51
|
Rademacher S, Eickholt BJ. PTEN in Autism and Neurodevelopmental Disorders. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036780. [PMID: 31427284 DOI: 10.1101/cshperspect.a036780] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is a classical tumor suppressor that antagonizes phosphatidylinositol 3-phosphate kinase (PI3K)/AKT signaling. Although there is a strong association of PTEN germline mutations with cancer syndromes, they have also been described in a subset of patients with autism spectrum disorders with macrocephaly characterized by impairments in social interactions and communication, repetitive behavior and, occasionally, epilepsy. To investigate PTEN's role during neurodevelopment and its implication for autism, several conditional Pten knockout mouse models have been generated. These models are valuable tools to understand PTEN's spatiotemporal roles during neurodevelopment. In this review, we will highlight the anatomical and phenotypic results from animal studies and link them to cellular and molecular findings.
Collapse
Affiliation(s)
- Sebastian Rademacher
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Britta J Eickholt
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
52
|
Early Postnatal Exposure to Isoflurane Disrupts Oligodendrocyte Development and Myelin Formation in the Mouse Hippocampus. Anesthesiology 2019; 131:1077-1091. [PMID: 31436548 PMCID: PMC6800770 DOI: 10.1097/aln.0000000000002904] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Early postnatal exposure to general anesthetics may interfere with brain development. We tested the hypothesis that isoflurane causes a lasting disruption in myelin development via actions on the mammalian target of rapamycin pathway. METHODS Mice were exposed to 1.5% isoflurane for 4 h at postnatal day 7. The mammalian target of rapamycin inhibitor, rapamycin, or the promyelination drug, clemastine, were administered on days 21 to 35. Mice underwent Y-maze and novel object position recognition tests (n = 12 per group) on days 56 to 62 or were euthanized for either immunohistochemistry (n = 8 per group) or Western blotting (n = 8 per group) at day 35 or were euthanized for electron microscopy at day 63. RESULTS Isoflurane exposure increased the percentage of phospho-S6-positive oligodendrocytes in fimbria of hippocampus from 22 ± 7% to 51 ± 6% (P < 0.0001). In Y-maze testing, isoflurane-exposed mice did not discriminate normally between old and novel arms, spending equal time in both (50 ± 5% old:50 ± 5% novel; P = 0.999), indicating impaired spatial learning. Treatment with clemastine restored discrimination, as evidenced by increased time spent in the novel arm (43 ± 6% old:57 ± 6% novel; P < 0.001), and rapamycin had a similar effect (44 ± 8% old:56 ± 8% novel; P < 0.001). Electron microscopy shows a reduction in myelin thickness as measured by an increase in g-ratio from 0.76 ± 0.06 for controls to 0.79 ± 0.06 for the isoflurane group (P < 0.001). Isoflurane exposure followed by rapamycin treatment resulted in a g-ratio (0.75 ± 0.05) that did not differ significantly from the control value (P = 0.426). Immunohistochemistry and Western blotting show that isoflurane acts on oligodendrocyte precursor cells to inhibit both proliferation and differentiation. DNA methylation and expression of a DNA methyl transferase 1 are reduced in oligodendrocyte precursor cells after isoflurane treatment. Effects of isoflurane on oligodendrocyte precursor cells were abolished by treatment with rapamycin. CONCLUSIONS Early postnatal exposure to isoflurane in mice causes lasting disruptions of oligodendrocyte development in the hippocampus via actions on the mammalian target of rapamycin pathway.
Collapse
|
53
|
Harty BL, Coelho F, Pease-Raissi SE, Mogha A, Ackerman SD, Herbert AL, Gereau RW, Golden JP, Lyons DA, Chan JR, Monk KR. Myelinating Schwann cells ensheath multiple axons in the absence of E3 ligase component Fbxw7. Nat Commun 2019; 10:2976. [PMID: 31278268 PMCID: PMC6611888 DOI: 10.1038/s41467-019-10881-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/05/2019] [Indexed: 01/12/2023] Open
Abstract
In the central nervous system (CNS), oligodendrocytes myelinate multiple axons; in the peripheral nervous system (PNS), Schwann cells (SCs) myelinate a single axon. Why are the myelinating potentials of these glia so fundamentally different? Here, we find that loss of Fbxw7, an E3 ubiquitin ligase component, enhances the myelinating potential of SCs. Fbxw7 mutant SCs make thicker myelin sheaths and sometimes appear to myelinate multiple axons in a fashion reminiscent of oligodendrocytes. Several Fbxw7 mutant phenotypes are due to dysregulation of mTOR; however, the remarkable ability of mutant SCs to ensheathe multiple axons is independent of mTOR signaling. This indicates distinct roles for Fbxw7 in SC biology including modes of axon interactions previously thought to fundamentally distinguish myelinating SCs from oligodendrocytes. Our data reveal unexpected plasticity in the myelinating potential of SCs, which may have important implications for our understanding of both PNS and CNS myelination and myelin repair. The authors find that deletion from Schwann cells of an E3 ubiquitin ligase component called Fbxw7 leads to a phenotype reminiscent of myelination in the central nervous system where a single oligodendrocyte ensheaths multiple axons.
