51
|
Abstract
Photobodies are membraneless subnuclear organelles that contain the red and far-red photoreceptors, phytochromes. Photobody biogenesis has been postulated to play important roles in early light signaling events. The size and number of photobodies are highly dynamic in response to the quality and quantity of light and correlated tightly with phytochrome-mediated seedling morphogenesis. Here, we provide a detailed protocol for characterization of the three-dimensional morphology of photobodies, including sample preparation, fluorescence microscopy, and image analysis. Although this method was developed initially for characterizing photobodies, it can be adopted to analyze other membraneless or membrane-bound subcellular organelles.
Collapse
Affiliation(s)
- Chan Yul Yoo
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Desiree Williams
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
52
|
Khan MA, Castro-Guerrero NA, McInturf SA, Nguyen NT, Dame AN, Wang J, Bindbeutel RK, Joshi T, Jurisson SS, Nusinow DA, Mendoza-Cozatl DG. Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots. PLANT, CELL & ENVIRONMENT 2018; 41:2263-2276. [PMID: 29520929 DOI: 10.1111/pce.13192] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 05/18/2023]
Abstract
The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in Arabidopsis. Reduced expression of OPT3 induces an over accumulation of Fe in roots and leaves, due in part by an elevated expression of the IRON-REGULATED TRANSPORTER 1. Here we show however, that opt3 leaves display a transcriptional program consistent with an Fe overload, suggesting that Fe excess is properly sensed in opt3 leaves and that the OPT3-mediated shoot-to-root signaling is critical to prevent a systemic Fe overload. We also took advantage of the tissue-specific localization of OPT3, together with other Fe-responsive genes, to determine the timing and location of early transcriptional events during Fe limitation and resupply. Our results show that the leaf vasculature responds more rapidly than roots to both Fe deprivation and resupply, suggesting that the leaf vasculature is within the first tissues that sense and respond to changes in Fe availability. Our data highlight the importance of the leaf vasculature in Fe homeostasis by sensing changes in apoplastic levels of Fe coming through the xylem and relaying this information back to roots via the phloem to regulate Fe uptake at the root level.
Collapse
Affiliation(s)
- Mather A Khan
- Division of Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Norma A Castro-Guerrero
- Division of Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Samuel A McInturf
- Division of Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Nga T Nguyen
- Division of Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Ashley N Dame
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Jiaojiao Wang
- Department of Computer Science; C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | | | - Trupti Joshi
- Department of Computer Science; C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology and Office of Research, School of Medicine; Informatics Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Silvia S Jurisson
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | | | - David G Mendoza-Cozatl
- Division of Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
53
|
Park E, Kim Y, Choi G. Phytochrome B Requires PIF Degradation and Sequestration to Induce Light Responses across a Wide Range of Light Conditions. THE PLANT CELL 2018; 30:1277-1292. [PMID: 29764986 PMCID: PMC6048787 DOI: 10.1105/tpc.17.00913] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/23/2018] [Accepted: 05/10/2018] [Indexed: 05/04/2023]
Abstract
Phytochrome B (phyB) inhibits the function of phytochrome-interacting factors (PIFs) by inducing their degradation and sequestration, but the relative physiological importance of these two phyB activities is unclear. In an analysis of published Arabidopsis thaliana phyB mutations, we identified a point mutation in the N-terminal half of phyB (phyBG111D) that abolishes its PIF sequestration activity without affecting its PIF degradation activity. We also identified a point mutation in the phyB C-terminal domain, which, when combined with a deletion of the C-terminal end (phyB990G767R), does the opposite; it blocks PIF degradation without affecting PIF sequestration. The resulting phyB proteins, phyB990G767R and phyBG111D, are equally capable of inducing light responses under continuous red light. However, phyBG111D, which exhibits only the PIF degradation activity, induces stronger light responses than phyB990G767R under white light with prolonged dark periods (i.e., diurnal cycles). In contrast, phyB990G767R, which exhibits only the PIF sequestration activity, induces stronger light responses in flickering light (a condition that mimics sunflecks). Together, our results indicate that both of these separable phyB activities are required for light responses in varying light conditions.
