951
|
Rusterholz C, Messerli M, Hoesli I, Hahn S. Placental Microparticles, DNA, and RNA in Preeclampsia. Hypertens Pregnancy 2010; 30:364-75. [DOI: 10.3109/10641951003599571] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
952
|
Sabrkhany S, Griffioen AW, Oude Egbrink MGA. The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta Rev Cancer 2010; 1815:189-96. [PMID: 21167916 DOI: 10.1016/j.bbcan.2010.12.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/03/2010] [Accepted: 12/04/2010] [Indexed: 01/20/2023]
Abstract
Coagulation abnormalities occur frequently in cancer patients. It is becoming evident that blood platelets have an important function in this process. However, understanding of the underlying mechanisms is still very modest. In this review, we discuss the role of platelets in tumor angiogenesis and growth and suggest their potential significance in malignancies. Platelets contain various pro-and antiangiogenic molecules, which seem to be endocytosed and sequestered in different populations of α-granules. Furthermore, tumor endothelial cells are phenotypically and functionally different from endothelial cells in healthy tissue, stimulating local platelet adhesion and subsequent activation. As a consequence, platelets are able to secrete their angiogenic and angiostatic content, most likely in a regulated manner. The overall effect of these platelet-endothelium interactions appears to be proangiogenic, stimulating tumor angiogenesis. We favor the view that local adhesion and activation of blood platelets and dysregulation of coagulation represent underestimated pathways in the progression of cancer.
Collapse
Affiliation(s)
- Siamack Sabrkhany
- Laboratory for Microcirculation, Cardiovascular Research Institute Maastricht (CARIM), Dept. of Physiology, Maastricht, The Netherlands
| | | | | |
Collapse
|
953
|
Fromentin R, Tardif MR, Tremblay MJ. Inefficient fusion due to a lack of attachment receptor/co-receptor restricts productive human immunodeficiency virus type 1 infection in human hepatoma Huh7.5 cells. J Gen Virol 2010; 92:587-97. [PMID: 21123542 DOI: 10.1099/vir.0.028746-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since the widespread use of the highly active antiretroviral therapy, the incidence of liver disease has increased to become a leading cause of death among human immunodeficiency virus type 1 (HIV-1)-infected individuals. It can be proposed that the ability of HIV-1 to infect hepatocytes could influence liver diseases. Although the presence of HIV-1 was identified in hepatocytes from HIV-1 seropositive patients, the susceptibility of hepatocytes to HIV-1 infection in vitro remains controversial. We present evidence here that human hepatoma cells are not productively infected with CD4-dependent HIV-1 strains because of inefficient fusion related to an absence of cell surface CD4 and CXCR4. However, these cells display an increased susceptibility to infection with a CD4-independent viral isolate through an interaction with galactosyl ceramide, an alternate receptor for HIV-1. This study provides further understanding of the susceptibility of human hepatocytes to HIV-1 infection. However, in vivo investigations are recommended to consolidate these data.
Collapse
Affiliation(s)
- Rémi Fromentin
- Centre de Recherche en Infectiologie, Université Laval, Québec, QC G1V 4G2, Canada
| | | | | |
Collapse
|
954
|
van der Pol E, Hoekstra AG, Sturk A, Otto C, van Leeuwen TG, Nieuwland R. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost 2010; 8:2596-607. [PMID: 20880256 DOI: 10.1111/j.1538-7836.2010.04074.x] [Citation(s) in RCA: 401] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Microparticles and exosomes are cell-derived microvesicles present in body fluids that play a role in coagulation, inflammation, cellular homeostasis and survival, intercellular communication, and transport. Despite increasing scientific and clinical interest, no standard procedures are available for the isolation, detection and characterization of microparticles and exosomes, because their size is below the reach of conventional detection methods. Our objective is to give an overview of currently available and potentially applicable methods for optical and non-optical determination of the size, concentration, morphology, biochemical composition and cellular origin of microparticles and exosomes. The working principle of all methods is briefly discussed, as well as their applications and limitations based on the underlying physical parameters of the technique. For most methods, the expected size distribution for a given microvesicle population is determined. The explanations of the physical background and the outcomes of our calculations provide insights into the capabilities of each method and make a comparison possible between the discussed methods. In conclusion, several (combinations of) methods can detect clinically relevant properties of microparticles and exosomes. These methods should be further explored and validated by comparing measurement results so that accurate, reliable and fast solutions come within reach.
Collapse
Affiliation(s)
- E van der Pol
- Laboratory of Experimental Clinical Chemistry Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam.
| | | | | | | | | | | |
Collapse
|
955
|
Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 2010; 107:1047-57. [PMID: 21030722 DOI: 10.1161/circresaha.110.226456] [Citation(s) in RCA: 616] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microparticles represent a heterogeneous population of vesicles with a diameter of 100 to 1000 nm that are released by budding of the plasma membrane and express antigens specific of their parental cells. Although microparticle formation represents a physiological phenomenon, a multitude of pathologies are associated with a considerable increase in circulating microparticles, including inflammatory and autoimmune diseases, atherosclerosis, and malignancies. Microparticles display an broad spectrum of bioactive substances and receptors on their surface and harbor a concentrated set of cytokines, signaling proteins, mRNA, and microRNA. Recent studies provided evidence for the concept of microparticles as veritable vectors for the intercellular exchange of biological signals and information. Indeed, microparticles may transfer part of their components and content to selected target cells, thus mediating cell activation, phenotypic modification, and reprogramming of cell function. Because microparticles readily circulate in the vasculature, they may serve as shuttle modules and signaling transducers not only in their local environment but also at remarkable distance from their site of origin. Altogether, this transcellular delivery system may extend the confines of the limited transcriptome and proteome of recipient cells and establishes a communication network in which specific properties and information among cells can be efficiently shared. At least in same cases, the sequential steps of the transfer process underlie complex regulatory mechanisms, including selective sorting ("packaging") of microparticle components and content, specificity of interactions with target cells determined by surface receptors, and ultimately finely tuned and signal-dependent release and delivery of microparticle content.
Collapse
Affiliation(s)
- Sebastian F Mause
- Institut für Molekulare Herz-Kreislaufforschung, Universitätsklinikum Aachen, Pauwelsstrasse 30, Aachen, Germany
| | | |
Collapse
|
956
|
Lok CAR, Van der Post JAM, Sturk A, Sargent IL, Nieuwland R. The functions of microparticles in preeclampsia. Pregnancy Hypertens 2010; 1:59-65. [PMID: 26104232 DOI: 10.1016/j.preghy.2010.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circulating blood cells, trophoblast cells and endothelial cells release microparticles (MP) into the maternal blood by membrane shedding. This process occurs upon activation or apoptosis of these cells. Evidence is accumulating that MP play a role in the development of thrombotic diseases. In recent years, the importance of changes in circulating MP numbers and in composition in preeclampsia has been recognized and research is now directed to discover the functional consequences of these changes. In this review we will discuss the structure and function of MP, with special emphasis on the changes in MP numbers, composition and function in pregnancy and preeclampsia.
Collapse
Affiliation(s)
- Christine A R Lok
- Department of Obstetrics and Gynaecology, Academic Medical Center, Amsterdam, The Netherlands
| | - Joris A M Van der Post
- Department of Obstetrics and Gynaecology, Academic Medical Center, Amsterdam, The Netherlands
| | - Augueste Sturk
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Ian L Sargent
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
957
|
Anderson HC, Mulhall D, Garimella R. Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. J Transl Med 2010; 90:1549-57. [PMID: 20805791 DOI: 10.1038/labinvest.2010.152] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Extracellular membrane vesicles (MVs) 30-1000 nm in diameter and of varying cellular origins are increasingly recognized for their participation in a range of processes, including the pathogenesis of various diseases, such as: (1) atherosclerosis, (2) thromboembolism, (3) osteoarthritis (OA), (4) chronic renal disease and pulmonary hypertension, (5) tissue invasion and metastasis by cancer cells, (6) gastric ulcers and bacterial infections, and (7) periodontitis. MVs are derived from many different cell types and intracellular mechanisms, and perform different metabolic functions or roles, depending on the cell of origin.The presence of a metabolically active, outer membrane is a distinguishing feature of all MVs, regardless of their cell type of origin and irrespective of terminologies applied to them such as exosomes, microparticles, or matrix vesicles. The MV membrane provides one of the few protected and controlled internal microenvironments outside cells in which specific metabolic objectives of the host cell may be pursued vigorously at a distance from the host cell. MVs are also involved in various forms of normal and abnormal intercellular communication. Evidence is emerging that circulating MVs are good predictors of the severity of several diseases. In addition, recently, the role of MVs in inducing immunity against cancer cells and bacterial infections has become a topic of interest to researchers in the area of therapeutics. The main objective of this review is to list and briefly describe the increasingly well-defined roles of MVs in selected diseases in which they seem to have a significant role in pathogenesis.
Collapse
Affiliation(s)
- H Clarke Anderson
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160-7410, USA.
| | | | | |
Collapse
|
958
|
Meziani F, Delabranche X, Asfar P, Toti F. Bench-to-bedside review: circulating microparticles--a new player in sepsis? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:236. [PMID: 21067540 PMCID: PMC3219244 DOI: 10.1186/cc9231] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In sepsis, inflammation and thrombosis are both the cause and the result of interactions between circulating (for example, leukocytes and platelets), endothelial and smooth muscle cells. Microparticles are proinflammatory and procoagulant fragments originating from plasma membrane generated after cellular activation and released in body fluids. In the vessel, they constitute a pool of bioactive effectors pulled from diverse cellular origins and may act as intercellular messengers. Microparticles expose phosphatidylserine, a procoagulant phospholipid made accessible after membrane remodelling, and tissue factor, the initiator of blood coagulation at the endothelial and leukocyte surface. They constitute a secretion pathway for IL-1β and up-regulate the proinflammatory response of target cells. Microparticles circulate at low levels in healthy individuals, but undergo phenotypic and quantitative changes that could play a pathophysiological role in inflammatory diseases. Microparticles may participate in the pathogenesis of sepsis through multiple ways. They are able to regulate vascular tone and are potent vascular proinflammatory and procoagulant mediators. Microparticles' abilities are of increasing interest in deciphering the mechanisms underlying the multiple organ dysfunction of septic shock.