Collapse
Affiliation(s)
- Breanne L Harty
- Thaden School, 410 SE Staggerwing Lane, Bentonville, AR, 72712, USA.,Department of Developmental Biology, Washington University School of Medicine, 660S. Euclid Ave., St. Louis, MO, 63110, USA.,Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Fernanda Coelho
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Sarah E Pease-Raissi
- Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Amit Mogha
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Sarah D Ackerman
- Department of Developmental Biology, Washington University School of Medicine, 660S. Euclid Ave., St. Louis, MO, 63110, USA.,Institute of Neuroscience, University of Oregon, 1440 Franklin Blvd., Eugene, OR, 97403, USA
| | - Amy L Herbert
- Department of Developmental Biology, Washington University School of Medicine, 660S. Euclid Ave., St. Louis, MO, 63110, USA.,Department of Developmental Biology, Stanford University, 279W. Campus Dr., Stanford, CA, 94305, USA
| | - Robert W Gereau
- Department of Anesthesiology, Washington University Pain Center, 660S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Judith P Golden
- Department of Anesthesiology, Washington University Pain Center, 660S. Euclid Ave., St. Louis, MO, 63110, USA
| | - David A Lyons
- Centre for Brain Discovery Sciences, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Jonah R Chan
- Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, 660S. Euclid Ave., St. Louis, MO, 63110, USA. .,Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA.
| |
Collapse
|
54
|
Radu AG, Torch S, Fauvelle F, Pernet-Gallay K, Lucas A, Blervaque R, Delmas V, Schlattner U, Lafanechère L, Hainaut P, Tricaud N, Pingault V, Bondurand N, Bardeesy N, Larue L, Thibert C, Billaud M. LKB1 specifies neural crest cell fates through pyruvate-alanine cycling. SCIENCE ADVANCES 2019; 5:eaau5106. [PMID: 31328154 PMCID: PMC6636984 DOI: 10.1126/sciadv.aau5106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/10/2019] [Indexed: 05/08/2023]
Abstract
Metabolic processes underlying the development of the neural crest, an embryonic population of multipotent migratory cells, are poorly understood. Here, we report that conditional ablation of the Lkb1 tumor suppressor kinase in mouse neural crest stem cells led to intestinal pseudo-obstruction and hind limb paralysis. This phenotype originated from a postnatal degeneration of the enteric nervous ganglia and from a defective differentiation of Schwann cells. Metabolomic profiling revealed that pyruvate-alanine conversion is enhanced in the absence of Lkb1. Mechanistically, inhibition of alanine transaminases restored glial differentiation in an mTOR-dependent manner, while increased alanine level directly inhibited the glial commitment of neural crest cells. Treatment with the metabolic modulator AICAR suppressed mTOR signaling and prevented Schwann cell and enteric defects of Lkb1 mutant mice. These data uncover a link between pyruvate-alanine cycling and the specification of glial cell fate with potential implications in the understanding of the molecular pathogenesis of neural crest diseases.
Collapse
Affiliation(s)
- Anca G. Radu
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Sakina Torch
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Florence Fauvelle
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institute of Neurosciences GIN, 38000 Grenoble, France
- Univ. Grenoble Alpes, INSERM, US17, MRI facility IRMaGe, 38000 Grenoble, France
| | - Karin Pernet-Gallay
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institute of Neurosciences GIN, 38000 Grenoble, France
| | - Anthony Lucas
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Renaud Blervaque
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Véronique Delmas
- Institut Curie, Normal and Pathological Development of Melanocytes, CNRS UMR3347; INSERM U1021; Equipe Labellisée–Ligue Nationale Contre le Cancer, Orsay, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics, Univ Grenoble Alpes, 38185 Grenoble, France
- INSERM U1055, 38041 Grenoble France
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Pierre Hainaut
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Nicolas Tricaud
- INSERM U1051, Institut des Neurosciences de Montpellier (INM), Université de Montpellier, Montpellier, France
| | | | | | - Nabeel Bardeesy
- Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Lionel Larue
- Institut Curie, Normal and Pathological Development of Melanocytes, CNRS UMR3347; INSERM U1021; Equipe Labellisée–Ligue Nationale Contre le Cancer, Orsay, France
| | - Chantal Thibert
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
- Corresponding author. (M.B.); (C.T.)