Collapse
Affiliation(s)
- Eunae Park
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Yeojae Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| |
Collapse
|
54
|
ZINC-FINGER interactions mediate transcriptional regulation of hypocotyl growth in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E4503-E4511. [PMID: 29686058 PMCID: PMC5948964 DOI: 10.1073/pnas.1718099115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Light coordinates energy production, growth, and survival throughout plant development. In Arabidopsis, light stimulates transcriptional reprogramming during developmental transitions such as photomorphogenesis and flowering through the action of photoreceptors, transcription factors, and signaling components. Here we assign a function to a member of the zinc-finger homeodomain (ZFHD) transcription factor family in regulating light-induced development. Our findings reveal ZFHD10 to be a missing link in understanding how the recently discovered integrator of light and photoperiodic flowering, TANDEM ZINC-FINGER PLUS3 (TZP), controls the expression of growth-promoting transcriptional regulators via direct association with light-regulated promoter elements. Elucidating how such novel protein complexes coordinate gene expression will allow scientists and breeders to optimize plant growth and development in response to unfavorable environmental conditions. Integration of environmental signals and interactions among photoreceptors and transcriptional regulators is key in shaping plant development. TANDEM ZINC-FINGER PLUS3 (TZP) is an integrator of light and photoperiodic signaling that promotes flowering in Arabidopsis thaliana. Here we elucidate the molecular role of TZP as a positive regulator of hypocotyl elongation. We identify an interacting partner for TZP, the transcription factor ZINC-FINGER HOMEODOMAIN 10 (ZFHD10), and characterize its function in coregulating the expression of blue-light–dependent transcriptional regulators and growth-promoting genes. By employing a genome-wide approach, we reveal that ZFHD10 and TZP coassociate with promoter targets enriched in light-regulated elements. Furthermore, using a targeted approach, we show that ZFHD10 recruits TZP to the promoters of key coregulated genes. Our findings not only unveil the mechanism of TZP action in promoting hypocotyl elongation at the transcriptional level but also assign a function to an uncharacterized member of the ZFHD transcription factor family in promoting plant growth.
Collapse
|
55
|
Tovar JC, Hoyer JS, Lin A, Tielking A, Callen ST, Elizabeth Castillo S, Miller M, Tessman M, Fahlgren N, Carrington JC, Nusinow DA, Gehan MA. Raspberry Pi-powered imaging for plant phenotyping. APPLICATIONS IN PLANT SCIENCES 2018; 6:e1031. [PMID: 29732261 PMCID: PMC5895192 DOI: 10.1002/aps3.1031] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/24/2017] [Indexed: 05/22/2023]
Abstract
PREMISE OF THE STUDY Image-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost-prohibitive. To make high-throughput phenotyping methods more accessible, low-cost microcomputers and cameras can be used to acquire plant image data. METHODS AND RESULTS We used low-cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi-controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open-source image processing software such as PlantCV. CONCLUSIONS This protocol describes three low-cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open-source image processing tools, these imaging platforms provide viable low-cost solutions for incorporating high-throughput phenomics into a wide range of research programs.
Collapse
Affiliation(s)
- Jose C. Tovar
- Donald Danforth Plant Science Center975 North Warson RoadSt. LouisMissouri63132USA
| | - J. Steen Hoyer
- Donald Danforth Plant Science Center975 North Warson RoadSt. LouisMissouri63132USA
- Computational and Systems Biology ProgramWashington University in St. LouisOne Brookings DriveSt. LouisMissouri63130USA
| | - Andy Lin
- Donald Danforth Plant Science Center975 North Warson RoadSt. LouisMissouri63132USA
| | - Allison Tielking
- Donald Danforth Plant Science Center975 North Warson RoadSt. LouisMissouri63132USA
| | - Steven T. Callen
- Donald Danforth Plant Science Center975 North Warson RoadSt. LouisMissouri63132USA
| | | | - Michael Miller
- Donald Danforth Plant Science Center975 North Warson RoadSt. LouisMissouri63132USA
| | - Monica Tessman
- Donald Danforth Plant Science Center975 North Warson RoadSt. LouisMissouri63132USA
| | - Noah Fahlgren
- Donald Danforth Plant Science Center975 North Warson RoadSt. LouisMissouri63132USA
| | - James C. Carrington
- Donald Danforth Plant Science Center975 North Warson RoadSt. LouisMissouri63132USA
| | - Dmitri A. Nusinow
- Donald Danforth Plant Science Center975 North Warson RoadSt. LouisMissouri63132USA
| | - Malia A. Gehan
- Donald Danforth Plant Science Center975 North Warson RoadSt. LouisMissouri63132USA
| |
Collapse
|
56
|
Tovar JC, Hoyer JS, Lin A, Tielking A, Callen ST, Elizabeth Castillo S, Miller M, Tessman M, Fahlgren N, Carrington JC, Nusinow DA, Gehan MA. Raspberry Pi-powered imaging for plant phenotyping. APPLICATIONS IN PLANT SCIENCES 2018. [PMID: 29732261 DOI: 10.1002/aps31031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
PREMISE OF THE STUDY Image-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost-prohibitive. To make high-throughput phenotyping methods more accessible, low-cost microcomputers and cameras can be used to acquire plant image data. METHODS AND RESULTS We used low-cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi-controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open-source image processing software such as PlantCV. CONCLUSIONS This protocol describes three low-cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open-source image processing tools, these imaging platforms provide viable low-cost solutions for incorporating high-throughput phenomics into a wide range of research programs.
