1001
|
Wang LM, Gan YH. Cancer-derived IgG involved in cisplatin resistance through PTP-BAS/Src/PDK1/AKT signaling pathway. Oral Dis 2020; 27:464-474. [PMID: 32730654 DOI: 10.1111/odi.13583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/02/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES This study aimed to explore whether knockdown of cancer-derived IgG (CIgG) could enhance cisplatin-induced anti-cancer effects. MATERIALS AND METHODS Cancer-derived IgG was knocked down by siRNA or Tet-on shRNA in the absence or presence of cisplatin in WSU-HN6 or CAL27 cells. Cell proliferation, apoptosis, and mobility were evaluated using CCK-8, flow cytometry, and transwell assays, respectively. Molecular events were investigated using real-time PCR and Western blot assays. RESULTS Knockdown of CIgG significantly promoted cisplatin-induced apoptosis and inhibition of cell proliferation, migration, and invasion. Cisplatin upregulated CIgG expression and phosphorylation of AKT and PDK1, while knockdown of CIgG downregulated phosphorylation of AKT and PDK1, and blocked cisplatin-induced upregulation of AKT and PDK1 phosphorylation. Moreover, knockdown of CIgG blocked cisplatin-induced upregulation of Src phosphorylation, and knockdown of Src blocked cisplatin-induced upregulation of AKT and PDK1 phosphorylation. Overexpression of Src upregulated AKT and PDK1 phosphorylation. Furthermore, knockdown of CIgG upregulated PTP-BAS mRNA and protein expression, whereas cisplatin downregulated PTP-BAS protein, but not mRNA expression; knockdown of PTP-BAS upregulated phosphorylation of Src, PDK1, AKT, and blocked CIgG knockdown-mediated enhancement of cisplatin-induced inhibition of cell proliferation. CONCLUSION Knockdown of CIgG enhanced the anti-cancer effects of cisplatin through PTP-BAS/Src/PDK1/AKT signaling pathway in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Lu-Ming Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Oral & Maxillofacial, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ye-Hua Gan
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Oral & Maxillofacial, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
1002
|
Yao Y, Dong S, Zhu C, Hu M, Du B, Tong X. [Down-regulation of pannexin 2 channel enhances cisplatin-induced apoptosis in testicular cancer I-10 cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1090-1096. [PMID: 32895173 DOI: 10.12122/j.issn.1673-4254.2020.08.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of down-regulation of pannexin 2 (Panx-2) channels on cisplatin-induced apoptosis in I-10 cells. METHODS The expression of Panx-2 protein in testicular cancer cells was detected with Western blotting. The testicular cancer cell line I-10 was transfected with two short hairpin RNA (shRNA1 and shRNA2) via Lipofectamine2000, the empty vector (NC group) or Lipofectamine2000 (blank control group), and the changes in the expression of Panx-2 was detected with Western blotting. The effects of transfection with a Panx-2 inhibitor on surviving fraction of the cells treated with cisplatin (16 μmol/L) for 24 h, 48 h and 72 h was assessed with MTT assay, and the clonogenic capacity of the cells was evaluated with colony-forming assay. At 8 h after incubation with 16 μmol/L cisplatin, AnnexinV/PI double staining was used to detect the early apoptosis of the cells. After 24 h of treatment with 16 μmol/L cisplatin, the cells were examined for expressions of caspase-3, Bcl-2 and Bax using Western blotting. RESULTS The expression of Panx-2 was significantly increased in cisplatin-resistant I-10/DDP (P < 0.001) cells and Tcam-2/DDP (P < 0.01) cells as compared with I-10 cells and Tcam-2 cells. Transfection of I-10 cells with shRNA1 and shRNA2 resulted in significantly decreased Panx-2 expression (P < 0.05) and significantly reduced cell surviving fraction (P < 0.001). In the presence of cisplatin, the cells in NC group showed a higher clonogenic efficiency than those in shRNA1 and shRNA2 groups (P < 0.001). The early-stage apoptosis rate of the cells in shRNA1 and shRNA2 groups were significantly higher than that in NC group (P < 0.01). Panx-2 knockdown in I-10 cells significantly increased caspase-3 and Bax expressions (P < 0.05) and significantly decreased the expression of Bcl-2 (P < 0.01). CONCLUSIONS Down-regulation of Panx-2 channel enhances cisplatin-induced apoptosis in cultured testicular cancer cells.
Collapse
Affiliation(s)
- Yanxue Yao
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Shuying Dong
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Chenlu Zhu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Miao Hu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Baolong Du
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Xuhui Tong
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
1003
|
Quercetin attenuates cisplatin-induced fat loss. Eur J Nutr 2020; 60:1781-1793. [PMID: 32860126 DOI: 10.1007/s00394-020-02371-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/19/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE The major aim of the present study was to determine the effects of quercetin, a well-known flavonoid, on attenuating cisplatin (CDDP)-induced fat loss and the possible mechanisms. METHODS Tumor-bearing nude mice and tumor-free BALB/c mice were administrated with CDDP alone or in combination with quercetin by a diet containing 0.1% or 1% quercetin (LQ or HQ) or by intraperitoneal injection (IQ) to determine the effects of quercetin on the anticancer effect of CDDP or CDDP-induced fat loss. The effects of quercetin on fat accumulation in CDDP-exposed 3T3-L1 cells were also determined. RESULTS We first showed that HQ and IQ significantly enhanced the anticancer effect of CDDP by upregulating p53- and p21-associated pathways, while tended to attenuate CDDP-induced fat loss in tumor-bearing nude mice. The study in 3T3-L1 cells showed that CDDP decreased the fat accumulation accompanied by strong upregulation of the expression of six genes which are associated with fat metabolism, while quercetin completely suppressed such an effect. The tumor-free BALB/c mice study consistently showed a protective effect of HQ on CDDP-induced body weight and epididymal fat loss. HQ also increased the fat levels in liver and muscle tissues. In epididymal fat tissues, HQ consistently attenuated CDDP-induced changes in fat metabolism-associated gene expression. However, CDDP alone or in combination with HQ did not affect the food intake. CONCLUSIONS This study demonstrates that quercetin possesses the potential to suppress CDDP-induced fat loss may partly through the regulation of the fat metabolism-associated gene expression.
Collapse
|
1004
|
Synthesis and Biological Studies on Dinuclear Gold(I) Complexes with Di-( N-Heterocyclic Carbene) Ligands Functionalized with Carbohydrates. Molecules 2020; 25:molecules25173850. [PMID: 32847116 PMCID: PMC7503629 DOI: 10.3390/molecules25173850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
The design of novel metal complexes with N-heterocyclic carbene (NHC) ligands that display biological activity is an active research field in organometallic chemistry. One of the possible approaches consists of the use of NHC ligands functionalized with a carbohydrate moiety. Two novel Au(I)–Au(I) dinuclear complexes were synthesized; they present a neutral structure with one bridging diNHC ligand, having one or both heterocyclic rings decorated with a carbohydrate functionality. With the symmetric diNHC ligand, the dicationic dinuclear complex bearing two bridging diNHC ligands was also synthesized. The study was completed by analyzing the antiproliferative properties of these complexes, which were compared to the activity displayed by similar mononuclear Au(I) complexes and by the analogous bimetallic Au(I)–Au(I) complex not functionalized with carbohydrates.
Collapse
|
1005
|
Turky A, Bayoumi AH, Sherbiny FF, El-Adl K, Abulkhair HS. Unravelling the anticancer potency of 1,2,4-triazole-N-arylamide hybrids through inhibition of STAT3: synthesis and in silico mechanistic studies. Mol Divers 2020; 25:403-420. [PMID: 32830299 DOI: 10.1007/s11030-020-10131-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022]
Abstract
The discovery of potent STAT3 inhibitors has gained noteworthy impetus in the last decade. In line with this trend, considering the proven biological importance of 1,2,4-triazoles, herein, we are reporting the design, synthesis, pharmacokinetic profiles, and in vitro anticancer activity of novel C3-linked 1,2,4-triazole-N-arylamide hybrids and their in silico proposed mechanism of action via inhibition of STAT3. The 1,2,4-triazole scaffold was selected as a privilege ring system that is embedded in core structures of a variety of anticancer drugs which are either in clinical use or still under clinical trials. The designed 1,2,4-triazole derivatives were synthesized by linking the triazole-thione moiety through amide hydrophilic linkers with diverse lipophilic fragments. In silico study to predict cytotoxicity of the new hybrids against different kinds of human cancer cell lines as well as the non-tumor cells was conducted. The multidrug-resistant human breast adenocarcinoma cells (MDA-MB-231) was found most susceptible to the cytotoxic effect of synthesized compounds and hence were selected to evaluate the in vitro anticancer activity. Four of the designed derivatives showed promising cytotoxicity effects against selected cancer cells, among which compound 12 showed the highest potency (IC50 = 3.61 µM), followed by 21 which displayed IC50 value of 3.93 µM. Also, compounds 14 and 23 revealed equipotent activity with the reference cytotoxic agent doxorubicin. To reinforce these observations, the obtained data of in vitro cytotoxicity have been validated in terms of ligand-protein interaction and new compounds were analyzed for ADMET properties to evaluate their potential to build up as good drug candidates. This study led us to identify two novel C3-linked 1,2,4-triazole-N-arylamide hybrids of interesting antiproliferative potentials as probable lead inhibitors of STAT3 with promising pharmacokinetic profiles.
Collapse
Affiliation(s)
- Abdallah Turky
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Farag F Sherbiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Pharmaceutical Organic Chemistry Department, College of Pharmacy, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | - Khaled El-Adl
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University - Egypt, International Costal Road, New Damietta, Egypt.
| |
Collapse
|
1006
|
Zhu M, Yang L, Wang X. NEAT1 Knockdown Suppresses the Cisplatin Resistance in Ovarian Cancer by Regulating miR-770-5p/PARP1 Axis. Cancer Manag Res 2020; 12:7277-7289. [PMID: 32884343 PMCID: PMC7434570 DOI: 10.2147/cmar.s257311] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background Long noncoding RNAs play essential roles in regulating drug resistance in cancers. However, how and whether lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) could mediate cisplatin resistance in ovarian cancer remain poorly understood. Patients and Methods Eighteen cisplatin-sensitive and 19 cisplatin-resistant patients with ovarian cancer were recruited. Cisplatin-resistant ovarian cancer cells were used for this study. The expression levels of NEAT1, microRNA (miR)-770-5p and poly adenosine diphosphate-ribose polymerase 1 (PARP1) were detected by quantitative real-time polymerase chain reaction or Western blot. Cisplatin resistance was assessed by the half-maximal inhibitory concentration (IC50) of cisplatin, cell viability and apoptosis using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, flow cytometry and Western blot, respectively. The target association between miR-770-5p and NEAT1 or PARP1 was investigated by dual-luciferase reporter assay. The xenograft model was used to investigate cisplatin resistance in vivo. Results NEAT1 expression is elevated in cisplatin-resistant ovarian cancer tissues and cells. Knockdown of NEAT1 repressed cisplatin resistance by decreasing the IC50 of cisplatin, cell viability and increasing apoptosis. MiR-770-5p was bound to NEAT1 and PARP1 was confirmed as a target of miR-770-5p. MiR-770-5p inhibition or PARP1 restoration could abate the effect of NEAT1 silencing on cisplatin resistance in cisplatin-resistant ovarian cancer cells. Moreover, NEAT1 knockdown reduced PARP1 expression by increasing miR-770-5p. Interference of NEAT1 decreased xenograft tumor growth by regulating miR-770-5p and PARP1. Conclusion Knockdown of NEAT1 inhibited cisplatin resistance in ovarian cancer cells by up-regulating miR-770-5p and down-regulating PARP1, providing a new target for improving the efficacy of cisplatin-based therapy in ovarian cancer.