| | - Marc Billaud
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
- “Clinical and experimental model of lymphomagenesis” Univ Lyon, Université Claude Bernard Lyon1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon France
- Corresponding author. (M.B.); (C.T.)
| |
Collapse
|
55
|
Zhang SJ, Li XX, Yu Y, Chiu AP, Lo LH, To JC, Rowlands DK, Keng VW. Schwann cell-specific PTEN and EGFR dysfunctions affect neuromuscular junction development by impairing Agrin signaling and autophagy. Biochem Biophys Res Commun 2019; 515:50-56. [PMID: 31122699 DOI: 10.1016/j.bbrc.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
Abstract
The neuromuscular junction (NMJ) is formed by motor nerve terminals, post-junctional muscle membranes, and terminal Schwann cells (SCs). The formation of NMJ requires complex and dynamic molecular interactions. Nerve- and muscle-derived molecules have been well characterized but the mechanistic involvement of SC in NMJ development remains poorly understood. SC-specific phosphatase and tensin homolog (Pten) inactivation and epidermal growth factor receptor (EGFR) overexpression (Dhh-Cre; Cnp-EGFR; Ptenflox/flox or DET) mice were used and NMJ malformation was observed in these mice. Acetylcholine receptors (AChRs) were distorted and varicose presynaptic nerve terminals appeared in the tibialis anterior (TA) muscle of DET mice. Agrin signaling related to NMJ development, was downregulated in TA muscle. Both RAS/MEK/ERK and PI3K/AKT/mTOR signaling pathways were activated in the sciatic nerves of DET mice. In addition, autophagy was downregulated in these sciatic nerves. Interestingly, the use of Torin 2, an mTOR inhibitor, rescued the phenotype. The downregulated-autophagy might account for Agrin signaling abnormity, which induced NMJ malformation. Taken together, our results indicate that SCs-specific Pten and EGFR cooperation are essential for NMJ development.
Collapse
Affiliation(s)
- Shi-Jie Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; Department of Neurology, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Xiao Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yuyu Yu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Amy P Chiu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Lilian H Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Jeffrey C To
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Dewi K Rowlands
- Laboratory Animal Services Centre, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR, China
| | - Vincent W Keng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
56
|
Preston MA, Finseth LT, Bourne JN, Macklin WB. A novel myelin protein zero transgenic zebrafish designed for rapid readout of in vivo myelination. Glia 2019; 67:650-667. [PMID: 30623975 PMCID: PMC6555554 DOI: 10.1002/glia.23559] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022]
Abstract
Demyelination occurs following many neurological insults, most notably in multiple sclerosis (MS). Therapeutics that promote remyelination could slow the neurological decline associated with chronic demyelination; however, in vivo testing of candidate small molecule drugs and signaling cascades known to impact myelination is expensive and labor intensive. Here, we describe the development of a novel zebrafish line which uses the putative promoter of Myelin Protein Zero (mpz), a major structural protein in myelin, to drive expression of Enhanced Green Fluorescent Protein (mEGFP) specifically in the processes and nascent internodes of myelinating glia. We observe that changes in fluorescence intensity in Tg(mpz:mEGFP) larvae are a reliable surrogate for changes in myelin membrane production per se in live larvae following bath application of drugs. These changes in fluorescence are strongly predictive of changes in myelin-specific mRNAs [mpz, 36K and myelin basic protein (mbp)] and protein production (Mbp). Finally, we observe that certain drugs alter nascent internode number and length, impacting the overall amount of myelin membrane synthesized and a number of axons myelinated without significantly changing the number of myelinating oligodendrocytes. These studies demonstrate that the Tg(mpz:mEGFP) reporter line responds effectively to positive and negative small molecule regulators of myelination, and could be useful for identifying candidate drugs that specifically target myelin membrane production in vivo. Combined with high throughput cell-based screening of large chemical libraries and automated imaging systems, this transgenic line is useful for rapid large scale whole animal screening to identify novel myelinating small molecule compounds in vivo.
