51
|
Stierli S, Imperatore V, Lloyd AC. Schwann cell plasticity-roles in tissue homeostasis, regeneration, and disease. Glia 2019; 67:2203-2215. [PMID: 31215712 DOI: 10.1002/glia.23643] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
How tissues are maintained over a lifetime and repaired following injury are fundamental questions in biology with a disruption to these processes underlying pathologies such as cancer and degenerative disorders. It is becoming increasingly clear that each tissue has a distinct mechanism to maintain homeostasis and respond to injury utilizing different types of stem/progenitor cell populations depending on the insult and/or with a contribution from more differentiated cells that are able to dedifferentiate to aid tissue regeneration. Peripheral nerves are highly quiescent yet show remarkable regenerative capabilities. Remarkably, there is no evidence for a classical stem cell population, rather all cell-types within the nerve are able to proliferate to produce new nerve tissue. Co-ordinating the regeneration of this tissue are Schwann cells (SCs), the main glial cells of the peripheral nervous system. SCs exist in architecturally stable structures that can persist for the lifetime of an animal, however, they are not postmitotic, in that following injury they are reprogrammed at high efficiency to a progenitor-like state, with these cells acting to orchestrate the nerve regeneration process. During nerve regeneration, SCs show little plasticity, maintaining their identity in the repaired tissue. However, once free of the nerve environment they appear to exhibit increased plasticity with reported roles in the repair of other tissues. In this review, we will discuss the mechanisms underlying the homeostasis and regeneration of peripheral nerves and how reprogrammed progenitor-like SCs have broader roles in the repair of other tissues with implications for pathologies such as cancer.
Collapse
Affiliation(s)
- Salome Stierli
- MRC LMCB, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Alison C Lloyd
- MRC LMCB, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
52
|
Crawford LK, Caterina MJ. Functional Anatomy of the Sensory Nervous System: Updates From the Neuroscience Bench. Toxicol Pathol 2019; 48:174-189. [PMID: 31554486 DOI: 10.1177/0192623319869011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The simple tripartite classification of sensory neurons as A-beta, A-delta, and C fibers fails to convey the complexity of the neurons that encode stimuli as diverse as the texture of a surface, the location of a pinprick, or the direction of hair movement as a breeze moves across the skin. It has also proven to be inadequate when investigating the molecular mechanisms underlying pain, which can encompass any combination of chemical, tactile, and thermal modalities. Beginning with a brief overview of visceral and sensory neuroanatomy, this review expands upon sensory innervation of the skin as a prime example of the heterogeneity and complexity of the somatosensory nervous system. Neuroscientists have characterized defining features of over 15 subtypes of sensory neurons that innervate the skin of the mouse. This has enabled the study of cell-specific mechanisms of pain, which suggests that diverse sensory neuron subtypes may have distinct susceptibilities to toxic injury and different roles in pathologic mechanisms underlying altered sensation. Leveraging this growing body of knowledge for preclinical trials and models of neurotoxicity can vastly improve our understanding of peripheral nervous system dysfunction, advancing the fields of toxicologic pathology and neuropathology alike.
Collapse
Affiliation(s)
- LaTasha K Crawford
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA, Madison, WI, USA
| | - Michael J Caterina
- Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
53
|
Sanzeni A, Katta S, Petzold B, Pruitt BL, Goodman MB, Vergassola M. Somatosensory neurons integrate the geometry of skin deformation and mechanotransduction channels to shape touch sensing. eLife 2019; 8:43226. [PMID: 31407662 PMCID: PMC6692131 DOI: 10.7554/elife.43226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
Touch sensation hinges on force transfer across the skin and activation of mechanosensitive ion channels along the somatosensory neurons that invade the skin. This skin-nerve sensory system demands a quantitative model that spans the application of mechanical loads to channel activation. Unlike prior models of the dynamic responses of touch receptor neurons in Caenorhabditis elegans (Eastwood et al., 2015), which substituted a single effective channel for the ensemble along the TRNs, this study integrates body mechanics and the spatial recruitment of the various channels. We demonstrate that this model captures mechanical properties of the worm’s body and accurately reproduces neural responses to simple stimuli. It also captures responses to complex stimuli featuring non-trivial spatial patterns, like extended or multiple contacts that could not be addressed otherwise. We illustrate the importance of these effects with new experiments revealing that skin-neuron composites respond to pre-indentation with increased currents rather than adapting to persistent stimulation.
Collapse
Affiliation(s)
- Alessandro Sanzeni
- Department of Physics, University of California, San Diego, La Jolla, United States.,National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, United States
| | - Samata Katta
- Neuroscience Program, Stanford University School of Medicine, Stanford, United States
| | - Bryan Petzold
- Department of Mechanical Engineering, Stanford University, Stanford, United States
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Massimo Vergassola
- Department of Physics, University of California, San Diego, La Jolla, United States
| |
Collapse
|
54
|
Moehring F, Halder P, Seal RP, Stucky CL. Uncovering the Cells and Circuits of Touch in Normal and Pathological Settings. Neuron 2019; 100:349-360. [PMID: 30359601 DOI: 10.1016/j.neuron.2018.10.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/18/2023]
Abstract
The sense of touch is fundamental as it provides vital, moment-to-moment information about the nature of our physical environment. Primary sensory neurons provide the basis for this sensation in the periphery; however, recent work demonstrates that touch transduction mechanisms also occur upstream of the sensory neurons via non-neuronal cells such as Merkel cells and keratinocytes. Within the spinal cord, deep dorsal horn circuits transmit innocuous touch centrally and also transform touch into pain in the setting of injury. Here non-neuronal cells play a key role in the induction and maintenance of persistent mechanical pain. This review highlights recent advances in our understanding of mechanosensation, including a growing appreciation for the role of non-neuronal cells in both touch and pain.
