51
|
Cohen E, Peterson NG, Sawyer JK, Fox DT. Accelerated cell cycles enable organ regeneration under developmental time constraints in the Drosophila hindgut. Dev Cell 2021; 56:2059-2072.e3. [PMID: 34019841 PMCID: PMC8319103 DOI: 10.1016/j.devcel.2021.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/10/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022]
Abstract
Individual organ development must be temporally coordinated with development of the rest of the organism. As a result, cell division cycles in a developing organ occur on a relatively fixed timescale. Despite this, many developing organs can regenerate cells lost to injury. How organs regenerate within the time constraints of organism development remains unclear. Here, we show that the developing Drosophila hindgut regenerates by accelerating the mitotic cell cycle. This process is achieved by decreasing G1 length and requires the JAK/STAT ligand unpaired-3. Mitotic capacity is then terminated by the steroid hormone ecdysone receptor and the Sox transcription factor Dichaete. These two factors converge on regulation of a hindgut-specific enhancer of fizzy-related, a negative regulator of mitotic cyclins. Our findings reveal how the cell-cycle machinery and cytokine signaling can be adapted to accomplish developmental organ regeneration.
Collapse
Affiliation(s)
- Erez Cohen
- Department of Cell Biology, Duke University School of Medicine, Durham, USA
| | - Nora G Peterson
- Department of Cell Biology, Duke University School of Medicine, Durham, USA
| | - Jessica K Sawyer
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, USA
| | - Donald T Fox
- Department of Cell Biology, Duke University School of Medicine, Durham, USA; Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, USA; Regeneration Next Initiative, Duke University School of Medicine, Durham, USA.
| |
Collapse
|
52
|
Srivastava M. Beyond Casual Resemblances: Rigorous Frameworks for Comparing Regeneration Across Species. Annu Rev Cell Dev Biol 2021; 37:415-440. [PMID: 34288710 DOI: 10.1146/annurev-cellbio-120319-114716] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The majority of animal phyla have species that can regenerate. Comparing regeneration across animals can reconstruct the molecular and cellular evolutionary history of this process. Recent studies have revealed some similarity in regeneration mechanisms, but rigorous comparative methods are needed to assess whether these resemblances are ancestral pathways (homology) or are the result of convergent evolution (homoplasy). This review aims to provide a framework for comparing regeneration across animals, focusing on gene regulatory networks (GRNs), which are substrates for assessing process homology. The homology of the wound-induced activation of Wnt signaling and of adult stem cells are discussed as examples of ongoing studies of regeneration that enable comparisons in a GRN framework. Expanding the study of regeneration GRNs in currently studied species and broadening taxonomic sampling for these approaches will identify processes that are unifying principles of regeneration biology across animals. These insights are important both for evolutionary studies of regeneration and for human regenerative medicine. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mansi Srivastava
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;
| |
Collapse
|
53
|
Bakalkin G, Kahle A, Sarkisyan D, Watanabe H, Lukoyanov N, Carvalho LS, Galatenko V, Hallberg M, Nosova O. Coordinated expression of the renin-angiotensin genes in the lumbar spinal cord: Lateralization and effects of unilateral brain injury. Eur J Neurosci 2021; 54:5560-5573. [PMID: 34145943 DOI: 10.1111/ejn.15360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
In spite of its apparent symmetry, the spinal cord is asymmetric in its reflexes and gene expression patterns including leftward expression bias of the opioid and glutamate genes. To examine whether this is a general phenomenon for neurotransmitter and neurohormonal genes, we here characterized expression and co-expression (transcriptionally coordinated) patterns of genes of the renin-angiotensin system (RAS) that is involved in neuroprotection and pathological neuroplasticity in the left and right lumbar spinal cord. We also tested whether the RAS expression patterns were affected by unilateral brain injury (UBI) that rewired lumbar spinal neurocircuits. The left and right halves of the lumbar spinal cord were analysed in intact rats, and rats with left- or right-sided unilateral cortical injury, and left- or right-sided sham surgery. The findings were (i) lateralized expression of the RAS genes Ace, Agtr2 and Ren with higher levels on the left side; (ii) the asymmetry in coordination of the RAS gene expression that was stronger on the right side; (iii) the decay in coordination of co-expression of the RAS and neuroplasticity-related genes induced by the right-side but not left-side sham surgery and UBI; and (iv) the UBI-induced shift to negative regulatory interactions between RAS and neuroplasticity-related genes on the contralesional spinal side. Thus, the RAS genes may be a part of lateralized gene co-expression networks and have a role in a side-specific regulation of spinal neurocircuits.
Collapse
Affiliation(s)
- Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Anika Kahle
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Daniil Sarkisyan
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Nikolay Lukoyanov
- Departamento de Biomedicina, Faculdade de Medicina; Instituto de Investigação e Inovação em Saúde; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Liliana S Carvalho
- Departamento de Biomedicina, Faculdade de Medicina; Instituto de Investigação e Inovação em Saúde; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Vladimir Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia.,Evotec International GmbH, Göttingen, Germany
| | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Olga Nosova
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
54
|
Khyeam S, Lee S, Huang GN. Genetic, Epigenetic, and Post-Transcriptional Basis of Divergent Tissue Regenerative Capacities Among Vertebrates. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10042. [PMID: 34423307 PMCID: PMC8372189 DOI: 10.1002/ggn2.10042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022]
Abstract
Regeneration is widespread across the animal kingdom but varies vastly across phylogeny and even ontogeny. Adult mammalian regeneration in most organs and appendages is limited, while vertebrates such as zebrafish and salamanders are able to regenerate various organs and body parts. Here, we focus on the regeneration of appendages, spinal cord, and heart - organs and body parts that are highly regenerative among fish and amphibian species but limited in adult mammals. We then describe potential genetic, epigenetic, and post-transcriptional similarities among these different forms of regeneration across vertebrates and discuss several theories for diminished regenerative capacity throughout evolution.
Collapse
Affiliation(s)
- Sheamin Khyeam
- Cardiovascular Research Institute and Department of PhysiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell ResearchUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Sukjun Lee
- Cardiovascular Research Institute and Department of PhysiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell ResearchUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Guo N. Huang
- Cardiovascular Research Institute and Department of PhysiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell ResearchUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
55
|
Ewen-Campen B, Comyn T, Vogt E, Perrimon N. No Evidence that Wnt Ligands Are Required for Planar Cell Polarity in Drosophila. Cell Rep 2021; 32:108121. [PMID: 32905771 PMCID: PMC7641474 DOI: 10.1016/j.celrep.2020.108121] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 11/05/2022] Open
Abstract
The frizzled (fz) and dishevelled (dsh) genes are highly conserved members of both the planar cell polarity (PCP) pathway and the Wnt signaling pathway. Given these dual functions, several studies have examined whether Wnt ligands provide a tissue-scale orientation cue for PCP establishment during development, and these studies have reached differing conclusions. Here, we re-examine this issue in the Drosophila melanogaster wing and notum using split-Gal4 co-expression analysis, multiplex somatic CRISPR, and double RNAi experiments. Pairwise loss-of-function experiments targeting wg together with other Wnt genes, via somatic CRISPR or RNAi, do not produce PCP defects in the wing or notum. In addition, somatic CRISPR against evi (aka wntless), which is required for the secretion of Wnt ligands, did not produce detectable PCP phenotypes. Altogether, our results do not support the hypothesis that Wnt ligands contribute to PCP signaling in the Drosophila wing or notum. Previous studies have come to differing conclusions on whether Wnt ligands provide a tissue-level orientation cue for the planar cell polarity pathway. Ewen-Campen et al. re-examine this question in Drosophila using multiplex in vivo CRISPR and double RNAi against Wnt ligands and find no evidence that Wnts are required for PCP patterning.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Typhaine Comyn
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Vogt
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
56
|
Ordway AJ, Teeters GM, Weasner BM, Weasner BP, Policastro R, Kumar JP. A multi-gene knockdown approach reveals a new role for Pax6 in controlling organ number in Drosophila. Development 2021; 148:dev198796. [PMID: 33982759 PMCID: PMC8172120 DOI: 10.1242/dev.198796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/07/2021] [Indexed: 11/20/2022]
Abstract
Genetic screens are designed to target individual genes for the practical reason of establishing a clear association between a mutant phenotype and a single genetic locus. This allows for a developmental or physiological role to be assigned to the wild-type gene. We previously observed that the concurrent loss of Pax6 and Polycomb epigenetic repressors in Drosophila leads the eye to transform into a wing. This fate change is not seen when either factor is disrupted separately. An implication of this finding is that standard screens may miss the roles that combinations of genes play in development. Here, we show that this phenomenon is not limited to Pax6 and Polycomb but rather applies more generally. We demonstrate that in the Drosophila eye-antennal disc, the simultaneous downregulation of Pax6 with either the NURF nucleosome remodeling complex or the Pointed transcription factor transforms the head epidermis into an antenna. This is a previously unidentified fate change that is also not observed with the loss of individual genes. We propose that the use of multi-gene knockdowns is an essential tool for unraveling the complexity of development.