Collapse
Affiliation(s)
- Marnie A Preston
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Lisbet T Finseth
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jennifer N Bourne
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
57
|
Dai C, Tang S, Biao X, Xiao X, Chen C, Li J. Colistin induced peripheral neurotoxicity involves mitochondrial dysfunction and oxidative stress in mice. Mol Biol Rep 2019; 46:1963-1972. [PMID: 30783935 DOI: 10.1007/s11033-019-04646-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/24/2019] [Indexed: 01/08/2023]
Abstract
Polymyxin is a critical antibiotic against the infection caused by multidrug-resistant gram-negative bacteria. Neurotoxicity is one of main dose-limiting factors. The present study aimed to investigate the underlying molecular mechanism on colistin induced peripheral neurotoxicity using a mouse model. Forty mice were divided into control, colistin 1-, 3- and 7-day groups, the mice were intravenously injected with saline or colistin (sulfate) at the dose of 15 mg/kg/day for 1, 3 and 7 days, respectively. The results showed that, colistin treatment for 7 days markedly resulted in the demyelination, axonal degeneration and mitochondria swelling in the mice's sciatic tissues. Colistin treatment induces oxidative stress as well as the increases of mitochondrial permeability transition, decreases of membrane potential (ΔΨm) and activities of mitochondrial respiratory chain in the mice's sciatic nerve tissues. Furthermore, in the colistin-7 day group, adenosine-triphosphate (ATP) level Na+/K+-ATPase activity decreased to 75.2% (p < 0.01) and 80.1% (p < 0.01), respectively. Meanwhile, colistin treatment down-regulates the expression of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) mRNAs and up-regulates the expression of Bax and caspase-3 mRNAs. Our results reveal that colistin induced sciatic nerves damage involves oxidative stress, mitochondrial dysfunction and the inhibition of Akt/mTOR pathway.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.,College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiang Biao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chunli Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
58
|
Gerber D, Ghidinelli M, Tinelli E, Somandin C, Gerber J, Pereira JA, Ommer A, Figlia G, Miehe M, Nägeli LG, Suter V, Tadini V, Sidiropoulos PNM, Wessig C, Toyka KV, Suter U. Schwann cells, but not Oligodendrocytes, Depend Strictly on Dynamin 2 Function. eLife 2019; 8:e42404. [PMID: 30648534 PMCID: PMC6335055 DOI: 10.7554/elife.42404] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
Myelination requires extensive plasma membrane rearrangements, implying that molecules controlling membrane dynamics play prominent roles. The large GTPase dynamin 2 (DNM2) is a well-known regulator of membrane remodeling, membrane fission, and vesicular trafficking. Here, we genetically ablated Dnm2 in Schwann cells (SCs) and in oligodendrocytes of mice. Dnm2 deletion in developing SCs resulted in severely impaired axonal sorting and myelination onset. Induced Dnm2 deletion in adult SCs caused a rapidly-developing peripheral neuropathy with abundant demyelination. In both experimental settings, mutant SCs underwent prominent cell death, at least partially due to cytokinesis failure. Strikingly, when Dnm2 was deleted in adult SCs, non-recombined SCs still expressing DNM2 were able to remyelinate fast and efficiently, accompanied by neuropathy remission. These findings reveal a remarkable self-healing capability of peripheral nerves that are affected by SC loss. In the central nervous system, however, we found no major defects upon Dnm2 deletion in oligodendrocytes.
Collapse
Affiliation(s)
- Daniel Gerber
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Monica Ghidinelli
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Elisa Tinelli
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Christian Somandin
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Joanne Gerber
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Jorge A Pereira
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Andrea Ommer
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Gianluca Figlia
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Michaela Miehe
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Lukas G Nägeli
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Vanessa Suter
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Valentina Tadini
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Páris NM Sidiropoulos
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Carsten Wessig
- Department of NeurologyUniversity Hospital of Würzburg, University of WürzburgWürzburgGermany
| | - Klaus V Toyka
- Department of NeurologyUniversity Hospital of Würzburg, University of WürzburgWürzburgGermany
| | - Ueli Suter
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| |
Collapse
|
59
|
Beirowski B. The LKB1-AMPK and mTORC1 Metabolic Signaling Networks in Schwann Cells Control Axon Integrity and Myelination: Assembling and upholding nerves by metabolic signaling in Schwann cells. Bioessays 2018; 41:e1800075. [PMID: 30537168 DOI: 10.1002/bies.201800075] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/03/2018] [Indexed: 01/10/2023]
Abstract