Collapse
Affiliation(s)
- Francie Moehring
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Priyabrata Halder
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
| | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, Pittsburgh, PA 15213, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
55
|
Kuehn ED, Meltzer S, Abraira VE, Ho CY, Ginty DD. Tiling and somatotopic alignment of mammalian low-threshold mechanoreceptors. Proc Natl Acad Sci U S A 2019; 116:9168-9177. [PMID: 30996124 PMCID: PMC6511030 DOI: 10.1073/pnas.1901378116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Innocuous mechanical stimuli acting on the skin are detected by sensory neurons, known as low-threshold mechanoreceptors (LTMRs). LTMRs are classified based on their response properties, action potential conduction velocity, rate of adaptation to static indentation of the skin, and terminal anatomy. Here, we report organizational properties of the cutaneous and central axonal projections of the five principal hairy skin LTMR subtypes. We find that axons of neurons within a particular LTMR class are largely nonoverlapping with respect to their cutaneous end organs (e.g., hair follicles), with Aβ rapidly adapting-LTMRs being the sole exception. Individual neurons of each LTMR class are mostly nonoverlapping with respect to their associated hair follicles, with the notable exception of C-LTMRs, which exhibit multiple branches that redundantly innervate individual hair follicles. In the spinal cord, LTMR central projections exhibit rostrocaudal elongation and mediolateral compression, compared with their cutaneous innervation patterns, and these central projections also exhibit a fine degree of homotypic topographic adjacency. These findings thus reveal homotypic tiling of LTMR subtype axonal projections in hairy skin and a remarkable degree of spatial precision of spinal cord axonal termination patterns, suggesting a somatotopically precise tactile encoding capability of the mechanosensory dorsal horn.
Collapse
Affiliation(s)
- Emily D Kuehn
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Shan Meltzer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| | - Victoria E Abraira
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| | - Cheng-Ying Ho
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115;
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
56
|
Jenkins BA, Fontecilla NM, Lu CP, Fuchs E, Lumpkin EA. The cellular basis of mechanosensory Merkel-cell innervation during development. eLife 2019; 8:42633. [PMID: 30794158 PMCID: PMC6386521 DOI: 10.7554/elife.42633] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Touch sensation is initiated by mechanosensory neurons that innervate distinct skin structures; however, little is known about how these neurons are patterned during mammalian skin development. We explored the cellular basis of touch-receptor patterning in mouse touch domes, which contain mechanosensory Merkel cell-neurite complexes and abut primary hair follicles. At embryonic stage 16.5 (E16.5), touch domes emerge as patches of Merkel cells and keratinocytes clustered with a previously unsuspected population of Bmp4-expressing dermal cells. Epidermal Noggin overexpression at E14.5 disrupted touch-dome formation but not hair-follicle specification, demonstrating a temporally distinct requirement for BMP signaling in placode-derived structures. Surprisingly, two neuronal populations preferentially targeted touch domes during development but only one persisted in mature touch domes. Finally, Keratin-17-expressing keratinocytes but not Merkel cells were necessary to establish innervation patterns during development. These findings identify key cell types and signaling pathways required for targeting Merkel-cell afferents to discrete mechanosensory compartments.
Collapse
Affiliation(s)
- Blair A Jenkins
- Department of Physiology and Cellular BiophysicsColumbia UniversityNew YorkUnited States
- Department of DermatologyColumbia UniversityNew YorkUnited States
| | - Natalia M Fontecilla
- Department of Physiology and Cellular BiophysicsColumbia UniversityNew YorkUnited States
| | - Catherine P Lu
- Robin Neustein Laboratory of Mammalian Development and Cell BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Elaine Fuchs
- Robin Neustein Laboratory of Mammalian Development and Cell BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Ellen A Lumpkin
- Department of Physiology and Cellular BiophysicsColumbia UniversityNew YorkUnited States
| |
Collapse
|
57
|
Morikawa S, Iribar H, Gutiérrez-Rivera A, Ezaki T, Izeta A. Pericytes in Cutaneous Wound Healing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:1-63. [DOI: 10.1007/978-3-030-16908-4_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
58
|
Fujiwara H, Tsutsui K, Morita R. Multi-tasking epidermal stem cells: Beyond epidermal maintenance. Dev Growth Differ 2018; 60:531-541. [PMID: 30449051 DOI: 10.1111/dgd.12577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
Over the past decade, multiple stem cell compartments have been identified within the epidermis. These stem cell pools have different transcriptional properties, proliferative modes and anatomical locations, and they maintain distinct epidermal compartments. The importance of this stem cell heterogeneity and compartmentalization has been understood as a key feature in epidermal homeostasis. However, recent studies have revealed that these heterogeneous stem cells themselves act as a niche for neighboring cells, thereby establishing spatially and temporally patterned epidermal-dermal functional units. These studies provide a new perspective for interpreting the biological significance of stem cell heterogeneity and compartmentalization beyond their role in epidermal maintenance.
Collapse
Affiliation(s)
| | - Ko Tsutsui
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Ritsuko Morita
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
59
|
Cheng CC, Tsutsui K, Taguchi T, Sanzen N, Nakagawa A, Kakiguchi K, Yonemura S, Tanegashima C, Keeley SD, Kiyonari H, Furuta Y, Tomono Y, Watt FM, Fujiwara H. Hair follicle epidermal stem cells define a niche for tactile sensation. eLife 2018; 7:38883. [PMID: 30355452 PMCID: PMC6226291 DOI: 10.7554/elife.38883] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022] Open
Abstract
The heterogeneity and compartmentalization of stem cells is a common principle in many epithelia, and is known to function in epithelial maintenance, but its other physiological roles remain elusive. Here we show transcriptional and anatomical contributions of compartmentalized epidermal stem cells in tactile sensory unit formation in the mouse hair follicle. Epidermal stem cells in the follicle upper-bulge, where mechanosensory lanceolate complexes innervate, express a unique set of extracellular matrix (ECM) and neurogenesis-related genes. These epidermal stem cells deposit an ECM protein called EGFL6 into the collar matrix, a novel ECM that tightly ensheathes lanceolate complexes. EGFL6 is required for the proper patterning, touch responses, and αv integrin-enrichment of lanceolate complexes. By maintaining a quiescent original epidermal stem cell niche, the old bulge, epidermal stem cells provide anatomically stable follicle-lanceolate complex interfaces, irrespective of the stage of follicle regeneration cycle. Thus, compartmentalized epidermal stem cells provide a niche linking the hair follicle and the nervous system throughout the hair cycle.