Collapse
Affiliation(s)
- Jose C Tovar
- Donald Danforth Plant Science Center 975 North Warson Road St. Louis Missouri 63132 USA
| | - J Steen Hoyer
- Donald Danforth Plant Science Center 975 North Warson Road St. Louis Missouri 63132 USA
- Computational and Systems Biology Program Washington University in St. Louis One Brookings Drive St. Louis Missouri 63130 USA
| | - Andy Lin
- Donald Danforth Plant Science Center 975 North Warson Road St. Louis Missouri 63132 USA
| | - Allison Tielking
- Donald Danforth Plant Science Center 975 North Warson Road St. Louis Missouri 63132 USA
| | - Steven T Callen
- Donald Danforth Plant Science Center 975 North Warson Road St. Louis Missouri 63132 USA
| | - S Elizabeth Castillo
- Donald Danforth Plant Science Center 975 North Warson Road St. Louis Missouri 63132 USA
| | - Michael Miller
- Donald Danforth Plant Science Center 975 North Warson Road St. Louis Missouri 63132 USA
| | - Monica Tessman
- Donald Danforth Plant Science Center 975 North Warson Road St. Louis Missouri 63132 USA
| | - Noah Fahlgren
- Donald Danforth Plant Science Center 975 North Warson Road St. Louis Missouri 63132 USA
| | - James C Carrington
- Donald Danforth Plant Science Center 975 North Warson Road St. Louis Missouri 63132 USA
| | - Dmitri A Nusinow
- Donald Danforth Plant Science Center 975 North Warson Road St. Louis Missouri 63132 USA
| | - Malia A Gehan
- Donald Danforth Plant Science Center 975 North Warson Road St. Louis Missouri 63132 USA
| |
Collapse
|
57
|
Gommers CMM, Monte E. Seedling Establishment: A Dimmer Switch-Regulated Process between Dark and Light Signaling. PLANT PHYSIOLOGY 2018; 176:1061-1074. [PMID: 29217596 PMCID: PMC5813566 DOI: 10.1104/pp.17.01460] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/03/2017] [Indexed: 05/18/2023]
Abstract
A balance between dark and light signaling directs seedling establishment through integrating internal and environmental information.
Collapse
Affiliation(s)
- Charlotte M M Gommers
- Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Elena Monte
- Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| |
Collapse
|
58
|
PCH1 and PCHL promote photomorphogenesis in plants by controlling phytochrome B dark reversion. Nat Commun 2017; 8:2221. [PMID: 29263319 PMCID: PMC5738371 DOI: 10.1038/s41467-017-02311-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/18/2017] [Indexed: 11/08/2022] Open
Abstract
Phytochrome B (phyB) is the primary red light photoreceptor in plants, and regulates both growth and development. The relative levels of phyB in the active state are determined by the light conditions, such as direct sunlight or shade, but are also affected by light-independent dark reversion. Dark reversion is a temperature-dependent thermal relaxation process, by which phyB reverts from the active to the inactive state. Here, we show that the homologous phyB-binding proteins PCH1 and PCHL suppress phyB dark reversion, resulting in plants with dramatically enhanced light sensitivity. Moreover, far-red and blue light upregulate the expression of PCH1 and PCHL in a phyB independent manner, thereby increasing the response to red light perceived by phyB. PCH1 and PCHL therefore provide a node for the molecular integration of different light qualities by regulation of phyB dark reversion, allowing plants to adapt growth and development to the ambient environment.
Collapse
|
59
|
Viczián A, Klose C, Ádám É, Nagy F. New insights of red light-induced development. PLANT, CELL & ENVIRONMENT 2017; 40:2457-2468. [PMID: 27943362 DOI: 10.1111/pce.12880] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 05/14/2023]
Abstract
The red/far-red light absorbing photoreceptors phytochromes regulate development and growth and thus play an essential role in optimizing adaptation of the sessile plants to the ever-changing environment. Our understanding of how absorption of a red/far-red photon by phytochromes initiates/modifies diverse physiological responses has been steadily improving. Research performed in the last 5 years has been especially productive and led to significant conceptual changes about the mode of action of these photoreceptors. In this review, we focus on the phytochrome B photoreceptor, the major phytochrome species active in light-grown plants. We discuss how its light-independent inactivation (termed dark/thermal reversion), post-translational modification, including ubiquitination, phosphorylation and sumoylation, as well as heterodimerization with other phytochrome species modify red light-controlled physiological responses. Finally, we discuss how photobiological properties of phytochrome B enable this photoreceptor to function also as a thermosensor.
