951
|
Vicens Q, Cech TR. Atomic level architecture of group I introns revealed. Trends Biochem Sci 2005; 31:41-51. [PMID: 16356725 DOI: 10.1016/j.tibs.2005.11.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/25/2005] [Accepted: 11/24/2005] [Indexed: 11/21/2022]
Abstract
Twenty-two years after their discovery as ribozymes, the self-splicing group I introns are finally disclosing their architecture at the atomic level. The crystal structures of three group I introns solved at moderately high resolution (3.1-3.8A) reveal a remarkably conserved catalytic core bound to the metal ions required for activity. The structure of the core is stabilized by an intron-specific set of long-range interactions that involves peripheral elements. Group I intron structures thus provide much awaited and extremely valuable snapshots of how these ribozymes coordinate substrate binding and catalysis.
Collapse
Affiliation(s)
- Quentin Vicens
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, CO 80309-0215, USA
| | | |
Collapse
|
952
|
Abstract
The exact knowledge on the ribosomal RNA (rRNA) structure is an important prerequisite for work with rRNA sequences in bioinformatic analyses and in experimental research. Most available rRNA sequences of bacteria are based on gene sequences and on similarity analyses using Escherichia coli rRNA as a standard. Therefore, it is often overlooked that many bacteria harbour mature rRNA 'in pieces'. In some cases, the processing steps during the fragmentation lead to the removal of rRNA segments that are usually found in the ribosome. In this review, the current knowledge on the mechanisms of rRNA fragmentation and on the occurrence of fragmented rRNA in bacteria is summarized, and the physiological implications of this phenomenon are discussed.
Collapse
Affiliation(s)
- Elena Evguenieva-Hackenberg
- Institut für Mikrobiologie und Molekularbiologie der Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
953
|
|
954
|
Chan YL, Dresios J, Wool IG. A pathway for the transmission of allosteric signals in the ribosome through a network of RNA tertiary interactions. J Mol Biol 2005; 355:1014-25. [PMID: 16359709 DOI: 10.1016/j.jmb.2005.11.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 11/10/2005] [Accepted: 11/11/2005] [Indexed: 10/25/2022]
Abstract
There are a large number of tertiary contacts between nucleotides in 23S rRNA, but which are of functional importance is not known. Disruption of one between A2662 in the sarcin/ricin loop (SRL) and A2531 in the peptidyl-transferase center (PTC) has adverse effects on cell growth and on the ability of ribosomes to catalyze some but not other partial reactions of elongation. A lethal A2662C mutation is suppressed by a concomitant lethal A2531 mutation. Ribosomes with non-lethal A2531 mutations, treated with base-specific reagents, have alterations of nucleotides in the PTC (home of A2531) and, more significantly, in nucleotides in the SRL and in the GTPase center. The results suggest that the function of ribosomal centers is coordinated by a set of sequential conformational changes in rRNA that are a response to signals transmitted through a network of tertiary interactions.
Collapse
Affiliation(s)
- Yuen-Ling Chan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
955
|
Ndifon W. A complex adaptive systems approach to the kinetic folding of RNA. Biosystems 2005; 82:257-65. [PMID: 16171941 DOI: 10.1016/j.biosystems.2005.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 08/17/2005] [Accepted: 08/18/2005] [Indexed: 11/20/2022]
Abstract
The kinetic folding of RNA sequences into secondary structures is modeled as a complex adaptive system, the components of which are possible RNA structural rearrangements (SRs) and their associated bases and base pairs. RNA bases and base pairs engage in local stacking interactions that determine the probabilities (or fitnesses) of possible SRs. Meanwhile, selection operates at the level of SRs; an autonomous stochastic process periodically (i.e., from one time step to another) selects a subset of possible SRs for realization based on the fitnesses of the SRs. Using examples based on selected natural and synthetic RNAs, the model is shown to reproduce characteristic (nonlinear) RNA folding dynamics such as the attainment by RNAs of alternative stable states. Possible applications of the model to the analysis of properties of fitness landscapes, and of the RNA sequence-to-structure mapping are discussed.
Collapse
Affiliation(s)
- Wilfred Ndifon
- Departments of Biology and Mathematics, Morgan State University, Baltimore, MD 21251, USA.
| |
Collapse
|
956
|
Gillespie JJ, McKenna CH, Yoder MJ, Gutell RR, Johnston JS, Kathirithamby J, Cognato AI. Assessing the odd secondary structural properties of nuclear small subunit ribosomal RNA sequences (18S) of the twisted-wing parasites (Insecta: Strepsiptera). INSECT MOLECULAR BIOLOGY 2005; 14:625-43. [PMID: 16313563 DOI: 10.1111/j.1365-2583.2005.00591.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report the entire sequence (2864 nts) and secondary structure of the nuclear small subunit ribosomal RNA (SSU rRNA) gene (18S) from the twisted-wing parasite Caenocholax fenyesi texensis Kathirithamby & Johnston (Strepsiptera: Myrmecolacidae). The majority of the base pairings in this structural model map on to the SSU rRNA secondary and tertiary helices that were previously predicted with comparative analysis. These regions of the core rRNA were unambiguously aligned across all Arthropoda. In contrast, many of the variable regions, as previously characterized in other insect taxa, had very large insertions in C. f. texensis. The helical base pairs in these regions were predicted with a comparative analysis of a multiple sequence alignment (that contains C. f. texensis and 174 published arthropod 18S rRNA sequences, including eleven strepsipterans) and thermodynamic-based algorithms. Analysis of our structural alignment revealed four unusual insertions in the core rRNA structure that are unique to animal 18S rRNA and in general agreement with previously proposed insertion sites for strepsipterans. One curious result is the presence of a large insertion within a hairpin loop of a highly conserved pseudoknot helix in variable region 4. Despite the extraordinary variability in sequence length and composition, this insertion contains the conserved sequences 5'-AUUGGCUUAAA-3' and 5'-GAC-3' that immediately flank a putative helix at the 5'- and 3'-ends, respectively. The longer sequence has the potential to form a nine base pair helix with a sequence in the variable region 2, consistent with a recent study proposing this tertiary interaction. Our analysis of a larger set of arthropod 18S rRNA sequences has revealed possible errors in some of the previously published strepsipteran 18S rRNA sequences. Thus we find no support for the previously recovered heterogeneity in the 18S molecules of strepsipterans. Our findings lend insight to the evolution of RNA structure and function and the impact large insertions pose on genome size. We also provide a novel alignment template that will improve the phylogenetic placement of the Strepsiptera among other insect taxa.
Collapse
Affiliation(s)
- J J Gillespie
- Department of Entomology, Texas A & M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | |
Collapse
|
957
|
Shenvi CL, Dong KC, Friedman EM, Hanson JA, Cate JHD. Accessibility of 18S rRNA in human 40S subunits and 80S ribosomes at physiological magnesium ion concentrations--implications for the study of ribosome dynamics. RNA (NEW YORK, N.Y.) 2005; 11:1898-908. [PMID: 16314459 PMCID: PMC1370877 DOI: 10.1261/rna.2192805] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 09/21/2005] [Indexed: 05/05/2023]
Abstract
Protein biosynthesis requires numerous conformational rearrangements within the ribosome. The structural core of the ribosome is composed of RNA and is therefore dependent on counterions such as magnesium ions for function. Many steps of translation can be compromised or inhibited if the concentration of Mg(2+) is too low or too high. Conditions previously used to probe the conformation of the mammalian ribosome in vitro used high Mg(2+) concentrations that we find completely inhibit translation in vitro. We have therefore probed the conformation of the small ribosomal subunit in low concentrations of Mg(2+) that support translation in vitro and compared it with the conformation of the 40S subunit at high Mg(2+) concentrations. In low Mg(2+) concentrations, we find significantly more changes in chemical probe accessibility in the 40S subunit due to subunit association or binding of the hepatitis C internal ribosomal entry site (HCV IRES) than had been observed before. These results suggest that the ribosome is more dynamic in its functional state than previously appreciated.
Collapse
Affiliation(s)
- Christina L Shenvi
- Department of Chemistry, University of California, 202 Melvin Calvin Lab, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
958
|
Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JHD. Structures of the bacterial ribosome at 3.5 A resolution. Science 2005; 310:827-34. [PMID: 16272117 DOI: 10.1126/science.1117230] [Citation(s) in RCA: 1036] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We describe two structures of the intact bacterial ribosome from Escherichia coli determined to a resolution of 3.5 angstroms by x-ray crystallography. These structures provide a detailed view of the interface between the small and large ribosomal subunits and the conformation of the peptidyl transferase center in the context of the intact ribosome. Differences between the two ribosomes reveal a high degree of flexibility between the head and the rest of the small subunit. Swiveling of the head of the small subunit observed in the present structures, coupled to the ratchet-like motion of the two subunits observed previously, suggests a mechanism for the final movements of messenger RNA (mRNA) and transfer RNAs (tRNAs) during translocation.