Collapse
Affiliation(s)
| | | | | | | | | | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
57
|
Geng F, Ma J, Li X, Hu Z, Zhang R. Hemodynamic Forces Regulate Cardiac Regeneration-Responsive Enhancer Activity during Ventricle Regeneration. Int J Mol Sci 2021; 22:ijms22083945. [PMID: 33920448 PMCID: PMC8070559 DOI: 10.3390/ijms22083945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023] Open
Abstract
Cardiac regenerative capacity varies widely among vertebrates. Zebrafish can robustly regenerate injured hearts and are excellent models to study the mechanisms of heart regeneration. Recent studies have shown that enhancers are able to respond to injury and regulate the regeneration process. However, the mechanisms to activate these regeneration-responsive enhancers (RREs) remain poorly understood. Here, we utilized transient and transgenic analysis combined with a larval zebrafish ventricle ablation model to explore the activation and regulation of a representative RRE. lepb-linked enhancer sequence (LEN) directed enhanced green fluorescent protein (EGFP) expression in response to larval ventricle regeneration and such activation was attenuated by hemodynamic force alteration and mechanosensation pathway modulation. Further analysis revealed that Notch signaling influenced the endocardial LEN activity as well as endogenous lepb expression. Altogether, our work has established zebrafish models for rapid characterization of cardiac RREs in vivo and provides novel insights on the regulation of LEN by hemodynamic forces and other signaling pathways during heart regeneration.
Collapse
Affiliation(s)
- Fang Geng
- School of Life Sciences, Fudan University, Shanghai 200438, China; (F.G.); (J.M.); (X.L.); (Z.H.)
| | - Jinmin Ma
- School of Life Sciences, Fudan University, Shanghai 200438, China; (F.G.); (J.M.); (X.L.); (Z.H.)
| | - Xueyu Li
- School of Life Sciences, Fudan University, Shanghai 200438, China; (F.G.); (J.M.); (X.L.); (Z.H.)
| | - Zhengyue Hu
- School of Life Sciences, Fudan University, Shanghai 200438, China; (F.G.); (J.M.); (X.L.); (Z.H.)
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Correspondence:
| |
Collapse
|
58
|
Xu Y, Wei W, Lin G, Yan S, Zhang J, Shen J, Wang D. The Ras/MAPK pathway is required for regenerative growth of wing discs in the black cutworm Agrotis ypsilon. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103552. [PMID: 33577967 DOI: 10.1016/j.ibmb.2021.103552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Regeneration is a common phenomenon in various organisms by which tissues restore the damaged or naturally detached parts. In insects, appendage regeneration takes place during the embryonic, larval and pupal stages for individual survival. The wing disc of black cutworm Agrotis ypsilon has the capacity of regeneration after ablation, but understanding of molecular mechanisms in wing disc regeneration is still limited. After ablation of partial or whole wing discs before the fifth instar larval stage, the adult wings appeared to be normal. In the last two larval stages, ablation of the left wing disc led to smaller corresponding adult wing. Cell proliferation was reduced in the ablated wing disc but was gradually recovered two days post ablation. Transcriptome analysis found that genes in the mitogen-activated protein kinase (MAPK) pathway were upregulated. Repression of gene expression in this pathway, including Ras oncogene at 64B (Ras64B), Downstream of raf1 (Dsor1), and cAMP-dependent protein kinase catalytic subunit 3 (Pka-C3) by RNA interference after ablation, led to diminishment of both adult wings, suggesting that the MAPK signaling is essential for wing growth. Additionally, cell proliferation was still decelerated by injecting Ras64B, Dsor, or Pka-C3 dsRNA two days after ablation, indicating that the MAPK signaling-regulated cell proliferation is essential for growth. These results provide molecular clues to the regulation of cell proliferation during regeneration in lepidopteran insects.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wei Wei
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Guangze Lin
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shuo Yan
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Junzheng Zhang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jie Shen
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Dan Wang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
59
|
DaCrema D, Bhandari R, Karanja F, Yano R, Halme A. Ecdysone regulates the Drosophila imaginal disc epithelial barrier, determining the length of regeneration checkpoint delay. Development 2021; 148:dev.195057. [PMID: 33658221 DOI: 10.1242/dev.195057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Regeneration of Drosophila imaginal discs, larval precursors to adult tissues, activates a regeneration checkpoint that coordinates regenerative growth with developmental progression. This regeneration checkpoint results from the release of the relaxin-family peptide Dilp8 from regenerating imaginal tissues. Secreted Dilp8 protein is detected within the imaginal disc lumen, in which it is separated from its receptor target Lgr3, which is expressed in the brain and prothoracic gland, by the disc epithelial barrier. Here, we demonstrate that following damage the imaginal disc epithelial barrier limits Dilp8 signaling and the duration of regeneration checkpoint delay. We also find that the barrier becomes increasingly impermeable to the transepithelial diffusion of labeled dextran during the second half of the third instar. This change in barrier permeability is driven by the steroid hormone ecdysone and correlates with changes in localization of Coracle, a component of the septate junctions that is required for the late-larval impermeable epithelial barrier. Based on these observations, we propose that the imaginal disc epithelial barrier regulates the duration of the regenerative checkpoint, providing a mechanism by which tissue function can signal the completion of regeneration.
Collapse
Affiliation(s)
- Danielle DaCrema
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902, USA
| | - Rajan Bhandari
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902, USA
| | - Faith Karanja
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902, USA
| | - Ryunosuke Yano
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902, USA
| | - Adrian Halme
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902, USA
| |
Collapse
|
60
|
Begeman IJ, Shin K, Osorio-Méndez D, Kurth A, Lee N, Chamberlain TJ, Pelegri FJ, Kang J. Decoding an organ regeneration switch by dissecting cardiac regeneration enhancers. Development 2020; 147:226055. [PMID: 33246928 DOI: 10.1242/dev.194019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
Heart regeneration in regeneration-competent organisms can be accomplished through the remodeling of gene expression in response to cardiac injury. This dynamic transcriptional response relies on the activities of tissue regeneration enhancer elements (TREEs); however, the mechanisms underlying TREEs are poorly understood. We dissected a cardiac regeneration enhancer in zebrafish to elucidate the mechanisms governing spatiotemporal gene expression during heart regeneration. Cardiac lepb regeneration enhancer (cLEN) exhibits dynamic, regeneration-dependent activity in the heart. We found that multiple injury-activated regulatory elements are distributed throughout the enhancer region. This analysis also revealed that cardiac regeneration enhancers are not only activated by injury, but surprisingly, they are also actively repressed in the absence of injury. Our data identified a short (22 bp) DNA element containing a key repressive element. Comparative analysis across Danio species indicated that the repressive element is conserved in closely related species. The repression mechanism is not operational during embryogenesis and emerges when the heart begins to mature. Incorporating both activation and repression components into the mechanism of tissue regeneration constitutes a new paradigm that might be extrapolated to other regeneration scenarios.
Collapse
Affiliation(s)
- Ian J Begeman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daniel Osorio-Méndez
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew Kurth
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nutishia Lee
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Francisco J Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
61
|
Wang W, Hu CK, Zeng A, Alegre D, Hu D, Gotting K, Ortega Granillo A, Wang Y, Robb S, Schnittker R, Zhang S, Alegre D, Li H, Ross E, Zhang N, Brunet A, Sánchez Alvarado A. Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates. Science 2020; 369:369/6508/eaaz3090. [PMID: 32883834 DOI: 10.1126/science.aaz3090] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/05/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
Vertebrates vary in their ability to regenerate, and the genetic mechanisms underlying such disparity remain elusive. Comparative epigenomic profiling and single-cell sequencing of two related teleost fish uncovered species-specific and evolutionarily conserved genomic responses to regeneration. The conserved response revealed several regeneration-responsive enhancers (RREs), including an element upstream to inhibin beta A (inhba), a known effector of vertebrate regeneration. This element activated expression in regenerating transgenic fish, and its genomic deletion perturbed caudal fin regeneration and abrogated cardiac regeneration altogether. The enhancer is present in mammals, shares functionally essential activator protein 1 (AP-1)-binding motifs, and responds to injury, but it cannot rescue regeneration in fish. This work suggests that changes in AP-1-enriched RREs are likely a crucial source of loss of regenerative capacities in vertebrates.