Collapse
Affiliation(s)
- Ferhat Meziani
- Service de réanimation médicale, Nouvel Hôpital Civil, Hôpitaux universitaires de Strasbourg, F-67091 Strasbourg, France.
| | | | | | | |
Collapse
|
959
|
Eken C, Martin PJ, Sadallah S, Treves S, Schaller M, Schifferli JA. Ectosomes released by polymorphonuclear neutrophils induce a MerTK-dependent anti-inflammatory pathway in macrophages. J Biol Chem 2010; 285:39914-21. [PMID: 20959443 DOI: 10.1074/jbc.m110.126748] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At the earliest stage of activation, human polymorphonuclear neutrophils release vesicles derived directly from the cell surface. These vesicles, called ectosomes (PMN-Ect), expose phosphatidylserine in the outer membrane leaflet. They inhibit the inflammatory response of human monocyte-derived macrophages and dendritic cells to zymosan A (ZymA) and LPS and induce TGF-β1 release, suggesting a reprogramming toward a tolerogenic phenotype. The receptors and signaling pathways involved have not yet been defined. Here, we demonstrate that PMN-Ect interfered with ZymA activation of macrophages via inhibition of NFκB p65 phosphorylation and NFκB translocation. The MerTK (Mer receptor tyrosine kinase) and PI3K/Akt pathways played a key role in this immunomodulatory effect as shown using specific MerTK-blocking antibodies and PI3K inhibitors LY294002 and wortmannin. As a result, PMN-Ect reduced the transcription of many proinflammatory genes in ZymA-activated macrophages. In sum, PMN-Ect interacted with the macrophages by activation of the MerTK pathway responsible for down-modulation of the proinflammatory signals generated by ZymA.
Collapse
Affiliation(s)
- Ceylan Eken
- Basel University Hospital, 4031 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
960
|
Ansa-Addo EA, Lange S, Stratton D, Antwi-Baffour S, Cestari I, Ramirez MI, McCrossan MV, Inal JM. Human plasma membrane-derived vesicles halt proliferation and induce differentiation of THP-1 acute monocytic leukemia cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:5236-46. [PMID: 20921526 DOI: 10.4049/jimmunol.1001656] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Plasma membrane-derived vesicles (PMVs) are small intact vesicles released from the cell surface that play a role in intercellular communication. We have examined the role of PMVs in the terminal differentiation of monocytes. The myeloid-differentiating agents all-trans retinoic acid/PMA and histamine, the inflammatory mediator that inhibits promonocyte proliferation, induced an intracellular Ca(2+)-mediated PMV (as opposed to exosome) release from THP-1 promonocytes. These PMVs cause THP-1 cells to enter G(0)-G(1) cell cycle arrest and induce terminal monocyte-to-macrophage differentiation. Use of the TGF-β receptor antagonist SB-431542 and anti-TGF-β1 Ab showed that this was due to TGF-β1 carried on PMVs. Although TGF-β1 levels have been shown to increase in cell culture supernatants during macrophage differentiation and dendritic cell maturation, the presence of TGF-β1 in PMVs is yet to be reported. In this study, to our knowledge we show for the first time that TGF-β1 is carried on the surface of PMVs, and we confirm the presence within PMVs of certain leaderless proteins, with reported roles in myeloid cell differentiation. Our in vitro findings support a model in which TGF-β1-bearing PMVs, released from promonocytic leukemia cells (THP-1) or primary peripheral blood monocytes on exposure to sublytic complement or after treatment with a differentiation therapy agent, such as all-trans retinoic acid, significantly reduce proliferation of THP-1 cells. Such PMVs also induce the terminal differentiation of primary peripheral blood monocytes as well as THP-1 monocytes.
Collapse
Affiliation(s)
- Ephraim A Ansa-Addo
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, Faculty of Life Sciences, London Metropolitan University, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
961
|
Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics 2010; 73:1907-20. [PMID: 20601276 DOI: 10.1016/j.jprot.2010.06.006] [Citation(s) in RCA: 1937] [Impact Index Per Article: 129.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/26/2010] [Accepted: 06/18/2010] [Indexed: 12/12/2022]
Abstract
In addition to intracellular organelles, eukaryotic cells also contain extracellular organelles that are released, or shed, into the microenvironment. These membranous extracellular organelles include exosomes, shedding microvesicles (SMVs) and apoptotic blebs (ABs), many of which exhibit pleiotropic biological functions. Because extracellular organelle terminology is often confounding, with many preparations reported in the literature being mixtures of extracellular vesicles, there is a growing need to clarify nomenclature and to improve purification strategies in order to discriminate the biochemical and functional activities of these moieties. Exosomes are formed by the inward budding of multivesicular bodies (MVBs) and are released from the cell into the microenvironment following the fusion of MVBs with the plasma membrane (PM). In this review we focus on various strategies for purifying exosomes and discuss their biophysical and biochemical properties. An update on proteomic analysis of exosomes from various cell types and body fluids is provided and host-cell specific proteomic signatures are also discussed. Because the ectodomain of ~42% of exosomal integral membrane proteins are also found in the secretome, these vesicles provide a potential source of serum-based membrane protein biomarkers that are reflective of the host cell. ExoCarta, an exosomal protein and RNA database (http://exocarta.ludwig.edu.au), is described.
Collapse
Affiliation(s)
- Suresh Mathivanan
- Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
| | | | | |
Collapse
|
962
|
Microparticles mediate enzyme transfer from platelets to mast cells: A new pathway for lipoxin A4 biosynthesis. Biochem Biophys Res Commun 2010; 400:432-6. [DOI: 10.1016/j.bbrc.2010.08.095] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 01/07/2023]
|
963
|
Markopoulos AK, Michailidou EZ, Tzimagiorgis G. Salivary markers for oral cancer detection. Open Dent J 2010; 4:172-8. [PMID: 21673842 PMCID: PMC3111739 DOI: 10.2174/1874210601004010172] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 06/09/2010] [Accepted: 07/20/2010] [Indexed: 01/12/2023] Open
Abstract
Oral cancer refers to all malignancies that arise in the oral cavity, lips and pharynx, with 90% of all oral cancers being oral squamous cell carcinoma. Despite the recent treatment advances, oral cancer is reported as having one of the highest mortality ratios amongst other malignancies and this can much be attributed to the late diagnosis of the disease. Saliva has long been tested as a valuable tool for drug monitoring and the diagnosis systemic diseases among which oral cancer. The new emerging technologies in molecular biology have enabled the discovery of new molecular markers (DNA, RNA and protein markers) for oral cancer diagnosis and surveillance which are discussed in the current review.
Collapse
Affiliation(s)
- Anastasios K. Markopoulos
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University, Thessaloniki, Greece
| | - Evangelia Z. Michailidou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University, Thessaloniki, Greece
| | - Georgios Tzimagiorgis
- Department of Biological Chemistry, School of Medicine, Aristotle University, Thessaloniki, Greece
| |
Collapse
|
964
|
Benameur T, Tual-Chalot S, Andriantsitohaina R, Martínez MC. PPARalpha is essential for microparticle-induced differentiation of mouse bone marrow-derived endothelial progenitor cells and angiogenesis. PLoS One 2010; 5:e12392. [PMID: 20811625 PMCID: PMC2928272 DOI: 10.1371/journal.pone.0012392] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 07/28/2010] [Indexed: 12/16/2022] Open
Abstract
Background Bone marrow-derived endothelial progenitor cells (EPCs) are critical for neovascularization. We hypothesized that microparticles (MPs), small fragments generated from the plasma membrane, can activate angiogenic programming of EPCs. Methodology/Principal Findings We studied the effects of MPs obtained from wild type (MPsPPARα+/+) and knock-out (MPsPPARα−/−) mice on EPC differentiation and angiogenesis. Bone marrow-derived cells were isolated from WT or KO mice and were cultured in the presence of MPsPPARα+/+ or MPsPPARα−/− obtained from blood of mice. Only MPsPPARα+/+ harboring PPARα significantly increased EPC, but not monocytic, differentiation. Bone marrow-derived cells treated with MPsPPARα+/+ displayed increased expression of pro-angiogenic genes and increased in vivo angiogenesis. MPsPPARα+/+ increased capillary-like tube formation of endothelial cells that was associated with enhanced expressions of endothelial cell-specific markers. Finally, the effects of MPsPPARα+/+ were mediated by NF-κB-dependent mechanisms. Conclusions/Significance Our results underscore the obligatory role of PPARα carried by MPs for EPC differentiation and angiogenesis. PPARα-NF-κB-Akt pathways may play a pivotal stimulatory role for neovascularization, which may, at least in part, be mediated by bone marrow-derived EPCs. Improvement of EPC differentiation may represent a useful strategy during reparative neovascularization.