Collapse
Affiliation(s)
- Mingzhe Zhu
- Department of Obstetrics and Gynecology, Jilin Medical College Affiliated Hospital, Jilin City, Jilin Province 132011, People's Republic of China
| | - Lei Yang
- Department of Medical Clinic, Yuhuangding Hospital, Yantai City, Shandong Province 264000, People's Republic of China
| | - Xin Wang
- Department of Obstetrics, Qianjiang Central Hospital of Chongqing, Chongqing 409000, People's Republic of China
| |
Collapse
|
1007
|
Parthenolide as Cooperating Agent for Anti-Cancer Treatment of Various Malignancies. Pharmaceuticals (Basel) 2020; 13:ph13080194. [PMID: 32823992 PMCID: PMC7466132 DOI: 10.3390/ph13080194] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Primary and acquired resistance of cancer to therapy is often associated with activation of nuclear factor kappa B (NF-κB). Parthenolide (PN) has been shown to inhibit NF-κB signaling and other pro-survival signaling pathways, induce apoptosis and reduce a subpopulation of cancer stem-like cells in several cancers. Multimodal therapies that include PN or its derivatives seem to be promising approaches enhancing sensitivity of cancer cells to therapy and diminishing development of resistance. A number of studies have demonstrated that several drugs with various targets and mechanisms of action can cooperate with PN to eliminate cancer cells or inhibit their proliferation. This review summarizes the current state of knowledge on PN activity and its potential utility as complementary therapy against different cancers.
Collapse
|
1008
|
Gong X, Li W, Dong L, Qu F. CircUBAP2 promotes SEMA6D expression to enhance the cisplatin resistance in osteosarcoma through sponging miR-506-3p by activating Wnt/β-catenin signaling pathway. J Mol Histol 2020. [PMID: 32472335 DOI: 10.1007/s10735-020-09883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The occurrence of chemo-resistance is an essential reason for the high morbidity of osteosarcoma (OS) patients. Circular RNAs (circRNAs) have been involved in the regulation of chemo-resistance in cancers. Semaphorins 6D (SEMA6D) is abnormally expressed in many cancers. However, the roles of circUBAP2 and SEMA6D in the chemo-resistance of OS are still unclear. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of circUBAP2, SEMA6D and microRNA-506-3p (miR-506-3p). The cisplatin resistance and proliferation of cells were evaluated by 3-(4, 5-dimethyl-2 thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay. Western blot analysis was performed to measure the protein levels of Wnt/β-catenin signaling pathway biomarkers and SEMA6D. Also, the apoptosis, migration and invasion of cells were assessed by Flow cytometry and Transwell assays, respectively. Besides, Dual-luciferase reporter assay was used to verify the interaction between miR-506-3p and circUBAP2 or SEMA6D. We found that the expression levels of circUBAP2 and SEMA6D were increased in cisplatin-resistant OS tissues and cells. Knockdown of circUBAP2 inhibited the cisplatin resistance, silenced Wnt/β-catenin signaling pathway, hindered cell proliferation, migration and invasion, and promoted apoptosis in cisplatin-resistant OS cells, all of which could be reversed by overexpression of SEMA6D. MiR-506-3p could be sponged by circUBAP2 and could target SEMA6D. The suppression of miR-506-3p overexpression on the progression of OS cisplatin resistance could be reversed by SEMA6D overexpression, while miR-506-3p inhibitor also could invert the inhibitory effect of circUBAP2 silencing on the progression of OS cisplatin resistance. In conclusion, CircUBAP2 and SEMA6D played active roles in the progression of OS cisplatin resistance through miR-506-3p, which might provide some new ideas for studying the countermeasures of OS resistance.
Collapse
Affiliation(s)
| | | | - Lin Dong
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Avenue, Mouping District, Yantai, 264000, Shandong, China.
| | - Fangfei Qu
- Department of Special Inspection, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
1009
|
Liu R, Yan H, Jiang J, Li J, Liang X, Yang D, Pan L, Xie T, Ma Z. Synthesis, Characterization, Photoluminescence, Molecular Docking and Bioactivity of Zinc (II) Compounds Based on Different Substituents. Molecules 2020; 25:molecules25153459. [PMID: 32751372 PMCID: PMC7436059 DOI: 10.3390/molecules25153459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 01/18/2023] Open
Abstract
Six new zinc(II) complexes were prepared by the reaction of ZnBr2 or ZnI2 with 4′-(substituted-phenyl)-2,2′:6′,2′′-terpyridine compounds, bearing p-methylsulfonyl (L1), p-methoxy (L2) and p-methyl (L3), which were characterized by elemental analysis, FT-IR, NMR and single crystal X-ray diffraction. The antiproliferative properties against Eca-109, A549 and Bel-7402 cell lines and the cytotoxicity test on RAW-264.7 of these compounds were monitored using a CCK-8 assay, and the studies indicate that the complexes show higher antiproliferative activities than cisplatin. The interactions of these complexes with CT-DNA and proteins (BSA) were studied by UV-Vis, circular dichroism (CD) and fluorescent spectroscopy, respectively. The results indicate that the interaction of these zinc(II) complexes with CT-DNA is achieved through intercalative binding, and their strong binding affinity to BSA is fulfilled through a static quenching mechanism. The simulation of the complexes with the CT-DNA fragment and BSA was studied by using molecular docking software. It further validates that the complexes interact with DNA through intercalative binding mode and that they have a strong interaction with BSA.
Collapse
Affiliation(s)
- Rongping Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530004, Guangxi, China
| | - Hao Yan
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China;
| | - Jinzhang Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
| | - Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
| | - Xing Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530004, Guangxi, China;
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530004, Guangxi, China
- Correspondence: (L.P.); (T.X.); (Z.M.); Tel.: +86-0771-250-3980 (L.P.)
| | - Tisan Xie
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China;
- Correspondence: (L.P.); (T.X.); (Z.M.); Tel.: +86-0771-250-3980 (L.P.)
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
- Correspondence: (L.P.); (T.X.); (Z.M.); Tel.: +86-0771-250-3980 (L.P.)
| |
Collapse
|
1010
|
Low GAS5 expression may predict poor survival and cisplatin resistance in cervical cancer. Cell Death Dis 2020; 11:531. [PMID: 32661236 PMCID: PMC7359315 DOI: 10.1038/s41419-020-2735-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
Cisplatin resistance is a major challenge in cervical cancer (CC) chemotherapy. Growth arrest-specific 5 (GAS5) has been reported to be a tumour suppressor gene in CC. However, the mechanism of GAS5 in chemoresistance remains undetermined. Our research evaluated GAS5 expression in normal and CC tissues by qPCR and in situ hybridization (ISH). Statistical analysis was conducted to analyse the association of GAS5 expression with survival. Biochemical methods were used to screen upstream and downstream regulators of GAS5. Then, interactions were confirmed by ChIP, RNA pull-down, RNA immunoprecipitation (RIP), dual-luciferase reporter and real-time PCR assays. The cisplatin sensitivity of GAS5-overexpressing CC cells was demonstrated in vitro and in vivo. The results showed that low GAS5 expression was correlated with poor overall survival. Mechanistically, GAS5 was transcriptionally modulated by P-STAT3 and served as a competing endogenous RNA (ceRNA) of miR-21 to indirectly affect cisplatin sensitivity through PDCD4 regulation in CC cells. Animal studies confirmed that GAS5 enhanced cisplatin sensitivity and promoted PDCD4 expression in vivo. GAS5 was regulated by P-STAT3 and affected the sensitivity of CC to cisplatin-based chemotherapy through the miR-21/PDCD4 axis. This result may provide new insight into cisplatin-based therapy.
Collapse
|
1011
|
D’Errico S, Falanga AP, Capasso D, Di Gaetano S, Marzano M, Terracciano M, Roviello GN, Piccialli G, Oliviero G, Borbone N. Probing the DNA Reactivity and the Anticancer Properties of a Novel Tubercidin-Pt(II) Complex. Pharmaceutics 2020; 12:E627. [PMID: 32635488 PMCID: PMC7407906 DOI: 10.3390/pharmaceutics12070627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Herein, we reported on the synthesis of a novel Pt(II) neutral complex having as ligand the nucleoside tubercidin, a potent anti-tumor agent extracted from the bacterium Streptomyces Tubercidicus. In detail, the chelation of the metal by a diamine linker installed at C6 purine position of tubercidin assured the introduction of a cisplatin-like unit in the molecular scaffold. The behavior of the synthesized complex with a double-strand DNA model was monitored by CD spectroscopy and compared with that of cisplatin and tubercidin. In addition, the cell viability was evaluated against HeLa, A375 and WM266 human cancer cell lines using the MTT test. Lastly, the results of the apoptotic assay (FITC Annexin V) performed on the HeLa cancer cell line are also reported.
Collapse
Affiliation(s)
- Stefano D’Errico
- CESTEV, University of Naples Federico II, via Tommaso De Amicis, 95, 80145 Napoli, Italy; (S.D.); (D.C.)
| | - Andrea Patrizia Falanga
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, via Sergio Pansini, 5, 80131 Napoli, Italy;
| | - Domenica Capasso
- CESTEV, University of Naples Federico II, via Tommaso De Amicis, 95, 80145 Napoli, Italy; (S.D.); (D.C.)
| | - Sonia Di Gaetano
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone, 16, 80134 Napoli, Italy; (S.D.G.); (G.N.R.)
| | - Maria Marzano
- Dipartimento di Farmacia, University of Naples Federico II, via Domenico Montesano, 49, 80131 Napoli, Italy; (M.M.); (M.T.); (G.P.); (N.B.)
| | - Monica Terracciano
- Dipartimento di Farmacia, University of Naples Federico II, via Domenico Montesano, 49, 80131 Napoli, Italy; (M.M.); (M.T.); (G.P.); (N.B.)
| | - Giovanni Nicola Roviello
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone, 16, 80134 Napoli, Italy; (S.D.G.); (G.N.R.)
| | - Gennaro Piccialli
- Dipartimento di Farmacia, University of Naples Federico II, via Domenico Montesano, 49, 80131 Napoli, Italy; (M.M.); (M.T.); (G.P.); (N.B.)