Collapse
Affiliation(s)
- Wei Wang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Howard Hughes Medical Institute, Kansas City, MO 64110, USA
| | - Chi-Kuo Hu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - An Zeng
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Dana Alegre
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Deqing Hu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Kirsten Gotting
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sofia Robb
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Shasha Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Dillon Alegre
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Eric Ross
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Howard Hughes Medical Institute, Kansas City, MO 64110, USA
| | - Ning Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.,Glenn Laboratories for the Biology of Aging. Stanford University, Stanford, CA 94305, USA
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA. .,Howard Hughes Medical Institute, Kansas City, MO 64110, USA
| |
Collapse
|
62
|
Thompson JD, Ou J, Lee N, Shin K, Cigliola V, Song L, Crawford GE, Kang J, Poss KD. Identification and requirements of enhancers that direct gene expression during zebrafish fin regeneration. Development 2020; 147:dev.191262. [PMID: 32665240 DOI: 10.1242/dev.191262] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
To identify candidate tissue regeneration enhancer elements (TREEs) important for zebrafish fin regeneration, we performed ATAC-seq from bulk tissue or purified fibroblasts of uninjured and regenerating caudal fins. We identified tens of thousands of DNA regions from each sample type with dynamic accessibility during regeneration, and assigned these regions to proximal genes with corresponding expression changes by RNA-seq. To determine whether these profiles reveal bona fide TREEs, we tested the sufficiency and requirements of several sequences in stable transgenic lines and mutant lines with homozygous deletions. These experiments validated new non-coding regulatory sequences near induced and/or essential genes during fin regeneration, including fgf20a, mdka and cx43, identifying distinct domains of directed expression for each confirmed TREE. Whereas deletion of the previously identified LEN enhancer abolished detectable induction of the nearby leptin b gene during regeneration, deletions of enhancers linked to fgf20a, mdka and cx43 had no effect or partially reduced gene expression. Our study generates a new resource for dissecting the regulatory mechanisms of appendage generation and reveals a range of requirements for individual TREEs in control of regeneration programs.
Collapse
Affiliation(s)
- John D Thompson
- Regeneration Next, Duke University, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jianhong Ou
- Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Nutishia Lee
- Regeneration Next, Duke University, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Valentina Cigliola
- Regeneration Next, Duke University, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lingyun Song
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center; Center for Genomic and Computational Biology; Center for Advanced Genomic Technologies, Durham, NC 27710, USA
| | - Gregory E Crawford
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center; Center for Genomic and Computational Biology; Center for Advanced Genomic Technologies, Durham, NC 27710, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kenneth D Poss
- Regeneration Next, Duke University, Durham, NC 27710, USA .,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
63
|
Basu U, Balakrishnan SS, Janardan V, Raghu P. A PI4KIIIα protein complex is required for cell viability during Drosophila wing development. Dev Biol 2020; 462:208-222. [PMID: 32194035 DOI: 10.1016/j.ydbio.2020.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 01/02/2023]
Abstract
Phosphatidylinositol 4 phosphate (PI4P) and phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] are enriched on the inner leaflet of the plasma membrane and proposed to be key determinants of its function. PI4P is also the biochemical precursor for the synthesis of PI(4,5)P2 but can itself also bind to and regulate protein function. However, the independent function of PI4P at the plasma membrane in supporting cell function in metazoans during development in vivo remains unclear. We find that conserved components of a multi-protein complex composed of phosphatidylinositol 4-kinase IIIα (PI4KIIIα), TTC7 and Efr3 is required for normal vein patterning and wing development. Depletion of each of these three components of the PI4KIIIα complex in developing wing cells results in altered wing morphology. These effects are associated with an increase in apoptosis and can be rescued by expression of an inhibitor of Drosophila caspase. We find that in contrast to previous reports, PI4KIIIα depletion does not alter key outputs of hedgehog signalling in developing wing discs. Depletion of PI4KIIIα results in reduced PI4P levels at the plasma membrane of developing wing disc cells while levels of PI(4,5)P2, the downstream metabolite of PI4P, are not altered. Thus, PI4P itself generated by the activity of the PI4KIIIα complex plays an essential role in supporting cell viability in the developing Drosophila wing disc.
Collapse
Affiliation(s)
- Urbashi Basu
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Sruthi S Balakrishnan
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Vishnu Janardan
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
64
|
Harris RE, Stinchfield MJ, Nystrom SL, McKay DJ, Hariharan IK. Damage-responsive, maturity-silenced enhancers regulate multiple genes that direct regeneration in Drosophila. eLife 2020; 9:58305. [PMID: 32490812 PMCID: PMC7299344 DOI: 10.7554/elife.58305] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
Like tissues of many organisms, Drosophila imaginal discs lose the ability to regenerate as they mature. This loss of regenerative capacity coincides with reduced damage-responsive expression of multiple genes needed for regeneration. We previously showed that two such genes, wg and Wnt6, are regulated by a single damage-responsive enhancer that becomes progressively inactivated via Polycomb-mediated silencing as discs mature (Harris et al., 2016). Here we explore the generality of this mechanism and identify additional damage-responsive, maturity-silenced (DRMS) enhancers, some near genes known to be required for regeneration such as Mmp1, and others near genes that we now show function in regeneration. Using a novel GAL4-independent ablation system we characterize two DRMS-associated genes, apontic (apt), which curtails regeneration and CG9752/asperous (aspr), which promotes it. This mechanism of suppressing regeneration by silencing damage-responsive enhancers at multiple loci can be partially overcome by reducing activity of the chromatin regulator extra sex combs (esc).
Collapse
Affiliation(s)
| | | | - Spencer L Nystrom
- University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Daniel J McKay
- University of North Carolina at Chapel Hill, Chapel Hill, United States
| | | |
Collapse
|
65
|
Suzuki N, Ochi H. Regeneration enhancers: A clue to reactivation of developmental genes. Dev Growth Differ 2020; 62:343-354. [PMID: 32096563 PMCID: PMC7383998 DOI: 10.1111/dgd.12654] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
During tissue and organ regeneration, cells initially detect damage and then alter nuclear transcription in favor of tissue/organ reconstruction. Until recently, studies of tissue regeneration have focused on the identification of relevant genes. These studies show that many developmental genes are reused during regeneration. Concurrently, comparative genomics studies have shown that the total number of genes does not vastly differ among vertebrate taxa. Moreover, functional analyses of developmental genes using various knockout/knockdown techniques demonstrated that the functions of these genes are conserved among vertebrates. Despite these data, the ability to regenerate damaged body parts varies widely between animals. Thus, it is important to determine how regenerative transcriptional programs are triggered and why animals with low regenerative potential fail to express developmental genes after injury. Recently, we discovered relevant enhancers and named them regeneration signal-response enhancers (RSREs) after identifying their activation mechanisms in a Xenopus laevis transgenic system. In this review, we summarize recent studies of injury/regeneration-associated enhancers and then discuss their mechanisms of activation.
Collapse
Affiliation(s)
- Nanoka Suzuki
- Amphibian Research CenterHiroshima UniversityHigashi‐HiroshimaJapan
| | - Haruki Ochi
- Institute for Promotion of Medical Science ResearchFaculty of MedicineYamagata UniversityYamagataJapan
| |
Collapse
|
66
|
Holzem M, Franke FA, Mendes CC, McGregor AP. Wnt gene regulation and function during maxillary palp development in Drosophila melanogaster. Dev Biol 2020; 462:66-73. [PMID: 32229133 DOI: 10.1016/j.ydbio.2020.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
Wnt genes encode secreted ligands that play many important roles in the development of metazoans. There are thirteen known Wnt gene subfamilies and seven of these are represented in Drosophila melanogaster. While wingless (wg) is the best understood and most widely studied Wnt gene in Drosophila, the functions of many of the other Drosophila Wnt genes are less well understood. For example, relatively little is known about Wnt6, which is an ancient paralog of wg and they form a conserved Wnt cluster together with Wnt9 (Dwnt4) and Wnt10. Wg and Wnt6 encode similar proteins and exhibit overlapping expression in several tissues during development. Both wg and Wnt6 were previously shown to regulate the development of maxillary palps, important olfactory organs in flies, but it remained unclear how these two ligands may combine to carry out specific functions and how this is regulated. Here, we have further analysed Wnt6 function in the context of maxillary palp development. Surprisingly, we found that Wnt6 does not appear to be necessary for development of maxillary palps. While a deletion of the 5' region of Wnt6 results in very small maxillary palps, we show that this effect is more likely to be a consequence of removing cis-regulatory elements that may regulate wg expression in this tissue rather than through the loss of Wnt6 function. Although, we cannot completely exclude the possibility that Wnt6 may subtly regulate maxillary palp development in combination with wg, our analysis of Wnt6 loss of function mutants suggests this ligand plays a more general role in regulating growth during development. Taken together our results provide new insights into maxillary palp formation and Wnt6 functions in Drosophila, and further evidence for a complex cis-regulatory landscape in the Wnt9-wg-Wnt6-Wnt10 cluster, which may help explain its evolutionary conservation.