Collapse
Affiliation(s)
- Chun-Chun Cheng
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ko Tsutsui
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Toru Taguchi
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Noriko Sanzen
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Asako Nakagawa
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kisa Kakiguchi
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Cell Biology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Chiharu Tanegashima
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Sean D Keeley
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratories for Animal Resource Development and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yasuhide Furuta
- Laboratories for Animal Resource Development and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yasuko Tomono
- Division of Molecular and Cell Biology, Shigei Medical Research Institute, Okayama, Japan
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| | - Hironobu Fujiwara
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
60
|
Han HM, Kim TH, Bae JY, Bae YC. Primary sensory neurons expressing tropomyosin receptor kinase A in the rat trigeminal ganglion. Neurosci Lett 2018; 690:56-60. [PMID: 30308237 DOI: 10.1016/j.neulet.2018.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/21/2018] [Accepted: 10/06/2018] [Indexed: 11/29/2022]
Abstract
Tropomyosin receptor kinase A (trkA), a high affinity receptor for nerve growth factor (NGF), has been implicated in neuronal survival, neurite outgrowth and inflammatory pain. So far, the characterization of the primary sensory neurons that express trkA, and are thus potentially affected by NGF, has remained incomplete. The goal of this study was to investigate the trkA-expressing neurons and fibers in the rat trigeminal ganglion and its sensory root using light- and electron-microscopic immunohistochemistry and quantitative analysis. TrkA-immunopositive (+) trigeminal neurons varied from small to large. Double immunofluorescent staining showed that about 28%, 33% and 3% of the trkA(+) neurons coexpressed SP, CGRP and IB4, respectively. About 11% of the trkA(+) neurons also coexpressed parvalbumin. Electron microscopy revealed that trkA was expressed in all types of fibers: While the large majority of the trkA(+) fibers were unmyelinated (35.3%) and small myelinated (<20 μm2 in cross-sectional area; 45.5%), a still considerable fraction (19.2%) was large myelinated. These findings indicate that all types of trigeminal neurons (ones with unmyelinated, small myelinated or large myelinated fibers) may be regulated by NGF/trkA signaling.
Collapse
Affiliation(s)
- Hye Min Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea
| | - Tae Heon Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea
| | - Jin Young Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea.
| |
Collapse
|
61
|
Walcher J, Ojeda‐Alonso J, Haseleu J, Oosthuizen MK, Rowe AH, Bennett NC, Lewin GR. Specialized mechanoreceptor systems in rodent glabrous skin. J Physiol 2018; 596:4995-5016. [PMID: 30132906 PMCID: PMC6187043 DOI: 10.1113/jp276608] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/20/2018] [Indexed: 01/17/2023] Open
Abstract
KEY POINTS An ex vivo preparation was developed to record from single sensory fibres innervating the glabrous skin of the mouse forepaw. The density of mechanoreceptor innervation of the forepaw glabrous skin was found to be three times higher than that of hindpaw glabrous skin. Rapidly adapting mechanoreceptors that innervate Meissner's corpuscles were severalfold more responsive to slowly moving stimuli in the forepaw compared to those innervating hindpaw skin. We found a distinct group of small hairs in the centre of the mouse hindpaw glabrous skin that were exclusively innervated by directionally sensitive D-hair receptors. The directional sensitivity, but not the end-organ anatomy, were the opposite to D-hair receptors in the hairy skin. Glabrous skin hairs in the hindpaw are not ubiquitous in rodents, but occur in African and North American species that diverged more than 65 million years ago. ABSTRACT Rodents use their forepaws to actively interact with their tactile environment. Studies on the physiology and anatomy of glabrous skin that makes up the majority of the forepaw are almost non-existent in the mouse. Here we developed a preparation to record from single sensory fibres of the forepaw and compared anatomical and physiological receptor properties to those of the hindpaw glabrous and hairy skin. We found that the mouse forepaw skin is equipped with a very high density of mechanoreceptors; >3 times more than hindpaw glabrous skin. In addition, rapidly adapting mechanoreceptors that innervate Meissner's corpuscles of the forepaw were severalfold more sensitive to slowly moving mechanical stimuli compared to their counterparts in the hindpaw glabrous skin. All other mechanoreceptor types as well as myelinated nociceptors had physiological properties that were invariant regardless of which skin area they occupied. We discovered a novel D-hair receptor innervating a small group of hairs in the middle of the hindpaw glabrous skin in mice. These glabrous skin D-hair receptors were direction sensitive albeit with an orientation sensitivity opposite to that described for hairy skin D-hair receptors. Glabrous skin hairs do not occur in all rodents, but are present in North American and African rodent species that diverged more than 65 million years ago. The function of these specialized hairs is unknown, but they are nevertheless evolutionarily very ancient. Our study reveals novel physiological specializations of mechanoreceptors in the glabrous skin that likely evolved to facilitate tactile exploration.
Collapse
Affiliation(s)
- Jan Walcher
- Max‐Delbrück Centre for Molecular MedicineDepartment of NeuroscienceRobert‐Rössle Str. 1013125Berlin‐BuchGermany
| | - Julia Ojeda‐Alonso
- Max‐Delbrück Centre for Molecular MedicineDepartment of NeuroscienceRobert‐Rössle Str. 1013125Berlin‐BuchGermany
| | - Julia Haseleu
- Max‐Delbrück Centre for Molecular MedicineDepartment of NeuroscienceRobert‐Rössle Str. 1013125Berlin‐BuchGermany
| | - Maria K. Oosthuizen
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaRepublic of South Africa
| | - Ashlee H. Rowe
- Department of Biology and Program in Cellular and Behavioral NeurobiologyUniversity of OklahomaNormanOKUSA
| | - Nigel C. Bennett
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaRepublic of South Africa
| | - Gary R. Lewin
- Max‐Delbrück Centre for Molecular MedicineDepartment of NeuroscienceRobert‐Rössle Str. 1013125Berlin‐BuchGermany
- Excellence Cluster NeurocureCharité Universitätsmedizin10117BerlinGermany
| |
Collapse
|
62
|
Alamri AS, Wood RJ, Ivanusic JJ, Brock JA. The neurochemistry and morphology of functionally identified corneal polymodal nociceptors and cold thermoreceptors. PLoS One 2018; 13:e0195108. [PMID: 29590195 PMCID: PMC5874071 DOI: 10.1371/journal.pone.0195108] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/17/2018] [Indexed: 11/19/2022] Open
Abstract
It is generally believed that the unencapsulated sensory nerve terminals of modality specific C- and Aδ-neurons lack structural specialization. Here we determined the morphology of functionally defined polymodal receptors and cold thermoreceptors in the guinea pig corneal epithelium. Polymodal receptors and cold thermoreceptors were identified by extracellular recording at the surface of the corneal epithelium. After marking the recording sites, corneas were processed to reveal immunoreactivity for the transient receptor potential channels TRPV1 (transient receptor potential cation channel, subfamily V, member 1) or TPRM8 (transient receptor potential cation channel subfamily M member 8). Polymodal receptor nerve terminals (n = 6) were TRPV1-immunoreactive and derived from an axon that ascended from the sub-basal plexus to the squamous cell layer where it branched into fibers that ran parallel to the corneal surface and terminated with small bulbar endings (ramifying endings). Cold thermoreceptor nerve terminals were TRPM8-immunoreactive (n = 6) and originated from an axon that branched as it ascended through the wing cell and squamous cell layers and terminated with large bulbar endings (complex endings). These findings indicate that modality specific corneal sensory neurons with unencapsulated nerve endings have distinct nerve terminal morphologies that are likely to relate to their function.
