity through regulating the nuclear export of circKcnk9 in an m6A-dependent manner. Notably, FISH data suggested that the increased nuclear staining of circKcnk9 caused by siYTHDC1 could be recovered by overexpression of YTHDC1 wild type (WT) but not YTHDC1 negative control (NC) in PC12 cells. Conclusions: Our findings reveal a new regulatory mechanism in progress of IBS, that is, METTL3 modulates visceral hypersensitivity through regulating the nuclear export of circKcnk9 in YTHDC1-dependent manner.
Collapse
Affiliation(s)
- Wei Lin
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuan Liu
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China,Cancer Research Center Nantong, the Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yifei Zhou
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mengying Lin
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Congxu Liu
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ying Tang
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China,Ying Tang, Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.
| | - Bin Wu
- Department of Pediatrics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Bin Wu, Department of Pediatrics, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| | - Chun Lin
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China,Chun Lin, Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
86
|
SEMENOVYKH D, BENAK D, HOLZEROVA K, CERNA B, TELENSKY P, VAVRIKOVA T, KOLAR F, NECKAR J, HLAVACKOVA M. Myocardial m6A regulators in postnatal development: effect of sex. Physiol Res 2022; 71:877-882. [PMID: 36426889 PMCID: PMC9814979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
N6-methyladenosine (m6A) is an abundant mRNA modification affecting mRNA stability and protein expression. It is a highly dynamic process, and its outcomes during postnatal heart development are poorly understood. Here we studied m6A machinery in the left ventricular (LV) myocardium of Fisher344 male and female rats (postnatal days one to ninety; P1-P90) using Western Blot. A downward pattern of target protein levels (demethylases FTO and ALKBH5, methyltransferase METTL3, reader YTHDF2) was revealed in male and female rat LVs during postnatal development. On P1, the FTO protein level was significantly higher in male LVs compared to females.
Collapse
Affiliation(s)
- Dmytro SEMENOVYKH
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic,Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daniel BENAK
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic,Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kristyna HOLZEROVA
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Barbora CERNA
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr TELENSKY
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic,International Clinical Research Center of St. Anne’s University Hospital Brno, Dementia Research Group, Brno, Czech Republic
| | - Tereza VAVRIKOVA
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Frantisek KOLAR
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan NECKAR
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marketa HLAVACKOVA
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
87
|
Liu Z, Wang L, Xing Q, Liu X, Hu Y, Li W, Yan Q, Liu R, Huang N. Identification of GLS as a cuproptosis-related diagnosis gene in acute myocardial infarction. Front Cardiovasc Med 2022; 9:1016081. [PMID: 36440046 PMCID: PMC9691691 DOI: 10.3389/fcvm.2022.1016081] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Acute myocardial infarction (AMI) has the characteristics of sudden onset, rapid progression, poor prognosis, and so on. Therefore, it is urgent to identify diagnostic and prognostic biomarkers for it. Cuproptosis is a new form of mitochondrial respiratory-dependent cell death. However, studies are limited on the clinical significance of cuproptosis-related genes (CRGs) in AMI. In this study, we systematically assessed the genetic alterations of CRGs in AMI by bioinformatics approach. The results showed that six CRGs (LIAS, LIPT1, DLAT, PDHB, MTF1, and GLS) were markedly differentially expressed between stable coronary heart disease (stable_CAD) and AMI. Correlation analysis indicated that CRGs were closely correlated with N6-methyladenosine (m6A)-related genes through R language "corrplot" package, especially GLS was positively correlated with FMR1 and MTF1 was negatively correlated with HNRNPA2B1. Immune landscape analysis results revealed that CRGs were closely related to various immune cells, especially GLS was positively correlated with T cells CD4 memory resting and negatively correlated with monocytes. Kaplan-Meier analysis demonstrated that the group with high DLAT expression had a better prognosis. The area under curve (AUC) certified that GLS had good diagnostic value, in the training set (AUC = 0.87) and verification set (ACU = 0.99). Gene set enrichment analysis (GSEA) suggested that GLS was associated with immune- and hypoxia-related pathways. In addition, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, competing endogenous RNA (ceRNA) analysis, transcription factor (TF), and compound prediction were performed to reveal the regulatory mechanism of CRGs in AMI. Overall, our study can provide additional information for understanding the role of CRGs in AMI, which may provide new insights into the identification of therapeutic targets for AMI.
