51
|
Schultz JC, Stone GN. A Tale of Two Tissues: probing gene expression in a complex insect‐induced gall. Mol Ecol 2022; 31:3031-3034. [PMID: 35466464 PMCID: PMC9321127 DOI: 10.1111/mec.16482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
Plant galls are novel and sometimes dramatic plant organs whose development is initiated and controlled by parasitic microbes, nematodes, insects and mites. For arthropods, galls provide relative safety from enemies and abiotic stresses while providing nutrition. Galls are formed entirely by the plant, whose transcriptional pathways are modified and coopted to produce a structure specific to the galler species; they comprise a classic example of Dawkins’ “extended phenotype”. Arthropod‐elicited galls are unique in that they are often anatomically complex (Figure 1a), with multiple differentiated tissue types (Figure 1b). A growing number of investigators have studied changes in hostplant gene expression to understand arthropod gall development. In this issue of Molecular Ecology, Martinson et al. (2021) report using RNA sequencing to explore tissue‐specific gene expression associated with anatomical and functional gall complexity, demonstrating for the first time that gall tissues are as different transcriptionally as they are anatomically.
Collapse
Affiliation(s)
- Jack C. Schultz
- Department of Environmental Sciences University of Toledo Toledo USA
| | - Graham N. Stone
- Institute of Evolutionary Biology University of Edinburgh Edinburgh UK
| |
Collapse
|
52
|
Åhl H, Zhang Y, Jönsson H. High-Throughput 3D Phenotyping of Plant Shoot Apical Meristems From Tissue-Resolution Data. FRONTIERS IN PLANT SCIENCE 2022; 13:827147. [PMID: 35519801 PMCID: PMC9062647 DOI: 10.3389/fpls.2022.827147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Confocal imaging is a well-established method for investigating plant phenotypes on the tissue and organ level. However, many differences are difficult to assess by visual inspection and researchers rely extensively on ad hoc manual quantification techniques and qualitative assessment. Here we present a method for quantitatively phenotyping large samples of plant tissue morphologies using triangulated isosurfaces. We successfully demonstrate the applicability of the approach using confocal imaging of aerial organs in Arabidopsis thaliana. Automatic identification of flower primordia using the surface curvature as an indication of outgrowth allows for high-throughput quantification of divergence angles and further analysis of individual flowers. We demonstrate the throughput of our method by quantifying geometric features of 1065 flower primordia from 172 plants, comparing auxin transport mutants to wild type. Additionally, we find that a paraboloid provides a simple geometric parameterisation of the shoot inflorescence domain with few parameters. We utilise parameterisation methods to provide a computational comparison of the shoot apex defined by a fluorescent reporter of the central zone marker gene CLAVATA3 with the apex defined by the paraboloid. Finally, we analyse the impact of mutations which alter mechanical properties on inflorescence dome curvature and compare the results with auxin transport mutants. Our results suggest that region-specific expression domains of genes regulating cell wall biosynthesis and local auxin transport can be important in maintaining the wildtype tissue shape. Altogether, our results indicate a general approach to parameterise and quantify plant development in 3D, which is applicable also in cases where data resolution is limited, and cell segmentation not possible. This enables researchers to address fundamental questions of plant development by quantitative phenotyping with high throughput, consistency and reproducibility.
Collapse
Affiliation(s)
- Henrik Åhl
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Yi Zhang
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
- Computational Biology and Biological Physics, Lund University, Lund, Sweden
| |
Collapse
|
53
|
Donaldson LA. Super-resolution imaging of Douglas fir xylem cell wall nanostructure using SRRF microscopy. PLANT METHODS 2022; 18:27. [PMID: 35246172 PMCID: PMC8897896 DOI: 10.1186/s13007-022-00865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The nanostructure of plant cell walls is of significant biological and technological interest, but methods suited to imaging cell walls at the nanoscale while maintaining the natural water-saturated state are limited. Light microscopy allows imaging of wet cell walls but with spatial resolution limited to the micro-scale. Most super-resolution techniques require expensive hardware and/or special stains so are less applicable to some applications such as autofluorescence imaging of plant tissues. RESULTS A protocol was developed for super-resolution imaging of xylem cell walls using super-resolution radial fluctuations (SRRF) microscopy combined with confocal fluorescence imaging (CLSM). We compared lignin autofluorescence imaging with acriflavin or rhodamine B staining. The SRRF technique allows imaging of wet or dry tissue with moderate improvement in resolution for autofluorescence and acriflavin staining, and a large improvement for rhodamine B staining, achieving sub 100 nm resolution based on comparison with measurements from electron microscopy. Rhodamine B staining, which represents a convolution of lignin staining and cell wall accessibility, provided remarkable new details of cell wall structural features including both circumferential and radial lamellae demonstrating nanoscale variations in lignification and cell wall porosity within secondary cell walls. CONCLUSIONS SRRF microscopy can be combined with confocal fluorescence microscopy to provide nanoscale imaging of plant cell walls using conventional stains or autofluorescence in either the wet or dry state.
Collapse
|
54
|
Cieslak M, Owens A, Prusinkiewicz P. Computational Models of Auxin-Driven Patterning in Shoots. Cold Spring Harb Perspect Biol 2022; 14:a040097. [PMID: 34001531 PMCID: PMC8886983 DOI: 10.1101/cshperspect.a040097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin regulates many aspects of plant development and behavior, including the initiation of new outgrowth, patterning of vascular systems, control of branching, and responses to the environment. Computational models have complemented experimental studies of these processes. We review these models from two perspectives. First, we consider cellular and tissue-level models of interaction between auxin and its transporters in shoots. These models form a coherent body of results exploring different hypotheses pertinent to the patterning of new outgrowth and vascular strands. Second, we consider models operating at the level of plant organs and entire plants. We highlight techniques used to reduce the complexity of these models, which provide a path to capturing the essence of studied phenomena while running simulations efficiently.