- ISBE-IT—Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, University of Naples Federico II, via Domenico Montesano, 49, 80131 Napoli, Italy
| | - Giorgia Oliviero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, via Sergio Pansini, 5, 80131 Napoli, Italy;
- ISBE-IT—Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, University of Naples Federico II, via Domenico Montesano, 49, 80131 Napoli, Italy
| | - Nicola Borbone
- Dipartimento di Farmacia, University of Naples Federico II, via Domenico Montesano, 49, 80131 Napoli, Italy; (M.M.); (M.T.); (G.P.); (N.B.)
- ISBE-IT—Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, University of Naples Federico II, via Domenico Montesano, 49, 80131 Napoli, Italy
| |
Collapse
|
1012
|
Toropova AP. Medicinal Chemistry and Computational Chemistry: Mutual Influence and Harmonization. Mini Rev Med Chem 2020; 20:1320-1321. [PMID: 32600227 DOI: 10.2174/138955752014200626163614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Alla P Toropova
- Laboratory of Environmental Chemistry and Toxicology Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
1013
|
Ye Y, Zhao L, Li Q, Xi C, Li Y, Li Z. circ_0007385 served as competing endogenous RNA for miR-519d-3p to suppress malignant behaviors and cisplatin resistance of non-small cell lung cancer cells. Thorac Cancer 2020; 11:2196-2208. [PMID: 32602212 PMCID: PMC7396374 DOI: 10.1111/1759-7714.13527] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Background Circular RNAs (circRNAs) have been closely implicated in competing endogenous RNA (ceRNA) network among human cancers including non‐small cell lung cancer (NSCLC). However, the role of most circRNAs in NSCLC remains to be determined. Here, we aimed to investigate the role of hsa_circ_0007385 (circ_0007385) in NSCLC cells. Methods Expression of hsa_circ_0007385 (circ_0007385), miRNA (miR)‐519d‐5p and high‐mobility group box 1 (HMGB1) was measured by real‐time quantitative PCR and western blotting. Functional experiments were evaluated by cell counting kit (CCK)‐8, flow cytometry, fluorescein active caspase‐3 staining kit, transwell assays, western blotting, and xenograft experiment. The relationship among circ_0007385,miR‐519d‐5p and HMGB1 was testified by dual‐luciferase reporter assay. Kaplan‐Meiersurvival curve identified overall survival in NSCLC patients. Results circ_0007385 expression was higher in NSCLC tissues and cell lines, and was associated with poor overall survival. Silencing circ_0007385 could suppress cell proliferation, migration and invasion in A549 and H1975 cells, as well as cisplatin (DDP) resistance. Moreover, circ_0007385 silence retarded tumor growth of A549 cells in vivo. Molecularly, there was a direct interaction between miR‐519d‐3p and either circ_0007385 or HMGB1; expression of miR‐519d‐3p was downregulated in NSCLC tumors in a circ_0007385‐correlated manner, and circ_0007385 could indirectly regulate HMGB1 via miR‐519d‐3p. Functionally, both inhibiting miR‐519d‐3p and restoring HMGB1 could overturn the suppressive effect of circ_0007385 knockdown on cell proliferation, migration, invasion, and DDP resistance. Conclusions Collectively, circ_0007385 deletion could function anti‐tumor role in NSCLC by suppressing malignant behaviors and DDP resistance in vitro and in vivo via circ_0007385/miR‐519d‐3p/HMGB1 axis. These outcomes might enhance our understanding of the molecular mechanisms underlying the malignant progression of NSCLC. Key points Significant findings of the study circ_0007385 was upregulated in NSCLC tissues and cells, and was associated with poor overall survival. Silenced circ_0007385 suppressed NSCLC cell proliferation, migration, invasion, and DDP resistance in vitro, and tumor growth in vivo. circ_0007385 was upregulated in NSCLC tissues and cells, and was associated with poor overall survival.
What this study adds miR‐519d‐3p could directly interact with circ_0007385 and HMGB1 in NSCLC cells. A promising circ_0007385/miR‐519d‐3p/HMGB1 regulatory pathway was determined in NSCLC cells.
Collapse
Affiliation(s)
- Yancheng Ye
- Department of Pharmacy, Gansu Wuwei Tumor Hospital, Wuwei, China
| | - Liangcun Zhao
- Department of Pharmacy, Gansu Wuwei Tumor Hospital, Wuwei, China
| | - Qingke Li
- Department of Laboratory medicine, Gansu Wuwei Tumor Hospital, Wuwei, China
| | - Caixia Xi
- Department of Respiratory Medicine, Gansu Wuwei Tumor Hospital, Wuwei, China
| | - Yinghong Li
- Department of Integrated Traditional Chinese and Western Medicine, Gansu Wuwei Tumor Hospital, Wuwei, China
| | - Zhengguo Li
- Department of Respiratory Medicine, Gansu Wuwei Tumor Hospital, Wuwei, China
| |
Collapse
|
1014
|
Narayanan D, Ma S, Özcelik D. Targeting the Redox Landscape in Cancer Therapy. Cancers (Basel) 2020; 12:cancers12071706. [PMID: 32605023 PMCID: PMC7407119 DOI: 10.3390/cancers12071706] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are produced predominantly by the mitochondrial electron transport chain and by NADPH oxidases in peroxisomes and in the endoplasmic reticulum. The antioxidative defense counters overproduction of ROS with detoxifying enzymes and molecular scavengers, for instance, superoxide dismutase and glutathione, in order to restore redox homeostasis. Mutations in the redox landscape can induce carcinogenesis, whereas increased ROS production can perpetuate cancer development. Moreover, cancer cells can increase production of antioxidants, leading to resistance against chemo- or radiotherapy. Research has been developing pharmaceuticals to target the redox landscape in cancer. For instance, inhibition of key players in the redox landscape aims to modulate ROS production in order to prevent tumor development or to sensitize cancer cells in radiotherapy. Besides the redox landscape of a single cell, alternative strategies take aim at the multi-cellular level. Extracellular vesicles, such as exosomes, are crucial for the development of the hypoxic tumor microenvironment, and hence are explored as target and as drug delivery systems in cancer therapy. This review summarizes the current pharmaceutical and experimental interventions of the cancer redox landscape.
Collapse
Affiliation(s)
- Dilip Narayanan
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Sana Ma
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Dennis Özcelik
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
- current address: Chemistry | Biology | Pharmacy Information Center, ETH Zürich, Vladimir-Prelog-Weg 10, 8093 Zürich, Switzerland
- Correspondence:
| |
Collapse
|
1015
|
Zhang X, Liu L, Tang M, Li H, Guo X, Yang X. The effects of umbilical cord-derived macrophage exosomes loaded with cisplatin on the growth and drug resistance of ovarian cancer cells. Drug Dev Ind Pharm 2020; 46:1150-1162. [PMID: 32482115 DOI: 10.1080/03639045.2020.1776320] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective: To assess the feasibility of an exosome-based drug delivery platform for the potent chemotherapeutic agent cisplatin to treat ovarian cancer.Significance: Exosomes have recently been used as drug delivery vehicles because of their natural advantages. Platinum-resistant forms of ovarian cancer require novel drug delivery methods to improve patient outcomes.Methods: We developed and compared different methods of loading exosomes released by mononuclear M1 and M2 macrophages from umbilical cord blood with cisplatin. We characterized the morphology, drug capacity, method of cellular entry, and antitumor efficacy of the exosomes in vitro.Results: Disruption of the exosomal membrane by sonication facilitated a high loading efficiency. Importantly, incorporation of cisplatin into umbilical cord blood-derived M1 macrophage exosomes increased its cytotoxicity 3.3× in drug-resistant A2780/DDP cells and 1.4× in drug-sensitive A2780 cells over chemotherapy alone. Loading of cisplatin into M2 exosomes increased its cytotoxicity by nearly 1.7× in drug-resistant A2780/DDP cells and 1.4× in drug-sensitive A2780 cells.Conclusions: We conclude that cisplatin-loaded M1 exosomes are potentially powerful new tools for the delivery of chemotherapeutics to treat cancers regardless of drug resistance.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Li Liu
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiling Tang
- Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Hong Li
- Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
| | - Xiaoqing Guo
- Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Xiaoqian Yang
- Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai, China
| |
Collapse
|
1016
|
Wang Y, Li X, Zhang L, Li M, Dai N, Luo H, Shan J, Yang X, Xu M, Feng Y, Xu C, Qian C, Wang D. A randomized, double-blind, placebo-controlled study of B-cell lymphoma 2 homology 3 mimetic gossypol combined with docetaxel and cisplatin for advanced non-small cell lung cancer with high expression of apurinic/apyrimidinic endonuclease 1. Invest New Drugs 2020; 38:1862-1871. [PMID: 32529467 PMCID: PMC7575477 DOI: 10.1007/s10637-020-00927-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/16/2020] [Indexed: 01/28/2023]
Abstract
Background Overexpression of apurinic/apyrimidinic endonuclease 1 (APE1) is an important cause of poor chemotherapeutic efficacy in advanced non-small cell lung cancer (NSCLC) patients. Gossypol, a new inhibitor of APE1, in combination with docetaxel and cisplatin is believed to improve the efficacy of chemotherapy for advanced NSCLC with high APE1 expression. Methods Sixty-two patients were randomly assigned to two groups. Thirty-one patients in the experimental group received 75 mg/m2 docetaxel and 75 mg/m2 cisplatin on day 1 with gossypol administered at 20 mg once daily on days 1 to 14 every 21 days. The control group received placebo with the same docetaxel and cisplatin regimen. The primary endpoint was progression-free survival (PFS); secondary endpoints included overall survival (OS), response rate, and toxicity. Results There were no significant differences in PFS and OS between the experimental group and the control group. The median PFS (mPFS) in the experimental and control groups was 7.43 and 4.9 months, respectively (HR = 0.54; p = 0.06), and the median OS (mOS) was 18.37 and 14.7 months, respectively (HR = 0.68; p = 0.27). No significant differences in response rate and serious adverse events were found between the groups. Conclusion The experimental group had a better mPFS and mOS than did the control group, though no significant difference was observed. Because the regimen of gossypol combined with docetaxel and cisplatin was well tolerated, future studies with larger sample sizes should be performed.