Collapse
Affiliation(s)
- Zheng Liu
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Lei Wang
- Department of Cardiovascular Medicine, Xiangtan Center Hospital, Xiangtan, China
| | - Qichang Xing
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Xiang Liu
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Yixiang Hu
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Wencan Li
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Qingzi Yan
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Renzhu Liu
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Nan Huang
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
| |
Collapse
|
88
|
METTL14 is required for exercise-induced cardiac hypertrophy and protects against myocardial ischemia-reperfusion injury. Nat Commun 2022; 13:6762. [PMID: 36351918 PMCID: PMC9646739 DOI: 10.1038/s41467-022-34434-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
RNA m6A modification is the most widely distributed RNA methylation and is closely related to various pathophysiological processes. Although the benefit of regular exercise on the heart has been well recognized, the role of RNA m6A in exercise training and exercise-induced physiological cardiac hypertrophy remains largely unknown. Here, we show that endurance exercise training leads to reduced cardiac mRNA m6A levels. METTL14 is downregulated by exercise, both at the level of RNA m6A and at the protein level. In vivo, wild-type METTL14 overexpression, but not MTase inactive mutant METTL14, blocks exercise-induced physiological cardiac hypertrophy. Cardiac-specific METTL14 knockdown attenuates acute ischemia-reperfusion injury as well as cardiac dysfunction in ischemia-reperfusion remodeling. Mechanistically, silencing METTL14 suppresses Phlpp2 mRNA m6A modifications and activates Akt-S473, in turn regulating cardiomyocyte growth and apoptosis. Our data indicates that METTL14 plays an important role in maintaining cardiac homeostasis. METTL14 downregulation represents a promising therapeutic strategy to attenuate cardiac remodeling.
Collapse
|
89
|
Nossent AY. The epitranscriptome: RNA modifications in vascular remodelling. Atherosclerosis 2022:S0021-9150(22)01500-3. [DOI: 10.1016/j.atherosclerosis.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
|
90
|
RNA modifications in aging-associated cardiovascular diseases. Aging (Albany NY) 2022; 14:8110-8136. [PMID: 36178367 PMCID: PMC9596201 DOI: 10.18632/aging.204311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide that bears an enormous healthcare burden and aging is a major contributing factor to CVDs. Functional gene expression network during aging is regulated by mRNAs transcriptionally and by non-coding RNAs epi-transcriptionally. RNA modifications alter the stability and function of both mRNAs and non-coding RNAs and are involved in differentiation, development, and diseases. Here we review major chemical RNA modifications on mRNAs and non-coding RNAs, including N6-adenosine methylation, N1-adenosine methylation, 5-methylcytidine, pseudouridylation, 2′ -O-ribose-methylation, and N7-methylguanosine, in the aging process with an emphasis on cardiovascular aging. We also summarize the currently available methods to detect RNA modifications and the bioinformatic tools to study RNA modifications. More importantly, we discussed the specific implication of the RNA modifications on mRNAs and non-coding RNAs in the pathogenesis of aging-associated CVDs, including atherosclerosis, hypertension, coronary heart diseases, congestive heart failure, atrial fibrillation, peripheral artery disease, venous insufficiency, and stroke.
Collapse
|
91
|
Sikorski V, Vento A, Kankuri E. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:426-461. [PMID: 35991314 PMCID: PMC9366019 DOI: 10.1016/j.omtn.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N6-methyl-adenosine (m6A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - IHD-EPITRAN Consortium
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
92
|
Multilevel regulation of N6-methyladenosine RNA modifications: Implications in tumorigenesis and therapeutic opportunities. Genes Dis 2022. [PMID: 37492716 PMCID: PMC10363589 DOI: 10.1016/j.gendis.2022.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N6-methyladenosine (m6A) RNA modification is widely perceived as the most abundant and common modification in transcripts. This modification is dynamically regulated by specific m6A "writers", "erasers" and "readers" and is reportedly involved in the occurrence and development of many diseases. Since m6A RNA modification was discovered in the 1970s, with the progress of relevant research technologies, an increasing number of functions of m6A have been reported, and a preliminary understanding of m6A has been obtained. In this review, we summarize the mechanisms through which m6A RNA modification is regulated from the perspectives of expression, posttranslational modification and protein interaction. In addition, we also summarize how external and internal environmental factors affect m6A RNA modification and its functions in tumors. The mechanisms through which m6A methylases, m6A demethylases and m6A-binding proteins are regulated are complicated and have not been fully elucidated. Therefore, we hope to promote further research in this field by summarizing these mechanisms and look forward to the future application of m6A in tumors.