Collapse
Affiliation(s)
- Mikolaj Cieslak
- Department of Computer Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Andrew Owens
- Department of Computer Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
55
|
Burian A, Paszkiewicz G, Nguyen KT, Meda S, Raczyńska-Szajgin M, Timmermans MCP. Specification of leaf dorsiventrality via a prepatterned binary readout of a uniform auxin input. NATURE PLANTS 2022; 8:269-280. [PMID: 35318449 DOI: 10.1038/s41477-022-01111-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Developmental boundaries play an important role in coordinating the growth and patterning of lateral organs. In plants, specification of dorsiventrality is critical to leaf morphogenesis. Despite its central importance, the mechanism by which leaf primordia acquire adaxial versus abaxial cell fates to establish dorsiventrality remains a topic of much debate. Here, by combining time-lapse confocal imaging, cell lineage tracing and molecular genetic analyses, we demonstrate that a stable boundary between adaxial and abaxial cell fates is specified several plastochrons before primordium emergence when high auxin levels accumulate on a meristem prepattern formed by the AS2 and KAN1 transcription factors. This occurrence triggers a transient induction of ARF3 and an auxin transcriptional response in AS2-marked progenitors that distinguishes adaxial from abaxial identity. As the primordium emerges, dynamic shifts in auxin distribution and auxin-related gene expression gradually resolve this initial polarity into the stable regulatory network known to maintain adaxial-abaxial polarity within the developing organ. Our data show that spatial information from an AS2-KAN1 meristem prepattern governs the conversion of a uniform auxin input into an ARF-dependent binary auxin response output to specify adaxial-abaxial polarity. Auxin thus serves as a single morphogenic signal that orchestrates distinct, spatially separated responses to coordinate the positioning and emergence of a new organ with its patterning.
Collapse
Affiliation(s)
- Agata Burian
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Gael Paszkiewicz
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Khoa Thi Nguyen
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Shreyas Meda
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Magdalena Raczyńska-Szajgin
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | | |
Collapse
|
56
|
Ovečka M, Sojka J, Tichá M, Komis G, Basheer J, Marchetti C, Šamajová O, Kuběnová L, Šamaj J. Imaging plant cells and organs with light-sheet and super-resolution microscopy. PLANT PHYSIOLOGY 2022; 188:683-702. [PMID: 35235660 PMCID: PMC8825356 DOI: 10.1093/plphys/kiab349] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/12/2021] [Indexed: 05/05/2023]
Abstract
The documentation of plant growth and development requires integrative and scalable approaches to investigate and spatiotemporally resolve various dynamic processes at different levels of plant body organization. The present update deals with vigorous developments in mesoscopy, microscopy and nanoscopy methods that have been translated to imaging of plant subcellular compartments, cells, tissues and organs over the past 3 years with the aim to report recent applications and reasonable expectations from current light-sheet fluorescence microscopy (LSFM) and super-resolution microscopy (SRM) modalities. Moreover, the shortcomings and limitations of existing LSFM and SRM are discussed, particularly for their ability to accommodate plant samples and regarding their documentation potential considering spherical aberrations or temporal restrictions prohibiting the dynamic recording of fast cellular processes at the three dimensions. For a more comprehensive description, advances in living or fixed sample preparation methods are also included, supported by an overview of developments in labeling strategies successfully applied in plants. These strategies are practically documented by current applications employing model plant Arabidopsis thaliana (L.) Heynh., but also robust crop species such as Medicago sativa L. and Hordeum vulgare L. Over the past few years, the trend towards designing of integrative microscopic modalities has become apparent and it is expected that in the near future LSFM and SRM will be bridged to achieve broader multiscale plant imaging with a single platform.
Collapse
Affiliation(s)
- Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jiří Sojka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Michaela Tichá
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - George Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jasim Basheer
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Cintia Marchetti
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Lenka Kuběnová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Author for communication:
| |
Collapse
|
57
|
Shi B, Vernoux T. Hormonal control of cell identity and growth in the shoot apical meristem. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102111. [PMID: 34543915 DOI: 10.1016/j.pbi.2021.102111] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
How cells acquire their identities and grow coordinately within a tissue is a fundamental question to understand plant development. In angiosperms, the shoot apical meristem (SAM) is a multicellular tissue containing a stem cell niche, which activity allows for a dynamic equilibrium between maintenance of stem cells and production of differentiated cells that are incorporated in new aerial tissues and lateral organs produced in the SAM. Plant hormones are small-molecule signals controlling many aspects of plant development and physiology. Several hormones are essential regulators of SAM activities. This review highlights current advances that are starting to decipher the complex mechanisms underlying the hormonal control of cell identity and growth in the SAM.