Collapse
Affiliation(s)
- András Viczián
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Cornelia Klose
- Institute of Biology2/Botany, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Éva Ádám
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| |
Collapse
|
60
|
Seluzicki A, Burko Y, Chory J. Dancing in the dark: darkness as a signal in plants. PLANT, CELL & ENVIRONMENT 2017; 40:2487-2501. [PMID: 28044340 PMCID: PMC6110299 DOI: 10.1111/pce.12900] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 05/21/2023]
Abstract
Daily cycles of light and dark provide an organizing principle and temporal constraints under which life on Earth evolved. While light is often the focus of plant studies, it is only half the story. Plants continuously adjust to their surroundings, taking both dawn and dusk as cues to organize their growth, development and metabolism to appropriate times of day. In this review, we examine the effects of darkness on plant physiology and growth. We describe the similarities and differences between seedlings grown in the dark versus those grown in light-dark cycles, and the evolution of etiolated growth. We discuss the integration of the circadian clock into other processes, looking carefully at the points of contact between clock genes and growth-promoting gene-regulatory networks in temporal gating of growth. We also examine daily starch accumulation and degradation, and the possible contribution of dark-specific metabolic controls in regulating energy and growth. Examining these studies together reveals a complex and continuous balancing act, with many signals, dark included, contributing information and guiding the plant through its life cycle. The extraordinary interconnection between light and dark is manifest during cycles of day and night and during seedling emergence above versus below the soil surface.
Collapse
Affiliation(s)
- Adam Seluzicki
- Salk Institute for Biological Studies, Plant Biology Laboratory, La Jolla, CA, 92037, USA
| | - Yogev Burko
- Salk Institute for Biological Studies, Plant Biology Laboratory, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Joanne Chory
- Salk Institute for Biological Studies, Plant Biology Laboratory, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| |
Collapse
|
61
|
Huang H, Gehan MA, Huss SE, Alvarez S, Lizarraga C, Gruebbling EL, Gierer J, Naldrett MJ, Bindbeutel RK, Evans BS, Mockler TC, Nusinow DA. Cross-species complementation reveals conserved functions for EARLY FLOWERING 3 between monocots and dicots. PLANT DIRECT 2017; 1:e00018. [PMID: 31245666 PMCID: PMC6508535 DOI: 10.1002/pld3.18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/10/2017] [Accepted: 09/13/2017] [Indexed: 05/03/2023]
Abstract
Plant responses to the environment are shaped by external stimuli and internal signaling pathways. In both the model plant Arabidopsis thaliana (Arabidopsis) and crop species, circadian clock factors are critical for growth, flowering, and circadian rhythms. Outside of Arabidopsis, however, little is known about the molecular function of clock gene products. Therefore, we sought to compare the function of Brachypodium distachyon (Brachypodium) and Setaria viridis (Setaria) orthologs of EARLY FLOWERING 3, a key clock gene in Arabidopsis. To identify both cycling genes and putative ELF3 functional orthologs in Setaria, a circadian RNA-seq dataset and online query tool (Diel Explorer) were generated to explore expression profiles of Setaria genes under circadian conditions. The function of ELF3 orthologs from Arabidopsis, Brachypodium, and Setaria was tested for complementation of an elf3 mutation in Arabidopsis. We find that both monocot orthologs were capable of rescuing hypocotyl elongation, flowering time, and arrhythmic clock phenotypes. Using affinity purification and mass spectrometry, our data indicate that BdELF3 and SvELF3 could be integrated into similar complexes in vivo as AtELF3. Thus, we find that, despite 180 million years of separation, BdELF3 and SvELF3 can functionally complement loss of ELF3 at the molecular and physiological level.