Collapse
|
959
|
Bhattacharya D, Reeb V, Simon DM, Lutzoni F. Phylogenetic analyses suggest reverse splicing spread of group I introns in fungal ribosomal DNA. BMC Evol Biol 2005; 5:68. [PMID: 16300679 PMCID: PMC1299323 DOI: 10.1186/1471-2148-5-68] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Accepted: 11/21/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group I introns have spread into over 90 different sites in nuclear ribosomal DNA (rDNA) with greater than 1700 introns reported in these genes. These ribozymes generally spread through endonuclease-mediated intron homing. Another putative pathway is reverse splicing whereby a free group I intron inserts into a homologous or heterologous RNA through complementary base-pairing between the intron and exon RNA. Reverse-transcription of the RNA followed by general recombination results in intron spread. Here we used phylogenetics to test for reverse splicing spread in a taxonomically broadly sampled data set of fungal group I introns including 9 putatively ancient group I introns in the rDNA of the yeast-like symbiont Symbiotaphrina buchneri. RESULTS Our analyses reveal a complex evolutionary history of the fungal introns with many cases of vertical inheritance (putatively for the 9 introns in S. buchneri) and intron lateral transfer. There are several examples in which introns, many of which are still present in S. buchneri, may have spread through reverse splicing into heterologous rDNA sites. If the S. buchneri introns are ancient as we postulate, then group I intron loss was widespread in fungal rDNA evolution. CONCLUSION On the basis of these results, we suggest that the extensive distribution of fungal group I introns is at least partially explained by the reverse splicing movement of existing introns into ectopic rDNA sites.
Collapse
Affiliation(s)
- Debashish Bhattacharya
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, 446 Biology Building, Iowa City, IA 52242-1324, USA
| | - Valérie Reeb
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Dawn M Simon
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, 446 Biology Building, Iowa City, IA 52242-1324, USA
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - François Lutzoni
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| |
Collapse
|
960
|
Youngman EM, Green R. Affinity purification of in vivo-assembled ribosomes for in vitro biochemical analysis. Methods 2005; 36:305-12. [PMID: 16076457 DOI: 10.1016/j.ymeth.2005.04.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 04/28/2005] [Indexed: 11/30/2022] Open
Abstract
As it has become increasingly clear that the RNA components of the ribosome are central to its function, the in vitro analysis of mutations in the ribosomal RNAs has become an important tool for understanding the molecular details of ribosome function. However, the frequent dominant lethal phenotypes of mutations at interesting rRNA residues has long presented a hurdle to this analysis, as their lethality has rendered it impossible to generate pure populations of in vivo-derived ribosomes for study. We present here the details of a method for affinity purification of ribosomes bearing any mutation in the 16S or 23S rRNA and demonstrate that ribosomes purified using this technology are highly active in the several steps of translation we have examined.
Collapse
Affiliation(s)
- Elaine M Youngman
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
961
|
Yassin A, Fredrick K, Mankin AS. Deleterious mutations in small subunit ribosomal RNA identify functional sites and potential targets for antibiotics. Proc Natl Acad Sci U S A 2005; 102:16620-5. [PMID: 16269538 PMCID: PMC1283848 DOI: 10.1073/pnas.0508444102] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many clinically useful antibiotics interfere with protein synthesis in bacterial pathogens by inhibiting ribosome function. The sites of action of known drugs are limited in number, are composed primarily of ribosomal RNA (rRNA), and coincide with functionally critical centers of the ribosome. Nucleotide alterations within such sites are often deleterious. To identify functional sites and potential sites of antibiotic action in the ribosome, we prepared a random mutant library of rRNA genes and selected dominant mutations in 16S rRNA that interfere with cell growth. Fifty-three 16S rRNA positions were identified whose mutation inhibits protein synthesis. Mutations were ranked according to the severity of the phenotype, and the detrimental effect of several mutations on translation was verified in a specialized ribosome system. Analysis of the polysome profiles of mutants suggests that the majority of the mutations directly interfered with ribosome function, whereas a smaller fraction of mutations affected assembly of the small ribosomal subunit. Twelve of the identified mutations mapped to sites targeted by known antibiotics, confirming that deleterious mutations can be used to identify antibiotic targets. About half of the mutations coincided with known functional sites in the ribosome, whereas the rest of the mutations affected ribosomal sites with less clear functional significance. Four clusters of deleterious mutations in otherwise unremarkable ribosomal sites were identified, suggesting their functional importance and potential as antibiotic targets.
Collapse
Affiliation(s)
- Aymen Yassin
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, IL 60607, USA
| | | | | |
Collapse
|
962
|
Lambert MN, Hoerter JAH, Pereira MJB, Walter NG. Solution probing of metal ion binding by helix 27 from Escherichia coli 16S rRNA. RNA (NEW YORK, N.Y.) 2005; 11:1688-700. [PMID: 16244134 PMCID: PMC1370855 DOI: 10.1261/rna.2940705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Helix (H)27 from Escherichia coli 16S ribosomal (r)RNA is centrally located within the small (30S) ribosomal subunit, immediately adjacent to the decoding center. Bacterial 30S subunit crystal structures depicting Mg(2+) binding sites resolve two magnesium ions within the vicinity of H27: one in the major groove of the G886-U911 wobble pair, and one within the GCAA tetraloop. Binding of such metal cations is generally thought to be crucial for RNA folding and function. To ask how metal ion-RNA interactions in crystals compare with those in solution, we have characterized, using solution NMR spectroscopy, Tb(3+) footprinting and time-resolved fluorescence resonance energy transfer (tr-FRET), location, and modes of metal ion binding in an isolated H27. NMR and Tb(3+) footprinting data indicate that solution secondary structure and Mg(2+) binding are generally consistent with the ribosomal crystal structures. However, our analyses also suggest that H27 is dynamic in solution and that metal ions localize within the narrow major groove formed by the juxtaposition of the loop E motif with the tandem G894-U905 and G895-U904 wobble pairs. In addition, tr-FRET studies provide evidence that Mg(2+) uptake by the H27 construct results in a global lengthening of the helix. We propose that only a subset of H27-metal ion interactions has been captured in the crystal structures of the 30S ribosomal subunit, and that small-scale structural dynamics afforded by solution conditions may contribute to these differences. Our studies thus highlight an example for differences between RNA-metal ion interactions observed in solution and in crystals.
Collapse
|
963
|
Milbury CA, Gaffney PM. Complete mitochondrial DNA sequence of the eastern oyster Crassostrea virginica. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2005; 7:697-712. [PMID: 16132463 DOI: 10.1007/s10126-005-0004-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 05/17/2005] [Indexed: 05/04/2023]
Abstract
The complete mitochondrial genome of the eastern oyster Crassostrea virginica (GenBank accession number AY905542) is 17,243 bp in length and contains 2 ribosomal genes, 12 protein-coding genes, and 23 transfer RNAs. The arrangement of protein-coding genes is identical to that of the congeneric Pacific oyster C. gigas, but tRNA genes show several duplications and extensive rearrangements between the species. Unique features in C. virginica include an additional trnM gene, the absence of an ATPase subunit 8 (atp8) gene, and an inferred translational frameshift within the cytochrome b (cob) gene. In both species the large subunit ribosomal RNA gene is encoded by 2 separate regions of the mitochondrial genome, the first reported case of a split ribosomal RNA gene in a metazoan. Translation of protein-coding genes in both species is initiated with methionine, with the exception of cob, which uses leucine. In C. virginica translation of all protein-coding genes (except possibly cob) terminates with TAA, with polyadenylation completing the primary transcript in cytochrome oxidase subunit III (cox3) and NADH dehydrogenase subunit 4L (nad4L), whereas C. gigas employs stop codons TAA and TAG equally. Interspecific divergence of mitochondrially encoded proteins is considerable, with amino acid identities ranging from 47% to 92%. A single major noncoding region representing the putative control region is found in both species.
Collapse
Affiliation(s)
- Coren A Milbury
- College of Marine Studies, University of Delaware, Lewes, DE 19958, USA
| | | |
Collapse
|
964
|
Abdi NM, Fredrick K. Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli. RNA (NEW YORK, N.Y.) 2005; 11:1624-32. [PMID: 16177132 PMCID: PMC1370848 DOI: 10.1261/rna.2118105] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 07/20/2005] [Indexed: 05/04/2023]
Abstract
Many contacts between the ribosome and its principal substrates, tRNA and mRNA, involve universally conserved rRNA nucleotides, implying their functional importance in translation. Here, we measure the in vivo translation activity conferred by substitution of each 16S rRNA base believed to contribute to the A or P site. We find that the 30S P site is generally more tolerant of mutation than the 30S A site. In the A site, A1493C or any substitution of G530 or A1492 results in complete loss of translation activity, while A1493U and A1493G decrease translation activity by >20-fold. Among the P-site nucleotides, A1339 is most critical; any mutation of A1339 confers a >18-fold decrease in translation activity. Regarding all other P-site bases, ribosomes harboring at least one substitution retain considerable activity, >10% that of control ribosomes. Moreover, several sets of multiple substitutions within the 30S P site fail to inactivate the ribosome. The robust nature of the 30S P site indicates that its interaction with the codon-anticodon helix is less stringent than that of the 30S A site. In addition, we show that G1338A suppresses phenotypes conferred by m(2)G966A and several multiple P-site substitutions, suggesting that adenine at position 1338 can stabilize tRNA interaction in the P site.