Collapse
Affiliation(s)
- Bihai Shi
- College of Agriculture, South China Agricultural University, 510642, Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, 510642, Guangzhou, China; Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France.
| |
Collapse
|
58
|
Colin L, Martin-Arevalillo R, Bovio S, Bauer A, Vernoux T, Caillaud MC, Landrein B, Jaillais Y. Imaging the living plant cell: From probes to quantification. THE PLANT CELL 2022; 34:247-272. [PMID: 34586412 PMCID: PMC8774089 DOI: 10.1093/plcell/koab237] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 05/20/2023]
Abstract
At the center of cell biology is our ability to image the cell and its various components, either in isolation or within an organism. Given its importance, biological imaging has emerged as a field of its own, which is inherently highly interdisciplinary. Indeed, biologists rely on physicists and engineers to build new microscopes and imaging techniques, chemists to develop better imaging probes, and mathematicians and computer scientists for image analysis and quantification. Live imaging collectively involves all the techniques aimed at imaging live samples. It is a rapidly evolving field, with countless new techniques, probes, and dyes being continuously developed. Some of these new methods or reagents are readily amenable to image plant samples, while others are not and require specific modifications for the plant field. Here, we review some recent advances in live imaging of plant cells. In particular, we discuss the solutions that plant biologists use to live image membrane-bound organelles, cytoskeleton components, hormones, and the mechanical properties of cells or tissues. We not only consider the imaging techniques per se, but also how the construction of new fluorescent probes and analysis pipelines are driving the field of plant cell biology.
Collapse
Affiliation(s)
- Leia Colin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Raquel Martin-Arevalillo
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
- LYMIC-PLATIM imaging and microscopy core facility, Univ Lyon, SFR Biosciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL-50 Avenue Tony Garnier, 69007 Lyon, France
| | - Amélie Bauer
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Marie-Cecile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
59
|
Abstract
Auxin biology as a field has been at the forefront of advances in delineating the structures, dynamics, and control of plant growth networks. Advances have been enabled by combining the complementary fields of top-down, holistic systems biology and bottom-up, build-to-understand synthetic biology. Continued collaboration between these approaches will facilitate our understanding of and ability to engineer auxin's control of plant growth, development, and physiology. There is a need for the application of similar complementary approaches to improving equity and justice through analysis and redesign of the human systems in which this research is undertaken.
Collapse
Affiliation(s)
- R Clay Wright
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia 24061, USA
| | - Britney L Moss
- Department of Biology, Whitman College, Walla Walla, Washington 99362, USA
| | | |
Collapse
|
60
|
Yin X, Tsukaya H. Fibonacci spirals may not need the Golden Angle. QUANTITATIVE PLANT BIOLOGY 2022; 3:e13. [PMID: 37077968 PMCID: PMC10095852 DOI: 10.1017/qpb.2022.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 05/03/2023]
Abstract
Phyllotaxis, the regular arrangement of plant lateral organs, is an important aspect of quantitative plant biology. Some models relying on the geometric relationship of the shoot apex and organ primordia focus mainly on spiral phyllotaxis, a common phyllotaxis mode. While these models often predict the dependency of Fibonacci spirals on the Golden Angle, other models do not emphasise such a relation. Phyllotactic patterning in Asteraceae is one such example. Recently, it was revealed that auxin dynamics and the expansion and contraction of the active ring of the capitulum (head) are the key processes to guide Fibonacci spirals in gerbera (Gerbera hybrida). In this Insights paper, we discuss the importance of auxin dynamics, distinct phases of phyllotactic patterning, and the transition of phyllotaxis modes. These findings signify the local interaction among primordia in phyllotactic patterning and the notion that Fibonacci spirals may not need the Golden Angle.
Collapse
Affiliation(s)
- Xiaofeng Yin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- Author for correspondence: X. Yin, E-mail:
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
61
|
Mishra BS, Sharma M, Laxmi A. Role of sugar and auxin crosstalk in plant growth and development. PHYSIOLOGIA PLANTARUM 2022; 174:e13546. [PMID: 34480799 DOI: 10.1111/ppl.13546] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 05/07/2023]
Abstract
Under the natural environment, nutrient signals interact with phytohormones to coordinate and reprogram plant growth and survival. Sugars are important molecules that control almost all morphological and physiological processes in plants, ranging from seed germination to senescence. In addition to their functions as energy resources, osmoregulation, storage molecules, and structural components, sugars function as signaling molecules and interact with various plant signaling pathways, such as hormones, stress, and light to modulate growth and development according to fluctuating environmental conditions. Auxin, being an important phytohormone, is associated with almost all stages of the plant's life cycle and also plays a vital role in response to the dynamic environment for better growth and survival. In the previous years, substantial progress has been made that showed a range of common responses mediated by sugars and auxin signaling. This review discusses how sugar signaling affects auxin at various levels from its biosynthesis to perception and downstream gene activation. On the same note, the review also highlights the role of auxin signaling in fine-tuning sugar metabolism and carbon partitioning. Furthermore, we discussed the crosstalk between the two signaling machineries in the regulation of various biological processes, such as gene expression, cell cycle, development, root system architecture, and shoot growth. In conclusion, the review emphasized the role of sugar and auxin crosstalk in the regulation of several agriculturally important traits. Thus, engineering of sugar and auxin signaling pathways could potentially provide new avenues to manipulate for agricultural purposes.