Collapse
Affiliation(s)
- He Huang
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | | | - Sophie Alvarez
- Donald Danforth Plant Science CenterSt. LouisMOUSA
- Present address:
University of Nebraska‐LincolnLincolnNEUSA
| | | | | | - John Gierer
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | - Michael J. Naldrett
- Donald Danforth Plant Science CenterSt. LouisMOUSA
- Present address:
University of Nebraska‐LincolnLincolnNEUSA
| | | | | | | | | |
Collapse
|
62
|
Zhang B, Holmlund M, Lorrain S, Norberg M, Bakó L, Fankhauser C, Nilsson O. BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. eLife 2017; 6:26759. [PMID: 28826468 PMCID: PMC5582868 DOI: 10.7554/elife.26759] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/31/2017] [Indexed: 11/25/2022] Open
Abstract
Both light and temperature have dramatic effects on plant development. Phytochrome photoreceptors regulate plant responses to the environment in large part by controlling the abundance of PHYTOCHROME INTERACTING FACTOR (PIF) transcription factors. However, the molecular determinants of this essential signaling mechanism still remain largely unknown. Here, we present evidence that the BLADE-ON-PETIOLE (BOP) genes, which have previously been shown to control leaf and flower development in Arabidopsis, are involved in controlling the abundance of PIF4. Genetic analysis shows that BOP2 promotes photo-morphogenesis and modulates thermomorphogenesis by suppressing PIF4 activity, through a reduction in PIF4 protein level. In red-light-grown seedlings PIF4 ubiquitination was reduced in the bop2 mutant. Moreover, we found that BOP proteins physically interact with both PIF4 and CULLIN3A and that a CULLIN3-BOP2 complex ubiquitinates PIF4 in vitro. This shows that BOP proteins act as substrate adaptors in a CUL3BOP1/BOP2 E3 ubiquitin ligase complex, targeting PIF4 proteins for ubiquitination and subsequent degradation.
Collapse
Affiliation(s)
- Bo Zhang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Mattias Holmlund
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Severine Lorrain
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mikael Norberg
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - László Bakó
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
63
|
Tanaka S, Ario N, Nakagawa ACS, Tomita Y, Murayama N, Taniguchi T, Hamaoka N, Iwaya-Inoue M, Ishibashi Y. Effects of light quality on pod elongation in soybean (Glycine max (L.) Merr.) and cowpea (Vigna unguiculata (L.) Walp.). PLANT SIGNALING & BEHAVIOR 2017; 12:e1327495. [PMID: 28532320 PMCID: PMC5566249 DOI: 10.1080/15592324.2017.1327495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/29/2017] [Accepted: 05/01/2017] [Indexed: 05/29/2023]
Abstract
Soybean pods are located at the nodes, where they are in the shadow, whereas cowpea pods are located outside of the leaves and are exposed to sunlight. To compare the effects of light quality on pod growth in soybean and cowpea, we measured the length of pods treated with white, blue, red or far-red light. In both species, pods elongated faster during the dark period than during the light period in all light treatments except red light treatment in cowpea. Red light significantly suppressed pod elongation in soybean during the dark and light periods. On the other hand, the elongation of cowpea pods treated with red light markedly promoted during the light period. These results suggested that the difference in the pod set sites between soybean and cowpea might account for the difference in their red light responses for pod growth.
Collapse
Affiliation(s)
- Seiya Tanaka
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Nobuyuki Ario
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | | | - Yuki Tomita
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Naoki Murayama
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Takatoshi Taniguchi
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Norimitsu Hamaoka
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
- Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Mari Iwaya-Inoue
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
- Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Yushi Ishibashi
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
- Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
64
|
Serrano-Bueno G, Romero-Campero FJ, Lucas-Reina E, Romero JM, Valverde F. Evolution of photoperiod sensing in plants and algae. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:10-17. [PMID: 28391047 DOI: 10.1016/j.pbi.2017.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 05/21/2023]
Abstract
Measuring day length confers a strong fitness improvement to photosynthetic organisms as it allows them to anticipate light phases and take the best decisions preceding diurnal transitions. In close association with signals from the circadian clock and the photoreceptors, photoperiodic sensing constitutes also a precise way to determine the passing of the seasons and to take annual decisions such as the best time to flower or the beginning of dormancy. Photoperiodic sensing in photosynthetic organisms is ancient and two major stages in its evolution could be identified, the cyanobacterial time sensing and the evolutionary tool kit that arose in green algae and developed into the photoperiodic system of modern plants. The most recent discoveries about the evolution of the perception of light, measurement of day length and relationship with the circadian clock along the evolution of the eukaryotic green lineage will be discussed in this review.
Collapse
Affiliation(s)
- Gloria Serrano-Bueno
- Plant Development Unit, Institute for Plan Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 49th, Americo Vespucio Av., 41092 Sevilla, Spain
| | - Francisco J Romero-Campero
- Plant Development Unit, Institute for Plan Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 49th, Americo Vespucio Av., 41092 Sevilla, Spain
| | - Eva Lucas-Reina
- Plant Development Unit, Institute for Plan Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 49th, Americo Vespucio Av., 41092 Sevilla, Spain
| | - Jose M Romero
- Plant Development Unit, Institute for Plan Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 49th, Americo Vespucio Av., 41092 Sevilla, Spain
| | - Federico Valverde
- Plant Development Unit, Institute for Plan Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 49th, Americo Vespucio Av., 41092 Sevilla, Spain.
