951
|
Bhuiyan MSI, Maynard G, Raman A, Hodgkins D, Mitchell D, Nicol H. Salt effects on proline and glycine betaine levels and photosynthetic performance in Melilotus siculus, Tecticornia pergranulata and Thinopyrum ponticum measured in simulated saline conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:254-265. [PMID: 32480458 DOI: 10.1071/fp15330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/25/2015] [Indexed: 06/11/2023]
Abstract
We measured proline and glycine betaine levels and photosynthetic performance (net-photosynthetic rate (Pn), stomatal conductance (gs), maximum quantum yield of PSII (Fv/Fm) and non-photochemical quenching (NPQ)) in relation to Na+ and Cl- accumulation in Melilotus siculus (Turra) B.D.Jacks. (Fabaceae), Tecticornia pergranulata (J.M.Black) K.A.Sheph. & Paul G.Wilson (Amaranthaceae: Salicornioideae) and Thinopyrum ponticum (Podp.) Z.-W.Liu & R.-C.Wang (Poaceae) grown under saline conditions in the greenhouse. These plants were selected in this study because of their known salt-tolerance capacity and value as forage plants. Moreover, the pasture legume M. siculus is considered to have particular potential for saline land remediation because of its salinity and waterlogging tolerance. Maximum Na+ and Cl- accumulation occurred in Te. pergranulata shoots. Minimum was in Th. ponticum shoots. Maximum Na+ accumulation occurred in the roots of Te. pergranulata, whereas that of Cl- occurred in the roots of Th. ponticum. Accumulation of both Na+ and Cl- was the least in M. siculus roots. Te. pergranulata metabolized high levels of glycine betaine (110µmolg-1 DW). M. siculus metabolized high levels of proline (6µmolg-1 DW). Th. ponticum accumulated intermediate levels of these organic osmolytes. No significant change occurred in Fv/Fm values. Pn value increased and NPQ value decreased in Te. pergranulata with increasing salinity and the reverse occurred in both M. siculus and Th. ponticum. A negative significant correlation occurred between Pn and glycine betaine in M. siculus and Th. ponticum. A positive significant correlation occurred between NPQ and glycine betaine in M. siculus. No correlation occurred between proline and Pn, proline and NPQ in the tested three plants. Te. pergranulata could maintain cell-osmotic balance by synthesising high levels of organic osmolytes especially glycine betaine and concurrently showing the most efficient photosynthetic performance. Compared with the levels of osmolytes in Te. pergranulata, the levels of osmolytes that occur in M. siculus and Th. ponticum were insufficient to maintain cell-osmotic balance and also that M. siculus and Th. ponticum showed a lower level of photosynthetic performance. We conclude that glycine betaine is potentially the vital organic osmolyte for Te. pergranulata and Th. ponticum enabling salinity stress tolerance. However, in M. siculus, proline appears to be the potential organic osmolyte in salinity stress tolerance. In terms of the potential of these species for stabilising saline soils in central-western New South Wales, Te. pergranulata would be the candidate of choice; however, for greater pasture value Th. ponticum would be the next.
Collapse
Affiliation(s)
- Mohammad S I Bhuiyan
- Soil Research Group, Charles Sturt University, Leeds Parade, Orange, NSW 2800, Australia
| | - Greggory Maynard
- Charles Sturt University, PO Box 883, Leeds Parade, Orange, NSW 2800, Australia
| | - Anantanarayanan Raman
- Soil Research Group, Charles Sturt University, Leeds Parade, Orange, NSW 2800, Australia
| | - Dennis Hodgkins
- Soil Research Group, Charles Sturt University, Leeds Parade, Orange, NSW 2800, Australia
| | - David Mitchell
- Orange Agricultural Institute, NSW Department of Primary Industries, Forrest Road, Orange, NSW 2800, Australia
| | - Helen Nicol
- Soil Research Group, Charles Sturt University, Leeds Parade, Orange, NSW 2800, Australia
| |
Collapse
|
952
|
Zhang J, Yu H, Zhang Y, Wang Y, Li M, Zhang J, Duan L, Zhang M, Li Z. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1339-55. [PMID: 26743432 PMCID: PMC4762378 DOI: 10.1093/jxb/erv528] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na(+) efflux and H(+) influx, but decreased net K(+) efflux, which maintained a high cytosolic K(+)/Na(+) ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K(+) effluxes and decrease Na(+) efflux and H(+) influx in salt-treated transgenic roots, but the K(+) effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na(+)/H(+) antiport and K(+) channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K(+) and Na(+) homeostasis and better water status in maize exposed to salt stress.
Collapse
Affiliation(s)
- Juan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Haiyue Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yushi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yubing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Maoying Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jiachang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
953
|
Jisha KC, Puthur JT. Seed priming with BABA (β-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek. PROTOPLASMA 2016; 253:277-89. [PMID: 25837010 DOI: 10.1007/s00709-015-0804-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/16/2015] [Indexed: 05/18/2023]
Abstract
The effects of β-amino butyric acid (BABA) on abiotic stress tolerance potential of three Vigna radiata varieties were studied. The reduction in the growth of seedlings subjected to NaCl/polyethylene glycol (PEG) stress is alleviated by BABA seed priming, which also enhanced photosynthetic pigment content and photosynthetic and mitochondrial activities, and also modified the chlorophyll a fluorescence-related parameters. Moreover, BABA seed priming reduced malondialdehyde content in the seedlings and enhanced the accumulation of proline, total protein, total carbohydrate, nitrate reductase activity, and activities of antioxidant enzymes like guaiacol peroxidase and superoxide dismutase. Most of these positive features of BABA priming were predominantly exhibited when the plants were encountered with stress (NaCl/PEG). The BABA content in the BABA-treated green gram seeds and seedlings was also detected and quantified with high-performance thin layer chromatography (HPTLC), and it revealed that the priming effect of BABA initiated in seeds and further gets carried over to the seedlings. It was concluded that BABA seed priming improved the drought and salinity stress tolerance potential of all the three green gram varieties, and it was evident in the NaCl-tolerant variety Pusa Vishal as compared to Pusa Ratna (abiotic stress sensitive) and Pusa 9531(drought tolerant). Dual mode in cost effectiveness of BABA priming is evident from: (1) the positive features of priming are being exhibited more during the exposure of plants to stress, and (2) priming of seedlings can be carried out by BABA application to seeds at very low concentration and volume.
Collapse
Affiliation(s)
- K C Jisha
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Malappuram, Kerala, 673635, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Malappuram, Kerala, 673635, India.
| |
Collapse
|
954
|
Yu C, Xu S, Yin Y. Transcriptome analysis of the Taxodium 'Zhongshanshan 405' roots in response to salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 100:156-165. [PMID: 26828407 DOI: 10.1016/j.plaphy.2016.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 05/04/2023]
Abstract
Taxodium 'Zhongshanshan' is an interspecies hybrid of Taxodium distichum and Taxodium mucronatum, and has been widely planted in southeastern China. It has great ecological and economic potential. However, the scant genomic resources in genus Taxodium have greatly hindered further exploration of its underlying salinity-tolerance mechanism. To understand the genetic basis of its salt tolerance, high-throughput sequencing of mRNA (RNA-Seq) was used to analyze transcriptome changes of 'Zhongshanshan 405' clone roots treated with NaCl stress. After de novo assembly, 70,312 unigenes were achieved, and 41,059 of them were annotated. 9038 differentially expressed genes (DEGs) were identified among the treatments, and 7959 DEGs were found between salt-stressed roots and control, with 489 up-regulated and 570 down-regulated shared by all of the treatments. Genes related to transport, signal transductions as well as undescribed transcripts were among those DEGs in response to salt stress. Gene ontology classification analysis revealed that salt stress-related categories including 'oxidoreductase activity', 'metal ion binding', and 'membrane' were highly enriched among these DEGs. Moreover, the gene expression pattern of 12 unigenes revealed by quantitative real-time polymerase chain reaction (qRT-PCR) confirmed the RNA-Seq data. Our study not only provided the large-scale assessment of transcriptome resources of Taxodium but also guidelines for probing the molecular mechanism underlying 'Zhongshanshan' salt tolerance.
Collapse
Affiliation(s)
- Chaoguang Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yunlong Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
955
|
Chen X, Fukushi K. Development of natural treatment system consisting of black soil and Kentucky bluegrass for the post-treatment of anaerobically digested strong wastewater. J Environ Sci (China) 2016; 41:44-50. [PMID: 26969049 DOI: 10.1016/j.jes.2015.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/11/2015] [Accepted: 05/15/2015] [Indexed: 06/05/2023]
Abstract
To develop a sound post-treatment process for anaerobically-digested strong wastewater, a novel natural treatment system comprising two units is put forward. The first unit, a trickling filter, provides for further reduction of biochemical oxygen demand and adjustable nitrification. The subsequent soil-plant unit aims at removing and recovering the nutrients nitrogen (N), phosphorus (P) and potassium (K). As a lab-scale feasibility study, a soil column test was conducted, in which black soil and valuable Kentucky bluegrass were integrated to treat artificial nutrient-enriched wastewater. After a long-term operation, the nitrification function was well established in the top layers, despite the need for an improved denitrification process prior to discharge. P and K were retained by the soil through distinct mechanisms. Since they either partially or totally remained in plant-available forms in the soil, indirect nutrient reuse could be achieved. As for Kentucky bluegrass, it displayed better growth status when receiving wastewater, with direct recovery of 8%, 6% and 14% of input N, P and K, respectively. Furthermore, the indispensable role of Kentucky bluegrass for better treatment performance was proved, as it enhanced the cell-specific nitrification potential of the soil nitrifying microorganisms inhabiting the rhizosphere. After further upgrade, the proposed system is expected to become a new solution for strong wastewater pollution.