Collapse
|
93
|
N(6)-methyladenosine modification: A vital role of programmed cell death in myocardial ischemia/reperfusion injury. Int J Cardiol 2022; 367:11-19. [PMID: 36002042 DOI: 10.1016/j.ijcard.2022.08.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022]
Abstract
N(6)-methyladenosine (m6A) modification is closely associated with myocardial ischemia/reperfusion injury (MIRI). As the most common modification among RNA modifications, the reversible m6A modification is processed by methylase ("writers") and demethylase ("erasers"). The biological effects of RNA modified by m6A are regulated under the corresponding RNA binding proteins (RBPs) ("readers"). m6A modification regulates the whole process of RNA, including transcription, processing, splicing, nuclear export, stability, degradation, and translation. Programmed cell death (PCD) is a regulated mechanism that maintains the internal environment's stability. PCD plays an essential role in MIRI, including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis. However, the relationship between PCD modified with m6A and MIRI is still not clear. This review summarizes the regulators of m6A modification and their bioeffects on PCD in MIRI.
Collapse
|
94
|
N6-methyladenosine modulates long non-coding RNA in the developing mouse heart. Cell Death Discov 2022; 8:329. [PMID: 35858921 PMCID: PMC9300643 DOI: 10.1038/s41420-022-01118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) were reported to potentially play a regulatory role in the process of myocardial regeneration in the neonatal mouse. N6-methyladenosine (m6A) modification may play a key role in myocardial regeneration in mice and regulates a variety of biological processes through affecting the stability of lncRNAs. However, the map of m6A modification of lncRNAs in mouse cardiac development still remains unknown. We aimed to investigate the differences in the m6A status of lncRNAs during mouse cardiac development and reveal a potential role of m6A modification modulating lncRNAs in cardiac development and myocardial regeneration during cardiac development in mice. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) of the heart tissue in C57BL/6 J mice at postnatal day 1 (P1), P7 and P28 were performed to produce stagewise cardiac lncRNA m6A-methylomes in a parallel timeframe with the established loss of an intrinsic cardiac regeneration capacity and early postnatal development. There were significant differences in the distribution and abundance of m6A modifications in lncRNAs in the P7 vs P1 mice. In addition, the functional role of m6A in regulating lncRNA levels was established for selected transcripts with METTL3 silencing in neonatal cardiomyocytes in vitro. Based on our MeRIP-qPCR experiment data, both lncGm15328 and lncRNA Zfp597, that were not previously associated with cardiac regeneration, were found to be the most differently methylated at P1-P7. These two lncRNAs sponged several miRNAs which further regulated multiple mRNAs, including some of which have previously been linked with cardiac regeneration ability. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that differential m6A modifications were more enriched in functions and cellular signalling pathways related to cardiomyocyte proliferation. Our data suggested that the m6A modification on lncRNAs may play an important role in the regeneration of myocardium and cardiac development. The graphical abstract of the potential mechanism of m6A modulates long non-coding RNA in the developing mouse heart.![]()
Collapse
|
95
|
Zhang R, Qu Y, Ji Z, Hao C, Su Y, Yao Y, Zuo W, Chen X, Yang M, Ma G. METTL3 mediates Ang-II-induced cardiac hypertrophy through accelerating pri-miR-221/222 maturation in an m6A-dependent manner. Cell Mol Biol Lett 2022; 27:55. [PMID: 35836108 PMCID: PMC9284900 DOI: 10.1186/s11658-022-00349-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Background METTL3 is the core catalytic enzyme in m6A and is involved in a variety of cardiovascular diseases. However, whether and how METTL3 plays a role during angiotensin II (Ang-II)-induced myocardial hypertrophy is still unknown. Methods Neonatal rat cardiomyocytes (NRCMs) and C57BL/6J mice were treated with Ang-II to induce