Collapse
Affiliation(s)
- Yuxiao Wang
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Xuemei Li
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Liang Zhang
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Mengxia Li
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Nan Dai
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Hao Luo
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Jinlu Shan
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Xueqin Yang
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Mingfang Xu
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Yan Feng
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Chengxiong Xu
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Chengyuan Qian
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China.
| | - Dong Wang
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China.
| |
Collapse
|
1017
|
The circadian clock gene Bmal1 facilitates cisplatin-induced renal injury and hepatization. Cell Death Dis 2020; 11:446. [PMID: 32522976 PMCID: PMC7287064 DOI: 10.1038/s41419-020-2655-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Cisplatin is one of the most potent chemotherapy drugs to treat cancers, but its clinical application remains limited due to severe nephrotoxicity. Several approaches have been developed to minimize such side effects, notably including chronotherapy, a well-known strategy based on the circadian clock. However, the component of the circadian clock machinery that particularly responses to the cisplatin stimulation remains unknown, including its functions in cisplatin-induced renal injury. In our present study, we demonstrated that Bmal1, as a key clock gene, was induced by the cisplatin stimulation in the mouse kidney and cultured human HK-2 renal cells. Gain- and loss-of-function studies indicated that Bmal1 facilitated cisplatin-induced renal injury both in vivo and in vitro, by aggravating the cell apoptotic process. More importantly, RNA-seq analysis revealed that Bmal1 triggered the expression of hallmark genes involved in renal hepatization, a critical event accompanied by the injury. At the molecular level, Bmal1 activated the transcription of hepatization-associated genes through direct recruitment to the E-box motifs of their promoters. Our findings suggest that Bmal1, a pivotal mediator induced renal injury in response to cisplatin treatment, and the therapeutic intervention targeting Bmal1 in the kidney may be a promising strategy to minimize the toxic side-effects of cisplatin in its clinical applications.
Collapse
|
1018
|
Gong X, Li W, Dong L, Qu F. CircUBAP2 promotes SEMA6D expression to enhance the cisplatin resistance in osteosarcoma through sponging miR-506-3p by activating Wnt/β-catenin signaling pathway. J Mol Histol 2020; 51:329-340. [PMID: 32472335 PMCID: PMC7368871 DOI: 10.1007/s10735-020-09883-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022]
Abstract
The occurrence of chemo-resistance is an essential reason for the high morbidity of osteosarcoma (OS) patients. Circular RNAs (circRNAs) have been involved in the regulation of chemo-resistance in cancers. Semaphorins 6D (SEMA6D) is abnormally expressed in many cancers. However, the roles of circUBAP2 and SEMA6D in the chemo-resistance of OS are still unclear. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of circUBAP2, SEMA6D and microRNA-506-3p (miR-506-3p). The cisplatin resistance and proliferation of cells were evaluated by 3-(4, 5-dimethyl-2 thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay. Western blot analysis was performed to measure the protein levels of Wnt/β-catenin signaling pathway biomarkers and SEMA6D. Also, the apoptosis, migration and invasion of cells were assessed by Flow cytometry and Transwell assays, respectively. Besides, Dual-luciferase reporter assay was used to verify the interaction between miR-506-3p and circUBAP2 or SEMA6D. We found that the expression levels of circUBAP2 and SEMA6D were increased in cisplatin-resistant OS tissues and cells. Knockdown of circUBAP2 inhibited the cisplatin resistance, silenced Wnt/β-catenin signaling pathway, hindered cell proliferation, migration and invasion, and promoted apoptosis in cisplatin-resistant OS cells, all of which could be reversed by overexpression of SEMA6D. MiR-506-3p could be sponged by circUBAP2 and could target SEMA6D. The suppression of miR-506-3p overexpression on the progression of OS cisplatin resistance could be reversed by SEMA6D overexpression, while miR-506-3p inhibitor also could invert the inhibitory effect of circUBAP2 silencing on the progression of OS cisplatin resistance. In conclusion, CircUBAP2 and SEMA6D played active roles in the progression of OS cisplatin resistance through miR-506-3p, which might provide some new ideas for studying the countermeasures of OS resistance.
Collapse
Affiliation(s)
| | | | - Lin Dong
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Avenue, Mouping District, Yantai, 264000, Shandong, China.
| | - Fangfei Qu
- Department of Special Inspection, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
1019
|
Gaál A, Garay TM, Horváth I, Máthé D, Szöllősi D, Veres DS, Mbuotidem J, Kovács T, Tóvári J, Bergmann R, Streli C, Szakács G, Mihály J, Varga Z, Szoboszlai N. Development and In Vivo Application of a Water-Soluble Anticancer Copper Ionophore System Using a Temperature-Sensitive Liposome Formulation. Pharmaceutics 2020; 12:pharmaceutics12050466. [PMID: 32443790 PMCID: PMC7284829 DOI: 10.3390/pharmaceutics12050466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Liposomes containing copper and the copper ionophore neocuproine were prepared and characterized for in vitro and in vivo anticancer activity. Thermosensitive PEGylated liposomes were prepared with different molar ratios of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and hydrogenated soybean phosphatidylcholine (HSPC) in the presence of copper(II) ions. Optimal, temperature dependent drug release was obtained at 70:30 DPPC to HSPC weight ratio. Neocuproine (applied at 0.2 mol to 1 mol phospholipid) was encapsulated through a pH gradient while using unbuffered solution at pH 4.5 inside the liposomes, and 100 mM HEPES buffer pH 7.8 outside the liposomes. Copper ions were present in excess, yielding 0.5 mM copper-(neocuproine)2 complex and 0.5 mM free copper. Pre-heating to 45 °C increased the toxicity of the heat-sensitive liposomes in short-term in vitro experiments, whereas at 72 h all investigated liposomes exhibited similar in vitro toxicity to the copper(II)-neocuproine complex (1:1 ratio). Thermosensitive liposomes were found to be more effective in reducing tumor growth in BALB/c mice engrafted with C26 cancer cells, regardless of the mild hyperthermic treatment. Copper uptake of the tumor was verified by PET/CT imaging following treatment with [64Cu]Cu-neocuproine liposomes. Taken together, our results demonstrate the feasibility of targeting a copper nanotoxin that was encapsulated in thermosensitive liposomes containing an excess of copper.
Collapse
Affiliation(s)
- Anikó Gaál
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (A.G.); (J.M.)
| | - Tamás M. Garay
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Práter utca 50/a, Hungary
- 1st Department of Internal Medicine and Oncology, Semmelweis University, H-1083 Budapest, Hungary
- Correspondence: (T.M.G.); (Z.V.); (N.S.); Tel.: +36-1-8864-769 (T.M.G.); +36-1-382-6568 (Z.V.); +36-1-372-2500 (ext. 6430) (N.S.)
| | - Ildikó Horváth
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary; (I.H.); (D.M.); (D.S.); (D.S.V.); (R.B.)
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary; (I.H.); (D.M.); (D.S.); (D.S.V.); (R.B.)
- CROmed Translational Research Centers Ltd., H-1047 Budapest, Hungary
| | - Dávid Szöllősi
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary; (I.H.); (D.M.); (D.S.); (D.S.V.); (R.B.)
| | - Dániel S. Veres
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary; (I.H.); (D.M.); (D.S.); (D.S.V.); (R.B.)
| | - Jeremiah Mbuotidem
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary;
| | - Tibor Kovács
- Institute of Radiochemistry and Radioecology, University of Pannonia, H-8200 Veszprém, Hungary;
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary;
| | - Ralf Bergmann
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary; (I.H.); (D.M.); (D.S.); (D.S.V.); (R.B.)
- Helmholz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, D-01328 Dresden, Germany
| | - Christina Streli
- Institute of Atomic and Subatomic Physics, Atominstitut, TU Wien, A-1020 Vienna, Stadionallee 2, Austria;
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary;
- Institute of Cancer Research, Medical University Vienna, A-1090 Vienna, Austria
| | - Judith Mihály
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (A.G.); (J.M.)
| | - Zoltán Varga
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (A.G.); (J.M.)
- Correspondence: (T.M.G.); (Z.V.); (N.S.); Tel.: +36-1-8864-769 (T.M.G.); +36-1-382-6568 (Z.V.); +36-1-372-2500 (ext. 6430) (N.S.)
| | - Norbert Szoboszlai
- Laboratory for Environmental Chemistry and Bioanalytics, Institute of Chemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter Stny. 1/A, Hungary
- Correspondence: (T.M.G.); (Z.V.); (N.S.); Tel.: +36-1-8864-769 (T.M.G.); +36-1-382-6568 (Z.V.); +36-1-372-2500 (ext. 6430) (N.S.)
| |
Collapse
|
1020
|
Calcabrini C, Maffei F, Turrini E, Fimognari C. Sulforaphane Potentiates Anticancer Effects of Doxorubicin and Cisplatin and Mitigates Their Toxic Effects. Front Pharmacol 2020; 11:567. [PMID: 32425794 PMCID: PMC7207042 DOI: 10.3389/fphar.2020.00567] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
The success of cancer therapy is often compromised by the narrow therapeutic index of many anticancer drugs and the occurrence of drug resistance. The association of anticancer therapies with natural compounds is an emerging strategy to improve the pharmaco-toxicological profile of cancer chemotherapy. Sulforaphane, a phytochemical found in cruciferous vegetables, targets multiple pathways involved in cancer development, as recorded in different cancers such as breast, brain, blood, colon, lung, prostate, and so forth. As examples to make the potentialities of the association chemotherapy raise, here we highlight and critically analyze the information available for two associations, each composed by a paradigmatic anticancer drug (cisplatin or doxorubicin) and sulforaphane.
Collapse
Affiliation(s)
- Cinzia Calcabrini
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| | - Francesca Maffei
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| |
Collapse
|
1021
|
Jiang W, Xia J, Xie S, Zou R, Pan S, Wang ZW, Assaraf YG, Zhu X. Long non-coding RNAs as a determinant of cancer drug resistance: Towards the overcoming of chemoresistance via modulation of lncRNAs. Drug Resist Updat 2020; 50:100683. [DOI: 10.1016/j.drup.2020.100683] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
|
1022
|
Cherneva E, Atanasova M, Buyukliev R, Tomovic K, Smelcerovic Z, Bakalova A, Smelcerovic A. 3′‐Methyl‐4‐thio‐1
H
‐tetrahydropyranspiro‐5′‐hydantoin platinum complex as a novel potent anticancer agent and xanthine oxidase inhibitor. Arch Pharm (Weinheim) 2020; 353:e2000039. [DOI: 10.1002/ardp.202000039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Emiliya Cherneva
- Department of Chemistry, Faculty of PharmacyMedical University–Sofia Sofia Bulgaria
- Institute of Organic Chemistry with Centre of PhytochemistryBulgarian Academy of Sciences Sofia Bulgaria
| | - Mariyana Atanasova
- Department of Chemistry, Faculty of PharmacyMedical University–Sofia Sofia Bulgaria
| | - Rossen Buyukliev
- Department of Chemistry, Faculty of PharmacyMedical University–Sofia Sofia Bulgaria
| | - Katarina Tomovic
- Department of Pharmacy, Faculty of MedicineUniversity of Nis Nis Serbia
| | - Zaklina Smelcerovic
- Center for Biomedicinal Science, Faculty of MedicineUniversity of Nis Nis Serbia
| | - Adriana Bakalova
- Department of Chemistry, Faculty of PharmacyMedical University–Sofia Sofia Bulgaria
| | | |
Collapse
|
1023
|
Regulation of MYB mediated cisplatin resistance of ovarian cancer cells involves miR-21-wnt signaling axis. Sci Rep 2020; 10:6893. [PMID: 32327705 PMCID: PMC7181810 DOI: 10.1038/s41598-020-63396-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
c-MYB has been reported to be elevated in few cancers, including in ovarian cancer. It influences resistance to cisplatin but the details are not very well understood. The objective of this study was to further evaluate role of c-MYB in ovarian cancer’s cisplatin resistance. To elucidate the underlying mechanism of cisplatin resistance in ovarian cancer, we focused on the epigenetic regulation by miRNAs. Two cell lines, ES2 and OVCAR3, were used as the model systems. C-MYB expression was either up-regulated or silenced and the resulting effect on cisplatin resistance evaluated, along with the mechanistic role of miR-21, through transfections with pre/anti-miRNAs. An in vivo cisplatin resistance model was also employed to verify findings. High c-MYB correlated with increased miR-21. High c-MYB also resulted in induction of EMT and increased resistance against cisplatin which was attenuated by anti-miR-200s. c-MYB decreased β-catenin phosphorylation and thus activated wnt signaling. Silencing of c-MYB resulted in reduced miR-21 levels, reduced EMT, reduced cisplatin IC-50s and increased β-catenin phosphorylation. In an in vivo mice model of cisplatin resistance, c-MYB overexpressing ES2 xenografts were more aggressive than their control counterparts. These c-MYB overexpressing ES xenografts were significantly more resistant to cisplatin but could be sensitized to cisplatin by anti-miR-21. Our results provide a novel mechanism of cisplatin resistance by c-MYB which involves an essential role of miR-21.