Collapse
Affiliation(s)
- Xiaochen Chen
- Department of Urban Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Kensuke Fukushi
- Integrated Research System for Sustainability Science, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
956
|
Wang Q, Dodd IC, Belimov AA, Jiang F. Rhizosphere bacteria containing 1-aminocyclopropane-1- carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na + accumulation. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:161-172. [PMID: 32480450 DOI: 10.1071/fp15200] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/05/2015] [Indexed: 06/11/2023]
Abstract
Although plant salt tolerance has been improved by soil inoculation with rhizobacteria containing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (which metabolises ACC, the immediate precursor of the phytohormone ethylene), it is not always clear whether ion homeostasis and plant water relations are affected. When pea (Pisum sativum L. cv. Alderman) was grown with 70 and 130mM NaCl, the ACC-deaminase containing rhizobacterium Variovorax paradoxus 5C-2 increased total biomass by 25 and 54% respectively. Nutrient flow modelling showed that V. paradoxus 5C-2 increased K uptake and root to shoot K flow, but decreased Na flow and increased Na deposition in roots. Thus, shoot K+:Na+ ratio increased following V. paradoxus 5C-2 inoculation. At 70 and 130mM NaCl, rhizobacterial inoculation decreased stomatal resistance by 14 and 31% and decreased xylem balancing pressure by 7 and 21% respectively. Furthermore, rhizobacterial inoculation improved photosynthetic efficiency (Fv/Fm) by 12 and 19% and increased maximal electron transport rate (ETR) by 18 and 22% at 70 and 130mM NaCl respectively. Thus V. paradoxus 5C-2 mitigates salt stress by improving water relations, ion homeostasis and photosynthesis of pea plants, and may provide an economic means of promoting growth of plants exposed to salt stress.
Collapse
Affiliation(s)
- Qiyuan Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Andrey A Belimov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin-8, 196608, Saint Petersburg, Russian Federation
| | - Fan Jiang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
957
|
Yolcu S, Ozdemir F, Güler A, Bor M. Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 100:37-46. [PMID: 26773543 DOI: 10.1016/j.plaphy.2015.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/12/2015] [Accepted: 12/31/2015] [Indexed: 05/10/2023]
Abstract
Acetylation of histone proteins is a type of chromatin modification which facilitates the activation of genes. Recent studies brought up the importance of this reversible and rapid process for the regulation of gene expression especially in plant defense against a variety of environmental stresses. Deciphering the exact mechanisms of chromatin modifications under abiotic stress conditions is important for improving crop plants' performance and yield. In a previous study we compared the salt stress responses of Beta vulgaris (sugar beet) and Beta maritima (wild beet). In accordance with those results we suggested that chromatin remodeling can be an active process in the regulation of genes related to salt stress tolerance of these plants. Therefore we performed ChIP assay in control and salt stressed (250 and 500 mM NaCl) plants and compared the enrichment of acetylation in the associated chromatin sites. We found that the transcriptional activation of one peroxidase (POX) encoding gene was associated with the elevated levels of acetylation in H3K9 and H3K27 sites. The acetylation patterns were remarkably different between two species in which the highest acetylation levels were found at H3K9 and H3K27 in wild beet and sugar beet respectively.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Science, Department of Biology, Ege University, 35100 Bornova, Izmir, Turkey
| | - Filiz Ozdemir
- Faculty of Science, Department of Biology, Ege University, 35100 Bornova, Izmir, Turkey
| | - Aybüke Güler
- Faculty of Science, Department of Biology, Ege University, 35100 Bornova, Izmir, Turkey
| | - Melike Bor
- Faculty of Science, Department of Biology, Ege University, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
958
|
Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.). Sci Rep 2016; 6:21476. [PMID: 26892368 PMCID: PMC4759826 DOI: 10.1038/srep21476] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/25/2016] [Indexed: 12/02/2022] Open
Abstract
Salt stress dramatically reduces crop yield and quality, but the molecular mechanisms underlying salt tolerance remain largely unknown. To explore the wheat transcriptional response to salt stress, we performed high-throughput transcriptome sequencing of 10-day old wheat roots under normal condition and 6, 12, 24 and 48 h after salt stress (HASS) in both a salt-tolerant cultivar and salt-sensitive cultivar. The results demonstrated global gene expression reprogramming with 36,804 genes that were up- or down-regulated in wheat roots under at least one stress condition compared with the controls and revealed the specificity and complexity of the functional pathways between the two cultivars. Further analysis showed that substantial expression partitioning of homeologous wheat genes occurs when the plants are subjected to salt stress, accounting for approximately 63.9% (2,537) and 66.1% (2,624) of the homeologous genes in ‘Chinese Spring’ (CS) and ‘Qing Mai 6’ (QM). Interestingly, 143 salt-responsive genes have been duplicated and tandemly arrayed on chromosomes during wheat evolution and polyploidization events, and the expression patterns of 122 (122/143, 85.3%) tandem duplications diverged dynamically over the time-course of salinity exposure. In addition, constitutive expression or silencing of target genes in Arabidopsis and wheat further confirmed our high-confidence salt stress-responsive candidates.
Collapse
|
959
|
Wang J, Yao L, Li B, Meng Y, Ma X, Lai Y, Si E, Ren P, Yang K, Shang X, Wang H. Comparative Proteomic Analysis of Cultured Suspension Cells of the Halophyte Halogeton glomeratus by iTRAQ Provides Insights into Response Mechanisms to Salt Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:110. [PMID: 26904073 PMCID: PMC4746295 DOI: 10.3389/fpls.2016.00110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/21/2016] [Indexed: 05/23/2023]
Abstract
Soil salinity severely threatens land use capability and crop yields worldwide. An analysis of the molecular mechanisms of salt tolerance in halophytes will contribute to the development of salt-tolerant crops. In this study, a combination of physiological characteristics and iTRAQ-based proteomic approaches was conducted to investigate the molecular mechanisms underlying the salt response of suspension cell cultures of halophytic Halogeton glomeratus. These cells showed halophytic growth responses comparable to those of the whole plant. In total, 97 up-regulated proteins and 192 down-regulated proteins were identified as common to both 200 and 400 mM NaCl concentration treatments. Such salinity responsive proteins were mainly involved in energy, carbohydrate metabolism, stress defense, protein metabolism, signal transduction, cell growth, and cytoskeleton metabolism. Effective regulatory protein expression related to energy, stress defense, and carbohydrate metabolism play important roles in the salt-tolerance of H. glomeratus suspension cell cultures. However, known proteins regulating Na(+) efflux from the cytoplasm and its compartmentalization into the vacuole did not change significantly under salinity stress suggesting our existing knowledge concerning Na(+) extrusion and compartmentalization in halophytes needs to be evaluated further. Such data are discussed in the context of our current understandings of the mechanisms involved in the salinity response of the halophyte, H. glomeratus.
Collapse
Affiliation(s)
- Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Lirong Yao
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Baochun Li
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Botany, College of Life Science and Technology, Gansu Agricultural UniversityLanzhou, China
| | - Yaxiong Meng
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Xiaole Ma
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Yong Lai
- Department of Agriculture and Forestry, College of Agriculture and Animal Husbandry, Qinghai UniversityXining, China
| | - Erjing Si
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Panrong Ren
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Ke Yang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| |
Collapse
|
960
|
Chen T, Zhang L, Shang H, Liu S, Peng J, Gong W, Shi Y, Zhang S, Li J, Gong J, Ge Q, Liu A, Ma H, Zhao X, Yuan Y. iTRAQ-Based Quantitative Proteomic Analysis of Cotton Roots and Leaves Reveals Pathways Associated with Salt Stress. PLoS One 2016; 11:e0148487. [PMID: 26841024 PMCID: PMC4739606 DOI: 10.1371/journal.pone.0148487] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/19/2016] [Indexed: 01/24/2023] Open
Abstract
Salinity is a major abiotic stress that affects plant growth and development. In this study, we performed a proteomic analysis of cotton roots and leaf tissue following exposure to saline stress. 611 and 1477 proteins were differentially expressed in the roots and leaves, respectively. In the roots, 259 (42%) proteins were up-regulated and 352 (58%) were down-regulated. In the leaves, 748 (51%) proteins were up-regulated and 729 (49%) were down-regulated. On the basis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, we concluded that the phenylalanine metabolism and starch and sucrose metabolism were active for energy homeostasis to cope with salt stress in cotton roots. Moreover, photosynthesis, pyruvate metabolism, glycolysis / gluconeogenesis, carbon fixation in photosynthetic organisms and phenylalanine metabolism were inhabited to reduce energy consumption. Characterization of the signaling pathways will help elucidate the mechanism activated by cotton in response to salt stress.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Lei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Shaodong Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Jun Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Siping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Huijuan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Xinhua Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| |
Collapse
|
961
|
Courtney AJ, Xu J, Xu Y. Responses of growth, antioxidants and gene expression in smooth cordgrass (Spartina alterniflora) to various levels of salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 99:162-170. [PMID: 26760954 DOI: 10.1016/j.plaphy.2015.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
Salinity is a major environmental factor limiting the productivity and quality of crop plants. While most cereal crops are salt-sensitive, several halophytic grasses are able to maintain their growth under saline conditions. Elucidating the mechanisms for salinity responses in halophytic grasses would contribute to the breeding of salt-tolerant cereal and turf species belonging to the Poaceae family. Smooth cordgrass (Spartina alterniflora) is a dominant native halophytic grass in the Hackensack Meadowlands, the coastal salt marshes located in northeastern New Jersey. The goals of this study were to examine the growth pattern of S. alterniflora in a salinity gradient and identify an optimal range of salinity for its maximal growth. The regulation of its antioxidant system and gene expression under supraoptimal salinity conditions was also investigated. Our results showed that a salinity of 4 parts per thousand (ppt) (68 mM) was most favorable for the growth of S. alterniflora, followed by a non-salt environment. S. alterniflora responded to salts in the environment by regulating antioxidant enzyme activities and the expression of stress-induced proteins such as ALDH, HVA22 and PEPC. The plant may tolerate salinity up to the concentration of sea water, but any salinity above 12 ppt retarded its growth and altered the expression of genes encoding critical proteins.