Collapse
Affiliation(s)
- Bhuwaneshwar Sharan Mishra
- National Institute of Plant Genome Research, New Delhi, India
- Bhuwaneshwar Sharan Mishra, Ram Gulam Rai P. G. College Banktashiv, Affiliated to Deen Dayal Upadhyaya Gorakhpur University Gorakhpur, Deoria, Uttar Pradesh, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
62
|
Pernisová M, Vernoux T. Auxin Does the SAMba: Auxin Signaling in the Shoot Apical Meristem. Cold Spring Harb Perspect Biol 2021; 13:a039925. [PMID: 33903154 PMCID: PMC8634999 DOI: 10.1101/cshperspect.a039925] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plants, in contrast to animals, are unique in their capacity to postembryonically develop new organs due to the activity of stem cell populations, located in specialized tissues called meristems. Above ground, the shoot apical meristem generates aerial organs and tissues throughout plant life. It is well established that auxin plays a central role in the functioning of the shoot apical meristem. Auxin distribution in the meristem is not uniform and depends on the interplay between biosynthesis, transport, and degradation. Auxin maxima and minima are created, and result in transcriptional outputs that drive the development of new organs and contribute to meristem maintenance. To uncover and understand complex signaling networks such as the one regulating auxin responses in the shoot apical meristem remains a challenge. Here, we will discuss our current understanding and point to important research directions for the future.
Collapse
Affiliation(s)
- Markéta Pernisová
- Laboratoire Reproduction et Développement des Plantes, University at Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
- Functional Genomics and Proteomics, National Centre for Biomolecula Research, Faculty of Science, Masaryk University and CEITEC MU, 62500 Brno, Czech Republic
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, University at Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
63
|
Abstract
Plant epidermis are multifunctional surfaces that directly affect how plants interact with animals or microorganisms and influence their ability to harvest or protect from abiotic factors. To do this, plants rely on minuscule structures that confer remarkable properties to their outer layer. These microscopic features emerge from the hierarchical organization of epidermal cells with various shapes and dimensions combined with different elaborations of the cuticle, a protective film that covers plant surfaces. Understanding the properties and functions of those tridimensional elements as well as disentangling the mechanisms that control their formation and spatial distribution warrant a multidisciplinary approach. Here we show how interdisciplinary efforts of coupling modern tools of experimental biology, physics, and chemistry with advanced computational modeling and state-of-the art microscopy are yielding broad new insights into the seemingly arcane patterning processes that sculpt the outer layer of plants.
Collapse
Affiliation(s)
- Lucie Riglet
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
| | - Stefano Gatti
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
| | - Edwige Moyroud
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
- Department of Genetics, Downing Site, CB2 3EJ, University of Cambridge, Cambridge, UK
| |
Collapse
|
64
|
Heisler MG. Integration of Core Mechanisms Underlying Plant Aerial Architecture. FRONTIERS IN PLANT SCIENCE 2021; 12:786338. [PMID: 34868186 PMCID: PMC8637408 DOI: 10.3389/fpls.2021.786338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 06/03/2023]
Abstract
Over the last decade or so important progress has been made in identifying and understanding a set of patterning mechanisms that have the potential to explain many aspects of plant morphology. These include the feedback loop between mechanical stresses and interphase microtubules, the regulation of plant cell polarity and the role of adaxial and abaxial cell type boundaries. What is perhaps most intriguing is how these mechanisms integrate in a combinatorial manner that provides a means to generate a large variety of commonly seen plant morphologies. Here, I review our current understanding of these mechanisms and discuss the links between them.
Collapse
Affiliation(s)
- Marcus G. Heisler
- School of Life and Environmental Science, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
65
|
Larriba E, Sánchez-García AB, Justamante MS, Martínez-Andújar C, Albacete A, Pérez-Pérez JM. Dynamic Hormone Gradients Regulate Wound-Induced de novo Organ Formation in Tomato Hypocotyl Explants. Int J Mol Sci 2021; 22:11843. [PMID: 34769274 PMCID: PMC8584571 DOI: 10.3390/ijms222111843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 01/24/2023] Open
Abstract
Plants have a remarkable regenerative capacity, which allows them to survive tissue damage after biotic and abiotic stresses. In this study, we use Solanum lycopersicum 'Micro-Tom' explants as a model to investigate wound-induced de novo organ formation, as these explants can regenerate the missing structures without the exogenous application of plant hormones. Here, we performed simultaneous targeted profiling of 22 phytohormone-related metabolites during de novo organ formation and found that endogenous hormone levels dynamically changed after root and shoot excision, according to region-specific patterns. Our results indicate that a defined temporal window of high auxin-to-cytokinin accumulation in the basal region of the explants was required for adventitious root formation and that was dependent on a concerted regulation of polar auxin transport through the hypocotyl, of local induction of auxin biosynthesis, and of local inhibition of auxin degradation. In the apical region, though, a minimum of auxin-to-cytokinin ratio is established shortly after wounding both by decreasing active auxin levels and by draining auxin via its basipetal transport and internalization. Cross-validation with transcriptomic data highlighted the main hormonal gradients involved in wound-induced de novo organ formation in tomato hypocotyl explants.