Collapse
Affiliation(s)
- Tarek Benameur
- CNRS, UMR 6214, Angers, France
- INSERM, U771, Angers, France
- Faculté de Médecine, Université d'Angers, Angers, France
| | - Simon Tual-Chalot
- CNRS, UMR 6214, Angers, France
- INSERM, U771, Angers, France
- Faculté de Médecine, Université d'Angers, Angers, France
| | - Ramaroson Andriantsitohaina
- CNRS, UMR 6214, Angers, France
- INSERM, U771, Angers, France
- Faculté de Médecine, Université d'Angers, Angers, France
| | - María Carmen Martínez
- CNRS, UMR 6214, Angers, France
- INSERM, U771, Angers, France
- Faculté de Médecine, Université d'Angers, Angers, France
- * E-mail:
| |
Collapse
|
965
|
Abstract
Microvesicles (MVs) are circular fragments of membrane released from the endosomal compartment as exosomes or shed from the surface membranes of most cell types. An increasing body of evidence indicates that they play a pivotal role in cell-to-cell communication. Indeed, they may directly stimulate target cells by receptor-mediated interactions or may transfer from the cell of origin to various bioactive molecules including membrane receptors, proteins, mRNAs, microRNAs, and organelles. In this review we discuss the pleiotropic biologic effects of MVs that are relevant for communication among cells in physiological and pathological conditions. In particular, we discuss their potential involvement in inflammation, renal disease, and tumor progression, and the evidence supporting a bidirectional exchange of genetic information between stem and injured cells. The transfer of gene products from injured cells may explain stem cell functional and phenotypic changes without the need of transdifferentiation into tissue cells. On the other hand, transfer of gene products from stem cells may reprogram injured cells to repair damaged tissues.
Collapse
|
966
|
James JL, Whitley GS, Cartwright JE. Pre-eclampsia: fitting together the placental, immune and cardiovascular pieces. J Pathol 2010; 221:363-78. [PMID: 20593492 DOI: 10.1002/path.2719] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The success of pregnancy is a result of countless ongoing interactions between the placenta and the maternal immune and cardiovascular systems. Pre-eclampsia is a serious pregnancy complication that arises from multiple potential aberrations in these systems. The pathophysiology of pre-eclampsia is established in the first trimester of pregnancy, when a range of deficiencies in placentation affect the key process of spiral artery remodelling. As pregnancy progresses to the third trimester, inadequate spiral artery remodelling along with multiple haemodynamic, placental and maternal factors converge to activate the maternal immune and cardiovascular systems, events which may in part result from increased shedding of placental debris. As we understand more about the pathophysiology of pre-eclampsia, it is becoming clear that the development of early- and late-onset pre-eclampsia, as well as intrauterine growth restriction (IUGR), does not necessarily arise from the same underlying pathology.
Collapse
Affiliation(s)
- Joanna L James
- Division of Basic Medical Sciences, St George's University of London, London, UK.
| | | | | |
Collapse
|
967
|
Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, Tetta C, Camussi G. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 2010; 5:e11803. [PMID: 20668554 PMCID: PMC2910725 DOI: 10.1371/journal.pone.0011803] [Citation(s) in RCA: 483] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 07/02/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cell-derived microvesicles (MVs) have been described as a new mechanism of cell-to-cell communication. MVs after internalization within target cells may deliver genetic information. Human bone marrow derived mesenchymal stem cells (MSCs) and liver resident stem cells (HLSCs) were shown to release MVs shuttling functional mRNAs. The aim of the present study was to evaluate whether MVs derived from MSCs and HLSCs contained selected micro-RNAs (miRNAs). METHODOLOGY/PRINCIPAL FINDINGS MVs were isolated from MSCs and HLSCs. The presence in MVs of selected ribonucleoproteins involved in the traffic and stabilization of RNA was evaluated. We observed that MVs contained TIA, TIAR and HuR multifunctional proteins expressed in nuclei and stress granules, Stau1 and 2 implicated in the transport and stability of mRNA and Ago2 involved in miRNA transport and processing. RNA extracted from MVs and cells of origin was profiled for 365 known human mature miRNAs by real time PCR. Hierarchical clustering and similarity analysis of miRNAs showed 41 co-expressed miRNAs in MVs and cells. Some miRNAs were accumulated within MVs and absent in the cells after MV release; others were retained within the cells and not secreted in MVs. Gene ontology analysis of predicted and validated targets showed that the high expressed miRNAs in cells and MVs could be involved in multi-organ development, cell survival and differentiation. Few selected miRNAs shuttled by MVs were also associated with the immune system regulation. The highly expressed miRNAs in MVs were transferred to target cells after MV incorporation. CONCLUSIONS This study demonstrated that MVs contained ribonucleoproteins involved in the intracellular traffic of RNA and selected pattern of miRNAs, suggesting a dynamic regulation of RNA compartmentalization in MVs. The observation that MV-highly expressed miRNAs were transferred to target cells, rises the possibility that the biological effect of stem cells may, at least in part, depend on MV-shuttled miRNAs. Data generated from this study, stimulate further functional investigations on the predicted target genes and pathways involved in the biological effect of human adult stem cells.
Collapse
Affiliation(s)
- Federica Collino
- Department of Internal Medicine and Center for Molecular Biotechnology, University of Torino, Torino, Italy
| | - Maria Chiara Deregibus
- Department of Internal Medicine and Center for Molecular Biotechnology, University of Torino, Torino, Italy
| | - Stefania Bruno
- Department of Internal Medicine and Center for Molecular Biotechnology, University of Torino, Torino, Italy
- SiS-Ter S.p.A., Palazzo Pignano, Crema, Italy
| | - Luca Sterpone
- Department of Automatic and Informatics, Politecnico, Torino, Italy
| | - Giulia Aghemo
- Department of Internal Medicine and Center for Molecular Biotechnology, University of Torino, Torino, Italy
| | - Laura Viltono
- Department of Internal Medicine and Center for Molecular Biotechnology, University of Torino, Torino, Italy
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Giovanni Camussi
- Department of Internal Medicine and Center for Molecular Biotechnology, University of Torino, Torino, Italy
| |
Collapse
|
968
|
Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One 2010; 5:e11469. [PMID: 20661468 PMCID: PMC2908536 DOI: 10.1371/journal.pone.0011469] [Citation(s) in RCA: 363] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 06/11/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Tumor-derived microvesicles (TMV) or exosomes are present in body fluids of patients with cancer and might be involved in tumor progression. The frequency and suppressor functions of peripheral blood CD4(+)CD25(high)FOXP3(+) Treg are higher in patients with cancer than normal controls. The hypothesis is tested that TMV contribute to induction/expansion/and activation of human Treg. METHODOLOGY/PRINCIPAL FINDINGS TMV isolated from supernatants of tumor cells but not normal cells induced the generation and enhanced expansion of human Treg. TMV also mediated conversion of CD4(+)CD25(neg) T cells into CD4(+)CD25(high)FOXP3(+) Treg. Upon co-incubation with TMV, Treg showed an increased FasL, IL-10, TGF-beta1, CTLA-4, granzyme B and perforin expression (p<0.05) and mediated stronger suppression of responder cell (RC) proliferation (p<0.01). Purified Treg were resistant to TMV-mediated apoptosis relative to other T cells. TMV also increased phospho-SMAD2/3 and phospho-STAT3 expression in Treg. Neutralizing Abs specific for TGF-beta1 and/or IL-10 significantly inhibited TMV ability to expand Treg. CONCLUSIONS/SIGNIFICANCE This study suggests that TMV have immunoregulatory properties. They induce Treg, promote Treg expansion, up-regulate Treg suppressor function and enhance Treg resistance to apoptosis. Interactions of TMV with Treg represent a newly-defined mechanism that might be involved in regulating peripheral tolerance by tumors and in supporting immune evasion of human cancers.
Collapse
Affiliation(s)
- Marta Szajnik
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Malgorzata Czystowska
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Miroslaw J. Szczepanski
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Magis Mandapathil
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Theresa L. Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
969
|
Porro C, Lepore S, Trotta T, Castellani S, Ratclif L, Battaglino A, Di Gioia S, Martínez MC, Conese M, Maffione AB. Isolation and characterization of microparticles in sputum from cystic fibrosis patients. Respir Res 2010; 11:94. [PMID: 20618958 PMCID: PMC2910006 DOI: 10.1186/1465-9921-11-94] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 07/09/2010] [Indexed: 12/29/2022] Open
Abstract
Background Microparticles (MPs) are membrane vesicles released during cell activation and apoptosis. MPs have different biological effects depending on the cell from they originate. Cystic fibrosis (CF) lung disease is characterized by massive neutrophil granulocyte influx in the airways, their activation and eventually apoptosis. We investigated on the presence and phenotype of MPs in the sputum, a rich non-invasive source of inflammation biomarkers, of acute and stable CF adult patients. Methods Spontaneous sputum, obtained from 21 CF patients (10 acute and 11 stable) and 7 patients with primary ciliary dyskinesia (PCD), was liquefied with Sputasol. MPs were counted, visualized by electron microscopy, and identified in the supernatants of treated sputum by cytofluorimetry and immunolabelling for leukocyte (CD11a), granulocyte (CD66b), and monocyte-macrophage (CD11b) antigens. Results Electron microscopy revealed that sputum MPs were in the 100-500 nm range and did not contain bacteria, confirming microbiological tests. CF sputa contained higher number of MPs in comparison with PCD sputa. Levels of CD11a+-and CD66b+-, but not CD11b+-MPs were significantly higher in CF than in PCD, without differences between acute and stable patients. Conclusions In summary, MPs are detectable in sputa obtained from CF patients and are predominantly of granulocyte origin. This novel isolation method for MPs from sputum opens a new opportunity for the study of lung pathology in CF.