myocardial hypertrophy. qRT-PCR and western blots were used to detect the expression of RNAs and proteins. Gene function was verified by knockdown and/or overexpression, respectively. Luciferase and RNA immunoprecipitation (RIP) assays were used to verify interactions among multiple genes. Wheat germ agglutinin (WGA), hematoxylin and eosin (H&E), and immunofluorescence were used to examine myocardial size. m6A methylation was detected by a colorimetric kit. Results METTL3 and miR-221/222 expression and m6A levels were significantly increased in response to Ang-II stimulation. Knockdown of METTL3 or miR-221/222 could completely abolish the ability of NRCMs to undergo hypertrophy. The expression of miR-221/222 was positively regulated by METTL3, and the levels of pri-miR-221/222 that bind to DGCR8 or form m6A methylation were promoted by METTL3 in NRCMs. The effect of METTL3 knockdown on hypertrophy was antagonized by miR-221/222 overexpression. Mechanically, Wnt/β-catenin signaling was activated during hypertrophy and restrained by METTL3 or miR-221/222 inhibition. The Wnt/β-catenin antagonist DKK2 was directly targeted by miR-221/222, and the effect of miR-221/222 inhibitor on Wnt/β-catenin was abolished after inhibition of DKK2. Finally, AAV9-mediated cardiac METTL3 knockdown was able to attenuate Ang-II-induced cardiac hypertrophy in mouse model. Conclusions Our findings suggest that METTL3 positively modulates the pri-miR221/222 maturation process in an m6A-dependent manner and subsequently activates Wnt/β-catenin signaling by inhibiting DKK2, thus promoting Ang-II-induced cardiac hypertrophy. AAV9-mediated cardiac METTL3 knockdown could be a therapeutic for pathological myocardial hypertrophy. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00349-1.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Yangyang Qu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Chunshu Hao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Yamin Su
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Xi Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Mingming Yang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China.
| |
Collapse
|
96
|
Li L, Xu N, Liu J, Chen Z, Liu X, Wang J. m6A Methylation in Cardiovascular Diseases: From Mechanisms to Therapeutic Potential. Front Genet 2022; 13:908976. [PMID: 35836571 PMCID: PMC9274458 DOI: 10.3389/fgene.2022.908976] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Recent studies have shown that n6-methyladenosine (m6A) plays a major role in cardiovascular homeostasis and pathophysiology. These studies have confirmed that m6A methylation affects the pathophysiology of cardiovascular diseases by regulating cellular processes such as differentiation, proliferation, inflammation, autophagy, and apoptosis. Moreover, plenty of research has confirmed that m6A modification can delay the progression of CVD via the post-transcriptional regulation of RNA. However, there are few available summaries of m6A modification regarding CVD. In this review, we highlight advances in CVD-specific research concerning m6A modification, summarize the mechanisms underlying the involvement of m6A modification during the development of CVD, and discuss the potential of m6A modification as a therapeutic target of CVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
97
|
Rabolli CP, Accornero F. m6A RNA methylation: A dynamic regulator of cardiac muscle and extracellular matrix. CURRENT OPINION IN PHYSIOLOGY 2022. [PMID: 37304645 PMCID: PMC10249538 DOI: 10.1016/j.cophys.2022.100561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Post-transcriptional modifications encompass a large group of RNA alterations that control gene expression. Methylation of the N6-Adenosine (m6A) of mRNA is a prevalent modification which alters the life cycle of transcripts. The roles that m6A play in regulating cardiac homeostasis and injury response are an active area of investigation, but it is clear that this chemical modification is a critical controller of fibroblast to myofibroblast transition, cardiomyocyte hypertrophy and division, and the structure and function of the extracellular matrix. Here we discuss the latest findings of m6A in cardiac muscle and matrix.