Collapse
Affiliation(s)
- Abigail J Courtney
- School of Theoretical and Applied Science, Ramapo College of New Jersey, Mahwah, NJ, USA
| | - Jichen Xu
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Yan Xu
- School of Theoretical and Applied Science, Ramapo College of New Jersey, Mahwah, NJ, USA.
| |
Collapse
|
962
|
Chang W, Liu X, Zhu J, Fan W, Zhang Z. An aquaporin gene from halophyte Sesuvium portulacastrum, SpAQP1, increases salt tolerance in transgenic tobacco. PLANT CELL REPORTS 2016; 35:385-95. [PMID: 26581952 DOI: 10.1007/s00299-015-1891-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/29/2015] [Accepted: 10/27/2015] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE SpAQP1 was strongly induced by salt in an ABA-independent way, promoted seed germination and root growth in transgenic tobaccos and increased salt tolerance by increasing the activities of antioxidative enzymes. Aquaporin (AQP) plays crucial roles in the responses of plant to abiotic stresses such as drought, salt and cold. Compared to glycophytes, halophytes often have excellent salt and drought tolerances. To uncover the molecular mechanism of halophyte Sesuvium portulacastrum tolerance to salt, in this study, an AQP gene, SpAQP1, from S. portulacastrum was isolated and characterized. The amino acid sequence of SpAQP1 shared high homology with that of plant plasma membrane intrinsic proteins (PIPs) and contained the distinct molecular features of PIPs. In the phylogenic tree, SpAQP1 was evidently classified as the PIP2 subfamily. SpAQP1 is expressed in roots, stems and leaves, and was significantly induced by NaCl treatment and inhibited by abscisic acid (ABA) treatment. When heterologously expressed in yeast and tobacco, SpAQP1 enhanced the salt tolerance of yeast strains and tobacco plants and promoted seed germination and root growth under salt stress in transgenic plants. The activity of antioxidative enzymes including superoxide dismutase, peroxidase and catalase was increased in transgenic plants overexpressing SpAQP1. Taken together, our studies suggested that SpAQP1 functioned in the responses of S. portulacastrum to salt stress and could increase salt tolerance by enhancing the antioxidative activity of plants.
Collapse
Affiliation(s)
- Wenjun Chang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, People's Republic of China.
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Longhua District, Haikou, 571101, People's Republic of China.
| | - Xiwen Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, People's Republic of China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Longhua District, Haikou, 571101, People's Republic of China
| | - Jiahong Zhu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, People's Republic of China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Longhua District, Haikou, 571101, People's Republic of China
| | - Wei Fan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, People's Republic of China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Longhua District, Haikou, 571101, People's Republic of China
| | - Zhili Zhang
- Hainan Academy of Agricultural Sciences, 4 Xingdan Road, Haikou, 571100, People's Republic of China.
| |
Collapse
|
963
|
Molecular Assortment of Lens Species with Different Adaptations to Drought Conditions Using SSR Markers. PLoS One 2016; 11:e0147213. [PMID: 26808306 PMCID: PMC4726755 DOI: 10.1371/journal.pone.0147213] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/30/2015] [Indexed: 11/21/2022] Open
Abstract
The success of drought tolerance breeding programs can be enhanced through molecular assortment of germplasm. This study was designed to characterize molecular diversity within and between Lens species with different adaptations to drought stress conditions using SSR markers. Drought stress was applied at seedling stage to study the effects on morpho-physiological traits under controlled condition, where tolerant cultivars and wilds showed 12.8–27.6% and 9.5–23.2% reduction in seed yield per plant respectively. When juxtaposed to field conditions, the tolerant cultivars (PDL-1 and PDL-2) and wild (ILWL-314 and ILWL-436) accessions showed 10.5–26.5% and 7.5%–15.6% reduction in seed yield per plant, respectively under rain-fed conditions. The reductions in seed yield in the two tolerant cultivars and wilds under severe drought condition were 48–49% and 30.5–45.3% respectively. A set of 258 alleles were identified among 278 genotypes using 35 SSR markers. Genetic diversity and polymorphism information contents varied between 0.321–0.854 and 0.299–0.836, with mean value of 0.682 and 0.643, respectively. All the genotypes were clustered into 11 groups based on SSR markers. Tolerant genotypes were grouped in cluster 6 while sensitive ones were mainly grouped into cluster 7. Wild accessions were separated from cultivars on the basis of both population structure and cluster analysis. Cluster analysis has further grouped the wild accessions on the basis of species and sub-species into 5 clusters. Physiological and morphological characters under drought stress were significantly (P = 0.05) different among microsatellite clusters. These findings suggest that drought adaptation is variable among wild and cultivated genotypes. Also, genotypes from contrasting clusters can be selected for hybridization which could help in evolution of better segregants for improving drought tolerance in lentil.
Collapse
|
964
|
Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6284547. [PMID: 26951880 PMCID: PMC4756578 DOI: 10.1155/2016/6284547] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 11/24/2022]
Abstract
Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT) and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR) were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.
Collapse
|
965
|
Patil G, Do T, Vuong TD, Valliyodan B, Lee JD, Chaudhary J, Shannon JG, Nguyen HT. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci Rep 2016; 6:19199. [PMID: 26781337 PMCID: PMC4726057 DOI: 10.1038/srep19199] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/07/2015] [Indexed: 01/12/2023] Open
Abstract
Soil salinity is a limiting factor of crop yield. The soybean is sensitive to soil salinity, and a dominant gene, Glyma03g32900 is primarily responsible for salt-tolerance. The identification of high throughput and robust markers as well as the deployment of salt-tolerant cultivars are effective approaches to minimize yield loss under saline conditions. We utilized high quality (15x) whole-genome resequencing (WGRS) on 106 diverse soybean lines and identified three major structural variants and allelic variation in the promoter and genic regions of the GmCHX1 gene. The discovery of single nucleotide polymorphisms (SNPs) associated with structural variants facilitated the design of six KASPar assays. Additionally, haplotype analysis and pedigree tracking of 93 U.S. ancestral lines were performed using publically available WGRS datasets. Identified SNP markers were validated, and a strong correlation was observed between the genotype and salt treatment phenotype (leaf scorch, chlorophyll content and Na(+) accumulation) using a panel of 104 soybean lines and, an interspecific bi-parental population (F8) from PI483463 x Hutcheson. These markers precisely identified salt-tolerant/sensitive genotypes (>91%), and different structural-variants (>98%). These SNP assays, supported by accurate phenotyping, haplotype analyses and pedigree tracking information, will accelerate marker-assisted selection programs to enhance the development of salt-tolerant soybean cultivars.
Collapse
Affiliation(s)
- Gunvant Patil
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Tuyen Do
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Tri D. Vuong
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Babu Valliyodan
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Jeong-Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Juhi Chaudhary
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - J. Grover Shannon
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Henry T. Nguyen
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| |
Collapse
|
966
|
Yang G, Wang C, Wang Y, Guo Y, Zhao Y, Yang C, Gao C. Overexpression of ThVHAc1 and its potential upstream regulator, ThWRKY7, improved plant tolerance of Cadmium stress. Sci Rep 2016; 6:18752. [PMID: 26744182 PMCID: PMC4705465 DOI: 10.1038/srep18752] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/25/2015] [Indexed: 01/03/2023] Open
Abstract
As one of the most toxic heavy metals in the environment, cadmium (Cd) poses a severe threat to plant growth. We previously reported that overexpression of the Tamarix hispida V-ATPase c subunit (ThVHAc1) improved the Cd tolerance of Saccharomyces cerevisiae. In the current study, we further explored the Cd tolerance conferred by ThVHAc1 in Arabidopsis and T. hispida. ThVHAc1 transgenic Arabidopsis had higher seed germination, biomass, and chlorophyll content under CdCl2 treatment. In Cd-stressed plants, overexpression of ThVHAc1 significantly improved V-ATPase activity and affected the expression of other V-ATPase subunit-encoding genes. Intriguingly, the lower level of ROS accumulation in ThVHAc1-overexpressing lines under CdCl2 treatment demonstrated that ThVHAc1 may modulate Cd stress tolerance by regulating ROS homeostasis. Transient expression of ThVHAc1 in T. hispida further confirmed these findings. Furthermore, promoter analysis and yeast one-hybrid assay revealed that the transcription factor ThWRKY7 can specifically bind to the WRKY cis-element in the ThVHAc1 promoter. ThWRKY7 exhibited similar expression patterns as ThVHAc1 under CdCl2 treatment and improved Cd tolerance, suggesting that ThWRKY7 may be an upstream regulatory gene of ThVHAc1. Therefore, our results show that the combination of ThVHAc1 and its upstream regulator could be used to improve Cd stress tolerance in woody plants.
Collapse
Affiliation(s)
- Guiyan Yang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Yucong Guo
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Yulin Zhao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
967
|
Li X, Pan Y, Chang B, Wang Y, Tang Z. NO Promotes Seed Germination and Seedling Growth Under High Salt May Depend on EIN3 Protein in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 6:1203. [PMID: 26779234 PMCID: PMC4703817 DOI: 10.3389/fpls.2015.01203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/14/2015] [Indexed: 05/23/2023]
Abstract
The gas molecule nitric oxide (NO) can cooperate with ethylene to tightly modulate plant growth and stress responses. One of the mechanism of their crosstalk is that NO is able to activate ethylene biosynthesis, possibly through post-translational modification of key enzymes such as ACC synthase and oxidase by S-nitrosylation. In this paper, we focus on the crosstalk of NO with ethylene signaling transduction transcription factor EIN3 (Ethylene Insensitive 3) and downstream gene expression in alleviating germination inhibition and growth damage induced by high salt. The Arabidopsis lines affected in ethylene signaling (ein3eil1) and NO biosynthesis (nia1nia2) were employed to compare with the wild-type Col-0 and overexpressing line EIN3ox. Firstly, the obviously inhibited germination, greater ratio of bleached leaves and enhanced electrolyte leakage were found in ein3eil1 and nia1nia2 lines than in Col-0 plants upon high salinity. However, the line EIN3ox obtained a notably elevated ability to germinate and improved seedling resistance. The experiment with SNP alone or plus high salt mostly enhanced the expression of EIN3 transcripts, compared with ACO4 and ACS2. The western blot and transcript analysis found that high-salt-induced EIN3 stabilization and EIN3 transcripts were largely attenuated in the NO biogenesis mutant nia1nia2 plants than in Col-0 ones. This observation was confirmed by simulation experiments with NO scavenger cPTIO to block NO emission. Taken together, our study provides insights that NO promotes seed germination and seedlings growth under salinity may depend on EIN3 protein.