Collapse
Affiliation(s)
- Abdulhakeem S. Alamri
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rhiannon J. Wood
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jason J. Ivanusic
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - James A. Brock
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
63
|
Abstract
The sensation of touch is mediated by mechanosensory neurons that are embedded in skin and relay signals from the periphery to the central nervous system. During embryogenesis, axons elongate from these neurons to make contact with the developing skin. Concurrently, the epithelium of skin transforms from a homogeneous tissue into a heterogeneous organ that is made up of distinct layers and microdomains. Throughout this process, each neuronal terminal must form connections with an appropriate skin region to serve its function. This Review presents current knowledge of the development of the sensory microdomains in mammalian skin and the mechanosensory neurons that innervate them.
Collapse
Affiliation(s)
- Blair A Jenkins
- Department of Physiology & Cellular Biophysics and Department of Dermatology, Columbia University in the City of New York, New York, NY 10032, USA
| | - Ellen A Lumpkin
- Department of Physiology & Cellular Biophysics and Department of Dermatology, Columbia University in the City of New York, New York, NY 10032, USA
| |
Collapse
|
64
|
Wu JS, Vyas P, Glowatzki E, Fuchs PA. Opposing expression gradients of calcitonin-related polypeptide alpha (Calca/Cgrpα) and tyrosine hydroxylase (Th) in type II afferent neurons of the mouse cochlea. J Comp Neurol 2017; 526:425-438. [PMID: 29055051 DOI: 10.1002/cne.24341] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022]
Abstract
Type II spiral ganglion neurons (SGNs) are small caliber, unmyelinated afferents that extend dendritic arbors hundreds of microns along the cochlear spiral, contacting many outer hair cells (OHCs). Despite these many contacts, type II afferents are insensitive to sound and only weakly depolarized by glutamate release from OHCs. Recent studies suggest that type II afferents may be cochlear nociceptors, and can be excited by ATP released during tissue damage, by analogy to somatic pain-sensing C-fibers. The present work compares the expression patterns among cochlear type II afferents of two genes found in C-fibers: calcitonin-related polypeptide alpha (Calca/Cgrpα), specific to pain-sensing C-fibers, and tyrosine hydroxylase (Th), specific to low-threshold mechanoreceptive C-fibers, which was shown previously to be a selective biomarker of type II versus type I cochlear afferents (Vyas et al., ). Whole-mount cochlear preparations from 3-week- to 2-month-old CGRPα-EGFP (GENSAT) mice showed expression of Cgrpα in a subset of SGNs with type II-like peripheral dendrites extending beneath OHCs. Double labeling with other molecular markers confirmed that the labeled SGNs were neither type I SGNs nor olivocochlear efferents. Cgrpα starts to express in type II SGNs before hearing onset, but the expression level declines in the adult. The expression patterns of Cgrpα and Th formed opposing gradients, with Th being preferentially expressed in apical and Cgrpα in basal type II afferent neurons, indicating heterogeneity among type II afferent neurons. The expression of Th and Cgrpα was not mutually exclusive and co-expression could be observed, most abundantly in the middle cochlear turn.
Collapse
Affiliation(s)
- Jingjing Sherry Wu
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pankhuri Vyas
- The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elisabeth Glowatzki
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul Albert Fuchs
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
65
|
An αII Spectrin-Based Cytoskeleton Protects Large-Diameter Myelinated Axons from Degeneration. J Neurosci 2017; 37:11323-11334. [PMID: 29038243 DOI: 10.1523/jneurosci.2113-17.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2017] [Accepted: 10/04/2017] [Indexed: 11/21/2022] Open
Abstract
Axons must withstand mechanical forces, including tension, torsion, and compression. Spectrins and actin form a periodic cytoskeleton proposed to protect axons against these forces. However, because spectrins also participate in assembly of axon initial segments (AISs) and nodes of Ranvier, it is difficult to uncouple their roles in maintaining axon integrity from their functions at AIS and nodes. To overcome this problem and to determine the importance of spectrin cytoskeletons for axon integrity, we generated mice with αII spectrin-deficient peripheral sensory neurons. The axons of these neurons are very long and exposed to the mechanical forces associated with limb movement; most lack an AIS, and some are unmyelinated and have no nodes. We analyzed αII spectrin-deficient mice of both sexes and found that, in myelinated axons, αII spectrin forms a periodic cytoskeleton with βIV and βII spectrin at nodes of Ranvier and paranodes, respectively, but that loss of αII spectrin disrupts this organization. Avil-cre;Sptan1f/f mice have reduced numbers of nodes, disrupted paranodal junctions, and mislocalized Kv1 K+ channels. We show that the density of nodal βIV spectrin is constant among axons, but the density of nodal αII spectrin increases with axon diameter. Remarkably, Avil-cre;Sptan1f/f mice have intact nociception and small-diameter axons, but severe ataxia due to preferential degeneration of large-diameter myelinated axons. Our results suggest that nodal αII spectrin helps resist the mechanical forces experienced by large-diameter axons, and that αII spectrin-dependent cytoskeletons are also required for assembly of nodes of Ranvier.SIGNIFICANCE STATEMENT A periodic axonal cytoskeleton consisting of actin and spectrin has been proposed to help axons resist the mechanical forces to which they are exposed (e.g., compression, torsion, and stretch). However, until now, no vertebrate animal model has tested the requirement of the spectrin cytoskeleton in maintenance of axon integrity. We demonstrate the role of the periodic spectrin-dependent cytoskeleton in axons and show that loss of αII spectrin from PNS axons causes preferential degeneration of large-diameter myelinated axons. We show that nodal αII spectrin is found at greater densities in large-diameter myelinated axons, suggesting that nodes are particularly vulnerable domains requiring a specialized cytoskeleton to protect against axon degeneration.