The Liver kinase B1 with its downstream target AMP activated protein kinase (LKB1-AMPK), and the key nutrient sensor mammalian target of rapamycin complex 1 (mTORC1) form two signaling systems that coordinate metabolic and cellular activity with changes in the environment in order to preserve homeostasis. For example, nutritional fluctuations rapidly feed back on these signaling systems and thereby affect cell-specific functions. Recent studies have started to reveal important roles of these strategic metabolic regulators in Schwann cells for the trophic support and myelination of axons. Because aberrant intermediate metabolism along with mitochondrial dysfunction in Schwann cells is mechanistically linked to nerve abnormalities found in acquired and inherited peripheral neuropathies, manipulation of the LKB1-AMPK, and mTORC1 signaling hubs may be a worthwhile therapeutic target to mitigate nerve damage in disease. Here, recent advances in our understanding of LKB1-AMPK and mTORC1 functions in Schwann cells are covered, and future research areas for this key metabolic signaling network are proposed.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214, USA
| |
Collapse
|
60
|
Jiang M, Rao R, Wang J, Wang J, Xu L, Wu LM, Chan JR, Wang H, Lu QR. The TSC1-mTOR-PLK axis regulates the homeostatic switch from Schwann cell proliferation to myelination in a stage-specific manner. Glia 2018; 66:1947-1959. [PMID: 29722913 PMCID: PMC6185760 DOI: 10.1002/glia.23449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022]
Abstract
Proper peripheral myelination depends upon the balance between Schwann cell proliferation and differentiation programs. The serine/threonine kinase mTOR integrates various environmental cues to serve as a central regulator of cell growth, metabolism, and function. We report here that tuberous sclerosis complex 1 (TSC1), a negative regulator of mTOR activity, establishes a stage-dependent program for Schwann cell lineage progression and myelination by controlling cell proliferation and myelin homeostasis. Tsc1 ablation in Schwann cell progenitors in mice resulted in activation of mTOR signaling, and caused over-proliferation of Schwann cells and blocked their differentiation, leading to hypomyelination. Transcriptome profiling analysis revealed that mTOR activation in Tsc1 mutants resulted in upregulation of a polo-like kinase (PLK)-dependent pathway and cell cycle regulators. Attenuation of mTOR or pharmacological inhibition of polo-like kinases partially rescued hypomyelination caused by Tsc1 loss in the developing peripheral nerves. In contrast, deletion of Tsc1 in mature Schwann cells led to redundant and overgrown myelin sheaths in adult mice. Together, our findings indicate stage-specific functions for the TSC1-mTOR-PLK signaling axis in controlling the transition from proliferation to differentiation and myelin homeostasis during Schwann cell development.
Collapse
Affiliation(s)
- Minqing Jiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
- The Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | - Rohit Rao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jincheng Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jiajia Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lingli Xu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lai Man Wu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jonah R. Chan
- Department of Neurology and Programs in Biomedical and Neurosciences, University of California, San Francisco, CA 94158
| | - Huimin Wang
- The Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | - Q. Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
61
|
Abstract
The mechanistic target of rapamycin (mTOR) is an important signaling hub that integrates environmental information regarding energy availability and stimulates anabolic molecular processes and cell growth. Abnormalities in this pathway have been identified in several syndromes in which autism spectrum disorder (ASD) is highly prevalent. Several studies have investigated mTOR signaling in developmental and neuronal processes that, when dysregulated, could contribute to the development of ASD. Although many potential mechanisms still remain to be fully understood, these associations are of great interest because of the clinical availability of mTOR inhibitors. Clinical trials evaluating the efficacy of mTOR inhibitors to improve neurodevelopmental outcomes have been initiated.
Collapse
Affiliation(s)
- Kellen D. Winden
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Darius Ebrahimi-Fakhari
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
62
|
Alvarez-Prats A, Bjelobaba I, Aldworth Z, Baba T, Abebe D, Kim YJ, Stojilkovic SS, Stopfer M, Balla T. Schwann-Cell-Specific Deletion of Phosphatidylinositol 4-Kinase Alpha Causes Aberrant Myelination. Cell Rep 2018; 23:2881-2890. [PMID: 29874576 PMCID: PMC7268203 DOI: 10.1016/j.celrep.2018.05.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/17/2018] [Accepted: 05/04/2018] [Indexed: 01/01/2023] Open
Abstract
Active membrane remodeling during myelination relies on phospholipid synthesis and membrane polarization, both of which are known to depend on inositol phospholipids. Here, we show that sciatic nerves of mice lacking phosphatidylinositol 4-kinase alpha (PI4KA) in Schwann cells (SCs) show substantially reduced myelin thickness with grave consequences on nerve conductivity and motor functions. Surprisingly, prolonged inhibition of PI4KA in immortalized mouse SCs failed to decrease plasma membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) levels or PI 3-kinase (PI3K) activation, in spite of large reductions in plasma membrane PI4P levels. Instead, it caused rearrangements of the actin cytoskeleton, which was also observed in sciatic nerves of knockout animals. PI4KA inactivation disproportionally reduced phosphatidylserine, phosphatidylethanolamine, and sphingomyelin content in mutant nerves, with similar changes observed in SCs treated with a PI4KA inhibitor. These studies define a role for PI4KA in myelin formation primarily affecting metabolism of key phospholipids and the actin cytoskeleton.