Collapse
Affiliation(s)
- Michaela Holzem
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom; Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
| | - Franziska A Franke
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom
| | - Cláudia C Mendes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, United Kingdom
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom.
| |
Collapse
|
67
|
Cigliola V, Becker CJ, Poss KD. Building bridges, not walls: spinal cord regeneration in zebrafish. Dis Model Mech 2020; 13:13/5/dmm044131. [PMID: 32461216 PMCID: PMC7272344 DOI: 10.1242/dmm.044131] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury is a devastating condition in which massive cell death and disruption of neural circuitry lead to long-term chronic functional impairment and paralysis. In mammals, spinal cord tissue has minimal capacity to regenerate after injury. In stark contrast, the regeneration of a completely transected spinal cord and accompanying reversal of paralysis in adult zebrafish is arguably one of the most spectacular biological phenomena in nature. Here, we review reports from the last decade that dissect the mechanisms of spinal cord regeneration in zebrafish. We highlight recent progress as well as areas requiring emphasis in a line of study that has great potential to uncover strategies for human spinal cord repair. Summary: Unlike mammals, teleost fish are capable of efficient, spontaneous recovery after a paralyzing spinal cord injury. Here, we highlight the major events through which laboratory model zebrafish regenerate spinal cord tissue.
Collapse
Affiliation(s)
- Valentina Cigliola
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Clayton J Becker
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA .,Regeneration Next, Duke University, Durham, NC 27710, USA
| |
Collapse
|
68
|
Abstract
Drosophila melanogaster has historically been a workhorse model organism for studying developmental biology. In addition, Drosophila is an excellent model for studying how damaged tissues and organs can regenerate. Recently, new precision approaches that enable both highly targeted injury and genetic manipulation have accelerated progress in this field. Here, we highlight these techniques and review examples of recently discovered mechanisms that regulate regeneration in Drosophila larval and adult tissues. We also discuss how, by applying these powerful approaches, studies of Drosophila can continue to guide the future of regeneration research.
Collapse
Affiliation(s)
- Donald T Fox
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Erez Cohen
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Rachel Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
69
|
Pinal N, Calleja M, Morata G. Pro-apoptotic and pro-proliferation functions of the JNK pathway of Drosophila: roles in cell competition, tumorigenesis and regeneration. Open Biol 2020; 9:180256. [PMID: 30836847 PMCID: PMC6451367 DOI: 10.1098/rsob.180256] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase family. It appears to be conserved in all animal species where it regulates important physiological functions involved in apoptosis, cell migration, cell proliferation and regeneration. In this review, we focus on the functions of JNK in Drosophila imaginal discs, where it has been reported that it can induce both cell death and cell proliferation. We discuss this apparent paradox in the light of recent findings and propose that the pro-apoptotic and the pro-proliferative functions are intrinsic properties of JNK activity. Whether one function or another is predominant depends on the cellular context.
Collapse
Affiliation(s)
- Noelia Pinal
- Centro de Biología Molecular CSIC-UAM , Madrid , Spain
| | | | - Ginés Morata
- Centro de Biología Molecular CSIC-UAM , Madrid , Spain
| |
Collapse
|
70
|
Chromatin dynamics in regeneration epithelia: Lessons from Drosophila imaginal discs. Semin Cell Dev Biol 2020; 97:55-62. [DOI: 10.1016/j.semcdb.2019.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
|
71
|
Rodriguez AM, Kang J. Regeneration enhancers: Starting a journey to unravel regulatory events in tissue regeneration. Semin Cell Dev Biol 2020; 97:47-54. [PMID: 30953740 PMCID: PMC6783330 DOI: 10.1016/j.semcdb.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/19/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
Abstract
Regeneration, an ability to replace lost body parts, is widespread across animal species. While mammals poorly regenerate most tissues, teleost fish and urodele amphibians possess remarkable regenerative capacity. Earlier work demonstrated that genes driving regeneration are evolutionarily conserved, indicating that a key factor in diverse tissue regeneration is not the presence or absence of regeneration-driving genes but the mechanisms controlling activation of these genes after injury. Thus, understanding the regulatory events of tissue regeneration could provide the means for unlocking latent capacities for tissue regeneration. After injury, cells undergo extensive epigenetic changes to establish new transcriptional programs for tissue regeneration. Gene transcription in eukaryotes is a complicated process that requires specific interactions between trans-acting regulators and cis-regulatory DNA elements. Among cis-regulatory elements, enhancers are essential to control precise gene expression. Recently, multiple regeneration/injury-associated enhancers have been identified in several model organisms. In this review, we highlight recently discovered regeneration/injury enhancers and their specific characteristics. We also discuss how abnormal regulation of regeneration enhancers influences animal development and physiology. Investigation of regeneration enhancers potentially allows us to begin understanding the fundamental biology of tissue regeneration and inspires new solutions for manipulating regenerative ability.
Collapse
Affiliation(s)
- Anjelica M Rodriguez
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA.
| |
Collapse
|
72
|
Held LI, Sessions SK. Reflections on Bateson's rule: Solving an old riddle about why extra legs are mirror‐symmetric. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:219-237. [DOI: 10.1002/jez.b.22910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/18/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Lewis I. Held
- Department of Biological SciencesTexas Tech University Lubbock Texas
| | | |
Collapse
|
73
|
Abstract
Deafness or hearing deficits are debilitating conditions. They are often caused by loss of sensory hair cells or defects in their function. In contrast to mammals, nonmammalian vertebrates robustly regenerate hair cells after injury. Studying the molecular and cellular basis of nonmammalian vertebrate hair cell regeneration provides valuable insights into developing cures for human deafness. In this review, we discuss the current literature on hair cell regeneration in the context of other models for sensory cell regeneration, such as the retina and the olfactory epithelium. This comparison reveals commonalities with, as well as differences between, the different regenerating systems, which begin to define a cellular and molecular blueprint of regeneration. In addition, we propose how new technical advances can address outstanding questions in the field.
Collapse
Affiliation(s)
- Nicolas Denans
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Sungmin Baek
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Tatjana Piotrowski
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| |
Collapse
|
74
|
Cox BD, Yun MH, Poss KD. Can laboratory model systems instruct human limb regeneration? Development 2019; 146:146/20/dev181016. [PMID: 31578190 DOI: 10.1242/dev.181016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regeneration has fascinated scientists since well before the 20th century revolutions in genetics and molecular biology. The field of regenerative biology has grown steadily over the past decade, incorporating advances in imaging, genomics and genome editing to identify key cell types and molecules involved across many model organisms. Yet for many or most tissues, it can be difficult to predict when and how findings from these studies will advance regenerative medicine. Establishing technologies to stimulate regrowth of a lost or amputated limb with a patterned replicate, as salamanders do routinely, is one of the most challenging directives of tissue regeneration research. Here, we speculate upon what research avenues the field must explore to move closer to this capstone achievement.
Collapse
Affiliation(s)
- Ben D Cox
- Regeneration Next, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maximina H Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden 01307, Germany .,Max Planck Institute for Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Kenneth D Poss
- Regeneration Next, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
75
|
Mehta AS, Singh A. Insights into regeneration tool box: An animal model approach. Dev Biol 2019; 453:111-129. [PMID: 30986388 PMCID: PMC6684456 DOI: 10.1016/j.ydbio.2019.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
For ages, regeneration has intrigued countless biologists, clinicians, and biomedical engineers. In recent years, significant progress made in identification and characterization of a regeneration tool kit has helped the scientific community to understand the mechanism(s) involved in regeneration across animal kingdom. These mechanistic insights revealed that evolutionarily conserved pathways like Wnt, Notch, Hedgehog, BMP, and JAK/STAT are involved in regeneration. Furthermore, advancement in high throughput screening approaches like transcriptomic analysis followed by proteomic validations have discovered many novel genes, and regeneration specific enhancers that are specific to highly regenerative species like Hydra, Planaria, Newts, and Zebrafish. Since genetic machinery is highly conserved across the animal kingdom, it is possible to engineer these genes and regeneration specific enhancers in species with limited regeneration properties like Drosophila, and mammals. Since these models are highly versatile and genetically tractable, cross-species comparative studies can generate mechanistic insights in regeneration for animals with long gestation periods e.g. Newts. In addition, it will allow extrapolation of regenerative capabilities from highly regenerative species to animals with low regeneration potential, e.g. mammals. In future, these studies, along with advancement in tissue engineering applications, can have strong implications in the field of regenerative medicine and stem cell biology.