Collapse
Affiliation(s)
- Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (E.L.); (A.B.S.-G.); (M.S.J.)
| | - Ana Belén Sánchez-García
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (E.L.); (A.B.S.-G.); (M.S.J.)
| | - María Salud Justamante
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (E.L.); (A.B.S.-G.); (M.S.J.)
| | - Cristina Martínez-Andújar
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, 30100 Murcia, Spain; (C.M.-A.); (A.A.)
| | - Alfonso Albacete
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, 30100 Murcia, Spain; (C.M.-A.); (A.A.)
| | - José Manuel Pérez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (E.L.); (A.B.S.-G.); (M.S.J.)
| |
Collapse
|
66
|
Rowe JH, Jones AM. Focus on biosensors: Looking through the lens of quantitative biology. QUANTITATIVE PLANT BIOLOGY 2021; 2:e12. [PMID: 37077214 PMCID: PMC10095858 DOI: 10.1017/qpb.2021.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 05/02/2023]
Abstract
In recent years, plant biologists interested in quantifying molecules and molecular events in vivo have started to complement reporter systems with genetically encoded fluorescent biosensors (GEFBs) that directly sense an analyte. Such biosensors can allow measurements at the level of individual cells and over time. This information is proving valuable to mathematical modellers interested in representing biological phenomena in silico, because improved measurements can guide improved model construction and model parametrisation. Advances in synthetic biology have accelerated the pace of biosensor development, and the simultaneous expression of spectrally compatible biosensors now allows quantification of multiple nodes in signalling networks. For biosensors that directly respond to stimuli, targeting to specific cellular compartments allows the observation of differential accumulation of analytes in distinct organelles, bringing insights to reactive oxygen species/calcium signalling and photosynthesis research. In conjunction with improved image analysis methods, advances in biosensor imaging can help close the loop between experimentation and mathematical modelling.
Collapse
Affiliation(s)
- James H. Rowe
- Sainsbury Laboratory, Cambridge University, Cambridge, United Kingdom
| | | |
Collapse
|
67
|
Balcerowicz M, Shetty KN, Jones AM. Fluorescent biosensors illuminating plant hormone research. PLANT PHYSIOLOGY 2021; 187:590-602. [PMID: 35237816 PMCID: PMC8491072 DOI: 10.1093/plphys/kiab278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/22/2021] [Indexed: 05/20/2023]
Abstract
Phytohormones act as key regulators of plant growth that coordinate developmental and physiological processes across cells, tissues and organs. As such, their levels and distribution are highly dynamic owing to changes in their biosynthesis, transport, modification and degradation that occur over space and time. Fluorescent biosensors represent ideal tools to track these dynamics with high spatiotemporal resolution in a minimally invasive manner. Substantial progress has been made in generating a diverse set of hormone sensors with recent FRET biosensors for visualising hormone concentrations complementing information provided by transcriptional, translational and degron-based reporters. In this review, we provide an update on fluorescent biosensor designs, examine the key properties that constitute an ideal hormone biosensor, discuss the use of these sensors in conjunction with in vivo hormone perturbations and highlight the latest discoveries made using these tools.
Collapse
Affiliation(s)
| | | | - Alexander M. Jones
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, UK
- Author for communication:
| |
Collapse
|
68
|
Liu J, Yuan Q, Dong Y. Phyllotaxis development: a lesson from the Asteraceae family. TRENDS IN PLANT SCIENCE 2021; 26:873-875. [PMID: 34172385 DOI: 10.1016/j.tplants.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Phyllotaxis refers to the spatial arrangement of leaves and flowers on a stem. A recent study by Zhang et al. described the developmental process underlying phyllotaxis establishment in the capitulum of Gerbera hybrida. This work represents a cornerstone for studying the development and diversification mechanisms of capitula in the Asteraceae.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
| | - Quan Yuan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
| | - Yang Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China.
| |
Collapse
|
69
|
The Rab Geranylgeranyl Transferase Beta Subunit Is Essential for Embryo and Seed Development in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22157907. [PMID: 34360673 PMCID: PMC8347404 DOI: 10.3390/ijms22157907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Auxin is a key regulator of plant development affecting the formation and maturation of reproductive structures. The apoplastic route of auxin transport engages influx and efflux facilitators from the PIN, AUX and ABCB families. The polar localization of these proteins and constant recycling from the plasma membrane to endosomes is dependent on Rab-mediated vesicular traffic. Rab proteins are anchored to membranes via posttranslational addition of two geranylgeranyl moieties by the Rab Geranylgeranyl Transferase enzyme (RGT), which consists of RGTA, RGTB and REP subunits. Here, we present data showing that seed development in the rgtb1 mutant, with decreased vesicular transport capacity, is disturbed. Both pre- and post-fertilization events are affected, leading to a decrease in seed yield. Pollen tube recognition at the stigma and its guidance to the micropyle is compromised and the seed coat forms incorrectly. Excess auxin in the sporophytic tissues of the ovule in the rgtb1 plants leads to an increased tendency of autonomous endosperm formation in unfertilized ovules and influences embryo development in a maternal sporophytic manner. The results show the importance of vesicular traffic for sexual reproduction in flowering plants, and highlight RGTB1 as a key component of sporophytic-filial signaling.
Collapse
|
70
|
Vernoux T, Besnard F, Godin C. What shoots can teach about theories of plant form. NATURE PLANTS 2021; 7:716-724. [PMID: 34099903 DOI: 10.1038/s41477-021-00930-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Plants generate a large variety of shoot forms with regular geometries. These forms emerge primarily from the activity of a stem cell niche at the shoot tip. Recent efforts have established a theoretical framework of form emergence at the shoot tip, which has empowered the use of modelling in conjunction with biological approaches to begin to disentangle the biochemical and physical mechanisms controlling form development at the shoot tip. Here, we discuss how these advances get us closer to identifying the construction principles of plant shoot tips. Considering the current limits of our knowledge, we propose a roadmap for developing a general theory of form development at the shoot tip.