Collapse
Affiliation(s)
- Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Ivana Bjelobaba
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Zane Aldworth
- Section on Sensory Coding and Neural Ensembles, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Takashi Baba
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Daniel Abebe
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Mark Stopfer
- Section on Sensory Coding and Neural Ensembles, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
63
|
Norrmén C, Figlia G, Pfistner P, Pereira JA, Bachofner S, Suter U. mTORC1 Is Transiently Reactivated in Injured Nerves to Promote c-Jun Elevation and Schwann Cell Dedifferentiation. J Neurosci 2018; 38:4811-4828. [PMID: 29695414 PMCID: PMC5956991 DOI: 10.1523/jneurosci.3619-17.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/14/2018] [Accepted: 04/21/2018] [Indexed: 12/31/2022] Open
Abstract
Schwann cells (SCs) are endowed with a remarkable plasticity. When peripheral nerves are injured, SCs dedifferentiate and acquire new functions to coordinate nerve repair as so-called repair SCs. Subsequently, SCs redifferentiate to remyelinate regenerated axons. Given the similarities between SC dedifferentiation/redifferentiation in injured nerves and in demyelinating neuropathies, elucidating the signals involved in SC plasticity after nerve injury has potentially wider implications. c-Jun has emerged as a key transcription factor regulating SC dedifferentiation and the acquisition of repair SC features. However, the upstream pathways that control c-Jun activity after nerve injury are largely unknown. We report that the mTORC1 pathway is transiently but robustly reactivated in dedifferentiating SCs. By inducible genetic deletion of the functionally crucial mTORC1-subunit Raptor in mouse SCs (including male and female animals), we found that mTORC1 reactivation is necessary for proper myelin clearance, SC dedifferentiation, and consequently remyelination, without major alterations in the inflammatory response. In the absence of mTORC1 signaling, c-Jun failed to be upregulated correctly. Accordingly, a c-Jun binding motif was found to be enriched in promoters of genes with reduced expression in injured mutants. Furthermore, using cultured SCs, we found that mTORC1 is involved in c-Jun regulation by promoting its translation, possibly via the eIF4F-subunit eIF4A. These results provide evidence that proper c-Jun elevation after nerve injury involves also mTORC1-dependent post-transcriptional regulation to ensure timely dedifferentiation of SCs.SIGNIFICANCE STATEMENT A crucial evolutionary acquisition of vertebrates is the envelopment of axons in myelin sheaths produced by oligodendrocytes in the CNS and Schwann cells (SCs) in the PNS. When myelin is damaged, conduction of action potentials along axons slows down or is blocked, leading to debilitating diseases. Unlike oligodendrocytes, SCs have a high regenerative potential, granted by their remarkable plasticity. Thus, understanding the mechanisms underlying SC plasticity may uncover new therapeutic targets in nerve regeneration and demyelinating diseases. Our work reveals that reactivation of the mTORC1 pathway in SCs is essential for efficient SC dedifferentiation after nerve injury. Accordingly, modulating this signaling pathway might be of therapeutic relevance in peripheral nerve injury and other diseases.
Collapse
Affiliation(s)
- Camilla Norrmén
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich CH-8093, Switzerland
| | - Gianluca Figlia
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich CH-8093, Switzerland
| | - Patrick Pfistner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich CH-8093, Switzerland
| | - Jorge A Pereira
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich CH-8093, Switzerland
| | - Sven Bachofner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich CH-8093, Switzerland
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich CH-8093, Switzerland
| |
Collapse
|
64
|
Bachiller S, Roca-Ceballos MA, García-Domínguez I, Pérez-Villegas EM, Martos-Carmona D, Pérez-Castro MÁ, Real LM, Rosa JL, Tabares L, Venero JL, Armengol JÁ, Carrión ÁM, Ruiz R. HERC1 Ubiquitin Ligase Is Required for Normal Axonal Myelination in the Peripheral Nervous System. Mol Neurobiol 2018; 55:8856-8868. [PMID: 29603094 DOI: 10.1007/s12035-018-1021-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/16/2018] [Indexed: 12/14/2022]
Abstract
A missense mutation in HERC1 provokes loss of cerebellar Purkinje cells, tremor, and unstable gait in tambaleante (tbl) mice. Recently, we have shown that before cerebellar degeneration takes place, the tbl mouse suffers from a reduction in the number of vesicles available for release at the neuromuscular junction (NMJ). The aim of the present work was to study to which extent the alteration in HERC1 may affect other cells in the nervous system and how this may influence the motor dysfunction observed in these mice. The functional analysis showed a consistent delay in the propagation of the action potential in mutant mice in comparison with control littermates. Morphological analyses of glial cells in motor axons revealed signs of compact myelin damage as tomacula and local hypermyelination foci. Moreover, we observed an alteration in non-myelinated terminal Schwann cells at the level of the NMJ. Additionally, we found a significant increment of phosphorylated Akt-2 in the sciatic nerve. Based on these findings, we propose a molecular model that could explain how mutated HERC1 in tbl mice affects the myelination process in the peripheral nervous system. Finally, since the myelin abnormalities found in tbl mice are histological hallmarks of neuropathic periphery diseases, tbl mutant mice could be considered as a new mouse model for this type of diseases.