Collapse
Affiliation(s)
- Abijeet S Mehta
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA; Premedical Program, University of Dayton, Dayton, OH, 45469, USA; Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, 45469, USA; The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA; Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
76
|
Mehta AS, Luz-Madrigal A, Li JL, Tsonis PA, Singh A. Comparative transcriptomic analysis and structure prediction of novel Newt proteins. PLoS One 2019; 14:e0220416. [PMID: 31419228 PMCID: PMC6697330 DOI: 10.1371/journal.pone.0220416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 01/25/2023] Open
Abstract
Notophthalmus viridescens (Red-spotted Newt) possess amazing capabilities to regenerate their organs and other tissues. Previously, using a de novo assembly of the newt transcriptome combined with proteomic validation, our group identified a novel family of five protein members expressed in adult tissues during regeneration in Notophthalmus viridescens. The presence of a putative signal peptide suggests that all these proteins are secretory in nature. Here we employed iterative threading assembly refinement (I-TASSER) server to generate three-dimensional structure of these novel Newt proteins and predicted their function. Our data suggests that these proteins could act as ion transporters, and be involved in redox reaction(s). Due to absence of transgenic approaches in N. viridescens, and conservation of genetic machinery across species, we generated transgenic Drosophila melanogaster to misexpress these genes. Expression of 2775 transcripts were compared between these five newly identified Newt genes. We found that genes involved in the developmental process, cell cycle, apoptosis, and immune response are among those that are highly enriched. To validate the RNA Seq. data, expression of six highly regulated genes were verified using real time Quantitative Polymerase Chain Reaction (RT-qPCR). These graded gene expression patterns provide insight into the function of novel protein family identified in Newt, and layout a map for future studies in the field.
Collapse
Affiliation(s)
- Abijeet Singh Mehta
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Agustin Luz-Madrigal
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida, United States of America
| | - Panagiotis A Tsonis
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, Ohio, United States of America
- The Integrative Science and Engineering Center, University of Dayton, Dayton, Ohio, United States of America
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, Indiana, United States of America
| |
Collapse
|
77
|
Gehrke AR, Neverett E, Luo YJ, Brandt A, Ricci L, Hulett RE, Gompers A, Ruby JG, Rokhsar DS, Reddien PW, Srivastava M. Acoel genome reveals the regulatory landscape of whole-body regeneration. Science 2019; 363:363/6432/eaau6173. [PMID: 30872491 DOI: 10.1126/science.aau6173] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/08/2018] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
Abstract
Whole-body regeneration is accompanied by complex transcriptomic changes, yet the chromatin regulatory landscapes that mediate this dynamic response remain unexplored. To decipher the regulatory logic that orchestrates regeneration, we sequenced the genome of the acoel worm Hofstenia miamia, a highly regenerative member of the sister lineage of other bilaterians. Epigenomic profiling revealed thousands of regeneration-responsive chromatin regions and identified dynamically bound transcription factor motifs, with the early growth response (EGR) binding site as the most variably accessible during Hofstenia regeneration. Combining egr inhibition with chromatin profiling suggests that Egr functions as a pioneer factor to directly regulate early wound-induced genes. The genetic connections inferred by this approach allowed the construction of a gene regulatory network for whole-body regeneration, enabling genomics-based comparisons of regeneration across species.
Collapse
Affiliation(s)
- Andrew R Gehrke
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Emily Neverett
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yi-Jyun Luo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander Brandt
- Department of Chemistry, University of California, Berkeley, CA 94703, USA
| | - Lorenzo Ricci
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ryan E Hulett
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Annika Gompers
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - J Graham Ruby
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Daniel S Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94703, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. .,Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
78
|
Almudi I, Martín-Blanco CA, García-Fernandez IM, López-Catalina A, Davie K, Aerts S, Casares F. Establishment of the mayfly Cloeon dipterum as a new model system to investigate insect evolution. EvoDevo 2019; 10:6. [PMID: 30984364 PMCID: PMC6446309 DOI: 10.1186/s13227-019-0120-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
The great capability of insects to adapt to new environments promoted their extraordinary diversification, resulting in the group of Metazoa with the largest number of species distributed worldwide. To understand this enormous diversity, it is essential to investigate lineages that would allow the reconstruction of the early events in the evolution of insects. However, research on insect ecology, physiology, development and evolution has mostly focused on few well-established model species. The key phylogenetic position of mayflies within Paleoptera as the sister group of the rest of winged insects and life history traits of mayflies make them an essential order to understand insect evolution. Here, we describe the establishment of a continuous culture system of the mayfly Cloeon dipterum and a series of experimental protocols and omics resources that allow the study of its development and its great regenerative capability. Thus, the establishment of Cloeon as an experimental platform paves the way to understand genomic and morphogenetic events that occurred at the origin of winged insects.
Collapse
Affiliation(s)
- Isabel Almudi
- 1GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013 Seville, Spain
| | | | | | | | - Kristofer Davie
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Herestraat 49, 3000 Louvain, Belgium.,3Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Louvain, Belgium
| | - Stein Aerts
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Herestraat 49, 3000 Louvain, Belgium.,3Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Louvain, Belgium
| | - Fernando Casares
- 1GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013 Seville, Spain
| |
Collapse
|
79
|
Narbonne-Reveau K, Maurange C. Developmental regulation of regenerative potential in Drosophila by ecdysone through a bistable loop of ZBTB transcription factors. PLoS Biol 2019; 17:e3000149. [PMID: 30742616 PMCID: PMC6386533 DOI: 10.1371/journal.pbio.3000149] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/22/2019] [Accepted: 01/30/2019] [Indexed: 01/08/2023] Open
Abstract
In many organisms, the regenerative capacity of tissues progressively decreases as development progresses. However, the developmental mechanisms that restrict regenerative potential remain unclear. In Drosophila, wing imaginal discs become unable to regenerate upon damage during the third larval stage (L3). Here, we show that production of ecdysone after larvae reach their critical weight (CW) terminates the window of regenerative potential by acting on a bistable loop composed of two antagonistic Broad-complex/Tramtrack/Bric-à-brac Zinc-finger (ZBTB) genes: chinmo and broad (br). Around mid L3, ecdysone signaling silences chinmo and activates br to switch wing epithelial progenitors from a default self-renewing to a differentiation-prone state. Before mid L3, Chinmo promotes a strong regenerative response upon tissue damage. After mid L3, Br installs a nonpermissive state that represses regeneration. Transient down-regulation of ecdysone signaling or Br in late L3 larvae enhances chinmo expression in damaged cells that regain the capacity to regenerate. This work unveils a mechanism that ties the self-renewing and regenerative potential of epithelial progenitors to developmental progression. This study finds that the loss of regeneration potential in Drosophila wing imaginal discs is induced by the production of the steroid hormone ecdysone after the larva reaches its critical weight. Manipulating ecdysone signaling or the downstream transcription factors can uncouple regenerative properties from developmental progression. While some organisms exhibit remarkable regenerative abilities throughout their life, many animals, including mammals, present limited regenerative potential that progressively decreases during development. Understanding the mechanisms underlying this progressive loss is important to devise therapeutic approaches aiming at facilitating the regeneration of a damaged tissue throughout life. The fruitfly Drosophila is a powerful model organism to address such questions. Indeed, while tissues, such as imaginal discs, can fully regenerate if damaged during early development, they fail to do so upon damages during late development. We show here that restriction of regenerative potential occurring during midlarval stages is due to the production of a steroid hormone, named ecdysone. By genetically manipulating ecdysone signaling, we can uncouple regenerative abilities from developmental progression. In particular, we show that ecdysone signaling triggers a switch in the sequential expression of two transcription factors, Chinmo and Broad, that positively and negatively regulate the competence for imaginal disc regeneration, respectively. Our work therefore identifies a key developmental signal that restricts regenerative potential in insects and opens new perspectives on elucidating how regeneration-permissive transcriptional programs are locked as development progresses.
Collapse
Affiliation(s)
| | - Cédric Maurange
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
- * E-mail:
| |
Collapse
|
80
|
Tsogtbaatar O, Won JH, Kim GW, Han JH, Bae YK, Cho KO. An ADAMTS Sol narae is required for cell survival in Drosophila. Sci Rep 2019; 9:1270. [PMID: 30718556 PMCID: PMC6362049 DOI: 10.1038/s41598-018-37557-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
Cell survival is essential for all living organisms to cope against multiple environmental insults. Intercellular signaling between dying and surviving cells plays an important role to ensure compensatory proliferation, preventing tissue loss after environmental stresses. Here, we show that Sol narae (Sona), a Disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) in Drosophila is required for cell survival. sona exhibited a positive genetic interaction with Death-associated inhibitor of apoptosis 1 (Diap1), and a negative genetic interaction with reaper (rpr). Transcription patterns of sona, Diap1, and rpr genes in the pouch region of wing discs were coordinately changed after irradiation. Interestingly, there was a negative correlation in the expression levels of Sona and DIAP1, and both cell types, one with high Sona level and the other with high Diap1 level, were resistant to irradiation-induced cell death. The sona-expressing cells rarely entered into cell cycle themselves but promoted the nearby cells to proliferate in irradiation conditions. We found that these sona-expressing cells are able to upregulate Cyclin D (Cyc D) and increase tissue size. Furthermore, transient Sona overexpression increased survival rate and promoted development of flies in irradiation conditions. We propose that the two types of radiation-resistant cells, one with high Sona level and the other with high Diap1 level, communicate with dying cells and between each other for cell survival and proliferation in response to irradiation.