Collapse
|
1024
|
Staff NP, Cavaletti G, Islam B, Lustberg M, Psimaras D, Tamburin S. Platinum-induced peripheral neurotoxicity: From pathogenesis to treatment. J Peripher Nerv Syst 2020; 24 Suppl 2:S26-S39. [PMID: 31647151 DOI: 10.1111/jns.12335] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
Abstract
Platinum-induced peripheral neurotoxicity (PIPN) is a common side effect of platinum-based chemotherapy that may cause dose reduction and discontinuation, with oxaliplatin being more neurotoxic. PIPN includes acute neurotoxicity restricted to oxaliplatin, and chronic non-length-dependent sensory neuronopathy with positive and negative sensory symptoms and neuropathic pain in both upper and lower limbs. Chronic sensory axonal neuropathy manifesting as stocking-and-glove distribution is also frequent. Worsening of neuropathic symptoms after completing the last chemotherapy course may occur. Motor and autonomic involvement is uncommon. Ototoxicity is frequent in children and more commonly to cisplatin. Platinum-based compounds result in more prolonged neuropathic symptoms in comparison to other chemotherapy agents. Patient reported outcomes questionnaires, clinical evaluation and instrumental tools offer complementary information in PIPN. Electrodiagnostic features include diffusely reduced/abolished sensory action potentials, in keeping with a sensory neuronopathy. PIPN is dependent on cumulative dose but there is a large variability in its occurrence. The search for additional risk factors for PIPN has thus far yielded no consistent findings. There are currently no neuroprotective strategies to reduce the risk of PIPN, and symptomatic treatment is limited to duloxetine that was found effective in a single phase III intervention study. This review critically examines the pathogenesis, incidence, risk factors (both clinical and pharmacogenetic), clinical phenotype and management of PIPN.
Collapse
Affiliation(s)
- Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Badrul Islam
- Laboratory Sciences and Services Division, The International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Maryam Lustberg
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Dimitri Psimaras
- OncoNeuroTox Group, Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpetrière-Charles Foix et Hôpital Percy, Paris, France
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
1025
|
Guerra RB, de Campos Fraga-Silva TF, Aguiar J, Oshiro PB, Holanda BB, Venturini J, Bannach G. Lanthanum(III) and neodymium(III) complexes with anti-inflammatory drug sulindac: Synthesis, characterization, thermal investigation using coupled techniques TG-FTIR, and in vitro biological studies. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
1026
|
Guo J, Zhang J, Liang L, Liu N, Qi M, Zhao S, Su J, Liu J, Peng C, Chen X, Liu H. Potent USP10/13 antagonist spautin-1 suppresses melanoma growth via ROS-mediated DNA damage and exhibits synergy with cisplatin. J Cell Mol Med 2020; 24:4324-4340. [PMID: 32129945 PMCID: PMC7171391 DOI: 10.1111/jcmm.15093] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/04/2019] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant melanoma is one of the most invasive tumours. However, effective therapeutic strategies are limited, and overall survival rates remain low. By utilizing transcriptomic profiling, tissue array and molecular biology, we revealed that two key ubiquitin-specific proteases (USPs), ubiquitin-specific peptidase10 (USP10) and ubiquitin-specific peptidase10 (USP13), were significantly elevated in melanoma at the mRNA and protein levels. Spautin-1 has been reported as a USP10 and USP13 antagonist, and we demonstrated that spautin-1 has potent anti-tumour effects as reflected by MTS and the colony formation assays in various melanoma cell lines without cytotoxic effects in HaCaT and JB6 cell lines. Mechanistically, we identified apoptosis and ROS-mediated DNA damage as critical mechanisms underlying the spautin-1-mediated anti-tumour effect by utilizing transcriptomics, qRT-PCR validation, flow cytometry, Western blotting and immunofluorescence staining. Importantly, by screening spautin-1 with targeted or chemotherapeutic drugs, we showed that spautin-1 exhibited synergy with cisplatin in the treatment of melanoma. Pre-clinically, we demonstrated that spautin-1 significantly attenuated tumour growth in a cell line-derived xenograft mouse model, and its anti-tumour effect was further enhanced by cotreatment with cisplatin. Taken together, our study revealed a novel molecular mechanism of spautin-1 effecting in melanoma and identified a potential therapeutic strategy in treatment of melanoma patients.
Collapse
Affiliation(s)
- Jia Guo
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
| | - JiangLing Zhang
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
| | - Long Liang
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Molecular Biology Research Center and Center for Medical GeneticsCentral South UniversityChangshaChina
| | - Nian Liu
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
| | - Min Qi
- Department of Plastic and Cosmetic SurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Shuang Zhao
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Juan Su
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Jing Liu
- Molecular Biology Research Center and Center for Medical GeneticsCentral South UniversityChangshaChina
| | - Cong Peng
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Xiang Chen
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Hong Liu
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
- Research Center of Molecular MetabolomicsXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
1027
|
Paucarmayta A, Taitz H, McGlorthan L, Casablanca Y, Maxwell GL, Darcy KM, Syed V. Progesterone-Calcitriol Combination Enhanced Cytotoxicity of Cisplatin in Ovarian and Endometrial Cancer Cells In Vitro. Biomedicines 2020; 8:biomedicines8040073. [PMID: 32244545 PMCID: PMC7236602 DOI: 10.3390/biomedicines8040073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
: Initially, patients that respond to cisplatin (DDP) treatment later relapse and develop chemoresistance. Agents that enhance DDP effectiveness will have a significant impact on cancer treatment. We have shown pronounced inhibitory effects of the progesterone-calcitriol combination on endometrial and ovarian cancer cell growth. Here, we examined whether and how progesterone-calcitriol combination potentiates DDP anti-tumor effects in cancer cells. Ovarian and endometrial cancer cells treated with various concentrations of DDP showed a concentration-dependent decrease in cell proliferation. Concurrent treatment of cells with DDP and progesterone-calcitriol ombination potentiated anticancer effects of DDP compared to DDP-calcitriol, or DDP-progesterone treated groups. The anticancer effects were mediated by increased caspase-3, BAX, and decreased BCL2 and PARP-1 expression in DDP and progesterone-calcitriol combination-treated cells. Stimulation of the PI3K/AKT and MAPK/ERK pathways seen in cancer cells was reduced in DDP-progesterone-calcitriol treated cells. Pretreatment of cells with specific inhibitors further diminished AKT and ERK expression. Furthermore, progesterone-calcitriol potentiated the anti-growth effects of DDP on cancer cells by attenuating the expression of SMAD2/3, multidrug resistance protein- 1 (MDR-1), and ABC transporters (ABCG1, and ABCG2), thereby impeding the efflux of chemo drugs from cancer cells. These results suggest a potential clinical benefit of progesterone-calcitriol combination therapy when used in combination with DDP.
Collapse
Affiliation(s)
- Ana Paucarmayta
- Department of Obstetrics & Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (A.P.); (H.T.); (L.M.); (Y.C.); (K.M.D.)
| | - Hannah Taitz
- Department of Obstetrics & Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (A.P.); (H.T.); (L.M.); (Y.C.); (K.M.D.)
| | - Latoya McGlorthan
- Department of Obstetrics & Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (A.P.); (H.T.); (L.M.); (Y.C.); (K.M.D.)
| | - Yovanni Casablanca
- Department of Obstetrics & Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (A.P.); (H.T.); (L.M.); (Y.C.); (K.M.D.)
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA;
- Gynecologic Cancer Center of Excellence, Women’s Health Integrated Research Center at Inova Health System, 3289 Woodburn Road, Suite 370, Annandale, VA 22003, USA
| | - G. Larry Maxwell
- John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA;
- Gynecologic Cancer Center of Excellence, Women’s Health Integrated Research Center at Inova Health System, 3289 Woodburn Road, Suite 370, Annandale, VA 22003, USA
- Inova Fairfax Hospital, Department of Obstetrics & Gynecology, 3300 Gallows Road, Falls Church, VA 22042, USA
| | - Kathleen M. Darcy
- Department of Obstetrics & Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (A.P.); (H.T.); (L.M.); (Y.C.); (K.M.D.)
- John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA;
- Gynecologic Cancer Center of Excellence, Women’s Health Integrated Research Center at Inova Health System, 3289 Woodburn Road, Suite 370, Annandale, VA 22003, USA
| | - Viqar Syed
- Department of Obstetrics & Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (A.P.); (H.T.); (L.M.); (Y.C.); (K.M.D.)
- John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA;
- Department of Molecular and Cell Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +301-295-3128; Fax: +301-295-6774
| |
Collapse
|
1028
|
Amino Acids and Peptides as Versatile Ligands in the Synthesis of Antiproliferative Gold Complexes. CHEMISTRY-SWITZERLAND 2020. [DOI: 10.3390/chemistry2020013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gold complexes have been traditionally employed in medicine, and currently, some gold(I) complexes, such as auranofin, are clinically used in the treatment of rheumatoid arthritis. In the last decades, both gold(I) and gold(III) complexes with different types of ligands have gained considerable attention as potential antitumor agents, showing superior activity both in vitro and in vivo to some of the clinically used agents. The present review article summarizes the results achieved in the field of synthesis and evaluation of gold complexes with amino acids and peptides moieties for their cytotoxicity. The first section provides an overview of the gold(I) complexes with amino acids and peptides, which have shown antiproliferative activity, while the second part is focused on the activity of gold(III) complexes with these ligands. A systematic summary of the results achieved in the field of gold(I/III) complexes with amino acids and peptides could contribute to the future development of metal complexes with these biocompatible ligands as promising antitumor agents.