Collapse
|
66
|
Iribar H, Pérez-López V, Etxaniz U, Gutiérrez-Rivera A, Izeta A. Schwann Cells in the Ventral Dermis Do Not Derive from Myf5-Expressing Precursors. Stem Cell Reports 2017; 9:1477-1487. [PMID: 29033303 PMCID: PMC5830985 DOI: 10.1016/j.stemcr.2017.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022] Open
Abstract
The embryonic origin of lineage precursors of the trunk dermis is somewhat controversial. Precursor cells traced by Myf5 and Twist2 (Dermo1) promoter activation (i.e., cells of presumed dermomyotomal lineage) have been reported to generate Schwann cells. On the other hand, abundant data demonstrate that dermal Schwann cells derive from the neural crest. This is relevant because dermal precursors give rise to neural lineages, and multilineage differentiation potential qualifies them as adult stem cells. However, it is currently unclear whether neural lineages arise from dedifferentiated Schwann cells instead of mesodermally derived dermal precursor cells. To clarify these discrepancies, we traced SOX2+ adult dermal precursor cells by two independent Myf5 lineage tracing strains. We demonstrate that dermal Schwann cells do not belong to the Myf5+ cell lineage, indicating that previous tracing data reflected aberrant cre recombinase expression and that bona fide Myf5+ dermal precursors cannot transdifferentiate to neural lineages in physiological conditions. Adult Myf5-creSor mice aberrantly trace dermal Schwann cells (dSCs) Dedifferentiated, SOX2+ dSCs are the neural-competent precursors in the dermis These findings cast doubt on the multipotency of adult skin-derived precursors
Collapse
Affiliation(s)
- Haizea Iribar
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastian 20014, Spain
| | - Virginia Pérez-López
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastian 20014, Spain
| | - Usue Etxaniz
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastian 20014, Spain
| | - Araika Gutiérrez-Rivera
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastian 20014, Spain.
| | - Ander Izeta
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastian 20014, Spain; Department of Biomedical Engineering, School of Engineering, Tecnun-University of Navarra, San Sebastian 20009, Spain.
| |
Collapse
|
67
|
Schneider ER, Gracheva EO, Bagriantsev SN. Evolutionary Specialization of Tactile Perception in Vertebrates. Physiology (Bethesda) 2017; 31:193-200. [PMID: 27053733 DOI: 10.1152/physiol.00036.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Evolution has endowed vertebrates with the remarkable tactile ability to explore the world through the perception of physical force. Yet the sense of touch remains one of the least well understood senses at the cellular and molecular level. Vertebrates specializing in tactile perception can highlight general principles of mechanotransduction. Here, we review cellular and molecular adaptations that underlie the sense of touch in typical and acutely mechanosensitive vertebrates.
Collapse
Affiliation(s)
- Eve R Schneider
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut
| | - Elena O Gracheva
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, Connecticut; and Department of Neuroscience, Yale University, New Haven, Connecticut
| | - Slav N Bagriantsev
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut;
| |
Collapse
|
68
|
Lampl I, Katz Y. Neuronal adaptation in the somatosensory system of rodents. Neuroscience 2017; 343:66-76. [DOI: 10.1016/j.neuroscience.2016.11.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
|
69
|
Narayanan P, Sondermann J, Rouwette T, Karaca S, Urlaub H, Mitkovski M, Gomez-Varela D, Schmidt M. Native Piezo2 Interactomics Identifies Pericentrin as a Novel Regulator of Piezo2 in Somatosensory Neurons. J Proteome Res 2016; 15:2676-87. [PMID: 27345391 DOI: 10.1021/acs.jproteome.6b00235] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of somatosensory neurons to perceive mechanical stimuli relies on specialized mechanotransducing proteins and their molecular environment. Only recently has the identity of a major transducer of mechanical forces in vertebrates been revealed by the discovery of Piezo2. Further work has established its pivotal role for innocuous touch in mice. Therefore, Piezo2 offers a unique platform for the molecular investigation of somatosensory mechanosensation. We performed a mass spectrometry-based interactomics screen on native Piezo2 in somatosensory neurons of mouse dorsal root ganglia (DRG). Stringent and quantitative data analysis yielded the identity of 36 novel binding partners of Piezo2. The biological significance of this data set is reflected by functional experiments demonstrating a role for Pericentrin in modulating Piezo2 activity and membrane expression in somatosensory neurons. Collectively, our findings provide a framework for understanding Piezo2 physiology and serve as a rich resource for the molecular dissection of mouse somatosensation.