Collapse
Affiliation(s)
- Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France.
| | - Fabrice Besnard
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France
| |
Collapse
|
71
|
Autran D, Bassel GW, Chae E, Ezer D, Ferjani A, Fleck C, Hamant O, Hartmann FP, Jiao Y, Johnston IG, Kwiatkowska D, Lim BL, Mahönen AP, Morris RJ, Mulder BM, Nakayama N, Sozzani R, Strader LC, ten Tusscher K, Ueda M, Wolf S. What is quantitative plant biology? QUANTITATIVE PLANT BIOLOGY 2021; 2:e10. [PMID: 37077212 PMCID: PMC10095877 DOI: 10.1017/qpb.2021.8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
Quantitative plant biology is an interdisciplinary field that builds on a long history of biomathematics and biophysics. Today, thanks to high spatiotemporal resolution tools and computational modelling, it sets a new standard in plant science. Acquired data, whether molecular, geometric or mechanical, are quantified, statistically assessed and integrated at multiple scales and across fields. They feed testable predictions that, in turn, guide further experimental tests. Quantitative features such as variability, noise, robustness, delays or feedback loops are included to account for the inner dynamics of plants and their interactions with the environment. Here, we present the main features of this ongoing revolution, through new questions around signalling networks, tissue topology, shape plasticity, biomechanics, bioenergetics, ecology and engineering. In the end, quantitative plant biology allows us to question and better understand our interactions with plants. In turn, this field opens the door to transdisciplinary projects with the society, notably through citizen science.
Collapse
Affiliation(s)
- Daphné Autran
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - George W. Bassel
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Daphne Ezer
- The Alan Turing Institute, London, United Kingdom
- Department of Statistics, University of Warwick, Coventry, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Christian Fleck
- Freiburg Center for Data Analysis and Modeling (FDM), University of Freiburg, Breisgau, Germany
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, École normale supérieure (ENS) de Lyon, Université Claude Bernard Lyon (UCBL), Lyon, France
- Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), CNRS, Université de Lyon, Lyon, France
| | | | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Dorota Kwiatkowska
- Institute of Biology, Biotechnology and Environment Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Boon L. Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Ari Pekka Mahönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Richard J. Morris
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Bela M. Mulder
- Department of Living Matter, Institute AMOLF, Amsterdam, The Netherlands
| | - Naomi Nakayama
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ross Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North CarolinaUSA
| | - Lucia C. Strader
- Department of Biology, Duke University, Durham, North Carolina, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MissouriUSA
| | - Kirsten ten Tusscher
- Theoretical Biology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Minako Ueda
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Sebastian Wolf
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
72
|
Abstract
Plants constantly experience fluctuating internal and external mechanical cues, ranging from nanoscale deformation of wall components, cell growth variability, nutating stems, and fluttering leaves to stem flexion under tree weight and wind drag. Developing plants use such fluctuations to monitor and channel their own shape and growth through a form of proprioception. Fluctuations in mechanical cues may also be actively enhanced, producing oscillating behaviors in tissues. For example, proprioception through leaf nastic movements may promote organ flattening. We propose that fluctuation-enhanced proprioception allows plant organs to sense their own shapes and behave like active materials with adaptable outputs to face variable environments, whether internal or external. Because certain shapes are more amenable to fluctuations, proprioception may also help plant shapes to reach self-organized criticality to support such adaptability.
Collapse
Affiliation(s)
- Bruno Moulia
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France.
| | - Stéphane Douady
- Laboratoire Matières et Systèmes Complexes (MSC), Université de Paris, CNRS, 75205 Paris Cedex 13, France.
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69007 Lyon, France.
| |
Collapse
|
73
|
Yin X. Phyllotaxis: from classical knowledge to molecular genetics. JOURNAL OF PLANT RESEARCH 2021; 134:373-401. [PMID: 33550488 DOI: 10.1007/s10265-020-01247-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Plant organs are repetitively generated at the shoot apical meristem (SAM) in recognizable patterns. This phenomenon, known as phyllotaxis, has long fascinated scientists from different disciplines. While we have an enriched body of knowledge on phyllotactic patterns, parameters, and transitions, only in the past 20 years, however, have we started to identify genes and elucidate genetic pathways that involved in phyllotaxis. In this review, I first summarize the classical knowledge of phyllotaxis from a morphological perspective. I then discuss recent advances in the regulation of phyllotaxis, from a molecular genetics perspective. I show that the morphological beauty of phyllotaxis we appreciate is the manifestation of many regulators, in addition to the critical role of auxin as a patterning signal, exerting their respective effects in a coordinated fashion either directly or indirectly in the SAM.
Collapse
Affiliation(s)
- Xiaofeng Yin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Japan Society for the Promotion of Science, Tokyo, Japan.
| |
Collapse
|
74
|
Johns S, Hagihara T, Toyota M, Gilroy S. The fast and the furious: rapid long-range signaling in plants. PLANT PHYSIOLOGY 2021; 185:694-706. [PMID: 33793939 PMCID: PMC8133610 DOI: 10.1093/plphys/kiaa098] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
Plants possess a systemic signaling system whereby local stimuli can lead to rapid, plant-wide responses. In addition to the redistribution of chemical messengers that range from RNAs and peptides to hormones and metabolites, a communication system acting through the transmission of electrical, Ca2+, reactive oxygen species and potentially even hydraulic signals has also been discovered. This latter system can propagate signals across many cells each second and researchers are now beginning to uncover the molecular machineries behind this rapid communications network. Thus, elements such as the reactive oxygen species producing NAPDH oxidases and ion channels of the two pore channel, glutamate receptor-like and cyclic nucleotide gated families are all required for the rapid propagation of these signals. Upon arrival at their distant targets, these changes trigger responses ranging from the production of hormones, to changes in the levels of primary metabolites and shifts in patterns of gene expression. These systemic responses occur within seconds to minutes of perception of the initial, local signal, allowing for the rapid deployment of plant-wide responses. For example, an insect starting to chew on just a single leaf triggers preemptive antiherbivore defenses throughout the plant well before it has a chance to move on to the next leaf on its menu.