Collapse
Affiliation(s)
- Orkhon Tsogtbaatar
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Jong-Hoon Won
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Go-Woon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Jeong-Hoon Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Young-Kyung Bae
- Center for Bioanalysis, Korea Research Institute of Standards and Science, 267 Gajung-ro, Yuseung-gu, Daejeon, Korea.
| | - Kyung-Ok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
81
|
Herrera SC, Bach EA. JAK/STAT signaling in stem cells and regeneration: from Drosophila to vertebrates. Development 2019; 146:dev167643. [PMID: 30696713 PMCID: PMC6361132 DOI: 10.1242/dev.167643] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
The JAK/STAT pathway is a conserved metazoan signaling system that transduces cues from extracellular cytokines into transcriptional changes in the nucleus. JAK/STAT signaling is best known for its roles in immunity. However, recent work has demonstrated that it also regulates critical homeostatic processes in germline and somatic stem cells, as well as regenerative processes in several tissues, including the gonad, intestine and appendages. Here, we provide an overview of JAK/STAT signaling in stem cells and regeneration, focusing on Drosophila and highlighting JAK/STAT pathway functions in proliferation, survival and cell competition that are conserved between Drosophila and vertebrates.
Collapse
Affiliation(s)
- Salvador C Herrera
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Erika A Bach
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
82
|
Mokalled MH, Poss KD. A Regeneration Toolkit. Dev Cell 2019; 47:267-280. [PMID: 30399333 DOI: 10.1016/j.devcel.2018.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022]
Abstract
The ability of animals to replace injured body parts has been a subject of fascination for centuries. The emerging importance of regenerative medicine has reinvigorated investigations of innate tissue regeneration, and the development of powerful genetic tools has fueled discoveries into how tissue regeneration occurs. Here, we present an overview of the armamentarium employed to probe regeneration in vertebrates, highlighting areas where further methodology advancement will deepen mechanistic findings.
Collapse
Affiliation(s)
- Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
83
|
Suzuki Y, Chou J, Garvey SL, Wang VR, Yanes KO. Evolution and Regulation of Limb Regeneration in Arthropods. Results Probl Cell Differ 2019; 68:419-454. [PMID: 31598866 DOI: 10.1007/978-3-030-23459-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regeneration has fascinated both scientists and non-scientists for centuries. Many organisms can regenerate, and arthropod limbs are no exception although their ability to regenerate is a product shaped by natural and sexual selection. Recent studies have begun to uncover cellular and molecular processes underlying limb regeneration in several arthropod species. Here we argue that an evo-devo approach to the study of arthropod limb regeneration is needed to understand aspects of limb regeneration that are conserved and divergent. In particular, we argue that limbs of different species are comprised of cells at distinct stages of differentiation at the time of limb loss and therefore provide insights into regeneration involving both stem cell-like cells/precursor cells and differentiated cells. In addition, we review recent studies that demonstrate how limb regeneration impacts the development of the whole organism and argue that studies on the link between local tissue damage and the rest of the body should provide insights into the integrative nature of development. Molecular studies on limb regeneration are only beginning to take off, but comparative studies on the mechanisms of limb regeneration across various taxa should not only yield interesting insights into development but also answer how this remarkable ability evolved across arthropods and beyond.
Collapse
Affiliation(s)
- Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA.
| | - Jacquelyn Chou
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Sarah L Garvey
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Victoria R Wang
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Katherine O Yanes
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| |
Collapse
|
84
|
Two Sides of the Same Coin - Compensatory Proliferation in Regeneration and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:65-85. [PMID: 31520349 DOI: 10.1007/978-3-030-23629-8_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis has long been regarded as a tumor suppressor mechanism and evasion from apoptosis is considered to be one hallmark of cancer. However, this principle is not always consistent with clinical data which often illustrate a correlation between apoptosis and poor prognosis. Work in the last 15 years has provided an explanation for this apparent paradox. Apoptotic cells communicate with their environment and can produce signals which promote compensatory proliferation of surviving cells. This behavior of apoptotic cells is important for tissue regeneration in several model organisms, ranging from hydra to mammals. However, it may also play an important feature for tumorigenesis and tumor relapse. Several distinct forms of apoptosis-induced compensatory proliferation (AiP) have been identified, many of which involve reactive oxygen species (ROS) and immune cells. One type of AiP, "undead" AiP, in which apoptotic cells are kept in an immortalized state and continuously divide, may have particular relevance for tumorigenesis. Furthermore, given that chemo- and radiotherapy often aim to kill tumor cells, an improved understanding of the effects of apoptotic cells on the tumor and the tumor environment is of critical importance for the well-being of the patient. In this review, we summarize the current knowledge of AiP and focus our attention on recent findings obtained in Drosophila and other model organisms, and relate them to tumorigenesis.
Collapse
|
85
|
Santabárbara-Ruiz P, Esteban-Collado J, Pérez L, Viola G, Abril JF, Milán M, Corominas M, Serras F. Ask1 and Akt act synergistically to promote ROS-dependent regeneration in Drosophila. PLoS Genet 2019; 15:e1007926. [PMID: 30677014 PMCID: PMC6363233 DOI: 10.1371/journal.pgen.1007926] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/05/2019] [Accepted: 01/01/2019] [Indexed: 12/30/2022] Open
Abstract
How cells communicate to initiate a regenerative response after damage has captivated scientists during the last few decades. It is known that one of the main signals emanating from injured cells is the Reactive Oxygen Species (ROS), which propagate to the surrounding tissue to trigger the replacement of the missing cells. However, the link between ROS production and the activation of regenerative signaling pathways is not yet fully understood. We describe here the non-autonomous ROS sensing mechanism by which living cells launch their regenerative program. To this aim, we used Drosophila imaginal discs as a model system due to its well-characterized regenerative ability after injury or cell death. We genetically-induced cell death and found that the Apoptosis signal-regulating kinase 1 (Ask1) is essential for regenerative growth. Ask1 senses ROS both in dying and living cells, but its activation is selectively attenuated in living cells by Akt1, the core kinase component of the insulin/insulin-like growth factor pathway. Akt1 phosphorylates Ask1 in a secondary site outside the kinase domain, which attenuates its activity. This modulation of Ask1 activity results in moderate levels of JNK signaling in the living tissue, as well as in activation of p38 signaling, both pathways required to turn on the regenerative response. Our findings demonstrate a non-autonomous activation of a ROS sensing mechanism by Ask1 and Akt1 to replace the missing tissue after damage. Collectively, these results provide the basis for understanding the molecular mechanism of communication between dying and living cells that triggers regeneration.
Collapse
Affiliation(s)
- Paula Santabárbara-Ruiz
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - José Esteban-Collado
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Lidia Pérez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Giacomo Viola
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Josep F. Abril
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys, Barcelona, Spain
| | - Montserrat Corominas
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys, Barcelona, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
86
|
Vizcaya-Molina E, Klein CC, Serras F, Mishra RK, Guigó R, Corominas M. Damage-responsive elements in Drosophila regeneration. Genome Res 2018; 28:1852-1866. [PMID: 30459214 PMCID: PMC6280756 DOI: 10.1101/gr.233098.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/10/2018] [Indexed: 12/21/2022]
Abstract
One of the most important questions in regenerative biology is to unveil how and when genes change expression and trigger regeneration programs. The resetting of gene expression patterns during response to injury is governed by coordinated actions of genomic regions that control the activity of multiple sequence-specific DNA binding proteins. Using genome-wide approaches to interrogate chromatin function, we here identify the elements that regulate tissue recovery in Drosophila imaginal discs, which show a high regenerative capacity after genetically induced cell death. Our findings indicate there is global coregulation of gene expression as well as a regeneration program driven by different types of regulatory elements. Novel enhancers acting exclusively within damaged tissue cooperate with enhancers co-opted from other tissues and other developmental stages, as well as with endogenous enhancers that show increased activity after injury. Together, these enhancers host binding sites for regulatory proteins that include a core set of conserved transcription factors that control regeneration across metazoans.