Collapse
Affiliation(s)
- Pratibha Narayanan
- Max-Planck Institute of Experimental Medicine , Somatosensory Signaling and Systems Biology Group, D-37075 Goettingen, Germany
| | - Julia Sondermann
- Max-Planck Institute of Experimental Medicine , Somatosensory Signaling and Systems Biology Group, D-37075 Goettingen, Germany
| | - Tom Rouwette
- Max-Planck Institute of Experimental Medicine , Somatosensory Signaling and Systems Biology Group, D-37075 Goettingen, Germany
| | - Samir Karaca
- Max Planck Institute of Biophysical Chemistry , Bioanalytical Mass Spectrometry Group, D-37077 Goettingen, Germany
| | - Henning Urlaub
- Max Planck Institute of Biophysical Chemistry , Bioanalytical Mass Spectrometry Group, D-37077 Goettingen, Germany.,Bioanaytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen , D-37075 Göttingen, Germany
| | - Mišo Mitkovski
- Max-Planck Institute of Experimental Medicine , Light Microscopy Facility, D-37075 Goettingen, Germany
| | - David Gomez-Varela
- Max-Planck Institute of Experimental Medicine , Somatosensory Signaling and Systems Biology Group, D-37075 Goettingen, Germany
| | - Manuela Schmidt
- Max-Planck Institute of Experimental Medicine , Somatosensory Signaling and Systems Biology Group, D-37075 Goettingen, Germany
| |
Collapse
|
70
|
Bewick GS, Cahusac PMB, Banks RW. Combined Recording of Mechanically Stimulated Afferent Output and Nerve Terminal Labelling in Mouse Hair Follicle Lanceolate Endings. J Vis Exp 2016. [PMID: 27213522 PMCID: PMC6622044 DOI: 10.3791/53854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A novel dissection and recording technique is described for monitoring afferent firing evoked by mechanical displacement of hairs in the mouse pinna. The technique is very cost-effective and easily undertaken with materials commonly found in most electrophysiology laboratories, or easily purchased. The dissection is simple and fast, with the mechanical displacement provided by a generic electroceramic wafer controlled by proprietary software. The same software also records and analyses the electroneurogram output. The recording of the evoked nerve activity is through a commercial differential amplifier connected to fire-polished standard glass microelectrodes. Helpful tips are given for improving the quality of the preparation, the stimulation and the recording conditions to optimize recording quality. The system is suitable for assaying the electrophysiological and optical properties of lanceolate terminals of palisade endings of hair follicles, as well as the outcomes from their pharmacological and/or genetic manipulation. An example of combining electrical recording with mechanical stimulation and labeling with a styryl pyridinium vital dye is given.
Collapse
Affiliation(s)
- Guy S Bewick
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen;
| | | | - Robert W Banks
- School of Biological & Biomedical Sciences, University of Durham
| |
Collapse
|
71
|
Genetic Identification of an Expansive Mechanoreceptor Sensitive to Skin Stroking. Cell 2016; 163:1783-1795. [PMID: 26687362 DOI: 10.1016/j.cell.2015.11.060] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 01/15/2023]
Abstract
Touch perception begins with activation of low-threshold mechanoreceptors (LTMRs) in the periphery. LTMR terminals exhibit tremendous morphological heterogeneity that specifies their mechanical receptivity. In a survey of mammalian skin, we found a preponderance of neurofilament-heavy-chain(+) circumferential endings associated with hair follicles, prompting us to develop a genetic strategy to interrogate these neurons. Targeted in vivo recordings revealed them to be Aβ field-LTMRs, identified 50 years ago but largely elusive thereafter. Remarkably, while Aβ field-LTMRs are highly sensitive to gentle stroking of the skin, they are unresponsive to hair deflection, and they encode skin indentation in the noxious range across large, spotty receptive fields. Individual Aβ field-LTMRs form up to 180 circumferential endings, making them the most anatomically expansive LTMR identified to date. Thus, Aβ field-LTMRs are a major mammalian LTMR subtype that forms circumferential endings in hairy skin, and their sensitivity to gentle skin stroking arises through integration across many low-sensitivity circumferential endings.
Collapse
|
72
|
Djouhri L. Aδ-fiber low threshold mechanoreceptors innervating mammalian hairy skin: A review of their receptive, electrophysiological and cytochemical properties in relation to Aδ-fiber high threshold mechanoreceptors. Neurosci Biobehav Rev 2016; 61:225-38. [DOI: 10.1016/j.neubiorev.2015.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 01/06/2023]
|
73
|
Abstract
Mechanotransduction, the conversion of physical forces into biochemical signals, is essential for various physiological processes such as the conscious sensations of touch and hearing, and the unconscious sensation of blood flow. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels.
Collapse
Affiliation(s)
- Sanjeev S Ranade
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ruhma Syeda
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
74
|
Sajgo S, Ali S, Popescu O, Badea TC. Dynamic expression of transcription factor Brn3b during mouse cranial nerve development. J Comp Neurol 2015; 524:1033-61. [PMID: 26356988 DOI: 10.1002/cne.23890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/18/2015] [Accepted: 08/31/2015] [Indexed: 01/23/2023]
Abstract
During development, transcription factor combinatorial codes define a large variety of morphologically and physiologically distinct neurons. Such a combinatorial code has been proposed for the differentiation of projection neurons of the somatic and visceral components of cranial nerves. It is possible that individual neuronal cell types are not specified by unique transcription factors but rather emerge through the intersection of their expression domains. Brn3a, Brn3b, and Brn3c, in combination with each other and/or transcription factors of other families, can define subgroups of retinal ganglion cells (RGC), spiral and vestibular ganglia, inner ear and vestibular hair cell neurons in the vestibuloacoustic system, and groups of somatosensory neurons in the dorsal root ganglia. The present study investigates the expression and potential role of the Brn3b transcription factor in cranial nerves and associated nuclei of the brainstem. We report the dynamic expression of Brn3b in the somatosensory component of cranial nerves II, V, VII, and VIII and visceromotor nuclei of nerves VII, IX, and X as well as other brainstem nuclei during different stages of development into adult stage. We find that genetically identified Brn3b(KO) RGC axons show correct but delayed pathfinding during the early stages of embryonic development. However, loss of Brn3b does not affect the anatomy of the other cranial nerves normally expressing this transcription factor.