Collapse
Affiliation(s)
- Nimo M Abdi
- Department of Microbiology, The Ohio State University, Columbus, 43210, USA
| | | |
Collapse
|
965
|
Holmes KL, Culver GM. Analysis of Conformational Changes in 16S rRNA During the Course of 30S Subunit Assembly. J Mol Biol 2005; 354:340-57. [PMID: 16246364 DOI: 10.1016/j.jmb.2005.09.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 09/16/2005] [Accepted: 09/16/2005] [Indexed: 11/19/2022]
Abstract
Ribosome biogenesis involves an integrated series of binding events coupled with conformational changes that ultimately result in the formation of a functional macromolecular complex. In vitro, Escherichia coli 30 S subunit assembly occurs in a cooperative manner with the ordered addition of 20 ribosomal proteins (r-proteins) with 16 S rRNA. The assembly pathway for 30 S subunits has been dissected in vitro into three steps, where specific r-proteins associate with 16 S rRNA early in 30 S subunit assembly, followed by a mid-assembly conformational rearrangement of the complex that then enables the remaining r-proteins to associate in the final step. Although the three steps of 30 S subunit assembly have been known for some time, few details have been elucidated about changes that occur as a result of these three specific stages. Here, we present a detailed analysis of the concerted early and late stages of small ribosomal subunit assembly. Conformational changes, roles for base-pairing and r-proteins at specific stages of assembly, and a polar nature to the assembly process have been revealed. This work has allowed a more comprehensive and global view of E.coli 30 S ribosomal subunit assembly to be obtained.
Collapse
Affiliation(s)
- Kristi L Holmes
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
966
|
Maeder C, Draper DE. A Small Protein Unique to Bacteria Organizes rRNA Tertiary Structure Over an Extensive Region of the 50S Ribosomal Subunit. J Mol Biol 2005; 354:436-46. [PMID: 16246363 DOI: 10.1016/j.jmb.2005.09.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 09/22/2005] [Accepted: 09/22/2005] [Indexed: 11/17/2022]
Abstract
A number of small, basic proteins penetrate into the structure of the large subunit of the ribosome. While these proteins presumably aid in the folding of the rRNA, the extent of their contribution to the stability or function of the ribosome is unknown. One of these small, basic proteins is L36, which is highly conserved in Bacteria, but is not present in Archaea or Eucarya. Comparison of ribosome crystal structures shows that the space occupied by L36 in a bacterial ribosome is empty in an archaeal ribosome. To ask what L36 contributes to ribosome stability and function, we have constructed an Escherichia coli strain lacking ribosomal protein L36; cell growth is slowed by 40-50% between 30 degrees C and 42 degrees C. Ribosomes from this deletion strain sediment normally and have a full complement of proteins, other than L36. Chemical protection experiments comparing rRNA from wild-type and L36-deficient ribosomes show the expected increase in reagent accessibility in the immediate vicinity of the L36 binding site, but suggest that a cooperative network of rRNA tertiary interactions has been disrupted along a path extending 60 A deep into the ribosome. These data argue that L36 plays a significant role in organizing 23 S rRNA structure. Perhaps the Archaea and Eucarya have compensated for their lack of L36 by maintaining more stable rRNA tertiary contacts or by adopting alternative protein-RNA interactions elsewhere in the ribosome.
Collapse
Affiliation(s)
- Corina Maeder
- Program in Molecular and Computational Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
967
|
Ridley CP, John Faulkner D, Haygood MG. Investigation of Oscillatoria spongeliae-dominated bacterial communities in four dictyoceratid sponges. Appl Environ Microbiol 2005; 71:7366-75. [PMID: 16269779 PMCID: PMC1287642 DOI: 10.1128/aem.71.11.7366-7375.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 07/11/2005] [Indexed: 11/20/2022] Open
Abstract
Certain species of marine sponges in the order Dictyoceratida harbor large populations of the cyanobacterial symbiont Oscillatoria spongeliae in the mesohyl (interior) of the sponge. We show that in four of these sponge species (Lamellodysidea herbacea, Lamellodysidea chlorea, Lendenfeldia chondrodes, and Phyllospongia papyracea) from Palau there is a consistent community of alpha-proteobacteria in addition to O. spongeliae that fall within the Rhodobacter group based on 16S rRNA gene analysis. Some of the alpha-proteobacteria in Lendenfeldia chondrodes and P. papyracea but not in the Lamellodysidea spp. contained site-specific insertions in the 16S rRNA gene. Reverse transcription-PCR experiments demonstrated that the largest insertion found in this study (63 bp) is present in the mature rRNA. Lendenfeldia chondrodes was the only sponge found to have another cyanobacterium in the tissue, a Synechocystis sp. We found that the Synechocystis sp. was present in both the pinacoderm (surface epithelial tissue) and mesohyl, in contrast to O. spongeliae, which was only found in the mesohyl through the use of specific fluorescence in situ hybridization experiments. Of the four sponge species, only P. papyracea was found to contain a significant number of gamma-proteobacteria. These results demonstrate that O. spongeliae-dominated bacterial communities in different sponge species can vary considerably and increase our understanding of the bacterial communities found in marine invertebrates.
Collapse
Affiliation(s)
- Christian P Ridley
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA
| | | | | |
Collapse
|
968
|
Li XQ, Fan P, Fan J. Polarity and hydrophobicity interactions in protein synthesis process. J Theor Biol 2005; 240:87-97. [PMID: 16257010 DOI: 10.1016/j.jtbi.2005.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 08/17/2005] [Accepted: 08/31/2005] [Indexed: 11/18/2022]
Abstract
About 30 years ago, experiments found that there are polarity and hydrophobicity (P and H) correlations and affinity between amino acids and their anticodons. Although it is shown that these experimental findings are important for explaining the origins of the genetic code, the great potential of P and H interactions in investigating other bio-functions have not been fully explored. Here, through raising, discussing and answering seven relevant questions hidden in tRNA aminoacylation, the formation of peptide bonds, and the ending of translations, etc., we show our theoretical findings that the P and H correlations and affinity take vital roles in the protein synthesis process. We found the relationship between the 3' end ACCN sequences of tRNA molecules and the activated amino acids and its biological significance, the rRNAs' consensus sequences 5'NCC...TGG3' or 5'TGG...NCC3' which may perform as functional segments of rRNAs to help triggering the reaction of peptide formation, and common nature of releasing factors that the first amino acid residue of releasing factors ERF, RF1 and RF2 are all Methionine, except a few Alanine, which may be necessary for releasing the translated polypeptide and stopping the translating process. In the terms of P and H correlations and affinity, we provide explanations of why only using the poly (G) as mRNA template cannot get the poly (Gly) in experiments deciphering the genetic code, why Gly often appears in beta turns and why translational bypassing might occur when translating 5'GGAUGA on mRNA. Since amino acids and nucleotides are the subunits, respectively, for composing proteins and nucleic acids, these findings will help in further understanding interactions among the bio-macromolecules. These findings are also helpful for investigating rRNAs, further understanding the protein synthesis process and analysing similar bio-problems, and should be proved useful for experimental biologists.
Collapse
Affiliation(s)
- Xu-Qing Li
- Department of Biomedical Engineering, Kunming University of Science and Technology, Kunming 650051, PR China
| | | | | |
Collapse
|
969
|
Sanbonmatsu KY, Joseph S, Tung CS. Simulating movement of tRNA into the ribosome during decoding. Proc Natl Acad Sci U S A 2005; 102:15854-9. [PMID: 16249344 PMCID: PMC1266076 DOI: 10.1073/pnas.0503456102] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Decoding is the key step during protein synthesis that enables information transfer from RNA to protein, a process critical for the survival of all organisms. We have used large-scale (2.64 x 10(6) atoms) all-atom simulations of the entire ribosome to understand a critical step of decoding. Although the decoding problem has been studied for more than four decades, the rate-limiting step of cognate tRNA selection has only recently been identified. This step, known as accommodation, involves the movement inside the ribosome of the aminoacyl-tRNA from the partially bound "A/T" state to the fully bound "A/A" state. Here, we show that a corridor of 20 universally conserved ribosomal RNA bases interacts with the tRNA during the accommodation movement. Surprisingly, the tRNA is impeded by the A-loop (23S helix 92), instead of enjoying a smooth transition to the A/A state. In particular, universally conserved 23S ribosomal RNA bases U2492, C2556, and C2573 act as a 3D gate, causing the acceptor stem to pause before allowing entrance into the peptidyl transferase center. Our simulations demonstrate that the flexibility of the acceptor stem of the tRNA, in addition to flexibility of the anticodon arm, is essential for tRNA selection. This study serves as a template for simulating conformational changes in large (>10(6) atoms) biological and artificial molecular machines.