Collapse
|
1029
|
Thomas SJ, Balónová B, Cinatl J, Wass MN, Serpell CJ, Blight BA, Michaelis M. Thiourea and Guanidine Compounds and Their Iridium Complexes in Drug‐Resistant Cancer Cell Lines: Structure‐Activity Relationships and Direct Luminescent Imaging. ChemMedChem 2020; 15:349-353. [DOI: 10.1002/cmdc.201900591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/30/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Samuel J. Thomas
- School of BiosciencesUniversity of Kent Stacey Building, Canterbury Kent CT2, 7NJ UK
| | - Barbora Balónová
- Department of ChemistryUniversity of New Brunswick Fredericton New Brunswick E3B 5A3 Canada
| | - Jindrich Cinatl
- Institute of Medical VirologyGoethe University Frankfurt Paul-Ehrlich-Strasse 40 60596 Frankfurt am Main Germany
| | - Mark N. Wass
- School of BiosciencesUniversity of Kent Stacey Building, Canterbury Kent CT2, 7NJ UK
| | - Christopher J. Serpell
- School of Physical SciencesUniversity of Kent Ingram Building Canterbury Kent CT2 7NH UK
| | - Barry A. Blight
- Department of ChemistryUniversity of New Brunswick Fredericton New Brunswick E3B 5A3 Canada
| | - Martin Michaelis
- School of BiosciencesUniversity of Kent Stacey Building, Canterbury Kent CT2, 7NJ UK
| |
Collapse
|
1030
|
Synthesis of New Cisplatin Derivatives from Bile Acids. Molecules 2020; 25:molecules25030655. [PMID: 32033039 PMCID: PMC7036801 DOI: 10.3390/molecules25030655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 01/14/2023] Open
Abstract
A series of bile acid derived 1,2- and 1,3-diamines as well as their platinum(II) complexes were designed and synthesized in hope to get a highly cytotoxic compound by the combination of two bioactive moieties. All complexes obtained were subjected to cytotoxicity assays in vitro and some hybrid molecules showed an expected activity.
Collapse
|
1031
|
Tsypysheva IP, Koval’skaya AV, Petrova PR, Lobov AN, Erastov AS, Zileeva ZR, Vakhitov VА, Vakhitova YV. Synthesis of conjugates of (−)-cytisine derivatives with ferrocene-1-carbaldehyde and their cytotoxicity against HEK293, Jurkat, A549, MCF-7 and SH-SY5Y cells. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
1032
|
Wang G, Sheng W, Tang J, Li X, Zhou J, Dong M. Cooperation of SRPK2, Numb and p53 in the malignant biology and chemosensitivity of colorectal cancer. Biosci Rep 2020; 40:BSR20191488. [PMID: 31898732 PMCID: PMC6970084 DOI: 10.1042/bsr20191488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 01/24/2023] Open
Abstract
Serine-arginine protein kinase 2 (SRPK2) is aberrantly expressed in human malignancies including colorectal cancer (CRC). However, little is known about the molecular mechanisms, and the role of SRPK2 in chemosensitivity remains unexplored in CRC. We recently showed that SRPK2 promotes pancreatic cancer progression by down-regulating Numb and p53. Therefore, we investigated the cooperation between SRPK2, Numb and p53 in the cell migration, invasion and chemosensitivity of CRC in vitro. Here, we showed that SRPK2 expression was higher in CRC tumors than in nontumor tissues. SRPK2 expression was positively associated with clinicopathological characteristics of CRC patients, including tumor differentiation, T stage, N stage and UICC stage. Additionally, SRPK2 had no association with mutant p53 (mtp53) in SW480 and SW620 cells, but negatively regulated Numb and wild-type p53 (wtp53) in response to 5-fluorouracil or cisplatin treatment in HCT116 cells. Moreover, SRPK2, Numb and p53 coimmunoprecipitated into a triple complex with or without the treatment of 5-fluorouracil in HCT116 cells, and p53 knockdown reversed the up-regulation of wtp53 induced by SRPK2 silencing with chemical agent treatment. Furthermore, overexpression of SRPK2 increased cell migration and invasion and decreased chemosensitivity to 5-fluorouracil or cisplatin in HCT116 cells. Conversely, SRPK2 silencing decreased cell migration and invasion and increased chemosensitivity to 5-fluorouracil or cisplatin, yet these effects could be reversed by p53 knockdown under chemical agent treatment. These results thus reveal a novel role of SRPK2-Numb-p53 signaling in the progression of CRC and demonstrate that SRPK2 is a potential therapeutic target for CRC clinical therapy.
Collapse
Affiliation(s)
- Guosen Wang
- Department of General Surgery, The First Affliated Hospital, Nanchang University, Nanchang 330006, Jiangxi, China
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang 110001, Liaoning, China
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang 110001, Liaoning, China
| | - Jingtong Tang
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang 110001, Liaoning, China
| | - Xin Li
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang 110001, Liaoning, China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang 110001, Liaoning, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang 110001, Liaoning, China
| |
Collapse
|
1033
|
Gemcitabine inhibits cisplatin resistance in cisplatin-resistant A549 cells by upregulating trx-interacting protein and inducing cell cycle arrest. Biochem Biophys Res Commun 2020; 524:549-554. [PMID: 32014255 DOI: 10.1016/j.bbrc.2020.01.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Cisplatin is a main chemotherapeutic drug used to treat non-small-cell lung cancer patients. However, these patients commonly face cisplatin resistance. The roles and underlying mechanisms of gemcitabine, irinotecan, pemetrexed and docetaxel used as single agents or combined with cisplatin for overcoming cisplatin-resistant non-small-cell lung cancer were explored in this study. MTT assays showed that gemcitabine alone exhibited stronger cytotoxicity on cisplatin-resistant A549 cells than irinotecan, pemetrexed and docetaxel. Meanwhile, gemcitabine combined with cisplatin showed a synergistic inhibitory effect on cisplatin-resistant cells. RNA sequencing and Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analysis showed that cell cycle signaling pathways and trx-interacting protein were factors in the efficacy of the cotreatment. Flow cytometry and Western blot results showed that when cisplatin-resistant A549 cells were cotreated with gemcitabine and cisplatin, G0/G1 phase arrest occurred, and trx-interacting protein was upregulated. Silencing trx-interacting protein attenuated the response of the resistant cells to the drug combination. A trx-interacting protein agonist together with cisplatin showed an additive cytotoxic effect on the resistant cells compared with cisplatin alone. The gemcitabine and cisplatin combination, compared to gemcitabine or PBS alone, markedly suppressed the growth of cisplatin-resistant A549 tumors in vivo, accompanied by an increase in trx-interacting protein and a decrease in Ki67 expression. Therefore, we concluded that gemcitabine and cisplatin, as an FDA-approved combination, is a viable therapy for cisplatin-resistant non-small-cell lung cancer ex vivo and in vivo.
Collapse
|
1034
|
Ma S, Liu C, Li B, Zhang T, Jiang L, Wang R. Sonophoresis Enhanced Transdermal Delivery of Cisplatin in the Xenografted Tumor Model of Cervical Cancer. Onco Targets Ther 2020; 13:889-902. [PMID: 32099393 PMCID: PMC6996214 DOI: 10.2147/ott.s238126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/18/2020] [Indexed: 12/26/2022] Open
Abstract
Background Transdermal drug delivery system has been researched for a long time because of its advantage in decreasing side effects such as nausea, vomiting, and gastrointestinal disturbance. Sonophoresis has been shown to be very effective in promoting the transdermal delivery of drugs. This study is on purpose to research the feasibility of sonophoresis promoting cisplatin in the treatment of cervical cancer and the optimum drug delivery mode. Methods Thirty-two female nude-mice model of cervical cancer were randomly divided into 4 groups (n=8 in each group): control group without any intervention, low, medium and high concentration groups were treated with the corresponding cisplatin concentrations of 0.2mg/mL, 0.4mg/mL and 0.8mg/mL, respectively, with concurrent sonophoresis applied on the skin of local tumor, 1 mL at a time, once a day for a total of 5 days. Therapeutic pulsed ultrasound (TPU) was 1.0 MHz, 2.0 W/cm2 and 60-min duration. Weight of mice and tumor diameters were measured every day during the intervention. The concentration of cisplatin in tumors was detected by HPLC. Meanwhile, tumor, skin, liver and kidney gross structures and ultrastructure were observed in order to evaluate the effectiveness and safety of experimental conditions. In addition, apoptosis and proliferation-related factors (MPO, Caspase-3, PCNA) were detected by immunohistochemistry, immunofluorescence and TUNEL assay. Results The weight of nude mice in each group showed an increasing trend, except for a decrease of weight in the 0.8 mg/mL group. No obvious tumor inhibition effect was observed. Cisplatin was detected in the 0.4 mg/mL group and 0.8 mg/mL group, with relative concentrations of 0.081±0.033 mg/mL and 0.111±0.021 mg/mL, respectively. Both skin and kidney inflammation were observed in the 0.8 mg/mL group. The expression of MPO, caspase-3 and TUNEL was concentration dependent, with the highest expression in the 0.8 mg/mL group, followed by the 0.4 mg/mL group, with no significant differences between the control and the 0.2 mg/mL group. PCNA was highly expressed in both the control and 0.2 mg/mL groups but decreased in the 0.4 mg/mL and 0.8 mg/mL groups. Conclusion Sonophoresis enhanced transdermal delivery of cisplatin in a xenograft tumor model of cervical cancer. Considering the occurrence of skin inflammation and renal injury caused by cisplatin, the recommended concentration to be administered is 0.4mg/mL.