Collapse
Affiliation(s)
- Xilong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Yajie Pan
- The Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Bowen Chang
- The Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Zhonghua Tang
- The Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| |
Collapse
|
968
|
Ripoll J, Urban L, Bertin N. The Potential of the MAGIC TOM Parental Accessions to Explore the Genetic Variability in Tomato Acclimation to Repeated Cycles of Water Deficit and Recovery. FRONTIERS IN PLANT SCIENCE 2016; 6:1172. [PMID: 26779213 PMCID: PMC4700940 DOI: 10.3389/fpls.2015.01172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/07/2015] [Indexed: 05/18/2023]
Abstract
Episodes of water deficit (WD) during the crop cycle of tomato may negatively impact plant growth and fruit yield, but they may also improve fruit quality. Moreover, a moderate WD may induce a plant "memory effect" which is known to stimulate plant acclimation and defenses for upcoming stress episodes. The objective of this study was to analyze the positive and negative impacts of repeated episodes of WD at the plant and fruit levels. Three episodes of WD (-38, -45, and -55% of water supply) followed by three periods of recovery ("WD treatments"), were applied to the eight parents of the Multi-Parent Advanced Generation Inter-Cross population which offers the largest allelic variability observed in tomato. Predawn and midday water potentials, chlorophyll a fluorescence, growth and fruit quality traits [contents in sugars, acids, carotenoids, and ascorbic acid (AsA)] were measured throughout the experiment. Important genotypic variations were observed both at the plant and fruit levels and variations in fruit and leaf traits were found not to be correlated. Overall, the WD treatments were at the origin of important osmotic regulations, reduction of leaf growth, acclimation of photosynthetic functioning, notably through an increase in the chlorophyll content and in the quantum yield of the electron transport flux until PSI acceptors (J 0 (RE1)/J (ABS)). The effects on fruit sugar, acid, carotenoid and AsA contents on a dry matter basis ranged from negative to positive to nil depending on genotypes and stress intensity. Three small fruit size accessions were richer in AsA on a fresh matter basis, due to concentration effects. So, fruit quality was improved under WD mainly through concentration effects. On the whole, two accessions, LA1420 and Criollo appeared as interesting genetic resources, cumulating adaptive traits both at the leaf and fruit levels. Our observations show that the complexity involved in plant responses, when considering a broad range of physiological traits and the variability of genotypic effects, represent a true challenge for upcoming studies aiming at taking advantage of, not just dealing with WD.
Collapse
Affiliation(s)
- Julie Ripoll
- UR1115 Plantes et Systèmes de cultures Horticoles, INRAAvignon, France
- Laboratoire de Physiologie des Fruits et Légumes EA4279, Université d’Avignon et des Pays du VaucluseAvignon, France
| | - Laurent Urban
- Laboratoire de Physiologie des Fruits et Légumes EA4279, Université d’Avignon et des Pays du VaucluseAvignon, France
| | - Nadia Bertin
- UR1115 Plantes et Systèmes de cultures Horticoles, INRAAvignon, France
| |
Collapse
|
969
|
KAVAS M, BALOĞLU MC, YÜCEL AM, ÖKTEM HA. Enhanced salt tolerance of transgenic tobacco expressing a wheat salt tolerance gene. Turk J Biol 2016. [DOI: 10.3906/biy-1506-36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
970
|
Plouznikoff K, Declerck S, Calonne-Salmon M. Mitigating Abiotic Stresses in Crop Plants by Arbuscular Mycorrhizal Fungi. BELOWGROUND DEFENCE STRATEGIES IN PLANTS 2016. [DOI: 10.1007/978-3-319-42319-7_15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
971
|
Amin USM, Biswas S, Elias SM, Razzaque S, Haque T, Malo R, Seraj ZI. Enhanced Salt Tolerance Conferred by the Complete 2.3 kb cDNA of the Rice Vacuolar Na(+)/H(+) Antiporter Gene Compared to 1.9 kb Coding Region with 5' UTR in Transgenic Lines of Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:14. [PMID: 26834778 PMCID: PMC4724728 DOI: 10.3389/fpls.2016.00014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 01/07/2016] [Indexed: 05/23/2023]
Abstract
Soil salinity is one of the most challenging problems that restricts the normal growth and production of rice worldwide. It has therefore become very important to produce more saline tolerant rice varieties. This study shows constitutive over-expression of the vacuolar Na(+)/H(+) antiporter gene (OsNHX1) from the rice landrace (Pokkali) and attainment of enhanced level of salinity tolerance in transgenic rice plants. It also shows that inclusion of the complete un-translated regions (UTRs) of the alternatively spliced OsNHX1 gene provides a higher level of tolerance to the transgenic rice. Two separate transformation events of the OsNHX1 gene, one with 1.9 kb region containing the 5' UTR with CDS and the other of 2.3 kb, including 5' UTR, CDS, and the 3' UTR regions were performed. The transgenic plants with these two different constructs were advanced to the T3 generation and physiological and molecular screening of homozygous plants was conducted at seedling and reproductive stages under salinity (NaCl) stress. Both transgenic lines were observed to be tolerant compared to WT plants at both physiological stages. However, the transgenic lines containing the CDS with both the 5' and 3' UTR were significantly more tolerant compared to the transgenic lines containing OsNHX1 gene without the 3' UTR. At the seedling stage at 12 dS/m stress, the chlorophyll content was significantly higher (P < 0.05) and the electrolyte leakage significantly lower (P < 0.05) in the order 2.3 kb > 1.9 kb > and WT lines. Yield in g/plant in the best line from the 2.3 kb plants was significantly more (P < 0.01) compared, respectively, to the best 1.9 kb line and WT plants at stress of 6 dS/m. Transformation with the complete transcripts rather than the CDS may therefore provide more durable level of tolerance.
Collapse
|
972
|
Álvarez-Aragón R, Haro R, Benito B, Rodríguez-Navarro A. Salt intolerance in Arabidopsis: shoot and root sodium toxicity, and inhibition by sodium-plus-potassium overaccumulation. PLANTA 2016; 243:97-114. [PMID: 26345991 DOI: 10.1007/s00425-015-2400-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/28/2015] [Indexed: 05/21/2023]
Abstract
Arabidopsis plants in NaCl suffering half growth inhibition do not suffer osmotic stress and seldom shoot Na (+) toxicity; overaccumulation of Na (+) plus K (+) might trigger the inhibition. It is widely assumed that salinity inhibits plant growth by osmotic stress and shoot Na(+) toxicity. This study aims to examine the growth inhibition of Arabidopsis thaliana by NaCl concentrations that allow the completion of the life cycle. Unaffected Col-0 wild-type plants were used to define nontoxic Na(+) contents; Na(+) toxicities in shoots and roots were analyzed in hkt1 and sos1 mutants, respectively. The growth inhibition of Col-0 plants at 40 mM Na(+) was mild and equivalent to that produced by 8 and 4 mM Na(+) in hkt1 and sos1 plants, respectively. Therefore, these mutants allowed to study the toxicity of Na(+) in the absence of an osmotic challenge. Col-0 and Ts-1 accessions showed very different Na(+) contents but similar growth inhibitions; Ts-1 plants showed very high leaf Na(+) contents but no symptoms of Na(+) toxicity. Ak-1, C24, and Fei-0 plants were highly affected by NaCl showing evident symptoms of shoot Na(+) toxicity. Increasing K(+) in isotonic NaCl/KCl combinations dramatically decreased the Na(+) content in all Arabidopsis accessions and eliminated the signs of Na(+) toxicity in most of them but did not relieve growth inhibition. This suggested that the dominant inhibition in these conditions was either osmotic or of an ionic nature unspecific for Na(+) or K(+). Col-0 and Ts-1 plants growing in sorbitol showed a clear osmotic stress characterized by a notable decrease of their water content, but this response did not occur in NaCl. Overaccumulation of Na(+) plus K(+) might trigger growth reduction in NaCl-treated plants.
Collapse
Affiliation(s)
- Rocío Álvarez-Aragón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223-Pozuelo de Alarcón, Madrid, Spain
| | - Rosario Haro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223-Pozuelo de Alarcón, Madrid, Spain
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223-Pozuelo de Alarcón, Madrid, Spain
| | - Alonso Rodríguez-Navarro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223-Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
973
|
Vijayalakshmi T, Vijayakumar AS, Kiranmai K, Nareshkumar A, Sudhakar C. Salt Stress Induced Modulations in Growth, Compatible Solutes and Antioxidant Enzymes Response in Two Cultivars of Safflower (<i>Carthamus tinctorius</i> L. Cultivar TSF1 and Cultivar SM) Differing in Salt Tolerance. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ajps.2016.713168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
974
|
Kazachkova Y, Khan A, Acuña T, López-Díaz I, Carrera E, Khozin-Goldberg I, Fait A, Barak S. Salt Induces Features of a Dormancy-Like State in Seeds of Eutrema (Thellungiella) salsugineum, a Halophytic Relative of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:1071. [PMID: 27536302 PMCID: PMC4971027 DOI: 10.3389/fpls.2016.01071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/07/2016] [Indexed: 05/08/2023]
Abstract
The salinization of land is a major factor limiting crop production worldwide. Halophytes adapted to high levels of salinity are likely to possess useful genes for improving crop tolerance to salt stress. In addition, halophytes could provide a food source on marginal lands. However, despite halophytes being salt-tolerant plants, the seeds of several halophytic species will not germinate on saline soils. Yet, little is understood regarding biochemical and gene expression changes underlying salt-mediated inhibition of halophyte seed germination. We have used the halophytic Arabidopsis relative model system, Eutrema (Thellungiella) salsugineum to explore salt-mediated inhibition of germination. We show that E. salsugineum seed germination is inhibited by salt to a far greater extent than in Arabidopsis, and that this inhibition is in response to the osmotic component of salt exposure. E. salsugineum seeds remain viable even when germination is completely inhibited, and germination resumes once seeds are transferred to non-saline conditions. Moreover, removal of the seed coat from salt-treated seeds allows embryos to germinate on salt-containing medium. Mobilization of seed storage reserves is restricted in salt-treated seeds, while many germination-associated metabolic changes are arrested or progress to a lower extent. Salt-exposed seeds are further characterized by a reduced GA/ABA ratio and increased expression of the germination repressor genes, RGL2, ABI5, and DOG1. Furthermore, a salt-mediated increase in expression of a LATE EMBRYOGENESIS ABUNDANT gene and accretion of metabolites involved in osmoprotection indicates induction of processes associated with stress tolerance, and accumulation of easily mobilized carbon reserves. Overall, our results suggest that salt inhibits E. salsugineum seed germination by inducing a seed state with molecular features of dormancy while a physical constraint to radicle emergence is provided by the seed coat layers. This seed state could facilitate survival on saline soils until a rain event(s) increases soil water potential indicating favorable conditions for seed germination and establishment of salt-tolerant E. salsugineum seedlings.