Collapse
Affiliation(s)
- Kevin Y Sanbonmatsu
- Department of Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | |
Collapse
|
970
|
Marin B, Nowack ECM, Melkonian M. A plastid in the making: evidence for a second primary endosymbiosis. Protist 2005; 156:425-32. [PMID: 16310747 DOI: 10.1016/j.protis.2005.09.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 09/14/2005] [Indexed: 10/25/2022]
Abstract
One of the major steps in the evolution of life was the origin of photosynthesis in nucleated cells underpinning the evolution of plants. It is well accepted that this evolutionary process was initiated when a photosynthetic bacterium (a cyanobacterium) was taken up by a colorless host cell, probably more than a billion years ago, and transformed into a photosynthetic organelle (a plastid) during a process known as primary endosymbiosis. Here, we use sequence comparisons and phylogenetic analyses of the prokaryotic rDNA operon to show that the thecate, filose amoeba Paulinella chromatophora Lauterborn obtained its photosynthetic organelles by a similar but more recent process, which involved a different cyanobacterium, indicating that the evolution of photosynthetic organelles from cyanobacteria was not a unique event, as is commonly believed, but may be an ongoing process.
Collapse
Affiliation(s)
- Birger Marin
- Botanisches Institut, Lehrstuhl I, Universität zu Köln, Gyrhofstrasse 15, 50931 Köln, Germany.
| | | | | |
Collapse
|
971
|
Huggins W, Ghosh SK, Nanda K, Wollenzien P. Internucleotide movements during formation of 16 S rRNA-rRNA photocrosslinks and their connection to the 30 S subunit conformational dynamics. J Mol Biol 2005; 354:358-74. [PMID: 16242153 DOI: 10.1016/j.jmb.2005.09.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 09/14/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
UV light-induced RNA photocrosslinks are formed at a limited number of specific sites in the Escherichia coli and in other eubacterial 16 S rRNAs. To determine if unusually favorable internucleotide geometries could explain the restricted crosslinking patterns, parameters describing the internucleotide geometries were calculated from the Thermus thermophilus 30 S subunit X-ray structure and compared to crosslinking frequencies. Significant structural adjustments between the nucleotide pairs usually are needed for crosslinking. Correlations between the crosslinking frequencies and the geometrical parameters indicate that nucleotide pairs closer to the orientation needed for photoreaction have higher crosslinking frequencies. These data are consistent with transient conformational changes during crosslink formation in which the arrangements needed for photochemical reaction are attained during the electronic excitation times. The average structural rearrangement for UVA-4-thiouridine (s4U)-induced crosslinking is larger than that for UVB or UVC-induced crosslinking; this is associated with the longer excitation time for s4U and is also consistent with transient conformational changes. The geometrical parameters do not completely predict the crosslinking frequencies, implicating other aspects of the tertiary structure or conformational flexibility in determining the frequencies and the locations of the crosslinking sites. The majority of the UVB/C and UVA-s4U-induced crosslinks are located in four regions in the 30 S subunit, within or at the ends of RNA helix 34, in the tRNA P-site, in the distal end of helix 28 and in the helix 19/helix 27 region. These regions are implicated in different aspects of tRNA accommodation, translocation and in the termination reaction. These results show that photocrosslinking is an indicator for sites where there is internucleotide conformational flexibility and these sites are largely restricted to parts of the 30 S subunit associated with ribosome function.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- Binding Sites
- Cross-Linking Reagents
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/radiation effects
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation/radiation effects
- Nucleotides/chemistry
- Nucleotides/metabolism
- Nucleotides/radiation effects
- Photochemistry
- Protein Conformation/radiation effects
- Protein Subunits
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/radiation effects
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 16S/radiation effects
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/radiation effects
- Ultraviolet Rays
Collapse
Affiliation(s)
- Wayne Huggins
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | | | | | |
Collapse
|
972
|
Gregory ST, Carr JF, Rodriguez-Correa D, Dahlberg AE. Mutational analysis of 16S and 23S rRNA genes of Thermus thermophilus. J Bacteriol 2005; 187:4804-12. [PMID: 15995195 PMCID: PMC1169515 DOI: 10.1128/jb.187.14.4804-4812.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Structural studies of the ribosome have benefited greatly from the use of organisms adapted to extreme environments. However, little is known about the mechanisms by which ribosomes or other ribonucleoprotein complexes have adapted to functioning under extreme conditions, and it is unclear to what degree mutant phenotypes of extremophiles will resemble those of their counterparts adapted to more moderate environments. It is conceivable that phenotypes of mutations affecting thermophilic ribosomes, for instance, will be influenced by structural adaptations specific to a thermophilic existence. This consideration is particularly important when using crystal structures of thermophilic ribosomes to interpret genetic results from nonextremophilic species. To address this issue, we have conducted a survey of spontaneously arising antibiotic-resistant mutants of the extremely thermophilic bacterium Thermus thermophilus, a species which has featured prominently in ribosome structural studies. We have accumulated over 20 single-base substitutions in T. thermophilus 16S and 23S rRNA, in the decoding site and in the peptidyltransferase active site of the ribosome. These mutations produce phenotypes that are largely identical to those of corresponding mutants of mesophilic organisms encompassing a broad phylogenetic range, suggesting that T. thermophilus may be an ideal model system for the study of ribosome structure and function.
Collapse
Affiliation(s)
- Steven T Gregory
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
973
|
Liang H, Landweber LF, Fresco JR. Are stop codons recognized by base triplets in the large ribosomal RNA subunit? RNA (NEW YORK, N.Y.) 2005; 11:1478-84. [PMID: 16199759 PMCID: PMC1370831 DOI: 10.1261/rna.2780505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The precise mechanism of stop codon recognition in translation termination is still unclear. A previously published study by Ivanov and colleagues proposed a new model for stop codon recognition in which 3-nucleotide Ter-anticodons within the loops of hairpin helices 69 (domain IV) and 89 (domain V) in large ribosomal subunit (LSU) rRNA recognize stop codons to terminate protein translation in eubacteria and certain organelles. We evaluated this model by extensive bioinformatic analysis of stop codons and their putative corresponding Ter-anticodons across a much wider range of species, and found many cases for which it cannot explain the stop codon usage without requiring the involvement of one or more of the eight possible noncomplementary base pairs. Involvement of such base pairs may not be structurally or thermodynamically damaging to the model. However, if, according to the model, Ter-anticodon interaction with stop codons occurs within the ribosomal A-site, the structural stringency which that site imposes on sense codon.tRNA anticodon interaction should also extend to stop codon.Ter-anticodon interactions. Moreover, with Ter-tRNA in place of an aminoacyl-tRNA, for each of the various Ter-anticodons there is a sense codon that can interact with it preferentially by complementary and wobble base-pairing. Both these considerations considerably weaken the arguments put forth previously.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- Codon, Terminator
- Computational Biology
- Hydrogen Bonding
- Models, Genetic
- Peptide Chain Termination, Translational
- RNA/chemistry
- RNA/isolation & purification
- RNA/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/isolation & purification
- RNA, Bacterial/metabolism
- RNA, Mitochondrial
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer/genetics
- RNA, Transfer, Amino Acyl/genetics
Collapse
Affiliation(s)
- Han Liang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
974
|
Nesbø CL, Boucher Y, Dlutek M, Doolittle WF. Lateral gene transfer and phylogenetic assignment of environmental fosmid clones. Environ Microbiol 2005; 7:2011-26. [PMID: 16309397 DOI: 10.1111/j.1462-2920.2005.00918.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metagenomic data, especially sequence data from large insert clones, are most useful when reasonable inferences about phylogenetic origins of inserts can be made. Often, clones that bear phylotypic markers (usually ribosomal RNA genes) are sought, but sometimes phylogenetic assignments have been based on the preponderance of blast hits obtained with predicted protein coding sequences (CDSs). Here we use a cloning method which greatly enriches for ribosomal RNA-bearing fosmid clones to ask two questions: (i) how reliably can we judge the phylogenetic origin of a clone (that is, its RNA phylotype) from the sequences of its CDSs? and (ii) how much lateral gene transfer (LGT) do we see, as assessed by CDSs of different phylogenetic origins on the same fosmid? We sequenced 12 rRNA containing fosmid clones, obtained from libraries constructed using DNA isolated from Baltimore harbour sediments. Three of the clones are from bacterial candidate divisions for which no cultured representatives are available, and thus represent the first protein coding sequences from these major bacterial lineages. The amount of LGT was assessed by making phylogenetic trees of all the CDSs in the fosmid clones and comparing the phylogenetic position of the CDS to the rRNA phylotype. We find that the majority of CDSs in each fosmid, 57-96%, agree with their respective rRNA genes. However, we also find that a significant fraction of the CDSs in each fosmid, 7-44%, has been acquired by LGT. In several cases, we can infer co-transfer of functionally related genes, and generate hypotheses about mechanism and ecological significance of transfer.