Collapse
Affiliation(s)
- Shanshan Ma
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Chang Liu
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Bo Li
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Tingting Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Li Jiang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rensheng Wang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
1035
|
Wróblewska A, Matczuk M. First application of CE‐ICP‐MS for monitoring the formation of cisplatin targeting delivery systems with gold nanocarriers. Electrophoresis 2020; 41:394-398. [DOI: 10.1002/elps.201900438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Anna Wróblewska
- Chair of Analytical ChemistryFaculty of ChemistryWarsaw University of Technology Warsaw Poland
| | - Magdalena Matczuk
- Chair of Analytical ChemistryFaculty of ChemistryWarsaw University of Technology Warsaw Poland
| |
Collapse
|
1036
|
Vuilleumier J, Gaulier G, De Matos R, Mugnier Y, Campargue G, Wolf J, Bonacina L, Gerber‐Lemaire S. Photocontrolled Release of the Anticancer Drug Chlorambucil with Caged Harmonic Nanoparticles. Helv Chim Acta 2020. [DOI: 10.1002/hlca.201900251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jérémy Vuilleumier
- Institute of Chemical Sciences and Engineering, Group for Functionalized BiomaterialsEcole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6 CH-1015 Lausanne Switzerland
| | - Geoffrey Gaulier
- Department of Applied PhysicsUniversité de Genève 22 Chemin de Pinchat CH-1211 Genève 4 Switzerland
| | - Raphaël De Matos
- Institute of Chemical Sciences and Engineering, Group for Functionalized BiomaterialsEcole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6 CH-1015 Lausanne Switzerland
| | | | - Gabriel Campargue
- Department of Applied PhysicsUniversité de Genève 22 Chemin de Pinchat CH-1211 Genève 4 Switzerland
| | - Jean‐Pierre Wolf
- Department of Applied PhysicsUniversité de Genève 22 Chemin de Pinchat CH-1211 Genève 4 Switzerland
| | - Luigi Bonacina
- Department of Applied PhysicsUniversité de Genève 22 Chemin de Pinchat CH-1211 Genève 4 Switzerland
| | - Sandrine Gerber‐Lemaire
- Institute of Chemical Sciences and Engineering, Group for Functionalized BiomaterialsEcole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6 CH-1015 Lausanne Switzerland
| |
Collapse
|
1037
|
Chen SQ, Song G, He C, Hou M, He WD, Li HJ, Haleem A, Li QL, Hu RF. Tumor extracellular pH-sensitive polymeric nanocarrier-grafted platinum( iv) prodrugs for improved intracellular delivery and cytosolic reductive-triggered release. Polym Chem 2020. [DOI: 10.1039/c9py01838g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extracellular pH-sensitive Pt(iv)-based nanodrugs enable preferential toxicity to tumor cells via a selectively endocytosed and triggered drug release strategy.
Collapse
Affiliation(s)
- Sheng-Qi Chen
- Key Laboratory of Xin'an Medicine
- Ministry of Education; Engineering Technology Research Center of Modernized Pharmaceutics
- Anhui Province; Anhui University of Chinese Medicine
- Hefei
- China
| | - Gang Song
- Key Laboratory of Xin'an Medicine
- Ministry of Education; Engineering Technology Research Center of Modernized Pharmaceutics
- Anhui Province; Anhui University of Chinese Medicine
- Hefei
- China
| | - Chen He
- Institute of Aerospace Materials and Processing
- Beijing 100076
- China
| | - Mei Hou
- Key Laboratory of Xin'an Medicine
- Ministry of Education; Engineering Technology Research Center of Modernized Pharmaceutics
- Anhui Province; Anhui University of Chinese Medicine
- Hefei
- China
| | - Wei-Dong He
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Hui-Juan Li
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Abdul Haleem
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Qing-Lin Li
- Key Laboratory of Xin'an Medicine
- Ministry of Education; Engineering Technology Research Center of Modernized Pharmaceutics
- Anhui Province; Anhui University of Chinese Medicine
- Hefei
- China
| | - Rong-Feng Hu
- Key Laboratory of Xin'an Medicine
- Ministry of Education; Engineering Technology Research Center of Modernized Pharmaceutics
- Anhui Province; Anhui University of Chinese Medicine
- Hefei
- China
| |
Collapse
|
1038
|
Banerjee A, Mohanty M, Lima S, Samanta R, Garribba E, Sasamori T, Dinda R. Synthesis, structure and characterization of new dithiocarbazate-based mixed ligand oxidovanadium(iv) complexes: DNA/HSA interaction, cytotoxic activity and DFT studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj01246g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, structure and characterization of mixed ligand oxidovanadium(iv) complexes [VIVOL1–2(LN–N)] (1–3) are reported. With a view to evaluating their biological activity, their DNA/HSA interaction and cytotoxicity activity have been explored.
Collapse
Affiliation(s)
- Atanu Banerjee
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Monalisa Mohanty
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Sudhir Lima
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Rajib Samanta
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| | - Takahiro Sasamori
- Graduate School of Natural Sciences
- Nagoya City University Yamanohata 1
- Nagoya
- Japan
| | - Rupam Dinda
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| |
Collapse
|
1039
|
Hong Z, Zheng C, Luo B, You X, Bian H, Liang H, Chen Z, Huang F. Two groups of copper II pyridine–triazole complexes with “open or close” pepper rings and their in vitro antitumor activities. RSC Adv 2020; 10:6297-6305. [PMID: 35496028 PMCID: PMC9049676 DOI: 10.1039/c9ra10677d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Based on 1,2-dimethoxyphenyl (veratrole, open) and 1,2-methylenedioxyphenyl (pepper ring, close)-derived pyridine–triazole analogues, two groups of copper(ii) complexes, namely, Group I(C1–C3) and Group II(C4–C6) were synthesized and fully characterized. All ligands and complexes were tested in vitro by MTT assays on seven tumour cell lines (T24, Hep-G2, Sk-Ov-3, MGC-803, HeLa, A549 and NCI-H460) and one normal liver cell line (HL-7702). Surprisingly, the pepper-ring-derived complexes (C4–C6) showed significantly enhanced cytotoxicity compared with the 1,2-bimethoxyphenyl ring-derived complexes (C1–C3) and the standard anticancer drug cisplatin. Cellular uptake assays indicated that the Cu accumulation was consistent with cytotoxicity. In addition, flow cytometry and western blot analysis showed that the apoptosis of the leading complex C4 may be induced by the Bcl-2 family-mediated proteins through the mitochondrial dysfunction pathway. Furthermore, UV-vis and fluorescence spectroscopy assays revealed that C4 has stronger insertion-binding interactions with CT-DNA than C1 and the fluorescence of C1 and C4 with BSA is mainly quenched by static quenching. The pepper ring-modified complexes (Group II, C4–C6) exhibited significant antitumor activity than veratrole-modified complexes (Group I, C1–C3) towards several cancer cells with IC50 ranging from 3.45 to 8.59 μM.![]()
Collapse
Affiliation(s)
- ZhaoGuo Hong
- State Key State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Chu Zheng
- State Key State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Bi Luo
- State Key State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Xin You
- State Key State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - HeDong Bian
- School of Chemistry and Chemical Engineering
- Guangxi University for Nationalities
- Key Laboratory of Chemistry and Engineering of Forest Products
- Nanning 530008
- PR China
| | - Hong Liang
- State Key State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - ZhenFeng Chen
- State Key State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - FuPing Huang
- State Key State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| |
Collapse
|
1040
|
Calls A, Carozzi V, Navarro X, Monza L, Bruna J. Pathogenesis of platinum-induced peripheral neurotoxicity: Insights from preclinical studies. Exp Neurol 2019; 325:113141. [PMID: 31865195 DOI: 10.1016/j.expneurol.2019.113141] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
One of the most relevant dose-limiting adverse effects of platinum drugs is the development of a sensory peripheral neuropathy that highly impairs the patients' quality of life. Nowadays there are no available efficacy strategies for the treatment of platinum-induced peripheral neurotoxicity (PIPN), and the only way to prevent its development and progression is by reducing the dose of the cytostatic drug or even withdrawing the chemotherapy regimen. This clinical issue has been the main focus of hundreds of preclinical research works during recent decades. As a consequence, dozens of in vitro and in vivo models of PIPN have been developed to elucidate the molecular mechanisms involved in its development and to find neuroprotective targets. The apoptosis of peripheral neurons has been identified as the main mechanism involved in PIPN pathogenesis. This mechanism of DRG sensory neurons cell death is triggered by the nuclear and mitochondrial DNA platination together with the increase of the oxidative cellular status induced by the depletion of cytoplasmic antioxidant mechanisms. However, since there has been no successful transfer of preclinical results to clinical practise in terms of therapeutic approaches, some mechanisms of PIPN pathogenesis still remain to be elucidated. This review is focused on the pathogenic mechanisms underlying PIPN described up to now, provided by the critical analysis of in vitro and in vivo models.
Collapse
Affiliation(s)
- Aina Calls
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Valentina Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milan Bicocca. Italy; Milan Center For Neuroscience, Milan, Italy
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milan Bicocca. Italy
| | - Jordi Bruna
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain; Unit of Neuro-Oncology, Hospital Universitari de Bellvitge-Institut Català d'Oncologia L'Hospitalet, Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Feixa Llarga s/n, 08907 Barcelona, Spain.
| |
Collapse
|
1041
|
Interleukin-7 Resensitizes Non-Small-Cell Lung Cancer to Cisplatin via Inhibition of ABCG2. Mediators Inflamm 2019; 2019:7241418. [PMID: 31915416 PMCID: PMC6931030 DOI: 10.1155/2019/7241418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/09/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
Treatment with cisplatin (DDP) is one of the standard therapies used to treat non-small-cell lung cancer (NSCLC) and fundamentally causes resistance in cancer cells, which eventually poses as an obstacle to the efficacy of chemotherapy in NSCLC. Efforts are on all over the world to explore a sensitizer of NSCLC to DDP. Here, we studied the effect of IL-7 on the resistance of NSCLC to chemotherapy. We observed that IL-7 treatment significantly enhanced DDP-induced effects in A549 and A549/DDP cells (DDP-resistant cells), including decreased cell viability and proliferation, as well as increased cell apoptosis and S arrest, indicating that IL-7 treatment resensitized DDP-resistant NSCLC cells to DDP. Subsequently, IL-7 enhanced the sensitivity of PI3K/AKT signaling and expressions of ABCG2 to DDP. By inhibiting IL-7 signaling via IL-7R knockdown or activating PI3K/AKT signaling via PI3K activation, the resensitization to DDP by IL-7 was abrogated, and the expression levels of ABCG2, p-PI3K, and p-AKT were found to be significantly higher. In vivo results also confirmed that IL-7 only in combination with DDP could remarkably induce tumor regression with reduced levels of ABCG2 in tumorous tissues. These findings indicate that IL-7, apart from its adjuvant effect, could overcome multidrug resistance of DDP to restore its chemotherapy sensitivity.