Collapse
Affiliation(s)
- Yana Kazachkova
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
| | - Asif Khan
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
| | - Tania Acuña
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
| | - Isabel López-Díaz
- Instituto de Biología Molecular y Celular de Plantas, CSIC–UPV, ValenciaSpain
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, CSIC–UPV, ValenciaSpain
| | - Inna Khozin-Goldberg
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
| | - Aaron Fait
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
- *Correspondence: Simon Barak, Aaron Fait,
| | - Simon Barak
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
- *Correspondence: Simon Barak, Aaron Fait,
| |
Collapse
|
975
|
Tomescu AMF, Klymiuk AA, Matsunaga KKS, Bippus AC, Shelton GWK. Microbes and the Fossil Record: Selected Topics in Paleomicrobiology. THEIR WORLD: A DIVERSITY OF MICROBIAL ENVIRONMENTS 2016. [DOI: 10.1007/978-3-319-28071-4_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
976
|
Ranjit SL, Manish P, Penna S. Early osmotic, antioxidant, ionic, and redox responses to salinity in leaves and roots of Indian mustard (Brassica juncea L.). PROTOPLASMA 2016; 253:101-10. [PMID: 25786350 DOI: 10.1007/s00709-015-0792-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 03/02/2015] [Indexed: 05/08/2023]
Abstract
Salt-stress-induced alterations in osmotic, ionic, and redox responses were studied in the early period of treatment (30 min to 5 days) in seedlings of Brassica juncea L. Roots and shoots under mild (50 mM) and severe (250 mM) NaCl stress were analyzed for growth, oxidative stress, osmolyte accumulation, antioxidant defense, and redox state. Growth reduction was less pronounced in the early time period of salt stress while oxidative damage increased linearly and in a sustained manner under severe stress up to 6 h. An early and transient reactive oxygen species (ROS) burst, as evidenced by superoxide and hydrogen peroxide level was observed, followed by activation of enzymatic antioxidant system (GPX, SOD, CAT, and GR) in both root and shoot. The enzymatic activity was not affected much under mild stress particularly at early phase; however, severe stress induced a significant increase in the activity of antioxidant enzymes. Root ascorbate was progressively accumulated, and its redox state maintained in the early time phase of treatment under mild stress while increase in root and shoot glutathione content was recorded under mild stress at 5 days when the active ascorbate pool decreased. While early period of salt stress showed significant Na(+) accumulation over control, plants subjected to mild stress measured less Na(+) accumulation up to 5 days compared to severely stressed plants. The results showed an early induction of differential responses to salt stress in roots and shoots of Brassica which include growth limitations, reduced relative water content, increased osmolytes, redox state, and antioxidant system, and a significant Na(+) increase. The results also indicate that roots and shoots may have distinct mechanisms of responses to salt stress.
Collapse
Affiliation(s)
- Singh Laxmi Ranjit
- Plant Stress physiology and biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Pandey Manish
- Plant Stress physiology and biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Suprasanna Penna
- Plant Stress physiology and biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
| |
Collapse
|
977
|
Zaki HEM, Yokoi S. A comparative in vitro study of salt tolerance in cultivated tomato and related wild species. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2016; 33:361-372. [PMID: 31274997 PMCID: PMC6587036 DOI: 10.5511/plantbiotechnology.16.1006a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/06/2016] [Indexed: 05/22/2023]
Abstract
Salinity stress is a major abiotic stress for plants worldwide. This study was carried out to determine the variation in salt tolerance for 12 different genotypes belonging to three different tomato species: Solanum lycopersicum (L), S. peruvianum (L) and S. pimpinellifolium (L). Shoot apices and callus cultures were exposed to different levels of salinity stress ranging from no salt (control) to 100, 200 and 300 mmol L-1 NaCl. All growth and physiological parameters were significantly affected by salt stress. Most shoot apices of S. lycopersicum did not develop roots when exposed to low NaCl levels, whereas apices of S. peruvianum and S. pimpinellifolium developed roots when exposed to all salt levels. This difference in salt tolerance was clearly shown on the basis of root fresh weights and root surface areas. Callus growth in response to increased salinity was much greater in S. peruvianum and S. pimpinellifolium than in S. lycopersicum. The Cl- and Na+ concentrations increased significantly with increasing salt in the three species, although the S. peruvianum lines accumulated more ions compared with the others. As the salt concentration increased, less K+ accumulated in S. lycopersicum compared to the related wild species. The results obtained in this study suggest that S. peruvianum line 0043-1 was the accession with the best salt tolerance. The most tolerant cultivated tomato (S. lycopersicum) cultivar was 'Rutgers.' Both S. peruvianum line 0043-1 and S. lycopersicum 'Rutgers' are good candidates for inclusion in tomato breeding programs for salt-tolerance.
Collapse
Affiliation(s)
- Haitham E. M. Zaki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
| | - Shuji Yokoi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, n-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- E-mail: Tel & Fax: +81-72-254-9701
| |
Collapse
|
978
|
Yousfi S, Márquez AJ, Betti M, Araus JL, Serret MD. Gene expression and physiological responses to salinity and water stress of contrasting durum wheat genotypes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:48-66. [PMID: 25869057 DOI: 10.1111/jipb.12359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/02/2015] [Indexed: 05/06/2023]
Abstract
Elucidating the relationships between gene expression and the physiological mechanisms remains a bottleneck in breeding for resistance to salinity and drought. This study related the expression of key target genes with the physiological performance of durum wheat under different combinations of salinity and irrigation. The candidate genes assayed included two encoding for the DREB (dehydration responsive element binding) transcription factors TaDREB1A and TaDREB2B, another two for the cytosolic and plastidic glutamine synthetase (TaGS1 and TaGS2), and one for the specific Na(+) /H(+) vacuolar antiporter (TaNHX1). Expression of these genes was related to growth and different trait indicators of nitrogen metabolism (nitrogen content, stable nitrogen isotope composition, and glutamine synthetase and nitrate reductase activities), photosynthetic carbon metabolism (stable carbon isotope composition and different gas exchange traits) and ion accumulation. Significant interaction between genotype and growing conditions occurred for growth, nitrogen content, and the expression of most genes. In general terms, higher expression of TaGS1, TaGS2, TaDREB2B, and to a lesser extent of TaNHX1 were associated with a better genotypic performance in growth, nitrogen, and carbon photosynthetic metabolism under salinity and water stress. However, TaDREB1A was increased in expression under stress compared with control conditions, with tolerant genotypes exhibiting lower expression than susceptible ones.
Collapse
Affiliation(s)
- Salima Yousfi
- Unit of Plant Physiology, Department of Plant Biology, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Antonio J Márquez
- Department of Plant Biochemistry and Molecular Biology, Faculty of Chemistry, University of Seville, Sevilla, 41012, Spain
| | - Marco Betti
- Department of Plant Biochemistry and Molecular Biology, Faculty of Chemistry, University of Seville, Sevilla, 41012, Spain
| | - José Luis Araus
- Unit of Plant Physiology, Department of Plant Biology, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Maria Dolores Serret
- Unit of Plant Physiology, Department of Plant Biology, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
979
|
ÇAKMAK D, KARAOĞLU C, AASIM M, SANCAK C, ÖZCAN S. Advancement in protocol for in vitro seed germination, regeneration, bulblet maturation, and acclimatization of Fritillaria persica. Turk J Biol 2016. [DOI: 10.3906/biy-1510-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
980
|
Zhou Y, Underhill SJR. Breadfruit (Artocarpus altilis) gibberellin 2-oxidase genes in stem elongation and abiotic stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 98:81-8. [PMID: 26646240 DOI: 10.1016/j.plaphy.2015.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 05/23/2023]
Abstract
Breadfruit (Artocarpus altilis) is a traditional staple tree crop in the Oceania. Susceptibility to windstorm damage is a primary constraint on breadfruit cultivation. Significant tree loss due to intense tropical windstorm in the past decades has driven a widespread interest in developing breadfruit with dwarf stature. Gibberellin (GA) is one of the most important determinants of plant height. GA 2-oxidase is a key enzyme regulating the flux of GA through deactivating biologically active GAs in plants. As a first step toward understanding the molecular mechanism of growth regulation in the species, we isolated a cohort of four full-length GA2-oxidase cDNAs, AaGA2ox1- AaGA2ox4 from breadfruit. Sequence analysis indicated the deduced proteins encoded by these AaGA2oxs clustered together under the C19 GA2ox group. Transcripts of AaGA2ox1, AaGA2ox2 and AaGA2ox3 were detected in all plant organs, but exhibited highest level in source leaves and stems. In contrast, transcript of AaGA2ox4 was predominantly expressed in roots and flowers, and displayed very low expression in leaves and stems. AaGA2ox1, AaGA2ox2 and AaGA2ox3, but not AaGA2ox4 were subjected to GA feedback regulation where application of exogenous GA3 or gibberellin biosynthesis inhibitor, paclobutrazol was shown to manipulate the first internode elongation of breadfruit. Treatments of drought or high salinity increased the expression of AaGA2ox1, AaGA2ox2 and AaGA2ox4. But AaGA2ox3 was down-regulated under salt stress. The function of AaGA2oxs is discussed with particular reference to their role in stem elongation and involvement in abiotic stress response in breadfruit.