Collapse
Affiliation(s)
- Chiara Porro
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
970
|
Friel AM, Corcoran C, Crown J, O'Driscoll L. Relevance of circulating tumor cells, extracellular nucleic acids, and exosomes in breast cancer. Breast Cancer Res Treat 2010; 123:613-25. [PMID: 20549336 DOI: 10.1007/s10549-010-0980-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 06/02/2010] [Indexed: 12/17/2022]
Abstract
Early detection of cancer is vital to improved overall survival rates. At present, evidence is accumulating for the clinical value of detecting occult tumor cells in peripheral blood, plasma, and serum specimens from cancer patients. Both molecular and cellular approaches, which differ in sensitivity and specificity, have been used for such means. Circulating tumor cells and extracellular nucleic acids have been detected within blood, plasma, and sera of cancer patients. As the presence of malignant tumors are clinically determined and/or confirmed upon biopsy procurement-which in itself may have detrimental effects in terms of stimulating cancer progression/metastases-minimally invasive methods would be highly advantageous to the diagnosis and prognosis of breast cancer and the subsequent tailoring of targeted treatments for individuals, if reliable panels of biomarkers suitable for such an approach exist. Herein, we review the current advances made in the detection of such circulating tumor cells and nucleic acids, with particular emphasis on extracellular nucleic acids, specifically extracellular mRNAs and discuss their clinical relevance.
Collapse
Affiliation(s)
- Anne M Friel
- School of Pharmacy and Pharmaceutical Sciences & Molecular Therapeutics for Cancer Ireland, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | |
Collapse
|
971
|
Baran J, Baj-Krzyworzeka M, Weglarczyk K, Szatanek R, Zembala M, Barbasz J, Czupryna A, Szczepanik A, Zembala M. Circulating tumour-derived microvesicles in plasma of gastric cancer patients. Cancer Immunol Immunother 2010; 59:841-50. [PMID: 20043223 PMCID: PMC11030063 DOI: 10.1007/s00262-009-0808-2] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 12/05/2009] [Indexed: 01/04/2023]
Abstract
Cell membrane microfragments called microvesicles (MV) originating from different cells are circulating in the blood of healthy subjects and their elevated numbers are found in different diseases, including cancer. This study was designed to characterise MV present in plasma of gastric cancer patients. Since majority of MV in blood are platelets-derived (PMV), plasma samples deprived of PMV were used. In comparison to control, the number of MV in patients was significantly elevated in all stages, higher in more advanced disease. Patients' MV showed an increased membrane expression of CCR6 and HER-2/neu. The proportion of MV carrying some leucocyte determinants was low and similar in patients and control. Transmission electron microscopy showed their substantial heterogeneity in size and shape. The size determined by dynamic light scattering analysis confirmed this heterogeneity. The MV size distribution in patients was broader within the range of 10-800 nm, while in control MV showed 3-mode distribution within the range of 10-400 nm. Atomic force microscopy confirmed MV size heterogeneity with implication that larger objects represented aggregates of smaller microparticles. Patients' MV exhibited increased absolute values of zeta potential, indicating a higher surface charge. Tumour markers HER-2/neu, MAGE-1, c-MET and EMMPRIN were detected both in control and patients' samples with stronger expression in the latter. Significantly higher expression of MAGE-1 and HER-2/neu mRNA was observed in individual patients. All together, it suggests that at least some MV in plasma of gastric cancer patients are tumour-derived. However, their role in cancer requires further studies.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, CD/biosynthesis
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell-Derived Microparticles/metabolism
- Cell-Derived Microparticles/ultrastructure
- Female
- Humans
- Immunophenotyping
- Male
- Melanoma-Specific Antigens
- Membrane Potentials
- Microscopy, Electron, Transmission
- Middle Aged
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Staging
- Particle Size
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptors, CCR6/genetics
- Receptors, CCR6/metabolism
- Stomach Neoplasms/blood
- Stomach Neoplasms/physiopathology
- Stomach Neoplasms/ultrastructure
Collapse
Affiliation(s)
- Jaroslaw Baran
- Department of Clinical Immunology, Polish-American Institute of Paediatrics, Jagiellonian University Medical College, Wielicka Str. 265, 30-663 Cracow, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Polish-American Institute of Paediatrics, Jagiellonian University Medical College, Wielicka Str. 265, 30-663 Cracow, Poland
| | - Kazimierz Weglarczyk
- Department of Clinical Immunology, Polish-American Institute of Paediatrics, Jagiellonian University Medical College, Wielicka Str. 265, 30-663 Cracow, Poland
| | - Rafal Szatanek
- Department of Clinical Immunology, Polish-American Institute of Paediatrics, Jagiellonian University Medical College, Wielicka Str. 265, 30-663 Cracow, Poland
| | - Maria Zembala
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239 Cracow, Poland
| | - Jakub Barbasz
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239 Cracow, Poland
- Institute of Physics, Jagiellonian University, Reymonta Str. 4, 30-059 Cracow, Poland
| | - Antoni Czupryna
- First Department of General and Gastrointestinal Surgery, Jagiellonian University Medical College, Kopernika Str. 40, 31-501 Cracow, Poland
| | - Antoni Szczepanik
- First Department of General and Gastrointestinal Surgery, Jagiellonian University Medical College, Kopernika Str. 40, 31-501 Cracow, Poland
| | - Marek Zembala
- Department of Clinical Immunology, Polish-American Institute of Paediatrics, Jagiellonian University Medical College, Wielicka Str. 265, 30-663 Cracow, Poland
| |
Collapse
|
972
|
Lee HM, Choi EJ, Kim JH, Kim TD, Kim YK, Kang C, Gho YS. A membranous form of ICAM-1 on exosomes efficiently blocks leukocyte adhesion to activated endothelial cells. Biochem Biophys Res Commun 2010; 397:251-6. [PMID: 20529672 DOI: 10.1016/j.bbrc.2010.05.094] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 05/18/2010] [Indexed: 01/12/2023]
Abstract
While intercellular adhesion molecule-1 (ICAM-1) is a transmembrane protein, two types of extracellular ICAM-1 have been detected in cell culture supernatants as well as in the serum: a soluble form of ICAM-1 (sICAM-1) and a membranous form of ICAM-1 (mICAM-1) associated with exosomes. Previous observations have demonstrated that sICAM-1 cannot exert potent immune modulatory activity due to its low affinity for leukocyte function-associated antigen-1 (LFA-1) or membrane attack complex-1. In this report, we initially observed that human cancer cells shed mICAM-1(+)-exosomes but were devoid of vascular cell adhesion molecule-1 and E-selectin. We demonstrate that mICAM-1 on exosomes retained its topology similar to that of cell surface ICAM-1, and could bind to leukocytes. In addition, we show that exosomal mICAM-1 exhibits potent anti-leukocyte adhesion activity to tumor necrosis factor-alpha-activated endothelial cells compared to that of sICAM-1. Taken together with previous findings, our results indicate that mICAM-1 on exosomes exhibits potent immune modulatory activity.
Collapse
Affiliation(s)
- Hwan Myung Lee
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
973
|
Candela ME, Geraci F, Turturici G, Taverna S, Albanese I, Sconzo G. Membrane vesicles containing matrix metalloproteinase-9 and fibroblast growth factor-2 are released into the extracellular space from mouse mesoangioblast stem cells. J Cell Physiol 2010; 224:144-51. [PMID: 20232295 DOI: 10.1002/jcp.22111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Certain proteins, including fibroblast growth factor-2 (FGF-2) and matrix metalloproteinase-9 (MMP-9), have proved very effective in increasing the efficacy of mesoangioblast stem cell therapy in repairing damaged tissue. We provide the first evidence that mouse mesoangioblast stem cells release FGF-2 and MMP-9 in their active form through the production of membrane vesicles. These vesicles are produced and turned over continuously, but are stable for some time in the extracellular milieu. Mesoangioblasts shed membrane vesicles even under oxygen tensions that are lower than those typically used for cell culture and more like those of mouse tissues. These findings suggest that mesoangioblasts may themselves secrete paracrine signals and factors that make damaged tissues more amenable to cell therapy through the release of membrane vesicles.
Collapse
Affiliation(s)
- Maria Elena Candela
- Department of Cellular and Developmental Biology, University of Palermo, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
974
|
Muralidharan-Chari V, Clancy JW, Sedgwick A, D'Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 2010; 123:1603-11. [PMID: 20445011 PMCID: PMC2864708 DOI: 10.1242/jcs.064386] [Citation(s) in RCA: 724] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microvesicles are generated by the outward budding and fission of membrane vesicles from the cell surface. Recent studies suggest that microvesicle shedding is a highly regulated process that occurs in a spectrum of cell types and, more frequently, in tumor cells. Microvesicles have been widely detected in various biological fluids including peripheral blood, urine and ascitic fluids, and their function and composition depend on the cells from which they originate. By facilitating the horizontal transfer of bioactive molecules such as proteins, RNAs and microRNAs, they are now thought to have vital roles in tumor invasion and metastases, inflammation, coagulation, and stem-cell renewal and expansion. This Commentary summarizes recent literature on the properties and biogenesis of microvesicles and their potential role in cancer progression.
Collapse
Affiliation(s)
| | | | - Alanna Sedgwick
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556-0369, USA
| | | |
Collapse
|
975
|
Abstract
Nucleic acids represent the main source of autoantigens in systemic lupus erythematosus (SLE). DNA and RNA can exit the cell during cell death and, in the extracellular space, can be immunostimulatory. Also extracellularly, DNA and RNA can be incorporated into microparticles (MPs)-small, membrane-bound vesicles released from dying cells by blebbing. We suggest that MPs display autoantigens, such as RNA and DNA, in a highly immunostimulatory manner, enabling them to function as autoadjuvants. In the bone marrow, nucleic-acid-containing MP autoadjuvants might induce B-cell tolerance, whereas in the periphery, they might stimulate mature B cells that have escaped central tolerance. Indeed, because MP autoadjuvants can trigger several receptors, they could effectively provide apoptotic or activating signals to B cells. We would therefore advance the idea that a model for SLE based on MP autoadjuvants can provide a new paradigm to elucidate the mechanisms by which DNA and RNA affect the immune system and critically influence B-cell fate.