Collapse
Affiliation(s)
- Szilard Sajgo
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892.,Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Science, Babes-Bolyai University, Cluj-Napoca, Cluj, 400084, Romania
| | - Seid Ali
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892
| | - Octavian Popescu
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Science, Babes-Bolyai University, Cluj-Napoca, Cluj, 400084, Romania.,Institute of Biology, Romanian Academy, Bucharest, 060031, Romania
| | | |
Collapse
|
75
|
Gresset A, Coulpier F, Gerschenfeld G, Jourdon A, Matesic G, Richard L, Vallat JM, Charnay P, Topilko P. Boundary Caps Give Rise to Neurogenic Stem Cells and Terminal Glia in the Skin. Stem Cell Reports 2015. [PMID: 26212662 PMCID: PMC4618659 DOI: 10.1016/j.stemcr.2015.06.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
While neurogenic stem cells have been identified in rodent and human skin, their manipulation and further characterization are hampered by a lack of specific markers. Here, we perform genetic tracing of the progeny of boundary cap (BC) cells, a neural-crest-derived cell population localized at peripheral nerve entry/exit points. We show that BC derivatives migrate along peripheral nerves to reach the skin, where they give rise to terminal glia associated with dermal nerve endings. Dermal BC derivatives also include cells that self-renew in sphere culture and have broad in vitro differentiation potential. Upon transplantation into adult mouse dorsal root ganglia, skin BC derivatives efficiently differentiate into various types of mature sensory neurons. Together, this work establishes the embryonic origin, pathway of migration, and in vivo neurogenic potential of a major component of skin stem-like cells. It provides genetic tools to study and manipulate this population of high interest for medical applications. Boundary cap cells give rise to all types of sensory neurons in the developing DRG BC derivatives migrate along peripheral nerves to reach the trunk skin BC cell progeny include glia associated with nerve endings Dermal BC-derived stem cells possess powerful in vivo neurogenic potential
Collapse
Affiliation(s)
- Aurélie Gresset
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and INSERM U1024, and Centre National de la Recherche Scientifique (CNRS) UMR 8197, Paris 75005, France
| | - Fanny Coulpier
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and INSERM U1024, and Centre National de la Recherche Scientifique (CNRS) UMR 8197, Paris 75005, France
| | - Gaspard Gerschenfeld
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and INSERM U1024, and Centre National de la Recherche Scientifique (CNRS) UMR 8197, Paris 75005, France; Sorbonne Universités, UPMC Université Paris 06, IFD, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Alexandre Jourdon
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and INSERM U1024, and Centre National de la Recherche Scientifique (CNRS) UMR 8197, Paris 75005, France; Sorbonne Universités, UPMC Université Paris 06, IFD, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Graziella Matesic
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and INSERM U1024, and Centre National de la Recherche Scientifique (CNRS) UMR 8197, Paris 75005, France
| | - Laurence Richard
- National Reference Centre "Rare Peripheral Neuropathies" Department of Neurology, Centre Hospitalier Universitaire de Limoges, 87042 Limoges, France
| | - Jean-Michel Vallat
- National Reference Centre "Rare Peripheral Neuropathies" Department of Neurology, Centre Hospitalier Universitaire de Limoges, 87042 Limoges, France
| | - Patrick Charnay
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and INSERM U1024, and Centre National de la Recherche Scientifique (CNRS) UMR 8197, Paris 75005, France.
| | - Piotr Topilko
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and INSERM U1024, and Centre National de la Recherche Scientifique (CNRS) UMR 8197, Paris 75005, France
| |
Collapse
|
76
|
Walsh CM, Bautista DM, Lumpkin EA. Mammalian touch catches up. Curr Opin Neurobiol 2015; 34:133-9. [PMID: 26100741 DOI: 10.1016/j.conb.2015.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/22/2015] [Indexed: 11/17/2022]
Abstract
An assortment of touch receptors innervate the skin and encode different tactile features of the environment. Compared with invertebrate touch and other sensory systems, our understanding of the molecular and cellular underpinnings of mammalian touch lags behind. Two recent breakthroughs have accelerated progress. First, an arsenal of cell-type-specific molecular markers allowed the functional and anatomical properties of sensory neurons to be matched, thereby unraveling a cellular code for touch. Such markers have also revealed key roles of non-neuronal cell types, such as Merkel cells and keratinocytes, in touch reception. Second, the discovery of Piezo genes as a new family of mechanically activated channels has fueled the discovery of molecular mechanisms that mediate and mechanotransduction in mammalian touch receptors.
Collapse
Affiliation(s)
- Carolyn M Walsh
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Diana M Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| | - Ellen A Lumpkin
- Department of Dermatology, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA; Department of Physiology & Cellular Biophysics, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
77
|
TONOMURA S, EBARA S, BAGDASARIAN K, UTA D, AHISSAR E, MEIR I, LAMPL I, KURODA D, FURUTA T, FURUE H, KUMAMOTO K. Structure-function correlations of rat trigeminal primary neurons: Emphasis on club-like endings, a vibrissal mechanoreceptor. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:560-76. [PMID: 26666306 PMCID: PMC4773582 DOI: 10.2183/pjab.91.560] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/29/2015] [Indexed: 05/02/2023]
Abstract
This study focuses on the structure and function of the primary sensory neurons that innervate vibrissal follicles in the rat. Both the peripheral and central terminations, as well as their firing properties were identified using intracellular labelling and recording in trigeminal ganglia in vivo. Fifty-one labelled neurons terminating peripherally, as club-like, Merkel, lanceolate, reticular or spiny endings were identified by their morphology. All neurons responded robustly to air puff stimulation applied to the vibrissal skin. Neurons with club-like endings responded with the highest firing rates; their peripheral processes rarely branched between the cell body and their terminal tips. The central branches of these neurons displayed abundant collaterals terminating within all trigeminal nuclei. Analyses of three-dimensional reconstructions reveal a palisade arrangement of club-like endings bound to the ringwulst by collagen fibers. Our morphological findings suggest that neurons with club-like endings sense mechanical aspects related to the movement of the ringwulst and convey this information to all trigeminal nuclei in the brainstem.
Collapse
Affiliation(s)
- Sotatsu TONOMURA
- Department of Anatomy, Meiji University of Integrative Medicine, Nantan, Kyoto, Japan
| | - Satomi EBARA
- Department of Anatomy, Meiji University of Integrative Medicine, Nantan, Kyoto, Japan
| | - Knarik BAGDASARIAN
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Daisuke UTA
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ehud AHISSAR
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Inbal MEIR
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ilan LAMPL
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Daichi KURODA
- Department of Anatomy, Meiji University of Integrative Medicine, Nantan, Kyoto, Japan
| | - Takahiro FURUTA
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidemasa FURUE
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Kenzo KUMAMOTO
- Department of Anatomy, Meiji University of Integrative Medicine, Nantan, Kyoto, Japan
| |
Collapse
|
78
|
Abstract
The skin is our largest sensory organ, transmitting pain, temperature, itch, and touch information to the central nervous system. Touch sensations are conveyed by distinct combinations of mechanosensory end organs and the low-threshold mechanoreceptors (LTMRs) that innervate them. Here we explore the various structures underlying the diverse functions of cutaneous LTMR end organs. Beyond anchoring of LTMRs to the surrounding dermis and epidermis, recent evidence suggests that the non-neuronal components of end organs play an active role in signaling to LTMRs and may physically gate force-sensitive channels in these receptors. Combined with LTMR intrinsic properties, the balance of these factors comprises the response properties of mechanosensory neurons and, thus, the neural encoding of touch.