Collapse
Affiliation(s)
- Sara Bachiller
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - María Angustias Roca-Ceballos
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Calle Profesor García González 2, 41012, Sevilla, Spain
| | - Irene García-Domínguez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Calle Profesor García González 2, 41012, Sevilla, Spain
| | - Eva María Pérez-Villegas
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - David Martos-Carmona
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Miguel Ángel Pérez-Castro
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Calle Profesor García González 2, 41012, Sevilla, Spain
| | - Luis Miguel Real
- Unit of Infectious Diseases and Microbiology, Valme University Hospital, Seville, Spain
| | - José Luis Rosa
- Departament de Ciències Fisiològiques II, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, E-08907, Barcelona, Spain
| | - Lucía Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville, Spain
| | - José Luis Venero
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Calle Profesor García González 2, 41012, Sevilla, Spain
| | - José Ángel Armengol
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Ángel Manuel Carrión
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Rocío Ruiz
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain. .,Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Calle Profesor García González 2, 41012, Sevilla, Spain.
| |
Collapse
|
65
|
González-Fernández E, Jeong HK, Fukaya M, Kim H, Khawaja RR, Srivastava IN, Waisman A, Son YJ, Kang SH. PTEN negatively regulates the cell lineage progression from NG2 + glial progenitor to oligodendrocyte via mTOR-independent signaling. eLife 2018; 7:32021. [PMID: 29461205 PMCID: PMC5839742 DOI: 10.7554/elife.32021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/19/2018] [Indexed: 12/11/2022] Open
Abstract
Oligodendrocytes (OLs), the myelin-forming CNS glia, are highly vulnerable to cellular stresses, and a severe myelin loss underlies numerous CNS disorders. Expedited OL regeneration may prevent further axonal damage and facilitate functional CNS repair. Although adult OL progenitors (OPCs) are the primary players for OL regeneration, targetable OPC-specific intracellular signaling mechanisms for facilitated OL regeneration remain elusive. Here, we report that OPC-targeted PTEN inactivation in the mouse, in contrast to OL-specific manipulations, markedly promotes OL differentiation and regeneration in the mature CNS. Unexpectedly, an additional deletion of mTOR did not reverse the enhanced OL development from PTEN-deficient OPCs. Instead, ablation of GSK3β, another downstream signaling molecule that is negatively regulated by PTEN-Akt, enhanced OL development. Our results suggest that PTEN persistently suppresses OL development in an mTOR-independent manner, and at least in part, via controlling GSK3β activity. OPC-targeted PTEN-GSK3β inactivation may benefit facilitated OL regeneration and myelin repair.
Collapse
Affiliation(s)
- Estibaliz González-Fernández
- Shriners Hospitals Pediatric Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Unites States
| | - Hey-Kyeong Jeong
- Shriners Hospitals Pediatric Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Unites States
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hyukmin Kim
- Shriners Hospitals Pediatric Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Unites States
| | - Rabia R Khawaja
- Shriners Hospitals Pediatric Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Unites States
| | - Isha N Srivastava
- Shriners Hospitals Pediatric Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Unites States
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Young-Jin Son
- Shriners Hospitals Pediatric Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Unites States.,Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, United States
| | - Shin H Kang
- Shriners Hospitals Pediatric Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Unites States.,Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, United States
| |
Collapse
|
66
|
Wong KM, Beirowski B. Multiple lines of inhibitory feedback on AKT kinase in Schwann cells lacking TSC1/2 hint at distinct functions of mTORC1 and AKT in nerve development. Commun Integr Biol 2018; 11:e1433441. [PMID: 29497474 PMCID: PMC5824964 DOI: 10.1080/19420889.2018.1433441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/02/2018] [Accepted: 01/19/2018] [Indexed: 11/29/2022] Open
Abstract
During nerve development, Schwann cells (SCs) build multilayered myelin sheaths around axons to accelerate nerve conduction. The mechanistic target of rapamycin complex 1 (mTORC1) downstream of PI3K/AKT signaling lately emerged as a central anabolic regulator of myelination. Using mutant mice with sustained mTORC1 hyperactivity in developing SCs we recently uncovered that mTORC1 impedes developmental myelination by promoting proliferation of immature SCs while antagonizing SC differentiation. In contrast, mTORC1 stimulates myelin production, rather than SC proliferation, in already differentiated SCs. Importantly, these diametrical mTORC1 functions were unmasked under settings of greatly suppressed AKT signaling. Here we demonstrate, inter alia, additional mechanisms of feedback inhibition of AKT by mTORC1, such as strikingly elevated PTEN levels in SCs with disruption of the mTORC1 inhibitory complex, TSC1/2. These data lead us to propose a model wherein mTORC1 and AKT have distinct roles in developing SCs that have to be precisely coordinated for normal myelinogenesis.