Collapse
Affiliation(s)
- Sarah Johns
- Department of Botany, University of Wisconsin–Madison, Birge Hall, 430 Lincoln Drive, Madison, WI 35706, USA
| | - Takuma Hagihara
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Simon Gilroy
- Department of Botany, University of Wisconsin–Madison, Birge Hall, 430 Lincoln Drive, Madison, WI 35706, USA
- Author for communication:
| |
Collapse
|
75
|
Zhang T, Cieslak M, Owens A, Wang F, Broholm SK, Teeri TH, Elomaa P, Prusinkiewicz P. Phyllotactic patterning of gerbera flower heads. Proc Natl Acad Sci U S A 2021; 118:e2016304118. [PMID: 33771923 PMCID: PMC8020676 DOI: 10.1073/pnas.2016304118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phyllotaxis, the distribution of organs such as leaves and flowers on their support, is a key attribute of plant architecture. The geometric regularity of phyllotaxis has attracted multidisciplinary interest for centuries, resulting in an understanding of the patterns in the model plants Arabidopsis and tomato down to the molecular level. Nevertheless, the iconic example of phyllotaxis, the arrangement of individual florets into spirals in the heads of the daisy family of plants (Asteraceae), has not been fully explained. We integrate experimental data and computational models to explain phyllotaxis in Gerbera hybrida We show that phyllotactic patterning in gerbera is governed by changes in the size of the morphogenetically active zone coordinated with the growth of the head. The dynamics of these changes divides the patterning process into three phases: the development of an approximately circular pattern with a Fibonacci number of primordia near the head rim, its gradual transition to a zigzag pattern, and the development of a spiral pattern that fills the head on the template of this zigzag pattern. Fibonacci spiral numbers arise due to the intercalary insertion and lateral displacement of incipient primordia in the first phase. Our results demonstrate the essential role of the growth and active zone dynamics in the patterning of flower heads.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Mikolaj Cieslak
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Andrew Owens
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Feng Wang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Suvi K Broholm
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Teemu H Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| | | |
Collapse
|
76
|
Lopes FL, Galvan-Ampudia C, Landrein B. WUSCHEL in the shoot apical meristem: old player, new tricks. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1527-1535. [PMID: 33332559 DOI: 10.1093/jxb/eraa572] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/01/2020] [Indexed: 05/21/2023]
Abstract
The maintenance of the stem cell niche in the shoot apical meristem, the structure that generates all of the aerial organs of the plant, relies on a canonical feedback loop between WUSCHEL (WUS) and CLAVATA3 (CLV3). WUS is a homeodomain transcription factor expressed in the organizing centre that moves to the central zone to promote stem cell fate. CLV3 is a peptide whose expression is induced by WUS in the central zone and that can move back to the organizing centre to inhibit WUS expression. Within the past 20 years since the initial formulation of the CLV-WUS feedback loop, the mechanisms of stem cell maintenance have been intensively studied and the function of WUS has been redefined. In this review, we highlight the most recent advances in our comprehension of the molecular mechanisms of WUS function, of its interaction with other transcription factors and hormonal signals, and of its connection to environmental signals. Through this, we will show how WUS can integrate both internal and external cues to adapt meristem function to the plant environment.
Collapse
Affiliation(s)
- Filipa Lara Lopes
- Plant Stress Signaling, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Carlos Galvan-Ampudia
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, INRAE, Lyon Cedex, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, INRAE, Lyon Cedex, France
| |
Collapse
|
77
|
Véron E, Vernoux T, Coudert Y. Phyllotaxis from a Single Apical Cell. TRENDS IN PLANT SCIENCE 2021; 26:124-131. [PMID: 33097400 DOI: 10.1016/j.tplants.2020.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 05/27/2023]
Abstract
Phyllotaxis, the geometry of leaf arrangement around stems, determines plant architecture. Molecular interactions coordinating the formation of phyllotactic patterns have mainly been studied in multicellular shoot apical meristems of flowering plants. Phyllotaxis evolved independently in the major land plant lineages. In mosses, it arises from a single apical cell, raising the question of how asymmetric divisions of a single-celled meristem create phyllotactic patterns and whether associated genetic processes are shared across lineages. We present an overview of the mechanisms governing shoot apical cell specification and activity in the model moss, Physcomitrium patens, and argue that similar molecular regulatory modules have been deployed repeatedly across evolution to operate at different scales and drive apical function in convergent shoot forms.