Collapse
|
98
|
Li Z, Teng M, Jiang Y, Zhang L, Luo X, Liao Y, Yang B. YTHDF1 Negatively Regulates Treponema pallidum-Induced Inflammation in THP-1 Macrophages by Promoting SOCS3 Translation in an m6A-Dependent Manner. Front Immunol 2022; 13:857727. [PMID: 35444649 PMCID: PMC9013966 DOI: 10.3389/fimmu.2022.857727] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Previous studies have confirmed that the bacterium Treponema pallidum (TP) or its proteins provide signals to macrophages that induce an inflammatory response; however, little is known about the negative regulation of this macrophage-mediated inflammatory response during syphilis infection or the underlying mechanism. Recent evidence suggests the role of the RNA modification, N6-adenosine methylation (m6A), in regulating the inflammatory response and pathogen-host cell interactions. Therefore, we hypothesized that m6A plays a role in the regulation of the inflammatory response in macrophages exposed to TP. Methods We first assessed m6A levels in TP-infected macrophages differentiated from the human monocyte cell line THP-1. The binding and interaction between the m6A "writer" methyltransferase-like 3 (METTL3) or the m6A "reader" YT521-B homology (YTH) domain-containing protein YTHDF1 and the suppressor of cytokine signaling 3 (SOCS3), as a major regulator of the inflammatory response, were explored in differentiated TP-infected THP-1 cells as well as in secondary syphilitic lesions from patients. The mechanisms by which YTHDF1 and SOCS3 regulate the inflammatory response in macrophages were assessed. Results and Conclusion After macrophages were stimulated by TP, YTHDF1 was upregulated in the cells. YTHDF1 was also upregulated in the syphilitic lesions compared to adjacent tissue in patients. YTHDF1 recognizes and binds to the m6A methylation site of SOCS3 mRNA, consequently promoting its translation, thereby inhibiting the JAK2/STAT3 pathway, and reducing the secretion of inflammatory factors, which results in anti-inflammatory regulation. This study provides the first demonstration of the role of m6A methylation in the pathological process of syphilis and further offers new insight into the pathogenesis of TP infection.
Collapse
Affiliation(s)
- Zhijia Li
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Muzhou Teng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yinbo Jiang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Litian Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xi Luo
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yuhui Liao
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
99
|
Wei C, Wang B, Peng D, Zhang X, Li Z, Luo L, He Y, Liang H, Du X, Li S, Zhang S, Zhang Z, Han L, Zhang J. Pan-Cancer Analysis Shows That ALKBH5 Is a Potential Prognostic and Immunotherapeutic Biomarker for Multiple Cancer Types Including Gliomas. Front Immunol 2022; 13:849592. [PMID: 35444654 PMCID: PMC9013910 DOI: 10.3389/fimmu.2022.849592] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022] Open
Abstract
Background AlkB homolog 5 (ALKBH5) is a N6-methyladenosine (m6A) demethylase associated with the development, growth, and progression of multiple cancer types. However, the biological role of ALKBH5 has not been investigated in pan-cancer datasets. Therefore, in this study, comprehensive bioinformatics analysis of pan-cancer datasets was performed to determine the mechanisms through which ALKBH5 regulates tumorigenesis. Methods Online websites and databases such as NCBI, UCSC, CCLE, HPA, TIMER2, GEPIA2, cBioPortal, UALCAN, STRING, SangerBox, ImmuCellAl, xCell, and GenePattern were used to extract data of ALKBH5 in multiple cancers. The pan-cancer patient datasets were analyzed to determine the relationship between ALKBH5 expression, genetic alterations, methylation status, and tumor immunity. Targetscan, miRWalk, miRDB, miRabel, LncBase databases and Cytoscape tool were used to identify microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) that regulate expression of ALKBH5 and construct the lncRNA-miRNA-ALKBH5 network. In vitro CCK-8, wound healing, Transwell and M2 macrophage infiltration assays as well as in vivo xenograft animal experiments were performed to determine the biological functions of ALKBH5 in glioma cells. Results The pan-cancer analysis showed that ALKBH5 was upregulated in several solid tumors. ALKBH5 expression significantly correlated with the prognosis of cancer patients. Genetic alterations including duplications and deep mutations of the ALKBH5 gene were identified in several cancer types. Alterations in the ALKBH5 gene correlated with tumor prognosis. GO and KEGG enrichment analyses showed that ALKBH5-related genes were enriched in the inflammatory, metabolic, and immune signaling pathways in glioma. ALKBH5 expression correlated with the expression of immune checkpoint (ICP) genes, and influenced sensitivity to immunotherapy. We constructed a lncRNA-miRNA network that regulates ALKBH5 expression in tumor development and progression. In vitro and in vivo experiments showed that ALKBH5 promoted proliferation, migration, and invasion of glioma cells and recruited the M2 macrophage to glioma cells. Conclusions ALKBH5 was overexpressed in multiple cancer types and promoted the development and progression of cancers through several mechanisms including regulation of the tumor-infiltration of immune cells. Our study shows that ALKBH5 is a promising prognostic and immunotherapeutic biomarker in some malignant tumors.