Collapse
Affiliation(s)
- Camilla L Nesbø
- Department of Biochemistry and Molecular Biology, Dalhousie University and Genome Atlantic, 5850 College Street, Halifax, Nova Scotia, Canada, B3H1X5.
| | | | | | | |
Collapse
|
975
|
Simon D, Moline J, Helms G, Friedl T, Bhattacharya D. Divergent histories of rDNA group I introns in the lichen family Physciaceae. J Mol Evol 2005; 60:434-46. [PMID: 15883879 DOI: 10.1007/s00239-004-0152-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 11/07/2004] [Indexed: 10/25/2022]
Abstract
The wide but sporadic distribution of group I introns in protists, plants, and fungi, as well as in eubacteria, likely resulted from extensive lateral transfer followed by differential loss. The extent of horizontal transfer of group I introns can potentially be determined by examining closely related species or genera. We used a phylogenetic approach with a large data set (including 62 novel large subunit [LSU] rRNA group I introns) to study intron movement within the monophyletic lichen family Physciaceae. Our results show five cases of horizontal transfer into homologous sites between species but do not support transposition into ectopic sites. This is in contrast to previous work with Physciaceae small subunit (SSU) rDNA group I introns where strong support was found for multiple ectopic transpositions. This difference in the apparent number of ectopic intron movements between SSU and LSU rDNA genes may in part be explained by a larger number of positions in the SSU rRNA, which can support the insertion and/or retention of group I introns. In contrast, we suggest that the LSU rRNA may have fewer acceptable positions and therefore intron spread is limited in this gene.
Collapse
Affiliation(s)
- Dawn Simon
- Department of Biological Sciences and the Roy J. Carver Center for Comparative Genomics, University of Iowa, 312 Biology Building, Iowa City, IA, 52242-1324, USA
| | | | | | | | | |
Collapse
|
976
|
Madsen CT, Jakobsen L, Buriánková K, Doucet-Populaire F, Pernodet JL, Douthwaite S. Methyltransferase Erm(37) slips on rRNA to confer atypical resistance in Mycobacterium tuberculosis. J Biol Chem 2005; 280:38942-7. [PMID: 16174779 DOI: 10.1074/jbc.m505727200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Mycobacterium tuberculosis complex possess a resistance determinant, erm(37) (also termed ermMT), which is a truncated homologue of the erm genes found in a diverse range of drug-producing and pathogenic bacteria. All erm genes examined thus far encode N(6)-monomethyltransferases or N(6),N(6)-dimethyltransferases that show absolute specificity for nucleotide A2058 in 23 S rRNA. Monomethylation at A2058 confers resistance to a subset of the macrolide, lincosamide, and streptogramin B (MLS(B)) group of antibiotics and no resistance to the latest macrolide derivatives, the ketolides. Dimethylation at A2058 confers high resistance to all MLS(B) and ketolide drugs. The erm(37) phenotype fits into neither category. We show here by tandem mass spectrometry that Erm(37) initially adds a single methyl group to its primary target at A2058 but then proceeds to attach additional methyl groups to the neighboring nucleotides A2057 and A2059. Other methyltransferases, Erm(E) and Erm(O), maintain their specificity for A2058 on mycobacterial rRNA. Erm(E) and Erm(O) have a full-length C-terminal domain, which appears to be important for stabilizing the methyltransferases at their rRNA target, and this domain is truncated in Erm(37). The lax interaction of the M. tuberculosis Erm(37) with its rRNA produces a unique methylation pattern and confers resistance to the ketolide telithromycin.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Base Sequence
- Drug Resistance, Bacterial/genetics
- Gene Expression
- Genes, Bacterial
- Ketolides/pharmacology
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Molecular Sequence Data
- Mycobacterium smegmatis/genetics
- Mycobacterium smegmatis/metabolism
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/metabolism
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Christian Toft Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|
977
|
Conlan LH, Stanger MJ, Ichiyanagi K, Belfort M. Localization, mobility and fidelity of retrotransposed Group II introns in rRNA genes. Nucleic Acids Res 2005; 33:5262-70. [PMID: 16170154 PMCID: PMC1216334 DOI: 10.1093/nar/gki819] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We previously showed that the group II Lactococcus lactis Ll.LtrB intron could retrotranspose into ectopic locations on the genome of its native host. Two integration events, which had been mapped to unique sequences, were localized in the present study to separate copies of the six L.lactis 23S rRNA genes, within operon B or D. Although further movement within the bacterial chromosome was undetectable, the retrotransposed introns were able to re-integrate into their original homing site provided on a plasmid. This finding indicates not only that retrotransposed group II introns retain mobility properties, but also that movement occurs back into sequence that is heterologous to the sequence of the chromosomal location. Sequence analysis of the retrotransposed introns and the secondary mobility events back to the homing site showed that the introns retain sequence integrity. These results are illuminating, since the reverse transcriptase (RT) of the intron-encoded protein, LtrA, has no known proofreading function, yet the mobility events have a low error rate. Enzymatic digests were used to monitor sequence changes from the wild-type intron. The results indicate that retromobility events have approximately 10(-5) misincorporations per nucleotide inserted. In contrast to the high RT error rates for retroviruses that must escape host defenses, the infrequent mutations of group II introns would ensure intron spread through retention of sequences essential for mobility.
Collapse
Affiliation(s)
- Lori H Conlan
- Wadsworth Center, Center for Medical Science, New York State Department of Health, 150 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
978
|
Abstract
Despite the potential for many possible secondary-structure conformations, the native sequence of ribosomal RNA (rRNA) is able to find the correct and universally conserved core fold. This study reports a computational analysis investigating two mechanisms that appear to constrain rRNA secondary-structure conformational space: ribosomal proteins and rRNA sequence composition. The analysis was carried out by using rRNA–ribosomal protein interaction data for the Escherichia coli 16S rRNA and free energy minimization software for secondary-structure prediction. The results indicate that selection pressures on rRNA sequence composition and ribosomal protein–rRNA interaction play a key role in constraining the rRNA secondary structure to a single stable form.
Collapse
Affiliation(s)
| | | | - Temple F. Smith
- To whom correspondence should be addressed. Tel: +1 617 353 7123; Fax: +1 617 353 7020;
| |
Collapse
|
979
|
Gaylarde PM, Crispim CA, Neilan BA, Gaylarde CC. Cyanobacteria from Brazilian building walls are distant relatives of aquatic genera. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2005; 9:30-42. [PMID: 15805777 DOI: 10.1089/omi.2005.9.30] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The 16S-rDNA from 22 cyanobacteria isolated from biofilms on walls of modern and historic buildings in Brazil was partially sequenced (approximately 350 bp) using specific primers. The cyanobacteria with the closest matching sequences were found using the BLAST tool. The sequences were combined with 52 other cyanobacterial sequences already deposited in public data banks and a dendrogram constructed, after deletion from each sequence of one of the variable 16S rDNA regions (VI). The newly sequenced organisms fitted well within their respective families, but their similarities to other members of the groups were generally low, less than 96%. Close matches were found only with one other terrestrial (hot dry desert) cyanobacterium, Microcoleus sociatus, and with Anabaena variabilis. Phylogenetic analysis suggested that the deletion of the hypervariable regions in the RNA structure is essential for meaningful evolutionary studies. The results support the standard phylogenetic tree based on morphology, but suggest that these terrestrial cyanobacteria are distant relatives of their equivalent aquatic genera and are, indeed, a distinct population.
Collapse
|
980
|
Sumita M, Desaulniers JP, Chang YC, Chui HMP, Clos L, Chow CS. Effects of nucleotide substitution and modification on the stability and structure of helix 69 from 28S rRNA. RNA (NEW YORK, N.Y.) 2005; 11:1420-9. [PMID: 16120833 PMCID: PMC1370825 DOI: 10.1261/rna.2320605] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The helix 69 (H69) region of the large subunit (28S) rRNA of Homo sapiens contains five pseudouridine (Psi) residues out of 19 total nucleotides (26%), three of which are universally or highly conserved. In this study, the effects of this abundant modified nucleotide on the structure and stability of H69 were compared with those of uridine. The role of a loop nucleotide substitution from A in bacteria (position 1918 in Escherichia coli 23S rRNA) to G in eukaryotes (position in 3734 in H. sapiens) was also examined. The thermodynamic parameters were obtained through UV melting studies, and differences in the modified and unmodified RNA structures were examined by 1H NMR and circular dichroism spectroscopy. In addition, a [1,3-15N]Psi phosphoramidite was used to generate H69 analogs with site-specific 15N labels. By using this approach, different Psi residues can be clearly distinguished from one another in 1H NMR experiments. The effects of pseudouridine on H. sapiens H69 are consistent with previous studies on tRNA, rRNA, and snRNA models in which the nucleotide offers stabilization of duplex regions through PsiN1H-mediated hydrogen bonds. The overall secondary structure and base-pairing patterns of human H69 are similar to the bacterial RNA, consistent with the idea that ribosome structure and function are highly conserved. Nonetheless, pseudouridine-containing RNAs have subtle differences in their structures and stabilities compared to the corresponding uridine-containing analogs, suggesting possible roles for Psi such as maintaining translation fidelity.