Collapse
Affiliation(s)
- Elena Vizcaya-Molina
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
| | - Cecilia C Klein
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain
| | - Florenci Serras
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
| | - Rakesh K Mishra
- The Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Catalonia, Spain
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
87
|
Yang K, Kang J. Tissue Regeneration Enhancer Elements: A Way to Unlock Endogenous Healing Power. Dev Dyn 2018; 248:34-42. [PMID: 30291668 DOI: 10.1002/dvdy.24676] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 01/15/2023] Open
Abstract
Regenerative capacity is widespread throughout almost all animal phyla. However, the distribution pattern remains incompletely understood. Various examples show that very closely related species display different regenerative capacities. Why and how have diverse regenerative capacities evolved across species? One prevailing thought in the field of regeneration is that most regeneration-associated factors are evolutionarily conserved, suggesting the existence of an innate tissue regeneration ability in all species. However, its regulation is differentially controlled in distinct species, resulting in heterogeneous regenerative capabilities. In this review, we discuss regeneration-associated enhancers, the key cis-regulatory elements controlling gene expression, their underlying molecular mechanisms, and their influence on regenerative capacity. Understanding the regulatory mechanisms of regeneration enhancers can provide fundamental insights into tissue regeneration and further help us develop therapeutic strategies to unlock latent healing powers in humans. Developmental Dynamics 248:34-42, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- KaHoua Yang
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Junsu Kang
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
88
|
Cohen E, Allen SR, Sawyer JK, Fox DT. Fizzy-Related dictates A cell cycle switch during organ repair and tissue growth responses in the Drosophila hindgut. eLife 2018; 7:e38327. [PMID: 30117808 PMCID: PMC6130973 DOI: 10.7554/elife.38327] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
Ploidy-increasing cell cycles drive tissue growth in many developing organs. Such cycles, including endocycles, are increasingly appreciated to drive tissue growth following injury or activated growth signaling in mature organs. In these organs, the regulation and distinct roles of different cell cycles remains unclear. Here, we uncover a programmed switch between cell cycles in the Drosophila hindgut pylorus. Using an acute injury model, we identify mitosis as the response in larval pyloric cells, whereas endocycles occur in adult pyloric cells. By developing a novel genetic method, DEMISE (Dual-Expression-Method-for-Induced-Site-specific-Eradication), we show the cell cycle regulator Fizzy-related dictates the decision between mitosis and endocycles. After injury, both cycles accurately restore tissue mass and genome content. However, in response to sustained growth signaling, only endocycles preserve epithelial architecture. Our data reveal distinct cell cycle programming in response to similar stimuli in mature vs. developmental states and reveal a tissue-protective role of endocycles.
Collapse
Affiliation(s)
- Erez Cohen
- Department of Cell BiologyDuke University School of MedicineDurhamUnited States
| | - Scott R Allen
- Department of Cell BiologyDuke University School of MedicineDurhamUnited States
| | - Jessica K Sawyer
- Department of Pharmacology & Cancer BiologyDuke University School of MedicineDurhamUnited States
| | - Donald T Fox
- Department of Cell BiologyDuke University School of MedicineDurhamUnited States
- Department of Pharmacology & Cancer BiologyDuke University School of MedicineDurhamUnited States
- Regeneration Next InitiativeDuke University School of MedicineDurhamUnited States
| |
Collapse
|
89
|
La Fortezza M, Grigolon G, Cosolo A, Pindyurin A, Breimann L, Blum H, van Steensel B, Classen AK. DamID profiling of dynamic Polycomb-binding sites in Drosophila imaginal disc development and tumorigenesis. Epigenetics Chromatin 2018; 11:27. [PMID: 29871666 PMCID: PMC5987561 DOI: 10.1186/s13072-018-0196-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background Tracking dynamic protein–chromatin interactions in vivo is key to unravel transcriptional and epigenetic transitions in development and disease. However, limited availability and heterogeneous tissue composition of in vivo source material impose challenges on many experimental approaches. Results Here we adapt cell-type-specific DamID-seq profiling for use in Drosophila imaginal discs and make FLP/FRT-based induction accessible to GAL driver-mediated targeting of specific cell lineages. In a proof-of-principle approach, we utilize ubiquitous DamID expression to describe dynamic transitions of Polycomb-binding sites during wing imaginal disc development and in a scrib tumorigenesis model. We identify Atf3 and Ets21C as novel Polycomb target genes involved in scrib tumorigenesis and suggest that target gene regulation by Atf3 and AP-1 transcription factors, as well as modulation of insulator function, plays crucial roles in dynamic Polycomb-binding at target sites. We establish these findings by DamID-seq analysis of wing imaginal disc samples derived from 10 larvae. Conclusions Our study opens avenues for robust profiling of small cell population in imaginal discs in vivo and provides insights into epigenetic changes underlying transcriptional responses to tumorigenic transformation. Electronic supplementary material The online version of this article (10.1186/s13072-018-0196-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco La Fortezza
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany.,Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland
| | - Giovanna Grigolon
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany.,Department of Health Sciences and Technology, ETH Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Andrea Cosolo
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany.,Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany
| | - Alexey Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Acad. Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia
| | - Laura Breimann
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany.,Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center Munich, Ludwig-Maximilians-University Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Bas van Steensel
- Division Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Anne-Kathrin Classen
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany. .,Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.
| |
Collapse
|
90
|
Akiyama T, User SD, Gibson MC. Somatic clones heterozygous for recessive disease alleles of BMPR1A exhibit unexpected phenotypes in Drosophila. eLife 2018; 7:35258. [PMID: 29745898 PMCID: PMC5963922 DOI: 10.7554/elife.35258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/02/2018] [Indexed: 01/02/2023] Open
Abstract
The majority of mutations studied in animal models are designated as recessive based on the absence of visible phenotypes in germline heterozygotes. Accordingly, genetic studies primarily rely on homozygous loss-of-function to determine gene requirements, and a conceptually-related ‘two-hit model’ remains the central paradigm in cancer genetics. Here we investigate pathogenesis due to somatic mutation in epithelial tissues, a process that predominantly generates heterozygous cell clones. To study somatic mutation in Drosophila, we generated inducible alleles that mimic human Juvenile polyposis-associated BMPR1A mutations. Unexpectedly, four of these mutations had no phenotype in heterozygous carriers but exhibited clear tissue-level effects when present in somatic clones of heterozygous cells. We conclude that these alleles are indeed recessive when present in the germline, but nevertheless deleterious when present in heterozygous clones. This unforeseen effect, deleterious heteromosaicism, suggests a ‘one-hit’ mechanism for disease initiation that may explain some instances of pathogenesis associated with spontaneous mutation.
Collapse
Affiliation(s)
- Takuya Akiyama
- Stowers Institute for Medical Research, Kansas City, United States
| | - Sırma D User
- Stowers Institute for Medical Research, Kansas City, United States
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, United States
| |
Collapse
|
91
|
Drosophila as a Model System to Study Cell Signaling in Organ Regeneration. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7359267. [PMID: 29750169 PMCID: PMC5884440 DOI: 10.1155/2018/7359267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/06/2018] [Indexed: 12/22/2022]
Abstract
Regeneration is a fascinating phenomenon that allows organisms to replace or repair damaged organs or tissues. This ability occurs to varying extents among metazoans. The rebuilding of the damaged structure depends on regenerative proliferation that must be accompanied by proper cell fate respecification and patterning. These cellular processes are regulated by the action of different signaling pathways that are activated in response to the damage. The imaginal discs of Drosophila melanogaster have the ability to regenerate and have been extensively used as a model system to study regeneration. Drosophila provides an opportunity to use powerful genetic tools to address fundamental problems about the genetic mechanisms involved in organ regeneration. Different studies in Drosophila have helped to elucidate the genes and signaling pathways that initiate regeneration, promote regenerative growth, and induce cell fate respecification. Here we review the signaling networks involved in regulating the variety of cellular responses that are required for discs regeneration.
Collapse
|
92
|
Hill EM, Petersen CP. Positional information specifies the site of organ regeneration and not tissue maintenance in planarians. eLife 2018; 7:33680. [PMID: 29547123 PMCID: PMC5866098 DOI: 10.7554/elife.33680] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/15/2018] [Indexed: 12/24/2022] Open
Abstract
Most animals undergo homeostatic tissue maintenance, yet those capable of robust regeneration in adulthood use mechanisms significantly overlapping with homeostasis. Here we show in planarians that modulations to body-wide patterning systems shift the target site for eye regeneration while still enabling homeostasis of eyes outside this region. The uncoupling of homeostasis and regeneration, which can occur during normal positional rescaling after axis truncation, is not due to altered injury signaling or stem cell activity, nor specific to eye tissue. Rather, pre-existing tissues, which are misaligned with patterning factor expression domains, compete with properly located organs for incorporation of migratory progenitors. These observations suggest that patterning factors determine sites of organ regeneration but do not solely determine the location of tissue homeostasis. These properties provide candidate explanations for how regeneration integrates pre-existing tissues and how regenerative abilities could be lost in evolution or development without eliminating long-term tissue maintenance and repair.
Collapse
Affiliation(s)
- Eric M Hill
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, United States
| |
Collapse
|
93
|
Worley MI, Alexander LA, Hariharan IK. CtBP impedes JNK- and Upd/STAT-driven cell fate misspecifications in regenerating Drosophila imaginal discs. eLife 2018; 7:30391. [PMID: 29372681 PMCID: PMC5823544 DOI: 10.7554/elife.30391] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/19/2018] [Indexed: 12/27/2022] Open
Abstract
Regeneration following tissue damage often necessitates a mechanism for cellular re-programming, so that surviving cells can give rise to all cell types originally found in the damaged tissue. This process, if unchecked, can also generate cell types that are inappropriate for a given location. We conducted a screen for genes that negatively regulate the frequency of notum-to-wing transformations following genetic ablation and regeneration of the wing pouch, from which we identified mutations in the transcriptional co-repressor C-terminal Binding Protein (CtBP). When CtBP function is reduced, ablation of the pouch can activate the JNK/AP-1 and JAK/STAT pathways in the notum to destabilize cell fates. Ectopic expression of Wingless and Dilp8 precede the formation of the ectopic pouch, which is subsequently generated by recruitment of both anterior and posterior cells near the compartment boundary. Thus, CtBP stabilizes cell fates following damage by opposing the destabilizing effects of the JNK/AP-1 and JAK/STAT pathways.