Collapse
Affiliation(s)
- Cheng Wei
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Dazhao Peng
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoyang Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Zesheng Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Luo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingjie He
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hao Liang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuezhi Du
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shenghui Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Shu Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
100
|
Cui B, Zheng Y, Gao X, Zhang L, Li B, Chen J, Zhou X, Cai M, Sun W, Zhang Y, Chang K, Xu J, Zhu F, Luo Y, Sun T, Qian J, Sun N. Therapeutic application of chick early amniotic fluid: effective rescue of acute myocardial ischemic injury by intravenous administration. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:9. [PMID: 35362769 PMCID: PMC8975954 DOI: 10.1186/s13619-022-00110-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Myocardial regeneration has been considered a promising option for the treatment of adult myocardial injuries. Previously, a chick early amniotic fluid (ceAF) preparation was shown to contain growth-related factors that promoted embryonic growth and cellular proliferation, though the nature of the components within ceAF were not fully defined. Here we tested whether this ceAF preparation is similarly effective in the promotion of myocardial regeneration, which could provide an alternative therapeutic for intervening myocardial injury. In this study, a myocardial ischemic injury model was established in adult mice and pigs by multiple research entities, and we were able to show that ceAF can efficiently rescue damaged cardiac tissues and markedly improve cardiac function in both experimental models through intravenous administration. ceAF administration increased cell proliferation and improved angiogenesis, likely via down-regulation of Hippo-YAP signaling. Our data suggest that ceAF administration can effectively rescue ischemic heart injury, providing the key functional information for the further development of ceAF for use in attenuating myocardial injury.
Collapse
Affiliation(s)
- Baiping Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yufan Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiang Gao
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang, 310009, Hangzhou, China
- Zhejiang Hygeian Cells BioMedical Co. Ltd, Zhejiang, 310019, Hangzhou, China
- Stem Cell Application Research Center, the Hangzhou Branch of Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 310019, Hangzhou, China
| | - Lihong Zhang
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang, 310009, Hangzhou, China
- Zhejiang Hygeian Cells BioMedical Co. Ltd, Zhejiang, 310019, Hangzhou, China
- Stem Cell Application Research Center, the Hangzhou Branch of Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 310019, Hangzhou, China
| | - Borui Li
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jia Chen
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyan Zhou
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mengyuan Cai
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wenrui Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuting Zhang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Keejong Chang
- Zhejiang Hygeian Cells BioMedical Co. Ltd, Zhejiang, 310019, Hangzhou, China
- Stem Cell Application Research Center, the Hangzhou Branch of Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 310019, Hangzhou, China
| | - Jiayi Xu
- Zhejiang Hygeian Cells BioMedical Co. Ltd, Zhejiang, 310019, Hangzhou, China
- Stem Cell Application Research Center, the Hangzhou Branch of Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 310019, Hangzhou, China
| | - Fuyin Zhu
- Shanghai Mincal Medical Research Co. Ltd., Large Animal Research Center, Shanghai, 201201, China
| | - Yan Luo
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang, 310009, Hangzhou, China.
- Zhejiang Hygeian Cells BioMedical Co. Ltd, Zhejiang, 310019, Hangzhou, China.
- Stem Cell Application Research Center, the Hangzhou Branch of Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 310019, Hangzhou, China.
| | - Tao Sun
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Internal Medicine, Huashan Hospital West Campus, Fudan University, Shanghai, 200032, China.
| | - Jin Qian
- Zhejiang Hygeian Cells BioMedical Co. Ltd, Zhejiang, 310019, Hangzhou, China.
- Stem Cell Application Research Center, the Hangzhou Branch of Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 310019, Hangzhou, China.
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|