Collapse
Affiliation(s)
- Minako Sumita
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
981
|
Huang CH, Lu CL, Chiu HT. A heuristic approach for detecting RNA H-type pseudoknots. Bioinformatics 2005; 21:3501-8. [PMID: 15994188 PMCID: PMC7197707 DOI: 10.1093/bioinformatics/bti568] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/28/2005] [Accepted: 06/28/2005] [Indexed: 01/12/2023] Open
Abstract
MOTIVATION RNA H-type pseudoknots are ubiquitous pseudoknots that are found in almost all classes of RNA and thought to play very important roles in a variety of biological processes. Detection of these RNA H-type pseudoknots can improve our understanding of RNA structures and their associated functions. However, the currently existing programs for detecting such RNA H-type pseudoknots are still time consuming and sometimes even ineffective. Therefore, efficient and effective tools for detecting the RNA H-type pseudoknots are needed. RESULTS In this paper, we have adopted a heuristic approach to develop a novel tool, called HPknotter, for efficiently and accurately detecting H-type pseudoknots in an RNA sequence. In addition, we have demonstrated the applicability and effectiveness of HPknotter by testing on some sequences with known H-type pseudoknots. Our approach can be easily extended and applied to other classes of more general pseudoknots. AVAILABILITY The web server of our HPknotter is available for online analysis at http://bioalgorithm.life.nctu.edu.tw/HPKNOTTER/ CONTACT: cllu@mail.nctu.edu.tw, chiu@cc.nctu.edu.tw
Collapse
Affiliation(s)
- Chun-Hsiang Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan, Republic of China
| | | | | |
Collapse
|
982
|
Abstract
Minimal genome approaches seek to define the smallest gene complement compatible with modern-type cellular life on Earth. A consensus of computational and experimental approaches indicates that a minimal genome is close to 300 protein-coding genes, if a rich medium is provided for cell growth. I relate ribosomal gene content in completely sequenced genomes to ribosomal subunit structure and approximate the protein components of the putative minimal ribosome and the ribosome of the Last Universal Common Ancestor of Life. Both sets contain between 35 and 40 proteins. There is evidence of protein-protein and protein-RNA displacement in the evolution of both ribosomal subunits.
Collapse
Affiliation(s)
- Arcady Mushegian
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA.
| |
Collapse
|
983
|
Fry NK, Duncan J, Malnick H, Warner M, Smith AJ, Jackson MS, Ayoub A. Bordetella petrii clinical isolate. Emerg Infect Dis 2005; 11:1131-3. [PMID: 16022798 PMCID: PMC3371814 DOI: 10.3201/eid1107.050046] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We describe the first clinical isolate of Bordetella petrii from a patient with mandibular osteomyelitis. The only previously documented isolation of B. petrii occurred after the initial culture of a single strain from an environmental source.
Collapse
Affiliation(s)
- Norman K Fry
- Health Protection Agency, Respiratory and Systemic Infection Laboratory, Centre for Infections, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
984
|
Ding Y, Chan CY, Lawrence CE. RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA (NEW YORK, N.Y.) 2005; 11:1157-66. [PMID: 16043502 PMCID: PMC1370799 DOI: 10.1261/rna.2500605] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Prediction of RNA secondary structure by free energy minimization has been the standard for over two decades. Here we describe a novel method that forsakes this paradigm for predictions based on Boltzmann-weighted structure ensemble. We introduce the notion of a centroid structure as a representative for a set of structures and describe a procedure for its identification. In comparison with the minimum free energy (MFE) structure using diverse types of structural RNAs, the centroid of the ensemble makes 30.0% fewer prediction errors as measured by the positive predictive value (PPV) with marginally improved sensitivity. The Boltzmann ensemble can be separated into a small number (3.2 on average) of clusters. Among the centroids of these clusters, the "best cluster centroid" as determined by comparison to the known structure simultaneously improves PPV by 46.5% and sensitivity by 21.7%. For 58% of the studied sequences for which the MFE structure is outside the cluster containing the best centroid, the improvements by the best centroid are 62.5% for PPV and 31.4% for sensitivity. These results suggest that the energy well containing the MFE structure under the current incomplete energy model is often different from the one for the unavailable complete model that presumably contains the unique native structure. Centroids are available on the Sfold server at http://sfold.wadsworth.org.
Collapse
Affiliation(s)
- Ye Ding
- Bioinformatics Center, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.
| | | | | |
Collapse
|
985
|
Khachane AN, Timmis KN, dos Santos VAPM. Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures. Nucleic Acids Res 2005; 33:4016-22. [PMID: 16030352 PMCID: PMC1179731 DOI: 10.1093/nar/gki714] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We report here the finding of a highly significant inverse correlation of the uracil content of 16S rRNA and the optimum growth temperature (Topt) of cultured thermophilic and psychrophilic prokaryotes. This correlation was significantly different from the weaker correlations between the contents of other nucleotides and Topt. Analysis of the 16S rRNA secondary structure regions revealed a fall in the A:U base-pair content in step with the increase in Topt that was much steeper than that of mismatched base-pairs, which are thermodynamically less stable. These findings indicate that the 16S rRNA sequences of thermophiles and psychrophiles are under a strong thermo-adaptive pressure, and that structure–function constraints play a crucial role in determining their 16S rRNA nucleotide composition. The derived relationship between uracil content and Topt was used to develop an algorithm to predict the Topt values of uncultured prokaryotes lacking cultured close relatives and belonging to the phyla predominantly containing thermophiles. This algorithm may be useful in guiding the design of cultivation conditions for hitherto uncultured microbes.
Collapse
Affiliation(s)
| | | | - Vítor A. P. Martins dos Santos
- To whom correspondence should be addressed at Division of Microbiology, GBF—German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany. Tel: +49(0) 531 6181 422; Fax: +49(0) 531 6181 411;
| |
Collapse
|
986
|
Gillespie JJ, Yoder MJ, Wharton RA. Predicted Secondary Structure for 28S and 18S rRNA from Ichneumonoidea (Insecta: Hymenoptera: Apocrita): Impact on Sequence Alignment and Phylogeny Estimation. J Mol Evol 2005; 61:114-37. [PMID: 16059751 DOI: 10.1007/s00239-004-0246-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 03/08/2005] [Indexed: 11/27/2022]
Abstract
We utilize the secondary structural properties of the 28S rRNA D2-D10 expansion segments to hypothesize a multiple sequence alignment for major lineages of the hymenopteran superfamily Ichneumonoidea (Braconidae, Ichneumonidae). The alignment consists of 290 sequences (originally analyzed in Belshaw and Quicke, Syst Biol 51:450-477, 2002) and provides the first global alignment template for this diverse group of insects. Predicted structures for these expansion segments as well as for over half of the 18S rRNA are given, with highly variable regions characterized and isolated within conserved structures. We demonstrate several pitfalls of optimization alignment and illustrate how these are potentially addressed with structure-based alignments. Our global alignment is presented online at (http://hymenoptera.tamu.edu/rna) with summary statistics, such as basepair frequency tables, along with novel tools for parsing structure-based alignments into input files for most commonly used phylogenetic software. These resources will be valuable for hymenopteran systematists, as well as researchers utilizing rRNA sequences for phylogeny estimation in any taxon. We explore the phylogenetic utility of our structure-based alignment by examining a subset of the data under a variety of optimality criteria using results from Belshaw and Quicke (2002) as a benchmark.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|
987
|
Gao H, Ayub MJ, Levin MJ, Frank J. The structure of the 80S ribosome from Trypanosoma cruzi reveals unique rRNA components. Proc Natl Acad Sci U S A 2005; 102:10206-11. [PMID: 16014419 PMCID: PMC1174928 DOI: 10.1073/pnas.0500926102] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present analysis, by cryo-electron microscopy and single-particle reconstruction, of the structure of the 80S ribosome from Trypanosoma cruzi, the kinetoplastid protozoan pathogen that causes Chagas disease. The density map of the T. cruzi 80S ribosome shows the phylogenetically conserved eukaryotic rRNA core structure, together with distinctive structural features in both the small and large subunits. Remarkably, a previously undescribed helical structure appears in the small subunit in the vicinity of the mRNA exit channel. We propose that this rRNA structure likely participates in the recruitment of ribosome onto the 5' end of mRNA, in facilitating and modulating the initiation of translation that is unique to the trypanosomes.