Collapse
Affiliation(s)
- Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Larissa A Alexander
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
94
|
When dying is not the end: Apoptotic caspases as drivers of proliferation. Semin Cell Dev Biol 2017; 82:86-95. [PMID: 29199139 DOI: 10.1016/j.semcdb.2017.11.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022]
Abstract
Caspases are well known for their role as executioners of apoptosis. However, recent studies have revealed that these lethal enzymes also have important mitogenic functions. Caspases can promote proliferation through autonomous regulation of the cell cycle, as well as by induction of secreted signals, which have a profound impact in neighboring tissues. Here, I review the proliferative role of caspases during development and homeostasis, in addition to their key regenerative function during tissue repair upon injury. Furthermore, the emerging properties of apoptotic caspases as drivers of carcinogenesis are discussed, as well as their involvement in other diseases. Finally, I examine further effects of caspases regulating death and survival in a non-autonomous manner.
Collapse
|
95
|
Abstract
Understanding how and why animals regenerate complex tissues has the potential to transform regenerative medicine. Here we present an overview of genetic approaches that have recently been applied to dissect mechanisms of regeneration. We describe new advances that relate to central objectives of regeneration biologists researching different tissues and species, focusing mainly on vertebrates. These objectives include defining the cellular sources and key cell behaviors in regenerating tissue, elucidating molecular triggers and brakes for regeneration, and defining the earliest events that control the presence of these molecular factors.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA;
- Regeneration Next, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
96
|
STAT, Wingless, and Nurf-38 determine the accuracy of regeneration after radiation damage in Drosophila. PLoS Genet 2017; 13:e1007055. [PMID: 29028797 PMCID: PMC5656321 DOI: 10.1371/journal.pgen.1007055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/25/2017] [Accepted: 10/04/2017] [Indexed: 01/01/2023] Open
Abstract
We report here a study of regeneration in Drosophila larval wing imaginal discs after damage by ionizing radiation. We detected faithful regeneration that restored a wing disc and abnormal regeneration that produced an extra wing disc. We describe a sequence of changes in cell number, location and fate that occur to produce an ectopic disc. We identified a group of cells that not only participate in ectopic disc formation but also recruit others to do so. STAT92E (Drosophila STAT3/5) and Nurf-38, which encodes a member of the Nucleosome Remodeling Factor complex, oppose each other in these cells to modulate the frequency of ectopic disc growth. The picture that emerges is one in which activities like STAT increase after radiation damage and fulfill essential roles in rebuilding the tissue. But such activities must be kept in check so that one and only one wing disc is regenerated. Accuracy in regeneration ensures that the original structures are restored, no more and no less. Prior studies in the wing primordia of Drosophila melanogaster larvae that have been damaged by high energy radiation show that regeneration occurs to restore the original structure. We report here that, in the same experimental system, abnormal regeneration can also occur to produce extra wing structures. We describe a series of cell rearrangements and fate changes that underlie abnormal regeneration, and identify genes responsible for these events. Modulation of such genes have the potential to mitigate abnormal regeneration that occurs after radiation damage to produce such side effects as ulcers and fibrosis.
Collapse
|
97
|
Hariharan IK, Serras F. Imaginal disc regeneration takes flight. Curr Opin Cell Biol 2017; 48:10-16. [PMID: 28376317 PMCID: PMC5591769 DOI: 10.1016/j.ceb.2017.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/20/2022]
Abstract
Drosophila imaginal discs, the larval precursors of adult structures such as the wing and leg, are capable of regenerating after damage. During the course of regeneration, discs can sometimes generate structures that are appropriate for a different type of disc, a phenomenon termed transdetermination. Until recently, these phenomena were studied by physically fragmenting discs and then transplanting them into the abdomens of adult female flies. This field has experienced a renaissance following the development of genetic ablation systems that can damage precisely defined regions of the disc without the need for surgery. Together with more traditional approaches, these newer methods have generated many novel insights into wound healing, the mechanisms that drive regenerative growth, plasticity during regeneration and systemic effects of tissue damage and regeneration.
Collapse
Affiliation(s)
- Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.
| | - Florenci Serras
- Departament de Genètica, Facultat de Biologia and Institute de Biomedicina (IBUB), Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| |
Collapse
|
98
|
Martín R, Pinal N, Morata G. Distinct regenerative potential of trunk and appendages of Drosophila mediated by JNK signalling. Development 2017; 144:3946-3956. [PMID: 28935711 DOI: 10.1242/dev.155507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022]
Abstract
The Drosophila body comprises a central part, the trunk, and outgrowths of the trunk, the appendages. Much is known about appendage regeneration, but little about the trunk. As the wing imaginal disc contains a trunk component, the notum, and a wing appendage, we have investigated the response to ablation of these two components. We find that, in contrast with the strong regenerative response of the wing, the notum does not regenerate. Nevertheless, the elimination of the wing primordium elicits a proliferative response of notum cells, but they do not regenerate wing; they form a notum duplicate. Conversely, the wing cells cannot regenerate an ablated notum; they overproliferate and generate a hinge overgrowth. These results suggest that trunk and appendages cannot be reprogrammed to generate each other. Our experiments demonstrate that the proliferative response is mediated by JNK signalling from dying cells, but JNK functions differently in the trunk and the appendages, which may explain their distinct regenerative potential.
Collapse
Affiliation(s)
- Raquel Martín
- Centro de Biología Molecular CSIC-UAM, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Noelia Pinal
- Centro de Biología Molecular CSIC-UAM, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ginés Morata
- Centro de Biología Molecular CSIC-UAM, Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
99
|
Cap-n-Collar Promotes Tissue Regeneration by Regulating ROS and JNK Signaling in the Drosophila melanogaster Wing Imaginal Disc. Genetics 2017; 206:1505-1520. [PMID: 28512185 DOI: 10.1534/genetics.116.196832] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/10/2017] [Indexed: 01/03/2023] Open
Abstract
Regeneration is a complex process that requires an organism to recognize and repair tissue damage, as well as grow and pattern new tissue. Here, we describe a genetic screen to identify novel regulators of regeneration. We ablated the Drosophila melanogaster larval wing primordium by inducing apoptosis in a spatially and temporally controlled manner and allowed the tissue to regenerate and repattern. To identify genes that regulate regeneration, we carried out a dominant-modifier screen by assessing the amount and quality of regeneration in adult wings heterozygous for isogenic deficiencies. We have identified 31 regions on the right arm of the third chromosome that modify the regenerative response. Interestingly, we observed several distinct phenotypes: mutants that regenerated poorly, mutants that regenerated faster or better than wild-type, and mutants that regenerated imperfectly and had patterning defects. We mapped one deficiency region to cap-n-collar (cnc), the Drosophila Nrf2 ortholog, which is required for regeneration. Cnc regulates reactive oxygen species levels in the regenerating epithelium, and affects c-Jun N-terminal protein kinase (JNK) signaling, growth, debris localization, and pupariation timing. Here, we present the results of our screen and propose a model wherein Cnc regulates regeneration by maintaining an optimal level of reactive oxygen species to promote JNK signaling.
Collapse
|
100
|
Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease. Cell Death Differ 2017; 24:1390-1400. [PMID: 28362431 PMCID: PMC5520457 DOI: 10.1038/cdd.2017.47] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is a carefully orchestrated and tightly controlled form of cell death, conserved across metazoans. As the executioners of apoptotic cell death, cysteine-dependent aspartate-directed proteases (caspases) are critical drivers of this cellular disassembly. Early studies of genetically programmed cell death demonstrated that the selective activation of caspases induces apoptosis and the precise elimination of excess cells, thereby sculpting structures and refining tissues. However, over the past decade there has been a fundamental shift in our understanding of the roles of caspases during cell death-a shift precipitated by the revelation that apoptotic cells actively engage with their surrounding environment throughout the death process, and caspases can trigger a myriad of signals, some of which drive concurrent cell proliferation regenerating damaged structures and building up lost tissues. This caspase-driven compensatory proliferation is referred to as apoptosis-induced proliferation (AiP). Diverse mechanisms of AiP have been found across species, ranging from planaria to mammals. In this review, we summarize the current knowledge of AiP and we highlight recent advances in the field including the involvement of reactive oxygen species and macrophage-like immune cells in one form of AiP, novel regulatory mechanisms affecting caspases during AiP, and emerging clinical data demonstrating the critical importance of AiP in cancer.
Collapse
|