Collapse
Affiliation(s)
- Keit Men Wong
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Bogdan Beirowski
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
67
|
Montani L, Pereira JA, Norrmén C, Pohl HBF, Tinelli E, Trötzmüller M, Figlia G, Dimas P, von Niederhäusern B, Schwager R, Jessberger S, Semenkovich CF, Köfeler HC, Suter U. De novo fatty acid synthesis by Schwann cells is essential for peripheral nervous system myelination. J Cell Biol 2018; 217:1353-1368. [PMID: 29434029 PMCID: PMC5881495 DOI: 10.1083/jcb.201706010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/20/2017] [Accepted: 01/22/2018] [Indexed: 01/26/2023] Open
Abstract
Montani et al. reveal that de novo fatty acid synthesis by Schwann cells, mediated by fatty acid synthase, contributes fundamentally to driving myelination in the peripheral nervous system. They identify lipogenic activation of the PPARγ transcriptional network as a putatively involved functional mechanism. Myelination calls for a remarkable surge in cell metabolism to facilitate lipid and membrane production. Endogenous fatty acid (FA) synthesis represents a potentially critical process in myelinating glia. Using genetically modified mice, we show that Schwann cell (SC) intrinsic activity of the enzyme essential for de novo FA synthesis, fatty acid synthase (FASN), is crucial for precise lipid composition of peripheral nerves and fundamental for the correct onset of myelination and proper myelin growth. Upon FASN depletion in SCs, epineurial adipocytes undergo lipolysis, suggestive of a compensatory role. Mechanistically, we found that a lack of FASN in SCs leads to an impairment of the peroxisome proliferator-activated receptor (PPAR) γ–regulated transcriptional program. In agreement, defects in myelination of FASN-deficient SCs could be ameliorated by treatment with the PPARγ agonist rosiglitazone ex vivo and in vivo. Our results reveal that FASN-driven de novo FA synthesis in SCs is mandatory for myelination and identify lipogenic activation of the PPARγ transcriptional network as a putative downstream functional mediator.
Collapse
Affiliation(s)
- Laura Montani
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Jorge A Pereira
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Camilla Norrmén
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Hartmut B F Pohl
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Elisa Tinelli
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Martin Trötzmüller
- Lipidomics Center for Medical Research, Medical University, Graz, Austria
| | - Gianluca Figlia
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Penelope Dimas
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Belinda von Niederhäusern
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Rachel Schwager
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | | | - Clay F Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University Medical School, St. Louis, MO
| | - Harald C Köfeler
- Lipidomics Center for Medical Research, Medical University, Graz, Austria
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
68
|
Figlia G, Gerber D, Suter U. Myelination and mTOR. Glia 2017; 66:693-707. [PMID: 29210103 PMCID: PMC5836902 DOI: 10.1002/glia.23273] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 02/06/2023]
Abstract
Myelinating cells surround axons to accelerate the propagation of action potentials, to support axonal health, and to refine neural circuits. Myelination is metabolically demanding and, consistent with this notion, mTORC1—a signaling hub coordinating cell metabolism—has been implicated as a key signal for myelination. Here, we will discuss metabolic aspects of myelination, illustrate the main metabolic processes regulated by mTORC1, and review advances on the role of mTORC1 in myelination of the central nervous system and the peripheral nervous system. Recent progress has revealed a complex role of mTORC1 in myelinating cells that includes, besides positive regulation of myelin growth, additional critical functions in the stages preceding active myelination. Based on the available evidence, we will also highlight potential nonoverlapping roles between mTORC1 and its known main upstream pathways PI3K‐Akt, Mek‐Erk1/2, and AMPK in myelinating cells. Finally, we will discuss signals that are already known or hypothesized to be responsible for the regulation of mTORC1 activity in myelinating cells. Myelination is metabolically demanding. The metabolic regulator mTORC1 controls differentiation of myelinating cells and promotes myelin
growth. mTORC1‐independent targets of the PI3K‐Akt and Mek‐Erk1/2 pathways may also be significant in myelination.
Collapse
Affiliation(s)
- Gianluca Figlia
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| | - Daniel Gerber
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| |
Collapse
|