Collapse
Affiliation(s)
- Haixiao Gao
- Howard Hughes Medical Institute, Health Research, Inc., at the Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | |
Collapse
|
988
|
Ivanova N, Pavlov MY, Bouakaz E, Ehrenberg M, Schiavone LH. Mapping the interaction of SmpB with ribosomes by footprinting of ribosomal RNA. Nucleic Acids Res 2005; 33:3529-39. [PMID: 15972795 PMCID: PMC1156966 DOI: 10.1093/nar/gki666] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 06/06/2005] [Accepted: 06/06/2005] [Indexed: 12/01/2022] Open
Abstract
In trans-translation transfer messenger RNA (tmRNA) and small protein B (SmpB) rescue ribosomes stalled on truncated or in other ways problematic mRNAs. SmpB promotes the binding of tmRNA to the ribosome but there is uncertainty about the number of participating SmpB molecules as well as their ribosomal location. Here, the interaction of SmpB with ribosomal subunits and ribosomes was studied by isolation of SmpB containing complexes followed by chemical modification of ribosomal RNA with dimethyl sulfate, kethoxal and hydroxyl radicals. The results show that SmpB binds 30S and 50S subunits with 1:1 molar ratios and the 70S ribosome with 2:1 molar ratio. SmpB-footprints are similar on subunits and the ribosome. In the 30S subunit, SmpB footprints nucleotides that are in the vicinity of the P-site facing the E-site, and in the 50S subunit SmpB footprints nucleotides that are located below the L7/L12 stalk in the 3D structure of the ribosome. Based on these results, we suggest a mechanism where two molecules of SmpB interact with tmRNA and the ribosome during trans-translation. The first SmpB molecule binds near the factor-binding site on the 50S subunit helping tmRNA accommodation on the ribosome, whereas the second SmpB molecule may functionally substitute for a missing anticodon stem-loop in tmRNA during later steps of trans-translation.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Models, Molecular
- Molecular Sequence Data
- Protein Biosynthesis
- Protein Footprinting
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA-Binding Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Natalia Ivanova
- Department of Cell and Molecular Biology, BMC, Uppsala UniversityBox 596, S-75 124 Uppsala, Sweden
- Cell Biology Unit, Department of Life SciencesSödertörns Högskola, S-141 89 Huddinge, Sweden
| | - Michael Y. Pavlov
- Department of Cell and Molecular Biology, BMC, Uppsala UniversityBox 596, S-75 124 Uppsala, Sweden
- Cell Biology Unit, Department of Life SciencesSödertörns Högskola, S-141 89 Huddinge, Sweden
| | - Elli Bouakaz
- Department of Cell and Molecular Biology, BMC, Uppsala UniversityBox 596, S-75 124 Uppsala, Sweden
- Cell Biology Unit, Department of Life SciencesSödertörns Högskola, S-141 89 Huddinge, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, BMC, Uppsala UniversityBox 596, S-75 124 Uppsala, Sweden
- Cell Biology Unit, Department of Life SciencesSödertörns Högskola, S-141 89 Huddinge, Sweden
| | | |
Collapse
|
989
|
Dutheil J, Pupko T, Jean-Marie A, Galtier N. A Model-Based Approach for Detecting Coevolving Positions in a Molecule. Mol Biol Evol 2005; 22:1919-28. [PMID: 15944445 DOI: 10.1093/molbev/msi183] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a new method for detecting coevolving sites in molecules. The method relies on a set of aligned sequences (nucleic acid or protein) and uses Markov models of evolution to map the substitutions that occurred at each site onto the branches of the underlying phylogenetic tree. This mapping takes into account the uncertainty over ancestral states and among-site rate variation. We then build, for each site, a "substitution vector" containing the posterior estimates of the number of substitutions in each branch. The amount of coevolution for a pair of sites is then measured as the Pearson correlation coefficient between the two corresponding substitution vectors and compared to the expectation under the null hypothesis of independence. We applied the method to a 79-species bacterial ribosomal RNA data set, for which extensive structural characterization has been done over the last 30 years. More than 95% of the intramolecular predicted pairs of sites correspond to known interacting site pairs.
Collapse
Affiliation(s)
- Julien Dutheil
- CNRS UMR 5171 Laboratoire Génome, Populations, Interactions, Adaptation, Université Montpellier II, Montpellier Cedex, France.
| | | | | | | |
Collapse
|
990
|
Rospert S, Rakwalska M, Dubaquié Y. Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes. Rev Physiol Biochem Pharmacol 2005. [DOI: 10.1007/s10254-005-0039-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
991
|
Woodson SA. Structure and assembly of group I introns. Curr Opin Struct Biol 2005; 15:324-30. [PMID: 15922592 DOI: 10.1016/j.sbi.2005.05.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/21/2005] [Accepted: 05/09/2005] [Indexed: 11/29/2022]
Abstract
Self-splicing group I introns have served as a model for RNA catalysis and folding for over two decades. New three-dimensional structures now bring the details into view. Revelations include an unanticipated turn in the RNA backbone around the guanosine-binding pocket. Two metal ions in the active site coordinate the substrate and phosphates from all three helical domains.
Collapse
Affiliation(s)
- Sarah A Woodson
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218-2685, USA.
| |
Collapse
|
992
|
Lambert A, Legendre M, Fontaine JF, Gautheret D. Computing expectation values for RNA motifs using discrete convolutions. BMC Bioinformatics 2005; 6:118. [PMID: 15892887 PMCID: PMC1168889 DOI: 10.1186/1471-2105-6-118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 05/13/2005] [Indexed: 11/22/2022] Open
Abstract
Background Computational biologists use Expectation values (E-values) to estimate the number of solutions that can be expected by chance during a database scan. Here we focus on computing Expectation values for RNA motifs defined by single-strand and helix lod-score profiles with variable helix spans. Such E-values cannot be computed assuming a normal score distribution and their estimation previously required lengthy simulations. Results We introduce discrete convolutions as an accurate and fast mean to estimate score distributions of lod-score profiles. This method provides excellent score estimations for all single-strand or helical elements tested and also applies to the combination of elements into larger, complex, motifs. Further, the estimated distributions remain accurate even when pseudocounts are introduced into the lod-score profiles. Estimated score distributions are then easily converted into E-values. Conclusion A good agreement was observed between computed E-values and simulations for a number of complete RNA motifs. This method is now implemented into the ERPIN software, but it can be applied as well to any search procedure based on ungapped profiles with statistically independent columns.
Collapse
Affiliation(s)
- André Lambert
- CNRS UMR 6207, Université de la Méditerranée, Luminy Case 907, 13288 Marseille cedex 9, France
| | - Matthieu Legendre
- INSERM ERM 206, Université de la Méditerranée, Luminy Case 928, 13288 Marseille Cedex 9, France
| | - Jean-Fred Fontaine
- INSERM ERM 206, Université de la Méditerranée, Luminy Case 928, 13288 Marseille Cedex 9, France
- INSERM EMI U 00.18, CHU d'Angers, 49033 Angers, France
| | - Daniel Gautheret
- INSERM ERM 206, Université de la Méditerranée, Luminy Case 928, 13288 Marseille Cedex 9, France
| |
Collapse
|
993
|
Haugen P, Wikmark OG, Vader A, Coucheron DH, Sjøttem E, Johansen SD. The recent transfer of a homing endonuclease gene. Nucleic Acids Res 2005; 33:2734-41. [PMID: 15891115 PMCID: PMC1110740 DOI: 10.1093/nar/gki564] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The myxomycete Didymium iridis (isolate Panama 2) contains a mobile group I intron named Dir.S956-1 after position 956 in the nuclear small subunit (SSU) rRNA gene. The intron is efficiently spread through homing by the intron-encoded homing endonuclease I-DirI. Homing endonuclease genes (HEGs) usually spread with their associated introns as a unit, but infrequently also spread independent of introns (or inteins). Clear examples of HEG mobility are however sparse. Here, we provide evidence for the transfer of a HEG into a group I intron named Dir.S956-2 that is inserted into the SSU rDNA of the Costa Rica 8 isolate of D.iridis. Similarities between intron sequences that flank the HEG and rDNA sequences that flank the intron (the homing endonuclease recognition sequence) suggest that the HEG invaded the intron during the recent evolution in a homing-like event. Dir.S956-2 is inserted into the same SSU site as Dir.S956-1. Remarkably, the two group I introns encode distantly related splicing ribozymes with phylogenetically related HEGs inserted on the opposite strands of different peripheral loop regions. The HEGs are both interrupted by small spliceosomal introns that must be removed during RNA maturation.
Collapse
Affiliation(s)
| | | | | | | | | | - Steinar D. Johansen
- To whom correspondence should be addressed. Tel: +47 77 64 53 67; Fax: +47 77 64 53 50;
| |
Collapse
|
994
|
Simon DM, Hummel CL, Sheeley SL, Bhattacharya D. Heterogeneity of intron presence or absence in rDNA genes of the lichen species Physcia aipolia and P. stellaris. Curr Genet 2005; 47:389-99. [PMID: 15868149 DOI: 10.1007/s00294-005-0581-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2005] [Revised: 03/22/2005] [Accepted: 03/29/2005] [Indexed: 10/25/2022]
Abstract
Intron origin and evolution are of high interest, yet the rates of insertion and loss are unclear. To investigate their spread, we studied ribosomal (r)DNA introns from the closely related lichens Physcia aipolia and P. stellaris. Both taxa are replete with rDNA spliceosomal introns and autocatalytic group I introns, many of which show presence/absence polymorphism when screened with the PCR approach. This initially suggested that Physcia could be a model for studying intron retention and loss. However, during the course of a population-level analysis, we discovered widespread intron presence/absence heterogeneity within lichen thalli. To address this result, we sequenced multiple clones encoding nuclear rDNA and the single-copy elongation factor-1alpha (EF-1alpha) from individual thalli. These data showed extensive rDNA heterogeneity within individuals, rather than the presence of multiple fungi within a thallus. Our results suggest that considerable care must be taken when interpreting intron presence/absence in lichen rDNA, an observation that has general implications for the study of rDNA intron evolution.
Collapse
Affiliation(s)
- Dawn M Simon
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, 312 Biology Building, Iowa City, IA 52242-1324, USA
| | | | | | | |
Collapse
|
995
|
Jeon YS, Chung H, Park S, Hur I, Lee JH, Chun J. jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 2005; 21:3171-3. [PMID: 15855247 DOI: 10.1093/bioinformatics/bti463] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
jPHYDIT is a Java application designed to furnish a visual and integrated environment for molecular phylogeny. The program can be used to visualize intra-strand base-pairing information in secondary and tertiary structures of ribosomal RNA (rRNA) sequences. A function for the semi-automated alignment was included to facilitate handling of the database containing a large number of multiple-aligned rRNA sequences. Integration of nucleotide sequence editing, pairwise alignment, multiple alignment and phylogenetic treeing functions provide an easy and efficient way of analyzing rRNA sequences for molecular evolution, systematics, epidemiology and ecology.