| |
Collapse
|
65
|
Ritter A, Iñigo S, Fernández-Calvo P, Heyndrickx KS, Dhondt S, Shi H, De Milde L, Vanden Bossche R, De Clercq R, Eeckhout D, Ron M, Somers DE, Inzé D, Gevaert K, De Jaeger G, Vandepoele K, Pauwels L, Goossens A. The transcriptional repressor complex FRS7-FRS12 regulates flowering time and growth in Arabidopsis. Nat Commun 2017; 8:15235. [PMID: 28492275 PMCID: PMC5437275 DOI: 10.1038/ncomms15235] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/06/2017] [Indexed: 12/15/2022] Open
Abstract
Most living organisms developed systems to efficiently time environmental changes. The plant-clock acts in coordination with external signals to generate output responses determining seasonal growth and flowering time. Here, we show that two Arabidopsis thaliana transcription factors, FAR1 RELATED SEQUENCE 7 (FRS7) and FRS12, act as negative regulators of these processes. These proteins accumulate particularly in short-day conditions and interact to form a complex. Loss-of-function of FRS7 and FRS12 results in early flowering plants with overly elongated hypocotyls mainly in short days. We demonstrate by molecular analysis that FRS7 and FRS12 affect these developmental processes in part by binding to the promoters and repressing the expression of GIGANTEA and PHYTOCHROME INTERACTING FACTOR 4 as well as several of their downstream signalling targets. Our data reveal a molecular machinery that controls the photoperiodic regulation of flowering and growth and offer insight into how plants adapt to seasonal changes.
Collapse
Affiliation(s)
- Andrés Ritter
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Gent, Belgium
| | - Sabrina Iñigo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Gent, Belgium
| | - Patricia Fernández-Calvo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Gent, Belgium
| | - Ken S. Heyndrickx
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Gent, Belgium
| | - Stijn Dhondt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Gent, Belgium
| | - Hua Shi
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | - Liesbeth De Milde
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Gent, Belgium
| | - Robin Vanden Bossche
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Gent, Belgium
| | - Rebecca De Clercq
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Gent, Belgium
| | - Dominique Eeckhout
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Gent, Belgium
| | - Mily Ron
- Department of Plant Biology, UC Davis, Davis, California 95616, USA
| | - David E. Somers
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Gent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Geert De Jaeger
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Gent, Belgium
| | - Klaas Vandepoele
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Gent, Belgium
| | - Laurens Pauwels
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Gent, Belgium
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Gent, Belgium
| |
Collapse
|
66
|
Legris M, Nieto C, Sellaro R, Prat S, Casal JJ. Perception and signalling of light and temperature cues in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:683-697. [PMID: 28008680 DOI: 10.1111/tpj.13467] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 05/18/2023]
Abstract
Light and temperature patterns are often correlated under natural plant growth conditions. In this review, we analyse the perception and signalling mechanisms shared by both these environmental cues and discuss the functional implications of their convergence to control plant growth. The first point of integration is the phytochrome B (phyB) receptor, which senses light and temperature. Downstream of phyB, the signalling core comprises two branches, one involving PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and the other CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and ELONGATED HYPOCOTYL 5 (HY5). The dynamics of accumulation and/or localization of each of these core signalling components depend on light and temperature conditions. These pathways are connected through COP1, which enhances the activity of PIF4. The circadian clock modulates this circuit, since EARLY FLOWERING 3 (ELF3), an essential component of the evening complex (EC), represses expression of the PIF4 gene and PIF4 transcriptional activity. Phytochromes are probably not the only entry point of temperature into this network, but other sensors remain to be established. The sharing of mechanisms of action for two distinct environmental cues is to some extent unexpected, as it renders these responses mutually dependent. There are nonetheless many ecological contexts in which such a mutual influence could be beneficial.
Collapse
Affiliation(s)
- Martina Legris
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, 1405, Buenos Aires, Argentina
| | - Cristina Nieto
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Romina Sellaro
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | - Salomé Prat
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Jorge J Casal
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, 1405, Buenos Aires, Argentina
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| |
Collapse
|
67
|
Kim JH, Lee HJ, Jung JH, Lee S, Park CM. HOS1 Facilitates the Phytochrome B-Mediated Inhibition of PIF4 Function during Hypocotyl Growth in Arabidopsis. MOLECULAR PLANT 2017; 10:274-284. [PMID: 27890635 DOI: 10.1016/j.molp.2016.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 05/06/2023]
Abstract
Upon exposure to light, developing seedlings undergo photomorphogenesis, as illustrated by inhibition of hypocotyl elongation, cotyledon opening, and leaf greening. During hypocotyl photomorphogenesis, light signals are sensed by multiple photoreceptors, among which the red/far-red light-sensing phytochromes have been extensively studied. However, it is not fully understood how the phytochromes modulate hypocotyl growth. Here, we demonstrated that HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1), which is known to either act as E3 ubiquitin ligase or affect chromatin organization, inhibits the transcriptional activation activity of PHYTOCHROME INTERACTING FACTOR 4 (PIF4), a key transcription factor that promotes hypocotyl growth. Consistent with the negative regulatory role of HOS1 in hypocotyl growth, HOS1-defective mutants exhibited elongated hypocotyls in the light. Notably, phyB induces HOS1 activity in inhibiting PIF4 function. Taken together, these observations provide a molecular basis for the phyB-mediated suppression of hypocotyl growth in Arabidopsis.