Collapse
Affiliation(s)
- Elsa Véron
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, INRIA, Lyon 69007, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, INRIA, Lyon 69007, France.
| | - Yoan Coudert
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, INRIA, Lyon 69007, France.
| |
Collapse
|
78
|
Trinh DC, Alonso-Serra J, Asaoka M, Colin L, Cortes M, Malivert A, Takatani S, Zhao F, Traas J, Trehin C, Hamant O. How Mechanical Forces Shape Plant Organs. Curr Biol 2021; 31:R143-R159. [PMID: 33561417 DOI: 10.1016/j.cub.2020.12.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plants produce organs of various shapes and sizes. While much has been learned about genetic regulation of organogenesis, the integration of mechanics in the process is also gaining attention. Here, we consider the role of forces as instructive signals in organ morphogenesis. Turgor pressure is the primary cause of mechanical signals in developing organs. Because plant cells are glued to each other, mechanical signals act, in essence, at multiple scales, through cell wall contiguity and water flux. In turn, cells use such signals to resist mechanical stress, for instance, by reinforcing their cell walls. We show that the three elemental shapes behind plant organs - spheres, cylinders and lamina - can be actively maintained by such a mechanical feedback. Combinations of this 3-letter alphabet can generate more complex shapes. Furthermore, mechanical conflicts emerge at the boundary between domains exhibiting different growth rates or directions. These secondary mechanical signals contribute to three other organ shape features - folds, shape reproducibility and growth arrest. The further integration of mechanical signals with the molecular network offers many fruitful prospects for the scientific community, including the role of proprioception in organ shape robustness or the definition of cell and organ identities as a result of an interplay between biochemical and mechanical signals.
Collapse
Affiliation(s)
- Duy-Chi Trinh
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France; Department of Pharmacological, Medical and Agronomical Biotechnology, University of Science and Technology of Hanoi, Cau Giay District, Hanoi, Vietnam
| | - Juan Alonso-Serra
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Mariko Asaoka
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Leia Colin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Matthieu Cortes
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Alice Malivert
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Shogo Takatani
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Feng Zhao
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
79
|
Cucinotta M, Cavalleri A, Chandler JW, Colombo L. Auxin and Flower Development: A Blossoming Field. Cold Spring Harb Perspect Biol 2021; 13:a039974. [PMID: 33355218 PMCID: PMC7849340 DOI: 10.1101/cshperspect.a039974] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The establishment of the species-specific floral organ body plan involves many coordinated spatiotemporal processes, which include the perception of positional information that specifies floral meristem and floral organ founder cells, coordinated organ outgrowth coupled with the generation and maintenance of inter-organ and inter-whorl boundaries, and the termination of meristem activity. Auxin is integrated within the gene regulatory networks that control these processes and plays instructive roles at the level of tissue-specific biosynthesis and polar transport to generate local maxima, perception, and signaling. Key features of auxin function in several floral contexts include cell nonautonomy, interaction with cytokinin gradients, and the central role of MONOPTEROS and ETTIN to regulate canonical and noncanonical auxin response pathways, respectively. Arabidopsis flowers are not representative of the enormous angiosperm floral diversity; therefore, comparative studies are required to understand how auxin underlies these developmental differences. It will be of great interest to compare the conservation of auxin pathways among flowering plants and to discuss the evolutionary role of auxin in floral development.
Collapse
Affiliation(s)
- Mara Cucinotta
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Alex Cavalleri
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
80
|
Roeder AHK. Arabidopsis sepals: A model system for the emergent process of morphogenesis. QUANTITATIVE PLANT BIOLOGY 2021; 2:e14. [PMID: 36798428 PMCID: PMC9931181 DOI: 10.1017/qpb.2021.12] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During development, Arabidopsis thaliana sepal primordium cells grow, divide and interact with their neighbours, giving rise to a sepal with the correct size, shape and form. Arabidopsis sepals have proven to be a good system for elucidating the emergent processes driving morphogenesis due to their simplicity, their accessibility for imaging and manipulation, and their reproducible development. Sepals undergo a basipetal gradient of growth, with cessation of cell division, slow growth and maturation starting at the tip of the sepal and progressing to the base. In this review, I discuss five recent examples of processes during sepal morphogenesis that yield emergent properties: robust size, tapered tip shape, laminar shape, scattered giant cells and complex gene expression patterns. In each case, experiments examining the dynamics of sepal development led to the hypotheses of local rules. In each example, a computational model was used to demonstrate that these local rules are sufficient to give rise to the emergent properties of morphogenesis.
Collapse
Affiliation(s)
- Adrienne H. K. Roeder
- Section of Plant Biology, School of Integrative Plant Science and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
- Author for correspondence: Adrienne H. K. Roeder, E-mail:
| |
Collapse
|
81
|
Godin C, Golé C, Douady S. Phyllotaxis as geometric canalization during plant development. Development 2020; 147:147/19/dev165878. [PMID: 33046454 DOI: 10.1242/dev.165878] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 08/13/2020] [Indexed: 12/16/2022]
Abstract
Why living forms develop in a relatively robust manner, despite various sources of internal or external variability, is a fundamental question in developmental biology. Part of the answer relies on the notion of developmental constraints: at any stage of ontogenesis, morphogenetic processes are constrained to operate within the context of the current organism being built. One such universal constraint is the shape of the organism itself, which progressively channels the development of the organism toward its final shape. Here, we illustrate this notion with plants, where strikingly symmetric patterns (phyllotaxis) are formed by lateral organs. This Hypothesis article aims first to provide an accessible overview of phyllotaxis, and second to argue that the spiral patterns in plants are progressively canalized from local interactions of nascent organs. The relative uniformity of the organogenesis process across all plants then explains the prevalence of certain patterns in plants, i.e. Fibonacci phyllotaxis.
Collapse
Affiliation(s)
- Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, Université Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Christophe Golé
- Department of Mathematics, Smith College, Northampton, MA 01063, USA
| | - Stéphane Douady
- Laboratoire MSC, UMR 7057 Université Paris Diderot - CNRS, Bâtiment Condorcet, CC 7057, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| |
Collapse
|