Collapse
|
976
|
Ullal AJ, Pisetsky DS. The release of microparticles by Jurkat leukemia T cells treated with staurosporine and related kinase inhibitors to induce apoptosis. Apoptosis 2010; 15:586-96. [PMID: 20146001 PMCID: PMC3004153 DOI: 10.1007/s10495-010-0470-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Microparticles (MPs) are small membrane-bound vesicles released from cells undergoing activation or cell death. These particles display potent biological activities that can impact on physiologic and pathologic processes. Previous studies with the Jurkat T leukemia cell line demonstrated that staurosporine (STS) induces the release of MPs as cells undergo apoptosis. To investigate further this process, we tested the effects of STS, its analogue, 7-hydroxystaurosporine (UCN-01), and other protein kinase C (PKC) and cyclin-dependent kinase (CDK) inhibitors. FACS analysis was used to assess MP release. Results of these studies indicate that STS and UCN-01 induce MP release by Jurkat cells; in contrast, other PKC and CDK inhibitors failed to induce comparable release, suggesting that release does not result from simple inhibition of either kinase alone. Time course experiments indicated that STS-induced particle release occurred as early as 2 h after treatment, with the early release MPs displaying low levels of binding of annexin V and propidium iodide (PI). Early-release MPs, however, matured in culture to an annexin V- and PI-positive phenotype. Together, these results indicate that STS and UCN-01 induce MPs that are phenotypically distinct and reflect specific patterns of kinase inhibition during apoptosis.
Collapse
|
977
|
Khatua AK, Taylor HE, Hildreth JEK, Popik W. Inhibition of LINE-1 and Alu retrotransposition by exosomes encapsidating APOBEC3G and APOBEC3F. Virology 2010; 400:68-75. [PMID: 20153011 PMCID: PMC2851184 DOI: 10.1016/j.virol.2010.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 11/18/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
Human cytidine deaminases, including APOBEC3G (A3G) and A3F, are part of a cellular defense system against retroviruses and retroelements including non-LTR retrotransposons LINE-1 (L1) and Alu. Expression of cellular A3 proteins is sufficient for inhibition of L1 and Alu retrotransposition, but the effect of A3 proteins transferred in exosomes on retroelement mobilization is unknown. Here, we demonstrate for the first time that exosomes secreted by CD4(+)H9 T cells and mature monocyte-derived dendritic cells encapsidate A3G and A3F and inhibit L1 and Alu retrotransposition. A3G is the major contributor to the inhibitory activity of exosomes, however, the contribution of A3F in H9 exosomes cannot be excluded. Additionally, we show that exosomes encapsidate mRNAs coding for A3 proteins. A3G mRNA, and less so A3F, was enriched in exosomes secreted by H9 cells. Exosomal A3G mRNA was functional in vitro. Whether exosomes inhibit retrotransposons in vivo requires further investigation.
Collapse
Affiliation(s)
- Atanu K. Khatua
- Meharry Medical College, Center for AIDS Health Disparities Research, Nashville, TN 37208
| | - Harry E. Taylor
- Meharry Medical College, Center for AIDS Health Disparities Research, Nashville, TN 37208
| | - James E. K. Hildreth
- Meharry Medical College, Center for AIDS Health Disparities Research, Nashville, TN 37208
| | - Waldemar Popik
- Meharry Medical College, Center for AIDS Health Disparities Research, Nashville, TN 37208
| |
Collapse
|
978
|
Key NS, Chantrathammachart P, Moody PW, Chang JY. Membrane microparticles in VTE and cancer. Thromb Res 2010; 125 Suppl 2:S80-3. [DOI: 10.1016/s0049-3848(10)70020-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
979
|
Gauley J, Pisetsky DS. The release of microparticles by RAW 264.7 macrophage cells stimulated with TLR ligands. J Leukoc Biol 2010; 87:1115-1123. [DOI: 10.1189/jlb.0709465] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
TLR ligands induce microparticle release by macrophages and highlight the importance of nitric oxide.
MPs are small membrane-bound particles that originate from activated and dying cells and mediate intercellular communication. Once released from cells, MPs can serve as novel signaling elements in innate immunity, with levels elevated in immune-mediated diseases. This study tested the hypothesis that TLR stimulation can induce MP release by macrophages. In these experiments, using the RAW 264.7 murine macrophage cell line as a model, LPS, a TLR4 ligand, and poly(I:C), a TLR3 ligand, induced MP release effectively, as measured by flow cytometry; in contrast, a CpG oligonucleotide, which can stimulate TLR9, induced much lower levels of particle release. To determine the role of other mediators in this response, the effects of NO were tested. Thus, MP release from RAW 264.7 cells stimulated by LPS or poly(I:C) correlated with NO production, and treatment with the iNOS inhibitor 1400W decreased particle release and NO production. Furthermore, treatment of RAW 264.7 cells with NO donors induced MP production. As TLR ligands can induce apoptosis, the effect of caspase inhibition on MP release by stimulated cells was assessed. These experiments showed that the pan-caspase inhibitor, ZVAD, although decreasing NO production, increased MP release by stimulated cells. Together, these experiments demonstrate that TLR stimulation of macrophages can lead to MP release, and NO plays a key role in this response.
Collapse
Affiliation(s)
- Julie Gauley
- Duke University Medical Center, Division of Rheumatology and Immunology , Durham, North Carolina, USA
| | - David S Pisetsky
- Duke University Medical Center, Division of Rheumatology and Immunology , Durham, North Carolina, USA
- Durham VA Hospital , Durham, North Carolina, USA
| |
Collapse
|
980
|
van Kilsdonk JWJ, van Kempen LCLT, van Muijen GNP, Ruiter DJ, Swart GWM. Soluble adhesion molecules in human cancers: sources and fates. Eur J Cell Biol 2010; 89:415-27. [PMID: 20227133 DOI: 10.1016/j.ejcb.2009.11.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 11/20/2009] [Indexed: 12/18/2022] Open
Abstract
Adhesion molecules endow tumor cells with the necessary cell-cell contacts and cell-matrix interactions. As such, adhesion molecules are involved in cell signalling, proliferation and tumor growth. Rearrangements in the adhesion repertoire allow tumor cells to migrate, invade and form metastases. Besides these membrane-bound adhesion molecules several soluble adhesion molecules are detected in the supernatant of tumor cell lines and patient body fluids. Truncated soluble adhesion molecules can be generated by several conventional mechanisms, including alternative splicing of mRNA transcripts, chromosomal translocation, and extracellular proteolytic ectodomain shedding. Secretion of vesicles (ectosomes and exosomes) is an alternative mechanism mediating the release of full-length adhesion molecules. Soluble adhesion molecules function as modulators of cell adhesion, induce proteolytic activity and facilitate cell signalling. Additionally, adhesion molecules present on secreted vesicles might be involved in the vesicle-target cell interaction. Based on currently available data, released soluble adhesion molecules contribute to cancer progression and therefore should not be regarded as unrelated and non-functional side products of tumor progression.
Collapse
Affiliation(s)
- Jeroen W J van Kilsdonk
- Department of Biomolecular Chemistry, IMM & NCMLS, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
981
|
|
982
|
Ghosh AK, Secreto CR, Knox TR, Ding W, Mukhopadhyay D, Kay NE. Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression. Blood 2010; 115:1755-64. [PMID: 20018914 PMCID: PMC2832808 DOI: 10.1182/blood-2009-09-242719] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 11/22/2009] [Indexed: 12/12/2022] Open
Abstract
Microvesicles (MVs) released by malignant cancer cells constitute an important part of the tumor microenvironment. They can transfer various messages to target cells and may be critical to disease progression. Here, we demonstrate that MVs circulating in plasma of B-cell chronic lymphocytic leukemia (CLL) patients exhibit a phenotypic shift from predominantly platelet derived in early stage to leukemic B-cell derived at advanced stage. Furthermore, the total MV level in CLL was significantly greater compared with healthy subjects. To understand the functional implication, we examined whether MVs can interact and modulate CLL bone marrow stromal cells (BMSCs) known to provide a "homing and nurturing" environment for CLL B cells. We found that CLL-MV can activate the AKT/mammalian target of rapamycin/p70S6K/hypoxia-inducible factor-1alpha axis in CLL-BMSCs with production of vascular endothelial growth factor, a survival factor for CLL B cells. Moreover, MV-mediated AKT activation led to modulation of the beta-catenin pathway and increased expression of cyclin D1 and c-myc in BMSCs. We found MV delivered phospho-receptor tyrosine kinase Axl directly to the BMSCs in association with AKT activation. This study demonstrates the existence of separate MV phenotypes during leukemic disease progression and underscores the important role of MVs in activation of the tumor microenvironment.