Collapse
Affiliation(s)
- Yoon-Seong Jeon
- Interdisciplinary Program in Bioinformatics, Seoul National University Shilim-dong, Kwanak-gu, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
996
|
Gillespie JJ, Munro JB, Heraty JM, Yoder MJ, Owen AK, Carmichael AE. A Secondary Structural Model of the 28S rRNA Expansion Segments D2 and D3 for Chalcidoid Wasps (Hymenoptera: Chalcidoidea). Mol Biol Evol 2005; 22:1593-608. [PMID: 15843598 DOI: 10.1093/molbev/msi152] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We analyze the secondary structure of two expansion segments (D2, D3) of the 28S ribosomal (rRNA)-encoding gene region from 527 chalcidoid wasp taxa (Hymenoptera: Chalcidoidea) representing 18 of the 19 extant families. The sequences are compared in a multiple sequence alignment, with secondary structure inferred primarily from the evidence of compensatory base changes in conserved helices of the rRNA molecules. This covariation analysis yielded 36 helices that are composed of base pairs exhibiting positional covariation. Several additional regions are also involved in hydrogen bonding, and they form highly variable base-pairing patterns across the alignment. These are identified as regions of expansion and contraction or regions of slipped-strand compensation. Additionally, 31 single-stranded locales are characterized as regions of ambiguous alignment based on the difficulty in assigning positional homology in the presence of multiple adjacent indels. Based on comparative analysis of these sequences, the largest genetic study on any hymenopteran group to date, we report an annotated secondary structural model for the D2, D3 expansion segments that will prove useful in assigning positional nucleotide homology for phylogeny reconstruction in these and closely related apocritan taxa.
Collapse
|
997
|
Li Z, Zhang Y. Predicting the secondary structures and tertiary interactions of 211 group I introns in IE subgroup. Nucleic Acids Res 2005; 33:2118-28. [PMID: 15843683 PMCID: PMC1083426 DOI: 10.1093/nar/gki517] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The large number of currently available group I intron sequences in the public databases provides opportunity for studying this large family of structurally complex catalytic RNA by large-scale comparative sequence analysis. In this study, the detailed secondary structures of 211 group I introns in the IE subgroup were manually predicted. The secondary structure-favored alignments showed that IE introns contain 14 conserved stems. The P13 stem formed by long-range base-pairing between P2.1 and P9.1 is conserved among IE introns. Sequence variations in the conserved core divide IE introns into three distinct minor subgroups, namely IE1, IE2 and IE3. Co-variation of the peripheral structural motifs with core sequences supports that the peripheral elements function in assisting the core structure folding. Interestingly, host-specific structural motifs were found in IE2 introns inserted at S516 position. Competitive base-pairing is found to be conserved at the junctions of all long-range paired regions, suggesting a possible mechanism of establishing long-range base-pairing during large RNA folding. These findings extend our knowledge of IE introns, indicating that comparative analysis can be a very good complement for deepening our understanding of RNA structure and function in the genomic era.
Collapse
Affiliation(s)
| | - Yi Zhang
- To whom correspondence should be addressed. Tel: +86 27 68756207; Fax: +86 27 68754945;
| |
Collapse
|
998
|
Chen G, Znosko BM, Kennedy SD, Krugh TR, Turner DH. Solution structure of an RNA internal loop with three consecutive sheared GA pairs. Biochemistry 2005; 44:2845-56. [PMID: 15723528 DOI: 10.1021/bi048079y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Internal loops in RNA are important for folding and function. Many folding motifs are internal loops containing GA base pairs, which are usually thermodynamically stabilizing, i.e., contribute favorable free energy to folding. Understanding the sequence dependence of folding stability and structure in terms of molecular interactions, such as hydrogen bonding and base stacking, will provide a foundation for predicting stability and structure. Here, we report the NMR structure of the oligonucleotide duplex, 5'GGUGGAGGCU3'/3'PCCGAAGCCG5' (P = purine), containing an unusually stable and relatively abundant internal loop, 5'GGA3'/3'AAG5'. This loop contains three consecutive sheared GA pairs (trans Hoogsteen/Sugar edge AG) with separate stacks of three G's and three A's in a row. The thermodynamic consequences of various nucleotide substitutions are also reported. Significant destabilization of approximately 2 kcal/mol at 37 degrees C is found for substitution of the middle GA with AA to form 5'GAA3'/3'AAG5'. This destabilization correlates with a unique base stacking and hydrogen-bonding network within the 5'GGA3'/3'AAG5' loop. Interestingly, the motifs, 5'UG3'/3'GA5' and 5'UG3'/3'AA5', have stability similar to 5'CG3'/3'GA5' even though UG and UA pairs are usually less stable than CG pairs. Consecutive sheared GA pairs in the 5'GGA3'/3'AAG5' loop are preorganized for potential tertiary interactions and ligand binding.
Collapse
Affiliation(s)
- Gang Chen
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | | | | | | | | |
Collapse
|
999
|
Birgisdottir ÅB, Johansen S. Site-specific reverse splicing of a HEG-containing group I intron in ribosomal RNA. Nucleic Acids Res 2005; 33:2042-51. [PMID: 15817568 PMCID: PMC1074745 DOI: 10.1093/nar/gki341] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The wide, but scattered distribution of group I introns in nature is a result of two processes; the vertical inheritance of introns with or without losses, and the occasional transfer of introns across species barriers. Reversal of the group I intron self-splicing reaction, termed reverse splicing, coupled with reverse transcription and genomic integration potentially mediate an RNA-based intron mobility pathway. Compared to the well characterized endonuclease-mediated intron homing, reverse splicing is less specific and represents a likely explanation for many intron transpositions into new genomic sites. However, the frequency and general role of an RNA-based mobility pathway in the spread of natural group I introns is still unclear. We have used the twin-ribozyme intron (Dir.S956-1) from the myxomycete Didymium iridis to test how a mobile group I intron containing a homing endonuclease gene (HEG) selects between potential insertion sites in the small subunit (SSU) rRNA in vitro, in Escherichia coli and in yeast. Surprisingly, the results show a site-specific RNA-based targeting of Dir.S956-1 into its natural (S956) SSU rRNA site. Our results suggest that reverse splicing, in addition to the established endonuclease-mediated homing mechanism, potentially accounts for group I intron spread into the homologous sites of different strains and species.
Collapse
Affiliation(s)
- Åsa B. Birgisdottir
- Department of Molecular Biotechnology, Institute of Medical Biology, University of TromsøN-9037 Tromsø, Norway
| | - Steinar Johansen
- Department of Molecular Biotechnology, Institute of Medical Biology, University of TromsøN-9037 Tromsø, Norway
- Faculty of Fisheries and Natural Sciences, Bodø Regional UniversityN-8049 Bodø, Norway
- To whom correspondence should be addressed. Tel: +47 77 64 53 67; Fax: +47 77 64 53 50;
| |
Collapse
|
1000
|
Huang HC, Nagaswamy U, Fox GE. The application of cluster analysis in the intercomparison of loop structures in RNA. RNA (NEW YORK, N.Y.) 2005; 11:412-423. [PMID: 15769871 PMCID: PMC1370731 DOI: 10.1261/rna.7104605] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 12/18/2004] [Indexed: 05/24/2023]
Abstract
We have developed a computational approach for the comparison and classification of RNA loop structures. Hairpin or interior loops identified in atomic resolution RNA structures were intercompared by conformational matching. The root-mean-square deviation (RMSD) values between all pairs of RNA fragments of interest, even if from different molecules, are calculated. Subsequently, cluster analysis is performed on the resulting matrix of RMSD distances using the unweighted pair group method with arithmetic mean (UPGMA). The cluster analysis objectively reveals groups of folds that resemble one another. To demonstrate the utility of the approach, a comprehensive analysis of all the terminal hairpin tetraloops that have been observed in 15 RNA structures that have been determined by X-ray crystallography was undertaken. The method found major clusters corresponding to the well-known GNRA and UNCG types. In addition, two tetraloops with the unusual primary sequence UMAC (M is A or C) were successfully assigned to the GNRA cluster. Larger loop structures were also examined and the clustering results confirmed the occurrence of variations of the GNRA and UNCG tetraloops in these loops and provided a systematic means for locating them. Nineteen examples of larger loops that closely resemble either the GNRA or UNCG tetraloop were found in the large ribosomal RNAs. When the clustering approach was extended to include all structures in the SCOR database, novel relationships were detected including one between the ANYA motif and a less common folding of the GAAA tetraloop sequence.
Collapse
Affiliation(s)
- Hung-Chung Huang
- Department of Biology and Biochemistry, Houston Science Center, Room 402, 3201 Cullen Blvd., University of Houston, Houston, TX 77204, USA
| | | | | |
Collapse
|