Collapse
Affiliation(s)
- Ju-Heon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae-Hoon Jung
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Sangmin Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
68
|
Lee N, Choi G. Phytochrome-interacting factor from Arabidopsis to liverwort. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:54-60. [PMID: 27875778 DOI: 10.1016/j.pbi.2016.11.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 05/08/2023]
Abstract
Phytochromes are red and far-red light photoreceptors that regulate the responses of plants to light throughout their life cycles. Phytochromes do this in part by inhibiting the function of a group of basic helix-loop-helix transcription factors called phytochrome-interacting factors (PIFs). Arabidopsis has eight PIFs that function sometimes redundantly and sometimes distinctively depending on their expression patterns and protein stability, as well as on variations in the promoters they target in vivo. PIF-like proteins exist in other seed plants and non-vascular plants where they also regulate light responses. The mechanism by which phytochrome regulates light responses by promoting the degradation of the PIFs is conserved in liverwort, suggesting it must have evolved some time before the last common ancestor shared by seed plants and non-vascular plants.
Collapse
Affiliation(s)
- Nayoung Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
69
|
Shim JS, Kubota A, Imaizumi T. Circadian Clock and Photoperiodic Flowering in Arabidopsis: CONSTANS Is a Hub for Signal Integration. PLANT PHYSIOLOGY 2017; 173:5-15. [PMID: 27688622 PMCID: PMC5210731 DOI: 10.1104/pp.16.01327] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/27/2016] [Indexed: 05/19/2023]
Abstract
The circadian clock and light signaling regulate CONSTANS function through intricate mechanisms that reside in phloem companion cells of leaves for controlling photoperiodic flowering in Arabidopsis.
Collapse
Affiliation(s)
- Jae Sung Shim
- Department of Biology, University of Washington, Seattle, Washington 98195-1800 (J.S.S., A.K., T.I.)
| | - Akane Kubota
- Department of Biology, University of Washington, Seattle, Washington 98195-1800 (J.S.S., A.K., T.I.)
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, Washington 98195-1800 (J.S.S., A.K., T.I.)
| |
Collapse
|
70
|
Lee CM, Adamchek C, Feke A, Nusinow DA, Gendron JM. Mapping Protein-Protein Interactions Using Affinity Purification and Mass Spectrometry. Methods Mol Biol 2017; 1610:231-249. [PMID: 28439867 DOI: 10.1007/978-1-4939-7003-2_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mapping of protein-protein interaction (PPI) networks and their dynamics are crucial steps to deciphering the function of a protein and its role in cellular pathways, making it critical to have comprehensive knowledge of a protein's interactome. Advances in affinity purification and mass spectrometry technology (AP-MS) have provided a powerful and unbiased method to capture higher-order protein complexes and decipher dynamic PPIs. However, the unbiased calling of nonspecific interactions and the ability to detect transient interactions remains challenging when using AP-MS, thereby hampering the detection of biologically meaningful complexes. Additionally, there are plant-specific challenges with AP-MS, such as a lack of protein-specific antibodies, which must be overcome to successfully identify PPIs. Here we discuss and describe a protocol designed to bypass the traditional challenges of AP-MS and provide a roadmap to identify bona fide PPIs in plants.