Collapse
MESH Headings
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Cell Line
- Cell-Derived Microparticles/metabolism
- Cell-Derived Microparticles/pathology
- Disease Progression
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Microscopy, Electron, Transmission
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Signal Transduction
- Stromal Cells/metabolism
- Stromal Cells/pathology
- TOR Serine-Threonine Kinases
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A/metabolism
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Asish K Ghosh
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
983
|
Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information. Curr Opin Nephrol Hypertens 2010; 19:7-12. [PMID: 19823086 DOI: 10.1097/mnh.0b013e328332fb6f] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The mechanism of stem cell-induced kidney repair remains controversial. Engraftment of bone marrow-derived stem cells is considered a rare event and several studies point to paracrine/endocrine processes. This review focuses on microvesicle-mediated transfer of genetic information between stem cells and injured tissue as a paracrine/endocrine mechanism. RECENT FINDINGS The following findings support a bidirectional exchange of genetic information between stem and injured cells: microvesicles shuttle defined patterns of mRNA and microRNA, are actively released from embryonic and adult stem cells and are internalized by a receptor-mediated mechanism in target cells; transcripts delivered by microvesicles from injured cells may reprogram the phenotype of stem cells to acquire specific features of the tissue; transcripts delivered by microvesicles from stem cells may induce dedifferentiation of cells surviving injury with cell cycle reentry and tissue self-repair. SUMMARY Transfer of genetic information from injured cells may explain stem cell functional and phenotypic changes without the need for transdifferentiation into tissue cells. On the contrary, transfer of genetic information from stem cells may redirect altered functions in target cells suggesting that stem cells may repair damaged tissues without directly replacing parenchymal cells.
Collapse
|
984
|
Isolated microvesicles from peripheral blood and body fluids as observed by scanning electron microscope. Blood Cells Mol Dis 2010; 44:307-12. [PMID: 20199878 DOI: 10.1016/j.bcmd.2010.02.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 01/19/2010] [Indexed: 12/21/2022]
Abstract
Microvesicles are sub-micron structures shed from the cell membrane in a final step of the budding process. After being released into the microenvironment they are free to move and carry signaling molecules to distant cells, thereby they represent a communication system within the body. Since all cells shed microvesicles, it can be expected that they will be found in different body fluids. The potential diagnostic value of microvesicles has been suggested, however, a standardized protocol for isolation has not yet been agreed upon. It is unclear what is the content of the isolates and whether the isolated microvesicles were present in vivo or-have they been created within the isolation procedure. To present evidence in this direction, in this work we focus on the visualization of the material obtained by the microvesicle isolation procedure. We present scanning electronic microscope images of microvesicles isolated from blood, ascites, pleural fluid, cerebrospinal fluid, postoperative drainage fluid and chyloid fluid acquired from human and animal patients. Vesicular structures sized from 1microm downto 50nm are present in isolates of all considered body fluids, however, the populations differ in size and shape reflecting also the composition of the corresponding sediments. Isolates of microvesicles contain numerous cells which indicates that methods of isolation and determination of the number of microvesicles in the peripheral blood are to be elaborated and improved.
Collapse
|
985
|
Klein-Scory S, Kübler S, Diehl H, Eilert-Micus C, Reinacher-Schick A, Stühler K, Warscheid B, Meyer HE, Schmiegel W, Schwarte-Waldhoff I. Immunoscreening of the extracellular proteome of colorectal cancer cells. BMC Cancer 2010; 10:70. [PMID: 20184735 PMCID: PMC2837015 DOI: 10.1186/1471-2407-10-70] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 02/25/2010] [Indexed: 12/28/2022] Open
Abstract
Background The release of proteins from tumors can trigger an immune response in cancer patients involving T lymphocytes and B lymphocytes, which results in the generation of antibodies to tumor-derived proteins. Many studies aim to use humoral immune responses, namely autoantibody profiles, directly, as clinical biomarkers. Alternatively, the antibody immune response as an amplification system for tumor associated alterations may be used to indicate putative protein biomarkers with high sensitivity. Aiming at the latter approach we here have implemented an autoantibody profiling strategy which particularly focuses on proteins released by tumor cells in vitro: the so-called secretome. Methods For immunoscreening, the extracellular proteome of five colorectal cancer cell lines was resolved on 2D gels, immobilized on PVDF membranes and used for serological screening with individual sera from 21 colorectal cancer patients and 24 healthy controls. All of the signals from each blot were assigned to a master map, and autoantigen candidates were defined based of the pattern of immunoreactivities. The corresponding proteins were isolated from preparative gels, identified by MALDI-MS and/or by nano-HPLC/ESI-MS/MS and exemplarily confirmed by duplex Western blotting combining the human serum samples with antibodies directed against the protein(s) of interest. Results From 281 secretome proteins stained with autoantibodies in total we first defined the "background patterns" of frequently immunoreactive extracellular proteins in healthy and diseased people. An assignment of these proteins, among them many nominally intracellular proteins, to the subset of exosomal proteins within the secretomes revealed a large overlap. On this basis we defined and consequently confirmed novel biomarker candidates such as the extreme C-terminus of the extracellular matrix protein agrin within the set of cancer-enriched immunorectivities. Conclusions Our findings suggest, first, that autoantibody responses may be due, in large part, to cross-presentation of antigens to the immune system via exosomes, membrane vesicles released by tumor cells and constituting a significant fraction of the secretome. In addition, this immunosecretomics approach has revealed novel biomarker candidates, some of them secretome-specific, and thus serves as a promising complementary tool to the frequently reported immunoproteomic studies for biomarker discovery.
Collapse
Affiliation(s)
- Susanne Klein-Scory
- Department of Internal Medicine, Knappschaftskrankenhaus, IMBL, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
986
|
Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 2010; 31:659-66. [PMID: 20159880 DOI: 10.1093/eurheartj/ehq013] [Citation(s) in RCA: 907] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS microRNA (miRNA) is reported to be present in the blood of humans and has been increasingly suggested as a biomarker for diseases. We aim to determine the potential of cardiac-specific miRNAs in circulation to serve as biomarkers for acute myocardial infarction (AMI). METHODS AND RESULTS By verifying their tissue expression patterns with real-time polymerase chain reaction (PCR) analysis, muscle-enriched miRNAs (miR-1, miR-133a, and miR-499) and cardiac-specific miR-208a were selected as candidates for this study. With miRNA microarray and real-time PCR analyses, miR-1, miR-133a, and miR-499 were present with very low abundance, and miR-208a was absent in the plasma from healthy people. In the AMI rats, the plasma levels of these miRNAs were significantly increased. Especially, miR-208a in plasma was undetected at 0 h, but was significantly increased to a detectable level as early as 1 h after coronary artery occlusion. Further evaluation of the miRNA levels in plasma from AMI patients (n = 33) demonstrated that all four miRNA levels were substantially higher than those from healthy people (n = 30, P < 0.01), patients with non-AMI coronary heart disease (n = 16, P < 0.01), or patients with other cardiovascular diseases (n = 17, P < 0.01). Notably, miR-208a remained undetectable in non-AMI patients, but was easily detected in 90.9% AMI patients and in 100% AMI patients within 4 h of the onset of symptoms. By receiver operating characteristic curve analysis, among the four miRNAs investigated, miR-208a revealed the higher sensitivity and specificity for diagnosing AMI. CONCLUSION Elevated cardiac-specific miR-208a in plasma may be a novel biomarker for early detection of myocardial injury in humans.
Collapse
Affiliation(s)
- Guo-Kun Wang
- Department of Cardiology, Changhai Hospital, 168 Changhai Road, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
987
|
Aliotta JM, Pereira M, Johnson KW, de Paz N, Dooner MS, Puente N, Ayala C, Brilliant K, Berz D, Lee D, Ramratnam B, McMillan PN, Hixson DC, Josic D, Quesenberry PJ. Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription. Exp Hematol 2010; 38:233-45. [PMID: 20079801 DOI: 10.1016/j.exphem.2010.01.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Microvesicles have been shown to mediate intercellular communication. Previously, we have correlated entry of murine lung-derived microvesicles into murine bone marrow cells with expression of pulmonary epithelial cell-specific messenger RNA (mRNA) in these marrow cells. The present studies establish that entry of lung-derived microvesicles into marrow cells is a prerequisite for marrow expression of pulmonary epithelial cell-derived mRNA. MATERIALS AND METHODS Murine bone marrow cells cocultured with rat lung, but separated from them using a cell-impermeable membrane (0.4-microm pore size), were analyzed using species-specific primers (for rat or mouse). RESULTS These studies revealed that surfactant B and C mRNA produced by murine marrow cells were of both rat and mouse origin. Similar results were obtained using murine lung cocultured with rat bone marrow cells or when bone marrow cells were analyzed for the presence of species-specific albumin mRNA after coculture with rat or murine liver. These studies show that microvesicles both deliver mRNA to marrow cells and mediate marrow cell transcription of tissue-specific mRNA. The latter likely underlies the longer-term stable change in genetic phenotype that has been observed. We have also observed microRNA in lung-derived microvesicles, and studies with RNase-treated microvesicles indicate that microRNA negatively modulates pulmonary epithelial cell-specific mRNA levels in cocultured marrow cells. In addition, we have also observed tissue-specific expression of brain, heart, and liver mRNA in cocultured marrow cells, suggesting that microvesicle-mediated cellular phenotype change is a universal phenomena. CONCLUSION These studies suggest that cellular systems are more phenotypically labile than previously considered.
Collapse
Affiliation(s)
- Jason M Aliotta
- Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Division of Hematology and Oncology, Providence, RI 02903, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
988
|
Pisetsky DS. Microparticles as biomarkers in autoimmunity: from dust bin to center stage. Arthritis Res Ther 2009; 11:135. [PMID: 19954508 PMCID: PMC3003533 DOI: 10.1186/ar2856] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microparticles are small membrane-bound vesicles released from activated and dying cells. As shown in a study of primary Sjogren's syndrome, systemic lupus erythematosus and rheumatoid arthritis, levels of microparticles in the blood, as measured by a solid-phase prothrombinase assay or flow cytometry, are increased with autoimmunity. Among patients with these conditions, however, particle numbers were inversely related to disease activity and levels of the enzyme secretory phospholipase A2 that can digest membrane lipids and perhaps cause particle loss. These findings suggest microparticles as novel biomarkers for autoimmunity, with levels reflecting events leading to their loss as well as production.