Collapse
|
1042
|
Yang X, de Caestecker M, Otterbein LE, Wang B. Carbon monoxide: An emerging therapy for acute kidney injury. Med Res Rev 2019; 40:1147-1177. [PMID: 31820474 DOI: 10.1002/med.21650] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/31/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Treating acute kidney injury (AKI) represents an important unmet medical need both in terms of the seriousness of this medical problem and the number of patients. There is also a large untapped market opportunity in treating AKI. Over the years, there has been much effort in search of therapeutics with minimal success. However, over the same time period, new understanding of the underlying pathobiology and molecular mechanisms of kidney injury have undoubtedly helped the search for new therapeutics. Along this line, carbon monoxide (CO) has emerged as a promising therapeutic agent because of its demonstrated cytoprotective, and immunomodulatory effects. CO has also been shown to sensitize cancer, but not normal cells, to chemotherapy. This is particularly important in treating cisplatin-induced AKI, a common clinical problem that develops in patients receiving cisplatin therapies for a number of different solid organ malignancies. This review will examine and make the case that CO be developed into a therapeutic agent against AKI.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Mark de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
1043
|
Menshikh A, Scarfe L, Delgado R, Finney C, Zhu Y, Yang H, de Caestecker MP. Capillary rarefaction is more closely associated with CKD progression after cisplatin, rhabdomyolysis, and ischemia-reperfusion-induced AKI than renal fibrosis. Am J Physiol Renal Physiol 2019; 317:F1383-F1397. [PMID: 31509009 PMCID: PMC6879932 DOI: 10.1152/ajprenal.00366.2019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/26/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a strong independent predictor of mortality and often results in incomplete recovery of renal function, leading to progressive chronic kidney disease (CKD). Many clinical trials have been conducted on the basis of promising preclinical data, but no therapeutic interventions have been shown to improve long-term outcomes after AKI. This is partly due to the failure of preclinical studies to accurately model clinically relevant injury and long-term outcomes on CKD progression. Here, we evaluated the long-term effects of AKI on CKD progression in three animal models reflecting diverse etiologies of AKI: repeat-dose cisplatin, rhabdomyolysis, and ischemia-reperfusion injury. Using transdermal measurement of glomerular filtration rate as a clinically relevant measure of kidney function and quantification of peritubular capillary density to measure capillary rarefaction, we showed that repeat-dose cisplatin caused capillary rarefaction and decreased renal function in mice without a significant increase in interstitial fibrosis, whereas rhabdomyolysis-induced AKI led to severe interstitial fibrosis, but renal function and peritubular capillary density were preserved. Furthermore, long-term experiments in mice with unilateral ischemia-reperfusion injury showed that restoration of renal function 12 wk after a contralateral nephrectomy was associated with increasing fibrosis, but a reversal of capillary rarefaction was seen at 4 wk. These data demonstrate that clear dissociation between kidney function and fibrosis in these models of AKI to CKD progression and suggest that peritubular capillary rarefaction is more strongly associated with CKD progression than renal fibrosis.
Collapse
Affiliation(s)
- Anna Menshikh
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren Scarfe
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rachel Delgado
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Charlene Finney
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuantee Zhu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Haichun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
1044
|
Khan MH, Cai M, Li S, Zhang Z, Zhang J, Wen X, Sun H, Liang H, Yang F. Developing a binuclear multi-target Bi(III) complex by optimizing 2-acetyl-3-ethylpyrazine thiosemicarbazides. Eur J Med Chem 2019; 182:111616. [DOI: 10.1016/j.ejmech.2019.111616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/25/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
|
1045
|
Akhtar MJ, Ahamed M, Alhadlaq HA, Kumar S, Alrokayan SA. Mitochondrial dysfunction, autophagy stimulation and non-apoptotic cell death caused by nitric oxide-inducing Pt-coated Au nanoparticle in human lung carcinoma cells. Biochim Biophys Acta Gen Subj 2019; 1864:129452. [PMID: 31676295 DOI: 10.1016/j.bbagen.2019.129452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Reactive oxygen species (ROS)-mediated cancer therapeutic has been at higher appreciation than those mediated by reactive nitrogen species. Cytotoxic mechanism of a novel nitric oxide (NO) inducing-Pt coated Au nanoparticle (NP) has been comparatively studied with the well-established ROS inducing Pt-based anticancer drug cisplatin in human lung A549 carcinoma cells. METHODS Cytotoxicity was evaluated by MTT assay, lactate dehydrogenase (LDH) release, thiobarbituric acid substances (TBARS) and C11-Boron dipyrromethene (BODIPY). ROS (O2·- and H2O2) was measured with dihydroethidium (DHE) and H2O2-specific sensor. Nitric oxide (NO) and mitochondrial dysfunction were evaluated respectively by NO-specific probe DAR-1 and JC-1. Autophagy was determined by lysotracker (LTR) and monodansylcadaverine (MDC) applied tandemly whereas apoptosis/necrosis by Hoechst/PI and caspase 3 activity. RESULTS IC50 (concentration that inhibited cell viability by 50%) of Pt coated Au NP came to be 0.413 μM whereas IC50 of cisplatin came out to 86.5 μM in A549 cells treated for 24 h meaning NPs toxicity was over 200 times higher than cisplatin. However, no significant stimulation of intracellular ROS was observed at the IC50 of Pt coated Au NPs in A549 cells. However, markers like LDH release, TBARS, BODIPY and ROS were significantly higher due to cisplatin in comparison to Pt coated Au NP. CONCLUSIONS Pt coated Au NP caused NO-dependent mitochondrial dysfunction and autophagy. Mode of cell death due to NP was much different from ROS-inducing cisplatin. GENERAL SIGNIFICANCE Pt coated Au NP offer promising opportunity in cancer therapeutic and warrants advanced study in vivo models of cancer.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sudhir Kumar
- Department of Zoology, University of Lucknow, Lucknow 226007, UP, India
| | - Salman A Alrokayan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
1046
|
Cytotoxic platinum(II) complexes derived from saccharinate and phosphine ligands: synthesis, structures, DNA cleavage, and oxidative stress-induced apoptosis. J Biol Inorg Chem 2019; 25:75-87. [DOI: 10.1007/s00775-019-01736-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/21/2019] [Indexed: 01/28/2023]
|
1047
|
Li M, Lu B, Dong X, Zhou Y, He Y, Zhang T, Bao L. Enhancement of cisplatin-induced cytotoxicity against cervical cancer spheroid cells by targeting long non-coding RNAs. Pathol Res Pract 2019; 215:152653. [PMID: 31570280 DOI: 10.1016/j.prp.2019.152653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 01/15/2023]
Abstract
Cervical cancer (CVC) is one of the most common types of gynecologic malignant tumor in the world. Unfortunately, current treatments including chemo-/radiotherapy still show the limitation on CVC progress. It is well known that cancer stem cells (CSCs) plays a critical role in drug resistance and metastasis. Furthermore, dysregulation of long non-coding RNA (LncRNA) shows close association to tumorigenesis and development of multiple cancers. In this study, we investigated the cytotoxic effect of cisplatin, a clinical chemotherapeutic for cervical cancer treatment, on parental and spheroid CVC cells and surveyed the effect of LncRNA on drug-resistance. We found that spheroid CVC cells showed much more resistant to cisplatin-induced cytotoxicity compared with parental CVC cells. Furthermore, cisplatin significantly induced apoptotic cell death, while it induced cell cycle arrest in G0/G1 phase at the same dose (10 μg/ml). We also found the significant expression of EGFR in spheroid instead of parental CVC cells. Interestingly, we revealed that protruding target lncRNAs were up-regulated in cisplatin-treated spheroid CVC cells, and inhibition of these lncRNAs enhanced the cytotoxicity of cisplatin against spheroid CVC cells. These data suggest that LncRNA might act as a critical modulator on drug-resistant capability of cervical CSCs and would be a novel target for cervical cancer treatment.
Collapse
Affiliation(s)
- Meiping Li
- Pathology Department, Shaoxing Maternity and Child Health Care Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Bo Lu
- Pathology Department, Shaoxing Maternity and Child Health Care Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Xiaoqian Dong
- Laboratory Department, Shaoxing Maternity and Child Health Care Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Ying Zhou
- Laboratory Department, Shaoxing Maternity and Child Health Care Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Yao He
- Gynecology Department, Shaoxing Maternity and Child Health Care Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Tao Zhang
- Genetics Department, Shaoxing Maternity and Child Health Care Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Lei Bao
- Pathology Department, Shaoxing Maternity and Child Health Care Hospital, Shaoxing 312000, Zhejiang Province, China.
| |
Collapse
|
1048
|
Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, Saponara S, Sarmento-Ribeiro AB, Xavier CP, Vasconcelos MH. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat 2019; 46:100645. [PMID: 31585396 DOI: 10.1016/j.drup.2019.100645] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
|
1049
|
Chen SH, Chang JY. New Insights into Mechanisms of Cisplatin Resistance: From Tumor Cell to Microenvironment. Int J Mol Sci 2019; 20:ijms20174136. [PMID: 31450627 PMCID: PMC6747329 DOI: 10.3390/ijms20174136] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Although cisplatin has been a pivotal chemotherapy drug in treating patients with various types of cancer for decades, drug resistance has been a major clinical impediment. In general, cisplatin exerts cytotoxic effects in tumor cells mainly through the generation of DNA-platinum adducts and subsequent DNA damage response. Accordingly, considerable effort has been devoted to clarify the resistance mechanisms inside tumor cells, such as decreased drug accumulation, enhanced detoxification activity, promotion of DNA repair capacity, and inactivated cell death signaling. However, recent advances in high-throughput techniques, cell culture platforms, animal models, and analytic methods have also demonstrated that the tumor microenvironment plays a key role in the development of cisplatin resistance. Recent clinical successes in combination treatments with cisplatin and novel agents targeting components in the tumor microenvironment, such as angiogenesis and immune cells, have also supported the therapeutic value of these components in cisplatin resistance. In this review, we summarize resistance mechanisms with respect to a single tumor cell and crucial components in the tumor microenvironment, particularly focusing on favorable results from clinical studies. By compiling emerging evidence from preclinical and clinical studies, this review may provide insights into the development of a novel approach to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan.
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
1050
|
Interaction with Blood Proteins of a Ruthenium(II) Nitrofuryl Semicarbazone Complex: Effect on the Antitumoral Activity. Molecules 2019; 24:molecules24162861. [PMID: 31394747 PMCID: PMC6719144 DOI: 10.3390/molecules24162861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
The steady rise in the cancer burden and grim statistics set a vital need for new therapeutic solutions. Given their high efficiency, metallodrugs are quite appealing in cancer chemotherapy. This work examined the anticancer activity of an anti-trypanosomal ruthenium-based compound bearing the 5-nitrofuryl pharmacophore, [RuII(dmso)2(5-nitro-2-furaldehyde semicarbazone)] (abbreviated as RuNTF; dmso is the dimethyl sulfoxide ligand). The cytotoxicity of RuNTF was evaluated in vitro against ovarian adenocarcinoma, hormone-dependent breast adenocarcinoma, prostate carcinoma (grade IV) and V79 lung fibroblasts human cells. The activity of RuNTF was similar to the benchmark metallodrug cisplatin for the breast line and inactive against the prostate line and lung fibroblasts. Given the known role of serum protein binding in drug bioavailability and the distribution via blood plasma, this study assessed the interaction of RuNTF with human serum albumin (HSA) by circular dichroism (CD) and fluorescence spectroscopy. The fluorescence emission quenching from the HSA-Trp214 residue and the lifetime data upon RuNTF binding evidenced the formation of a 1:1 {RuNTF-albumin} adduct with log Ksv = (4.58 ± 0.01) and log KB = (4.55 ± 0.01). This is supported by CD data with an induced CD broad band observed at ~450 nm even after short incubation times. Importantly, the binding to either HSA or human apo-transferrin is beneficial to the cytotoxicity of the complex towards human cancer cells by enhancing the cytotoxic activity of RuNTF.
Collapse
|