Collapse
Affiliation(s)
- Yuchan Zhou
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD 4072, Australia; Faculty of Science, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.
| | - Steven J R Underhill
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD 4072, Australia; Faculty of Science, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| |
Collapse
|
981
|
Skorupa-Kłaput M, Szczepanek J, Kurnik K, Tretyn A, Tyburski J. The expression patterns of plasma membrane aquaporins in leaves of sugar beet and its halophyte relative, Beta vulgaris ssp. maritima, in response to salt stress. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
982
|
Jülke S, Ludwig-Müller J. Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP) Gene Expression to the Clubroot Disease and Salt Stress. PLANTS (BASEL, SWITZERLAND) 2015; 5:E2. [PMID: 27135222 PMCID: PMC4844412 DOI: 10.3390/plants5010002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/13/2015] [Accepted: 12/17/2015] [Indexed: 01/30/2023]
Abstract
The clubroot disease of Brassicaceae is caused by the obligate biotrophic protist Plasmodiophora brassicae. The disease is characterized by abnormal tumorous swellings of infected roots that result in reduced drought resistance and insufficient distribution of nutrients, leading to reduced crop yield. It is one of the most damaging diseases among cruciferous crops worldwide. The acquisition of nutrients by the protist is not well understood. Gene expression profiles in Arabidopsis thaliana clubroots indicate that lipid transfer proteins (LTPs) could be involved in disease development or at least in adaptation to the disease symptoms. Therefore, the aim of the study was to examine the role of some, of the still enigmatic LTPs during clubroot development. For a functional approach, we have generated transgenic plants that overexpress LTP genes in a root specific manner or show reduced LTP gene expression. Our results showed that overexpression of some of the LTP genes resulted in reduced disease severity whereas the lipid content in clubs of LTP mutants seems to be unaffected. Additional studies indicate a role for some LTPs during salt stress conditions in roots of A. thaliana.
Collapse
Affiliation(s)
- Sabine Jülke
- Institut für Botanik, Technische Universität Dresden, Dresden 01062, Germany.
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, Dresden 01062, Germany.
| |
Collapse
|
983
|
Khan MN. Nano-titanium Dioxide (Nano-TiO2) Mitigates NaCl Stress by Enhancing Antioxidative Enzymes and Accumulation of Compatible Solutes in Tomato (Lycopersicon esculentum Mill.). ACTA ACUST UNITED AC 2015. [DOI: 10.3923/jps.2016.1.11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
984
|
AMF Inoculation Enhances Growth and Improves the Nutrient Uptake Rates of Transplanted, Salt-Stressed Tomato Seedlings. SUSTAINABILITY 2015. [DOI: 10.3390/su71215799] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
985
|
Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P. Exploring Jasmonates in the Hormonal Network of Drought and Salinity Responses. FRONTIERS IN PLANT SCIENCE 2015; 6:1077. [PMID: 26648959 PMCID: PMC4665137 DOI: 10.3389/fpls.2015.01077] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/17/2015] [Indexed: 05/18/2023]
Abstract
Present and future food security is a critical issue compounded by the consequences of climate change on agriculture. Stress perception and signal transduction in plants causes changes in gene or protein expression which lead to metabolic and physiological responses. Phytohormones play a central role in the integration of different upstream signals into different adaptive outputs such as changes in the activity of ion-channels, protein modifications, protein degradation, and gene expression. Phytohormone biosynthesis and signaling, and recently also phytohormone crosstalk have been investigated intensively, but the function of jasmonates under abiotic stress is still only partially understood. Although most aspects of jasmonate biosynthesis, crosstalk and signal transduction appear to be similar for biotic and abiotic stress, novel aspects have emerged that seem to be unique for the abiotic stress response. Here, we review the knowledge on the role of jasmonates under drought and salinity. The crosstalk of jasmonate biosynthesis and signal transduction pathways with those of abscisic acid (ABA) is particularly taken into account due to the well-established, central role of ABA under abiotic stress. Likewise, the accumulating evidence of crosstalk of jasmonate signaling with other phytohormones is considered as important element of an integrated phytohormonal response. Finally, protein post-translational modification, which can also occur without de novo transcription, is treated with respect to its implications for phytohormone biosynthesis, signaling and crosstalk. To breed climate-resilient crop varieties, integrated understanding of the molecular processes is required to modulate and tailor particular nodes of the network to positively affect stress tolerance.
Collapse
Affiliation(s)
- Michael Riemann
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Rohit Dhakarey
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Mohamed Hazman
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Berta Miro
- Plant Breeding Genetics and Biotechnology Division, International Rice Research Institute, Makati, Philippines
| | - Ajay Kohli
- Plant Breeding Genetics and Biotechnology Division, International Rice Research Institute, Makati, Philippines
| | - Peter Nick
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
986
|
Kavas M, Kizildogan A, Gökdemir G, Baloglu MC. Genome-wide investigation and expression analysis of AP2-ERF gene family in salt tolerant common bean. EXCLI JOURNAL 2015; 14:1187-206. [PMID: 27152109 PMCID: PMC4849109 DOI: 10.17179/excli2015-600] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/01/2015] [Indexed: 12/17/2022]
Abstract
Apetala2-ethylene-responsive element binding factor (AP2-ERF) superfamily with common AP2-DNA binding domain have developmentally and physiologically important roles in plants. Since common bean genome project has been completed recently, it is possible to identify all of the AP2-ERF genes in the common bean genome. In this study, a comprehensive genome-wide in silico analysis identified 180 AP2-ERF superfamily genes in common bean (Phaseolus vulgaris). Based on the amino acid alignment and phylogenetic analyses, superfamily members were classified into four subfamilies: DREB (54), ERF (95), AP2 (27) and RAV (3), as well as one soloist. The physical and chemical characteristics of amino acids, interaction between AP2-ERF proteins, cis elements of promoter region of AP2-ERF genes and phylogenetic trees were predicted and analyzed. Additionally, expression levels of AP2-ERF genes were evaluated by in silico and qRT-PCR analyses. In silico micro-RNA target transcript analyses identified nearly all PvAP2-ERF genes as targets of by 44 different plant species' miRNAs were identified in this study. The most abundant target genes were PvAP2/ERF-20-25-62-78-113-173. miR156, miR172 and miR838 were the most important miRNAs found in targeting and BLAST analyses. Interactome analysis revealed that the transcription factor PvAP2-ERF78, an ortholog of Arabidopsis At2G28550, was potentially interacted with at least 15 proteins, indicating that it was very important in transcriptional regulation. Here we present the first study to identify and characterize the AP2-ERF transcription factors in common bean using whole-genome analysis, and the findings may serve as a references for future functional research on the transcription factors in common bean.
Collapse
Affiliation(s)
- Musa Kavas
- Ondokuz Mayis University, Faculty of Agriculture, Department of Agricultural Biotechnology, Samsun, Turkey
| | - Aslihan Kizildogan
- Ondokuz Mayis University, Faculty of Agriculture, Department of Agricultural Biotechnology, Samsun, Turkey
| | - Gökhan Gökdemir
- Ondokuz Mayis University, Faculty of Agriculture, Department of Agricultural Biotechnology, Samsun, Turkey
| | - Mehmet Cengiz Baloglu
- Kastamonu University, Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Kastamonu, Turkey
| |
Collapse
|
987
|
Kumar P, Sharma V, Raje RS, Singh B. Low-dose gamma irradiation induces water activity, leaf K+/Na+, glycine betaine, antioxidant enzyme activity and reduces lipid peroxidation and protease activity to enhance salt tolerance in pigeonpea [Cajanus cajan (L.) Millsp]. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4596-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
988
|
Alkhateeb SA, Alkhateeb AA, Solliman MED. In vitro response of date palm (Phoenix dactylifera L.) to K/Na ratio under saline conditions. Biol Res 2015; 48:63. [PMID: 26558511 PMCID: PMC4642634 DOI: 10.1186/s40659-015-0055-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 11/03/2015] [Indexed: 11/11/2022] Open
Abstract
Background
Salinity is a serious factor limiting the productivity of agricultural plants. One of the potential problems for plants growing under saline conditions is the inability to up take enough K+. The addition of K+ may considerably improve the salt tolerance of plants grown under salinity. It is assumed that increasing the K+ supply at the root zone can ameliorate the reduction in growth imposed by high salinity. The present study aims to determine whether an increase in the K/Na ratio in the external media would enhance the growth of date palm seedlings under in vitro saline conditions. Methods
Date palm plants were grown at four concentrations of Na + K/Cl (mol/m3) with three different K/Na ratios. The 12 salt treatments were added to modified MS medium. The modified MS medium was further supplemented with sucrose at 30 g/l. Results Growth decreased substantially with increasing salinity. Growth expressed as shoot and root weight, enhanced significantly with certain K/Na ratios, and higher weight was maintained in the presence of equal K and Na. It is the leaf length, leaf thickness and root thickness that had significant contribution on total dry weight. Na+ contents in leaf and root increased significantly increased with increasing salinity but substantial decreases in Na+ contents were observed in the leaf and root with certain K/Na ratios. This could be attributed to the presence of a high K+ concentration in the media. The internal Na+ concentration was higher in the roots in all treatments, which might indicate a mechanism excluding Na+ from the leaves and its retention in the roots. K/Na ratios up to one significantly increased the leaf and root K+ concentration, and it was most pronounced in leaves. The K+ contents in leaf and root was not proportional to the K+ increase in the media, showing a high affinity for K+ uptake at lower external K+ concentrations, but this mechanism continues to operate even with high external Na+ concentrations. Conclusion Increasing K/Na ratios in the growing media of date plam significantly reduced the absorption of Na+ less than 200 mM and also balance ions compartmentalization.