Collapse
|
989
|
Hong BS, Cho JH, Kim H, Choi EJ, Rho S, Kim J, Kim JH, Choi DS, Kim YK, Hwang D, Gho YS. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics 2009; 10:556. [PMID: 19930720 PMCID: PMC2788585 DOI: 10.1186/1471-2164-10-556] [Citation(s) in RCA: 328] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 11/25/2009] [Indexed: 12/13/2022] Open
Abstract
Background Various cancer cells, including those of colorectal cancer (CRC), release microvesicles (exosomes) into surrounding tissues and peripheral circulation. These microvesicles can mediate communication between cells and affect various tumor-related processes in their target cells. Results We present potential roles of CRC cell-derived microvesicles in tumor progression via a global comparative microvesicular and cellular transcriptomic analysis of human SW480 CRC cells. We first identified 11,327 microvesicular mRNAs involved in tumorigenesis-related processes that reflect the physiology of donor CRC cells. We then found 241 mRNAs enriched in the microvesicles above donor cell levels, of which 27 were involved in cell cycle-related processes. Network analysis revealed that most of the cell cycle-related microvesicle-enriched mRNAs were associated with M-phase activities. The integration of two mRNA datasets showed that these M-phase-related mRNAs were differentially regulated across CRC patients, suggesting their potential roles in tumor progression. Finally, we experimentally verified the network-driven hypothesis by showing a significant increase in proliferation of endothelial cells treated with the microvesicles. Conclusion Our study demonstrates that CRC cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells, suggesting that microvesicles of cancer cells can be involved in tumor growth and metastasis by facilitating angiogenesis-related processes. This information will help elucidate the pathophysiological functions of tumor-derived microvesicles, and aid in the development of cancer diagnostics, including colorectal cancer.
Collapse
Affiliation(s)
- Bok Sil Hong
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
990
|
Kubikova I, Konecna H, Sedo O, Zdrahal Z, Rehulka P, Hribkova H, Rehulkova H, Hampl A, Chmelik J, Dvorak P. Proteomic profiling of human embryonic stem cell-derived microvesicles reveals a risk of transfer of proteins of bovine and mouse origin. Cytotherapy 2009; 11:330-40, 1 p following 340. [PMID: 19401887 DOI: 10.1080/14653240802595531] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AIMS Microvesicles (MV) shed from the plasma membrane of eukaryotic cells, including human embryonic stem cells (hESC), contain proteins, lipids and RNA and serve as mediators of cell-to-cell communication. However, they may also contain immunogenic membrane domains and infectious particles acquired from xenogenic components of the culture milieu. Therefore, MV represent a potential risk for clinical application of cell therapy. METHODS We tested the ability of hESC and their most commonly used feeder cells, mouse embryonic fibroblasts (MEF), to produce MV. We found that hESC are potent producers of MV, whereas mitotically inactivated MEF do not produce any detectable MV. We therefore employed a combined proteomic approach to identify the molecules that constitute the major components of MV from hESC maintained in a standard culture setting with xenogenic feeder cells. RESULTS In purified MV fractions, we identified a total of 22 proteins, including five unique protein species that are known to be highly expressed in invasive cancers and participate in cellular activation, metastasis and inhibition of apoptosis. Moreover, we found that hESC-derived MV contained the immunogenic agents apolipoprotein and transferrin, a source of Neu5Gc, as well as mouse retroviral Gag protein. CONCLUSIONS These findings indicate that MV represent a mechanism by which hESC communicate; however, they also serve as potential carriers of immunogenic and pathogenic compounds acquired from environment. Our results highlight a potential danger regarding the use of hESC that have previously been exposed to animal proteins and cells.
Collapse
Affiliation(s)
- I Kubikova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
991
|
ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 2009; 19:1875-85. [PMID: 19896381 DOI: 10.1016/j.cub.2009.09.059] [Citation(s) in RCA: 660] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/23/2009] [Accepted: 09/25/2009] [Indexed: 12/29/2022]
Abstract
BACKGROUND Increased mitogen-activated protein kinase (MAPK) signaling, small GTPase activation, cytoskeletal rearrangements, and the directed targeting of proteases to sites of extracellular matrix degradation all accompany the process of tumor cell invasion. Several studies have implicated the small GTP-binding protein ARF6 in tumor cell invasion, although the molecular basis by which ARF6 facilitates this process is unclear. RESULTS We show that the ARF6 GTP/GDP cycle regulates the release of protease-loaded plasma membrane-derived microvesicles from tumor cells into the surrounding environment. To enable microvesicle shedding, ARF6-GTP-dependent activation of phospholipase D promotes the recruitment of the extracellular signal-regulated kinase (ERK) to the plasma membrane where, in turn, ERK phosphorylates and activates myosin light-chain kinase (MLCK). MLCK-mediated MLC phosphorylation is required for microvesicle release. Inhibition of ARF6 activation is accompanied by PKC-mediated phosphorylation of MLC, which blocks microvesicle shedding. Protein cargo appears to be selectively sorted into microvesicles, and adhesion to the extracellular matrix (ECM) is facilitated by microvesicle-associated integrin receptors. CONCLUSIONS Microvesicle shedding in tumor cells occurs via an actomyosin-based membrane abscission mechanism that is regulated by nucleotide cycling on ARF6. Microvesicle shedding appears to release selected cellular components, particularly those involved in cell adhesion and motility, into the surrounding environment. These findings suggest that ARF6 activation and the proteolytic activities of microvesicles, both of which are thought to correlate directly with tumor progression, could potentially serve as biomarkers for disease.
Collapse
|
992
|
Eckersley-Maslin MA, Warner FJ, Grzelak CA, McCaughan GW, Shackel NA. Bone marrow stem cells and the liver: are they relevant? J Gastroenterol Hepatol 2009; 24:1608-16. [PMID: 19788602 DOI: 10.1111/j.1440-1746.2009.06004.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The contribution of bone marrow stem cell responses to liver homeostasis, injury and malignancy is discussed in this review. Pluripotent stem cells or their more committed progenitor progeny are essential to tissue development, regeneration and repair and are widely implicated in the pathogenesis of malignancy. Stem cell responses to injury are the focus of intense research efforts in the hope of future therapeutic manipulation. Stem cells occur within tissues, such as the liver, or arise from extrahepatic sites, in particular, the bone marrow. As the largest reservoir of stem cells in the adult, the bone marrow has been implicated in the stem cell response associated with liver injury. However, in liver injury, the relative contribution of bone marrow stem cells compared to intrahepatic progenitor responses is poorly characterized. Intrahepatic progenitor responses have been recently reviewed elsewhere. In this review, we have summarized liver-specific extrahepatic stem cell responses originating from the bone marrow. The physiological relevance of bone marrow stem cell responses to adult liver homeostasis, injury and malignancy is discussed with emphasis on mechanisms of bone marrow stem cell recruitment to sites of liver injury and its contribution to intrahepatic malignancy.
Collapse
|
993
|
WYSOCZYNSKI M, RATAJCZAK MZ. Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors. Int J Cancer 2009; 125:1595-603. [PMID: 19462451 PMCID: PMC2769262 DOI: 10.1002/ijc.24479] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microvesicles (MVs) are shed from cell membranes of several cell types and have an important function in cell-to-cell communication. Exponentially growing lung cancer cells secrete large quantities of MVs and we were interested in their role in tumor progression. We observed that both human and murine lung cancer cell lines secrete more MVs in response to non-apoptotic doses of hypoxia and irradiation. These tumor-derived (t)MVs activate and chemoattract stroma fibroblasts and endothelial cells. Furthermore, they induce expression of several pro-angiopoietic factors in stromal cells such as IL-8, VEGF, LIF, OSM, IL-11 and MMP-9. We also noticed that conditioned media harvested from stroma cells stimulated by tMVs enhanced the metastatic potential of both human and murine lung cancer cells in vivo. Thus, we postulated that tMVs are underappreciated constituents of the tumor microenvironment and play a pivotal role in tumor progression, metastasis and angiogenesis.
Collapse
Affiliation(s)
- Marcin WYSOCZYNSKI
- Stem Cell Biology Program at James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, U.S.A and Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | - Mariusz Z. RATAJCZAK
- Stem Cell Biology Program at James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, U.S.A and Department of Physiology Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
994
|
Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:3720-30. [PMID: 19692638 PMCID: PMC3721354 DOI: 10.4049/jimmunol.0900970] [Citation(s) in RCA: 451] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sera of patients with cancer contain membraneous microvesicles (MV) able to induce apoptosis of activated T cells by activating the Fas/Fas ligand pathway. However, the cellular origin of MV found in cancer patients' sera varies as do their molecular and cellular profiles. To distinguish tumor-derived MV in cancer patients' sera, we used MAGE 3/6(+) present in tumors and MV. Molecular profiles of MAGE 3/6(+) MV were compared in Western blots or by flow cytometry with those of MV secreted by dendritic cells or activated T cells. These profiles were found to be distinct for each cell type. Only tumor-derived MV were MAGE 3/6(+) and were variably enriched in 42-kDa Fas ligand and MHC class I but not class II molecules. Effects of MV on signaling via the TCR and IL-2R and proliferation or apoptosis of activated primary T cells and T cell subsets were also assessed. Functions of activated CD8(+) and CD4(+) T lymphocytes were differentially modulated by tumor-derived MV. These MV inhibited signaling and proliferation of activated CD8(+) but not CD4(+) T cells and induced apoptosis of CD8(+) T cells, including tumor-reactive, tetramer(+)CD8(+) T cells as detected by flow cytometry for caspase activation and annexin V binding or by DNA fragmentation. Tumor-derived but not dendritic cell-derived MV induced the in vitro expansion of CD4(+)CD25(+)FOXP3(+) T regulatory cells and enhanced their suppressor activity. The data suggest that tumor-derived MV induce immune suppression by promoting T regulatory cell expansion and the demise of antitumor CD8(+) effector T cells, thus contributing to tumor escape.