Collapse
Affiliation(s)
- Chin-Mei Lee
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Christopher Adamchek
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Ann Feke
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | | | - Joshua M Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
71
|
Kim J, Song K, Park E, Kim K, Bae G, Choi G. Epidermal Phytochrome B Inhibits Hypocotyl Negative Gravitropism Non-Cell-Autonomously. THE PLANT CELL 2016; 28:2770-2785. [PMID: 27758895 PMCID: PMC5155346 DOI: 10.1105/tpc.16.00487] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/27/2016] [Accepted: 10/06/2016] [Indexed: 05/20/2023]
Abstract
Seedling hypocotyls display negative gravitropism in the dark but agravitropism in the light. The Arabidopsis thaliana pif quadruple mutant (pifQ), which lacks four PHYTOCHROME-INTERACTING FACTORS (PIFs), is agravitropic in the dark. Endodermis-specific expression of PIF1 rescues gravitropism in pifQ mutant seedlings. Since phytochromes induce light responses by inhibiting PIFs and the COP1-SPA ubiquitin E3 ligase complex in the nucleus, we asked whether phyB can cell autonomously inhibit hypocotyl negative gravitropism in the endodermis. We found that while epidermis-specific expression of PHYB rescues hypocotyl negative gravitropism and all other phyB mutant phenotypes, endodermis-specific expression of PHYB does not. Epidermal phyB induces the phosphorylation and degradation of endodermal PIFs in response to red light. This induces a global gene expression pattern similar to that induced by red light treatment of seedlings expressing PHYB under the control of its own endogenous promoter. Our results imply that epidermal phyB generates an unidentified mobile signal that travels to the endodermis where it promotes PIF degradation and inhibits hypocotyl negative gravitropism.
Collapse
Affiliation(s)
- Jaewook Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Kijong Song
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Eunae Park
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Keunhwa Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Gabyong Bae
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| |
Collapse
|
72
|
Huang H, Nusinow DA. Into the Evening: Complex Interactions in the Arabidopsis Circadian Clock. Trends Genet 2016; 32:674-686. [PMID: 27594171 DOI: 10.1101/068460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 05/23/2023]
Abstract
In Arabidopsis thaliana an assembly of proteins named the evening complex (EC) has been established as an essential component of the circadian clock with conserved functions in regulating plant growth and development. Recent studies identifying EC-regulated genes and EC-interacting proteins have expanded our understanding of EC function. In this review we focus on new progress uncovering how the EC contributes to the circadian network through the integration of environmental inputs and the direct regulation of key clock genes. We also summarize new findings of how the EC directly regulates clock outputs, such as photoperiodic and thermoresponsive growth, and provide new perspectives on future experiments to address unsolved questions related to the EC.
Collapse
Affiliation(s)
- He Huang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | |
Collapse
|
73
|
Huang H, Nusinow DA. Into the Evening: Complex Interactions in the Arabidopsis Circadian Clock. Trends Genet 2016; 32:674-686. [PMID: 27594171 DOI: 10.1016/j.tig.2016.08.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/20/2022]
Abstract
In Arabidopsis thaliana an assembly of proteins named the evening complex (EC) has been established as an essential component of the circadian clock with conserved functions in regulating plant growth and development. Recent studies identifying EC-regulated genes and EC-interacting proteins have expanded our understanding of EC function. In this review we focus on new progress uncovering how the EC contributes to the circadian network through the integration of environmental inputs and the direct regulation of key clock genes. We also summarize new findings of how the EC directly regulates clock outputs, such as photoperiodic and thermoresponsive growth, and provide new perspectives on future experiments to address unsolved questions related to the EC.
Collapse
Affiliation(s)
- He Huang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | |
Collapse
|
74
|
Huang H, Alvarez S, Nusinow DA. Data on the identification of protein interactors with the Evening Complex and PCH1 in Arabidopsis using tandem affinity purification and mass spectrometry (TAP-MS). Data Brief 2016; 8:56-60. [PMID: 27274533 PMCID: PMC4885145 DOI: 10.1016/j.dib.2016.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/04/2016] [Accepted: 05/09/2016] [Indexed: 11/29/2022] Open
Abstract
Tandem affinity purification coupled with mass spectrometry (TAP-MS) analysis is a powerful biochemical approach to identify protein-protein associations. Here we describe two datasets generated by a series of TAP-MS analyses to co-purify proteins associated with either ELF3 or ELF4 of the Evening Complex (EC) ("Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry" (Huang et al., 2016a) [1]) or proteins associated with PCH1, which is a newly identified output of the circadian clock to regulate photoperiodic growth in Arabidopsis thaliana ("PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis" (Huang et al. 2016b) [2]). We used either ELF3, ELF4 or PCH1 fused to a C-terminal tandem affinity tag (6xHis-3xFLAG) as baits and conducted purifications in various genetic mutant backgrounds. These data are discussed in recent publications [1,2], and are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PRIDE: PXD002606 (for EC) and PRIDE: PXD003352 (for PCH1).
Collapse
Affiliation(s)
- He Huang
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States
| | - Sophie Alvarez
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States
| | - Dmitri A Nusinow
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States
| |
Collapse
|
75
|
Huang H, Nusinow D. Tandem Purification of His6-3x FLAG Tagged Proteins for Mass Spectrometry from Arabidopsis. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.2060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|