Collapse
Affiliation(s)
- Suliman A Alkhateeb
- Environment and Natural Resources Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Hofuf, Alhassa, 31982, Kingdom of Saudi Arabia.
| | - Abdullatif A Alkhateeb
- Agriculture Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Hofuf, Alhassa, 31982, Kingdom of Saudi Arabia.
| | - Mohei El-Din Solliman
- Agriculture Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Hofuf, Alhassa, 31982, Kingdom of Saudi Arabia. .,Plant Biotechnology Department, National Research Centre, Dokki, 12622, Cairo, Arab Republic of Egypt.
| |
Collapse
|
989
|
Dai W, Qi D, Yang T, Lv H, Guo L, Zhang Y, Zhu Y, Peng Q, Xie D, Tan J, Lin Z. Nontargeted Analysis Using Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry Uncovers the Effects of Harvest Season on the Metabolites and Taste Quality of Tea (Camellia sinensis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9869-9878. [PMID: 26494158 DOI: 10.1016/j.indcrop.2016.03.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The chemical composition and taste quality of tea fluctuate seasonally. However, the compounds responsible for the seasonal variation of metabolic pattern and taste quality are far from clear. This study compared the metabolite profiles of green teas of nine varieties that were plucked in spring, summer, and autumn by using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) on a reversed phase column. A multivariate analysis indicated distinct differences among the metabolite phenotypes of teas harvested in different seasons. Heat-map analysis and metabolic pathway analysis demonstrated that flavan-3-ols, theasinensins, procyanidins, quercetin-O-glycosides, apigenin-C-glycosides, and amino acids exhibited sharp seasonal fluctuations. An equivalent quantification of tea tastes showed that in summer and autumn teas, the bitterness and astringency were significantly elevated, whereas umami declined. Metabolite content comparisons and partial least-squares analysis suggested that several flavonoids and amino acids are mainly responsible for the seasonal variations in taste quality.
Collapse
Affiliation(s)
- Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Dandan Qi
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Ting Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Li Guo
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Dongchao Xie
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Junfeng Tan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| |
Collapse
|
990
|
Zhang X, Shi Z, Tian Y, Zhou Q, Cai J, Dai T, Cao W, Pu H, Jiang D. Salt stress increases content and size of glutenin macropolymers in wheat grain. Food Chem 2015; 197:516-21. [PMID: 26616983 DOI: 10.1016/j.foodchem.2015.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/25/2015] [Accepted: 11/02/2015] [Indexed: 11/17/2022]
Abstract
Addition of salt solution in making wheat dough improves viscoelasticity. However, the effect of native salt fortification on dough quality is unclear. Here, wheat plants were subjected to post-anthesis salt stress to modify salt ion content in grains. The contents of Na(+) and K(+), high-molecular-weight glutenin subunits (HMW-GS), glutenin macropolyers (GMP) and amino acids in mature grains were measured. As NaCl concentration in soil increased, grain yield decreased while Na(+) and K(+) contents increased. The contents of amino acids, HMW-GS and GMP in grains also increased, especially when NaCl concentration exceeded 0.45%. Fraction of GMP larger than 10 μm was also increased. Na(+) and K(+) contents were significantly positively correlated to GMP and total HMW-GS contents, and to large GMP fraction.
Collapse
Affiliation(s)
- Xiaxiang Zhang
- National Technology Innovation Center for Regional Wheat Production, National Engineering and Technology Center for Information Agriculture, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, PR China
| | - Zhiqiang Shi
- National Technology Innovation Center for Regional Wheat Production, National Engineering and Technology Center for Information Agriculture, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, PR China
| | - Youjia Tian
- National Technology Innovation Center for Regional Wheat Production, National Engineering and Technology Center for Information Agriculture, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, PR China
| | - Qin Zhou
- National Technology Innovation Center for Regional Wheat Production, National Engineering and Technology Center for Information Agriculture, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, PR China
| | - Jian Cai
- National Technology Innovation Center for Regional Wheat Production, National Engineering and Technology Center for Information Agriculture, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, PR China
| | - Tingbo Dai
- National Technology Innovation Center for Regional Wheat Production, National Engineering and Technology Center for Information Agriculture, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, PR China
| | - Weixing Cao
- National Technology Innovation Center for Regional Wheat Production, National Engineering and Technology Center for Information Agriculture, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, PR China
| | - Hanchun Pu
- Lianyungang Academy of Agricultural Sciences, Jiangsu Province, PR China.
| | - Dong Jiang
- National Technology Innovation Center for Regional Wheat Production, National Engineering and Technology Center for Information Agriculture, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, PR China.
| |
Collapse
|
991
|
Gorcek Z, Erdal S. Lipoic acid mitigates oxidative stress and recovers metabolic distortions in salt-stressed wheat seedlings by modulating ion homeostasis, the osmo-regulator level and antioxidant system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2811-7. [PMID: 25427940 DOI: 10.1002/jsfa.7020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/20/2014] [Indexed: 05/11/2023]
Abstract
BACKROUND Soil salinity is one of the most detrimental environmental factors affecting the growth of plants and limiting their agricultural productivity. This study investigated whether exogenous lipoic acid (LA) pretreatment plays a role in promoting salt tolerance in wheat seedlings. The seedlings were treated with LA (1.75 mmol L(-1)) and salt (100 mmol L(-1) NaCl) separately and a combination of them. RESULTS Salt stress significantly reduced relative water content, leaf surface area, ribulose bisphosphate carboxylase expression, and chlorophyll content but increased the content of osmo-regulator protein, carbohydrates and proline. In addition, salinity led to an imbalance in the inorganic composition of wheat leaves. While it elevated Na(+) content compared to control, Ca content and K(+)/Na(+) ratio were reduced. Under saline conditions, despite increases in antioxidant enzyme activity and levels of antioxidant compounds (ascorbate and glutathione), the content of reactive oxygen species (superoxide anion, hydrogen peroxide) and malondialdehyde were higher than in control seedlings. LA significantly promoted osmo-regulator level and antioxidant enzyme activities compared to stressed seedlings alone. Also, it both increased levels of ascorbate and glutathione and regenerated their oxidised forms, thus contributing to maintaining cellular redox status. Similarly, LA prevented excessive accumulation of Na(+) and promoted K(+)/Na(+) ratio and Ca content. Reactive oxygen species content was significantly reduced, and the inhibitions in the above parameters markedly recovered. CONCLUSION LA reduced salinity-induced oxidative damage and thus contributed to the growth and development of plants in saline soils by modulating ion homeostasis between plant and soil as well as in osmo-regulator content and antioxidant system.
Collapse
Affiliation(s)
- Zeynep Gorcek
- Department of Biology, Science Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Serkan Erdal
- Department of Biology, Science Faculty, Ataturk University, Erzurum, 25240, Turkey
| |
Collapse
|
992
|
Singh V, Pandey KD, Mesapogu S, Singh DV. Influence of NaCl on photosynthesis and nitrogen metabolism of cyanobacterium Nostoc calcicola. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815060149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
993
|
Chen TW, Nguyen TMN, Kahlen K, Stützel H. High temperature and vapor pressure deficit aggravate architectural effects but ameliorate non-architectural effects of salinity on dry mass production of tomato. FRONTIERS IN PLANT SCIENCE 2015; 6:887. [PMID: 26539203 PMCID: PMC4612157 DOI: 10.3389/fpls.2015.00887] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/06/2015] [Indexed: 05/23/2023]
Abstract
Tomato (Solanum lycopersicum L.) is an important vegetable crop and often cultivated in regions exposed to salinity and high temperatures (HT) which change plant architecture, decrease canopy light interception and disturb physiological functions. However, the long-term effects of salinity and HT combination (S+HT) on plant growth are still unclear. A dynamic functional-structural plant model (FSPM) of tomato was parameterized and evaluated for different levels of S+HT combinations. The evaluated model was used to quantify the contributions of morphological changes (architectural effects) and physiological disturbances (non-architectural effects) on the reduction of shoot dry mass under S+HT. The model predicted architectural variables with high accuracy (>85%), which ensured the reliability of the model analyses. HT enhanced architectural effects but reduced non-architectural effects of salinity on dry mass production. The stronger architectural effects of salinity under HT could not be counterbalanced by the smaller non-architectural effects. Therefore, long-term influences of HT on shoot dry mass under salinity were negative at the whole plant level. Our model analysis highlights the importance of plant architecture at canopy level in studying the plant responses to the environments and shows the merits of dynamic FSPMs as heuristic tools.
Collapse
Affiliation(s)
- Tsu-Wei Chen
- Department of Vegetable Systems Modelling, Institute of Horticultural Production Systems, Leibniz Universität HannoverHannover, Germany
| | - Thi M. N. Nguyen
- Department of Vegetable Systems Modelling, Institute of Horticultural Production Systems, Leibniz Universität HannoverHannover, Germany
| | - Katrin Kahlen
- Department of Vegetable Crops, Hochschule Geisenheim UniversityGeisenheimw, Germany
| | - Hartmut Stützel
- Department of Vegetable Systems Modelling, Institute of Horticultural Production Systems, Leibniz Universität HannoverHannover, Germany
| |
Collapse
|
994
|
De novo transcriptome sequencing of Acer palmatum and comprehensive analysis of differentially expressed genes under salt stress in two contrasting genotypes. Mol Genet Genomics 2015; 291:575-86. [PMID: 26475609 DOI: 10.1007/s00438-015-1127-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/30/2015] [Indexed: 01/15/2023]
Abstract
Maple (Acer palmatum) is an important species for landscape planting worldwide. Salt stress affects the normal growth of the Maple leaf directly, leading to loss of esthetic value. However, the limited availability of Maple genomic information has hindered research on the mechanisms underlying this tolerance. In this study, we performed comprehensive analyses of the salt tolerance in two genotypes of Maple using RNA-seq. Approximately 146.4 million paired-end reads, representing 181,769 unigenes, were obtained. The N50 length of the unigenes was 738 bp, and their total length over 102.66 Mb. 14,090 simple sequence repeats and over 500,000 single nucleotide polymorphisms were identified, which represent useful resources for marker development. Importantly, 181,769 genes were detected in at least one library, and 303 differentially expressed genes (DEGs) were identified between salt-sensitive and salt-tolerant genotypes. Among these DEGs, 125 were upregulated and 178 were downregulated genes. Two MYB-related proteins and one LEA protein were detected among the first 10 most downregulated genes. Moreover, a methyltransferase-related gene was detected among the first 10 most upregulated genes. The three most significantly enriched pathways were plant hormone signal transduction, arginine and proline metabolism, and photosynthesis. The transcriptome analysis provided a rich genetic resource for gene discovery related to salt tolerance in Maple, and in closely related species. The data will serve as an important public information platform to further our understanding of the molecular mechanisms involved in salt tolerance in Maple.