Collapse
Affiliation(s)
- Eva U. Wieckowski
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| | - Carmen Visus
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| | - Marta Szajnik
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| | | | - Walter J. Storkus
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| | - Theresa L. Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| |
Collapse
|
995
|
Liu R, Klich I, Ratajczak J, Ratajczak MZ, Zuba-Surma EK. Erythrocyte-derived microvesicles may transfer phosphatidylserine to the surface of nucleated cells and falsely ‘mark’ them as apoptotic. Eur J Haematol 2009; 83:220-9. [DOI: 10.1111/j.1600-0609.2009.01271.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
996
|
Herrera MB, Fonsato V, Gatti S, Deregibus MC, Sordi A, Cantarella D, Calogero R, Bussolati B, Tetta C, Camussi G. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med 2009; 14:1605-18. [PMID: 19650833 PMCID: PMC3060338 DOI: 10.1111/j.1582-4934.2009.00860.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Several studies indicate that adult stem cells may improve the recovery from acute tissue injury. It has been suggested that they may contribute to tissue regeneration by the release of paracrine factors promoting proliferation of tissue resident cells. However, the factors involved remain unknown. In the present study we found that microvesicles (MVs) derived from human liver stem cells (HLSC) induced in vitro proliferation and apoptosis resistance of human and rat hepatocytes. These effects required internalization of MVs in the hepatocytes by an alpha(4)-integrin-dependent mechanism. However, MVs pre-treated with RNase, even if internalized, were unable to induce hepatocyte proliferation and apoptosis resistance, suggesting an RNA-dependent effect. Microarray analysis and quantitative RT-PCR demonstrated that MVs were shuttling a specific subset of cellular mRNA, such as mRNA associated in the control of transcription, translation, proliferation and apoptosis. When administered in vivo, MVs accelerated the morphological and functional recovery of liver in a model of 70% hepatectomy in rats. This effect was associated with increase in hepatocyte proliferation and was abolished by RNase pre-treatment of MVs. Using human AGO2, as a reporter gene present in MVs, we found the expression of human AGO2 mRNA and protein in the liver of hepatectomized rats treated with MVs. These data suggested a translation of the MV shuttled mRNA into hepatocytes of treated rats. In conclusion, these results suggest that MVs derived from HLSC may activate a proliferative program in remnant hepatocytes after hepatectomy by a horizontal transfer of specific mRNA subsets.
Collapse
Affiliation(s)
- M B Herrera
- Department of Internal Medicine, Research Center for Experimental Medicine (CeRMS), and Center for Molecular Biotechnology, Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
997
|
Abstract
Microvesicles comprised of exosomes and microparticles are shed from both normal and malignant cells upon cell activation or apoptosis. Microvesicles promote clot formation, mediate pro-inflammatory processes, facilitate cell-to-cell interactions, transfer proteins and mRNA to cells, and induce cell signalling. Microparticles bearing tissue factor play a central role in coagulation initiation and thrombus formation. This chapter will review earlier studies which focus on the role of procoagulant microvesicles in cancer thrombogenicity, and discuss the effects of microvesicles on vascular cell dysfunction and angiogenesis. In addition, this chapter will present new findings which characterize the haemostatic balance of microparticles, and suggest a method that may potentially serve to predict a state of hypercoagulability in cancer patients. This chapter highlights the interplay between microvesicles, coagulation factors and cancer.
Collapse
Affiliation(s)
- Anat Aharon
- Thrombosis and Haemostasis Research Laboratory, Rambam Health Care Campus, P.O.B 9602, Haifa 31096, Israel
| | | |
Collapse
|
998
|
Skinner AM, O'Neill SL, Kurre P. Cellular microvesicle pathways can be targeted to transfer genetic information between non-immune cells. PLoS One 2009; 4:e6219. [PMID: 19593443 PMCID: PMC2704871 DOI: 10.1371/journal.pone.0006219] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 06/17/2009] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic cell communication is based on protein signaling cascades that require direct cell-cell apposition, or receptor engagement by secreted molecules. The transmission of genetic information is thought to be uncommon, apart from recent reports of exosomal RNA transfer in immune and glioblastoma cells. We wished to examine if existing microvesicle pathways could be directly targeted for the horizontal transfer of RNA genomes in less specialized cell types. Using replication-deficient retrovirus vector, studies herein confirm that a range of cells routinely sequester a small population of these RNA genomes in a non-canonical compartment, refractory to antibody neutralization and unaffected by specific pharmacological inhibition of pathways involved in conventional viral trafficking. Our experiments further reveal the cytoplasmic colocalization of vector genomes with tetraspanin proteins as well as the PI-3-kinase sensitive trafficking and subsequent transmission to 2 degrees targets. Collectively, our results indicate a scalable process whereby cells route vector genomes to multivesicular bodies (MVB) for cytoplasmic trafficking and exosomal release. Our findings imply that cells can serve to deliver recombinant payload, targeted for the stable genetic modification of 2 degrees target cells.
Collapse
Affiliation(s)
- Amy M. Skinner
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Departments of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - S. Lee O'Neill
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Departments of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Peter Kurre
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Departments of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
- Cell & Developmental Biology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
999
|
Schara K, Janša V, Šuštar V, Dolinar D, Pavlič JI, Lokar M, Kralj-Iglič V, Veranič P, Iglič A. Mechanisms for the formation of membranous nanostructures in cell-to-cell communication. Cell Mol Biol Lett 2009; 14:636-56. [PMID: 19554268 PMCID: PMC6275886 DOI: 10.2478/s11658-009-0018-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 06/18/2009] [Indexed: 12/21/2022] Open
Abstract
Cells interact by exchanging material and information. Two methods of cell-to-cell communication are by means of microvesicles and by means of nanotubes. Both microvesicles and nanotubes derive from the cell membrane and are able to transport the contents of the inner solution. In this review, we describe two physical mechanisms involved in the formation of microvesicles and nanotubes: curvature-mediated lateral redistribution of membrane components with the formation of membrane nanodomains; and plasmamediated attractive forces between membranes. These mechanisms are clinically relevant since they can be affected by drugs. In particular, the underlying mechanism of heparin's role as an anticoagulant and tumor suppressor is the suppression of microvesicluation due to plasma-mediated attractive interaction between membranes.
Collapse
Affiliation(s)
- Karin Schara
- Laboratory of Clinical Biophysics, Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Lipičeva 2, SI-1000 Ljubljana, Slovenia
- University Medical Centre Ljubljana, Zaloška 9, SI-1000 Ljubljana, Slovenia
| | - Vid Janša
- Laboratory of Clinical Biophysics, Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Lipičeva 2, SI-1000 Ljubljana, Slovenia
| | - Vid Šuštar
- Laboratory of Clinical Biophysics, Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Lipičeva 2, SI-1000 Ljubljana, Slovenia
| | - Drago Dolinar
- Laboratory of Clinical Biophysics, Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Lipičeva 2, SI-1000 Ljubljana, Slovenia
- University Medical Centre Ljubljana, Zaloška 9, SI-1000 Ljubljana, Slovenia
| | - Janez Ivan Pavlič
- Faculty of Health Studies, University of Ljubljana, Poljanska 26a, SI-1000 Ljubljana, Slovenia
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
| | - Maruša Lokar
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Lipičeva 2, SI-1000 Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Lipičeva 2, SI-1000 Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
1000
|
Bhatwadekar AD, Glenn JV, Curtis TM, Grant MB, Stitt AW, Gardiner TA. Retinal endothelial cell apoptosis stimulates recruitment of endothelial progenitor cells. Invest Ophthalmol Vis Sci 2009; 50:4967-73. [PMID: 19474402 DOI: 10.1167/iovs.09-3616] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Bone marrow-derived endothelial progenitor cells (EPCs) contribute to vascular repair although it is uncertain how local endothelial cell apoptosis influences their reparative function. This study was conducted to determine how the presence of apoptotic bodies at sites of endothelial damage may influence participation of EPCs in retinal microvascular repair. METHODS Microlesions of apoptotic cell death were created in monolayers of retinal microvascular endothelial cells (RMECs) by using the photodynamic drug verteporfin. The adhesion of early-EPCs to these lesions was studied before detachment of the apoptotic cells or after their removal from the wound site. Apoptotic bodies were fed to normal RMECs and mRNA levels for adhesion molecules were analyzed. RESULTS Endothelial lesions where apoptotic bodies were left attached at the wound site showed a fivefold enhancement in EPC recruitment (P < 0.05) compared with lesions where the apoptotic cells had been removed. In intact RMEC monolayers exposed to apoptotic bodies, expression of ICAM, VCAM, and E-selectin was upregulated by 5- to 15-fold (P < 0.05-0.001). EPCs showed a characteristic chemotactic response (P < 0.05) to conditioned medium obtained from apoptotic bodies, whereas analysis of the medium showed significantly increased levels of VEGF, IL-8, IL-6, and TNF-alpha when compared to control medium; SDF-1 remained unchanged. CONCLUSIONS The data indicate that apoptotic bodies derived from retinal capillary endothelium mediate release of proangiogenic cytokines and chemokines and induce adhesion molecule expression in a manner that facilitates EPC recruitment.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Centre for Vision Science, Queen's University Belfast, Royal Victoria Hospital, Belfast, Northern Ireland, United Kingdom
| | | | | | | | | | | |
Collapse
|