Collapse
Affiliation(s)
- Amanda Zimmerman
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ling Bai
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
79
|
Rutlin M, Ho CY, Abraira VE, Cassidy C, Bai L, Woodbury CJ, Ginty DD. The cellular and molecular basis of direction selectivity of Aδ-LTMRs. Cell 2014; 159:1640-51. [PMID: 25525881 PMCID: PMC4297767 DOI: 10.1016/j.cell.2014.11.038] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 11/11/2014] [Accepted: 11/19/2014] [Indexed: 01/06/2023]
Abstract
The perception of touch, including the direction of stimulus movement across the skin, begins with activation of low-threshold mechanosensory neurons (LTMRs) that innervate the skin. Here, we show that murine Aδ-LTMRs are preferentially tuned to deflection of body hairs in the caudal-to-rostral direction. This tuning property is explained by the finding that Aδ-LTMR lanceolate endings around hair follicles are polarized; they are concentrated on the caudal (downward) side of each hair follicle. The neurotrophic factor BDNF is synthesized in epithelial cells on the caudal, but not rostral, side of hair follicles, in close proximity to Aδ-LTMR lanceolate endings, which express TrkB. Moreover, ablation of BDNF in hair follicle epithelial cells disrupts polarization of Aδ-LTMR lanceolate endings and results in randomization of Aδ-LTMR responses to hair deflection. Thus, BDNF-TrkB signaling directs polarization of Aδ-LTMR lanceolate endings, which underlies direction-selective responsiveness of Aδ-LTMRs to hair deflection.
Collapse
Affiliation(s)
- Michael Rutlin
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Cheng-Ying Ho
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA; Department of Pathology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Victoria E Abraira
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Colleen Cassidy
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | | | - C Jeffery Woodbury
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
80
|
Kupari J, Airaksinen MS. Different requirements for GFRα2-signaling in three populations of cutaneous sensory neurons. PLoS One 2014; 9:e104764. [PMID: 25111710 PMCID: PMC4128720 DOI: 10.1371/journal.pone.0104764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/15/2014] [Indexed: 01/09/2023] Open
Abstract
Many primary sensory neurons in mouse dorsal root ganglia (DRG) express one or several GFRα’s, the ligand-binding receptors of the GDNF family, and their common signaling receptor Ret. GFRα2, the principal receptor for neurturin, is expressed in most of the small nonpeptidergic DRG neurons, but also in some large DRG neurons that start to express Ret earlier. Previously, GFRα2 has been shown to be crucial for the soma size of small nonpeptidergic nociceptors and for their target innervation of glabrous epidermis. However, little is known about this receptor in other Ret-expressing DRG neuron populations. Here we have investigated two populations of Ret-positive low-threshold mechanoreceptors that innervate different types of hair follicles on mouse back skin: the small C-LTMRs and the large Aβ-LTMRs. Using GFRα2-KO mice and immunohistochemistry we found that, similar to the nonpeptidergic nociceptors, GFRα2 controls the cell size but not the survival of both C-LTMRs and Aβ-LTMRs. In contrast to the nonpeptidergic neurons, GFRα2 is not required for the target innervation of C-LTMRs and Aβ-LTMRs in the back skin. These results suggest that different factors drive target innervation in these three populations of neurons. In addition, the observation that the large Ret-positive DRG neurons lack GFRα2 immunoreactivity in mature animals suggests that these neurons switch their GFRα signaling pathways during postnatal development.
Collapse
Affiliation(s)
- Jussi Kupari
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland
| | - Matti S. Airaksinen
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
81
|
Sensory mechanotransduction at membrane-matrix interfaces. Pflugers Arch 2014; 467:121-32. [PMID: 24981693 PMCID: PMC4281363 DOI: 10.1007/s00424-014-1563-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 01/23/2023]
Abstract
Sensory cells specialized to detect extremely small mechanical changes are common to the auditory and somatosensory systems. It is widely accepted that mechanosensitive channels form the core of the mechanoelectrical transduction in hair cells as well as the somatic sensory neurons that underlie the sense of touch and mechanical pain. Here, we will review how the activation of such channels can be measured in a meaningful physiological context. In particular, we will discuss the idea that mechanosensitive channels normally occur in transmembrane complexes that are anchored to extracellular matrix components (ECM) both in vitro and in vivo. One component of such complexes in sensory neurons is the integral membrane scaffold protein STOML3 which is a robust physiological regulator of native mechanosensitive currents. In order to better characterize such channels in transmembrane complexes, we developed a new electrophysiological method that enables the quantification of mechanosensitive current amplitude and kinetics when activated by a defined matrix movement in cultured cells. The results of such studies strongly support the idea that ion channels in transmembrane complexes are highly tuned to detect movement of the cell membrane in relation to the ECM.
Collapse
|
82
|
Owens DM, Lumpkin EA. Diversification and specialization of touch receptors in skin. Cold Spring Harb Perspect Med 2014; 4:4/6/a013656. [PMID: 24890830 DOI: 10.1101/cshperspect.a013656] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our skin is the furthest outpost of the nervous system and a primary sensor for harmful and innocuous external stimuli. As a multifunctional sensory organ, the skin manifests a diverse and highly specialized array of mechanosensitive neurons with complex terminals, or end organs, which are able to discriminate different sensory stimuli and encode this information for appropriate central processing. Historically, the basis for this diversity of sensory specializations has been poorly understood. In addition, the relationship between cutaneous mechanosensory afferents and resident skin cells, including keratinocytes, Merkel cells, and Schwann cells, during the development and function of tactile receptors has been poorly defined. In this article, we will discuss conserved tactile end organs in the epidermis and hair follicles, with a focus on recent advances in our understanding that have emerged from studies of mouse hairy skin.
Collapse
Affiliation(s)
- David M Owens
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York 10032 Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Ellen A Lumpkin
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York 10032 Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|