Collapse
|
995
|
Fokkema W, de Boer W, van der Jeugd HP, Dokter A, Nolet BA, De Kok LJ, Elzenga JTM, Olff H. The nature of plant adaptations to salinity stress has trophic consequences. OIKOS 2015. [DOI: 10.1111/oik.02757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wimke Fokkema
- Groningen Inst. for Evolutionary Life Sciences, Univ. of Groningen; PO Box 11103, NL-9700 CC Groningen the Netherlands
| | - Wendy de Boer
- Groningen Inst. for Evolutionary Life Sciences, Univ. of Groningen; PO Box 11103, NL-9700 CC Groningen the Netherlands
| | - Henk P. van der Jeugd
- Dept of Animal Ecology; Netherlands Inst. of Ecology (NIOO-KNAW); PO Box 50, NL-6700 AB Wageningen the Netherlands
- Vogeltrekstation, Dutch Centre for Avian Migration and Demography (NIOO-KNAW); PO Box 50, NL-6700 AB Wageningen the Netherlands
| | - Adriaan Dokter
- Dept of Animal Ecology; Netherlands Inst. of Ecology (NIOO-KNAW); PO Box 50, NL-6700 AB Wageningen the Netherlands
| | - Bart A. Nolet
- Dept of Animal Ecology; Netherlands Inst. of Ecology (NIOO-KNAW); PO Box 50, NL-6700 AB Wageningen the Netherlands
| | - Luit J. De Kok
- Groningen Inst. for Evolutionary Life Sciences, Univ. of Groningen; PO Box 11103, NL-9700 CC Groningen the Netherlands
| | - J. Theo M. Elzenga
- Groningen Inst. for Evolutionary Life Sciences, Univ. of Groningen; PO Box 11103, NL-9700 CC Groningen the Netherlands
| | - Han Olff
- Groningen Inst. for Evolutionary Life Sciences, Univ. of Groningen; PO Box 11103, NL-9700 CC Groningen the Netherlands
| |
Collapse
|
996
|
Szota C, Farrell C, Livesley SJ, Fletcher TD. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater. WATER RESEARCH 2015; 83:195-204. [PMID: 26150068 DOI: 10.1016/j.watres.2015.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/07/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
Biofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance. Carex appressa, Carex bichenoviana, Ficinia nodosa, Gahnia filum, Juncus kraussii and Juncus usitatus were exposed to six concentrations of saline stormwater, equivalent to electrical conductivity readings of: 0.09, 2.3, 5.5, 10.4, 20.0 and 37.6 mS cm(-1). Salt-sensitive species: C. appressa, C. bichenoviana and J. usitatus did not survive ≥10.4 mS cm(-1), removing their ability to take up nitrogen (N). Salt-tolerant species, such as F. nodosa and J. kraussii, maintained N-removal even at the highest salt concentration. However, their levels of water stress and stomatal conductance suggest that N-removal would not be sustained at concentrations ≥10.4 mS cm(-1). Increasing salt concentration indirectly increased phosphorus (P) removal, by converting dissolved forms of P to particulate forms which were retained by filter media. Salt concentrations ≥10 mS cm(-1) also reduced removal efficiency of zinc, manganese and cadmium, but increased removal of iron and lead, regardless of plant species. Our results suggest that biofiltration systems exposed to saline stormwater ≤10 mS cm(-1) can only maintain N-removal when planted with salt-tolerant species, while P removal and immobilisation of heavy metals is less affected by species selection.
Collapse
Affiliation(s)
- Christopher Szota
- Waterway Ecosystem Research Group, School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria 3121, Australia.
| | - Claire Farrell
- Green Infrastructure Research Group, School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria 3121, Australia
| | - Stephen J Livesley
- Green Infrastructure Research Group, School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria 3121, Australia
| | - Tim D Fletcher
- Waterway Ecosystem Research Group, School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria 3121, Australia
| |
Collapse
|
997
|
Li Z, Wu N, Liu T, Chen H, Tang M. Effect of arbuscular mycorrhizal inoculation on water status and photosynthesis of Populus cathayana males and females under water stress. PHYSIOLOGIA PLANTARUM 2015; 155:192-204. [PMID: 25720810 DOI: 10.1007/s11738-015-1932-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/17/2015] [Accepted: 02/22/2015] [Indexed: 05/23/2023]
Abstract
Drought is one of the most serious environmental limitations for poplar growth. Although the ways in which plants deal with water stress and the effects of arbuscular mycorrhizal (AM) formation have been well documented, little is known about how the male and female plants of Populus cathayana respond to drought and AM formation. We also aimed to investigate the potential role of AM fungi in maintaining gender balance. We tested the impact of drought and AM formation on water status and photosynthesis. The results suggested that both sexes showed similar responses to water stress: drought decreased the growth of stem length (GSL), growth of ground diameter (GGD), relative water content (RWC), increased the relative electrolyte leakage (REL), and limited the photosynthesis and chlorophyll fluorescence indexes. However, the responses of the two sexes to drought and AM formation differed to some extent. AM formation had positive effects on RWC, photosynthesis and the intrinsic water use efficiency (WUEi) but negative effects on the REL of males and females, especially under drought. AM formation enhanced the maximum quantum yield of photosystem II (PSII) (Fv/Fm), the actual quantum yield of PSII (ΦPSII), non-photochemical quenching (qN) and photochemical quenching (qP) under drought conditions, and had no significant effects under well-watered conditions except on the qP of males. Principal component analysis showed that males were significantly more drought tolerant than females, and AM formation enhanced drought tolerance, particularly among males, which suggested that AM fungi are beneficial for ecological stability and for P. cathayana survival under drought conditions.
Collapse
Affiliation(s)
- Zhen Li
- College of Life Science, Northwest A&F University, Yangling, China
| | - Na Wu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Ting Liu
- College of Life Science, Northwest A&F University, Yangling, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, China
| | - Ming Tang
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
998
|
Application of a Coupled Vegetation Competition and Groundwater Simulation Model to Study Effects of Sea Level Rise and Storm Surges on Coastal Vegetation. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2015. [DOI: 10.3390/jmse3041149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
999
|
Pandey P, Ramegowda V, Senthil-Kumar M. Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. FRONTIERS IN PLANT SCIENCE 2015; 6:723. [PMID: 26442037 PMCID: PMC4584981 DOI: 10.3389/fpls.2015.00723] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/28/2015] [Indexed: 05/18/2023]
Abstract
In field conditions, plants are often simultaneously exposed to multiple biotic and abiotic stresses resulting in substantial yield loss. Plants have evolved various physiological and molecular adaptations to protect themselves under stress combinations. Emerging evidences suggest that plant responses to a combination of stresses are unique from individual stress responses. In addition, plants exhibit shared responses which are common to individual stresses and stress combination. In this review, we provide an update on the current understanding of both unique and shared responses. Specific focus of this review is on heat-drought stress as a major abiotic stress combination and, drought-pathogen and heat-pathogen as examples of abiotic-biotic stress combinations. We also comprehend the current understanding of molecular mechanisms of cross talk in relation to shared and unique molecular responses for plant survival under stress combinations. Thus, the knowledge of shared responses of plants from individual stress studies and stress combinations can be utilized to develop varieties with broad spectrum stress tolerance.
Collapse
Affiliation(s)
- Prachi Pandey
- National Institute of Plant Genome ResearchNew Delhi, India
| | | | | |
Collapse
|
1000
|
Deng P, Wang L, Cui L, Feng K, Liu F, Du X, Tong W, Nie X, Ji W, Weining S. Global Identification of MicroRNAs and Their Targets in Barley under Salinity Stress. PLoS One 2015; 10:e0137990. [PMID: 26372557 PMCID: PMC4570814 DOI: 10.1371/journal.pone.0137990] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023] Open
Abstract
Salinity is a major limiting factor for agricultural production worldwide. A better understanding of the mechanisms of salinity stress response will aid efforts to improve plant salt tolerance. In this study, a combination of small RNA and mRNA degradome sequencing was used to identify salinity responsive-miRNAs and their targets in barley. A total of 152 miRNAs belonging to 126 families were identified, of which 44 were found to be salinity responsive with 30 up-regulated and 25 down-regulated respectively. The majority of the salinity-responsive miRNAs were up-regulated at the 8h time point, while down-regulated at the 3h and 27h time points. The targets of these miRNAs were further detected by degradome sequencing coupled with bioinformatics prediction. Finally, qRT-PCR was used to validate the identified miRNA and their targets. Our study systematically investigated the expression profile of miRNA and their targets in barley during salinity stress phase, which can contribute to understanding how miRNAs respond to salinity stress in barley and other cereal crops.
Collapse
Affiliation(s)
- Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Le Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Licao Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Kewei Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuyan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianghong Du
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (SW); (XD)
| | - Wei Tong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Song Weining
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (SW); (XD)
| |
Collapse
|