1001
|
Microbiota and Diabetes Mellitus: Role of Lipid Mediators. Nutrients 2020; 12:nu12103039. [PMID: 33023000 PMCID: PMC7600362 DOI: 10.3390/nu12103039] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes Mellitus (DM) is an inflammatory clinical entity with different mechanisms involved in its physiopathology. Among these, the dysfunction of the gut microbiota stands out. Currently, it is understood that lipid products derived from the gut microbiota are capable of interacting with cells from the immune system and have an immunomodulatory effect. In the presence of dysbiosis, the concentration of lipopolysaccharides (LPS) increases, favoring damage to the intestinal barrier. Furthermore, a pro-inflammatory environment prevails, and a state of insulin resistance and hyperglycemia is present. Conversely, during eubiosis, the production of short-chain fatty acids (SCFA) is fundamental for the maintenance of the integrity of the intestinal barrier as well as for immunogenic tolerance and appetite/satiety perception, leading to a protective effect. Additionally, it has been demonstrated that alterations or dysregulation of the gut microbiota can be reversed by modifying the eating habits of the patients or with the administration of prebiotics, probiotics, and symbiotics. Similarly, different studies have demonstrated that drugs like Metformin are capable of modifying the composition of the gut microbiota, promoting changes in the biosynthesis of LPS, and the metabolism of SCFA.
Collapse
|
1002
|
Birkeland E, Gharagozlian S, Birkeland KI, Valeur J, Måge I, Rud I, Aas AM. Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: a randomised controlled trial. Eur J Nutr 2020; 59:3325-3338. [PMID: 32440730 PMCID: PMC7501097 DOI: 10.1007/s00394-020-02282-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Compared to a healthy population, the gut microbiota in type 2 diabetes presents with several unfavourable features that may impair glucose regulation. The aim of this study was to evaluate the prebiotic effect of inulin-type fructans on the faecal microbiota and short-chain fatty acids (SCFA) in patients with type 2 diabetes. METHODS The study was a placebo controlled crossover study, where 25 patients (15 men) aged 41-71 years consumed 16 g of inulin-type fructans (a mixture of oligofructose and inulin) and 16-g placebo (maltodextrin) for 6 weeks in randomised order. A 4-week washout separated the 6 weeks treatments. The faecal microbiota was analysed by high-throughput 16S rRNA amplicon sequencing and SCFA in faeces were analysed using vacuum distillation followed by gas chromatography. RESULTS Treatment with inulin-type fructans induced moderate changes in the faecal microbiota composition (1.5%, p = 0.045). A bifidogenic effect was most prominent, with highest positive effect on operational taxonomic units (OTUs) of Bifidobacterium adolescentis, followed by OTUs of Bacteroides. Significantly higher faecal concentrations of total SCFA, acetic acid and propionic acid were detected after prebiotic consumption compared to placebo. The prebiotic fibre had no effects on the concentration of butyric acid or on the overall microbial diversity. CONCLUSION Six weeks supplementation with inulin-type fructans had a significant bifidogenic effect and induced increased concentrations of faecal SCFA, without changing faecal microbial diversity. Our findings suggest a moderate potential of inulin-type fructans to improve gut microbiota composition and to increase microbial fermentation in type 2 diabetes. TRIAL REGISTRATION The trial is registered at clinicaltrials.gov (NCT02569684).
Collapse
Affiliation(s)
- Eline Birkeland
- Section of Nutrition and Dietetics, Division of Medicine, Department of Clinical Service, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Sedegheh Gharagozlian
- Section of Nutrition and Dietetics, Division of Medicine, Department of Clinical Service, Oslo University Hospital, Oslo, Norway
| | - Kåre I Birkeland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Jørgen Valeur
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Ingrid Måge
- Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Ida Rud
- Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Anne-Marie Aas
- Section of Nutrition and Dietetics, Division of Medicine, Department of Clinical Service, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
1003
|
Yuan T, Yin Z, Yan Z, Hao Q, Zeng J, Li L, Zhao J. Tetrahydrocurcumin ameliorates diabetes profiles of db/db mice by altering the composition of gut microbiota and up-regulating the expression of GLP-1 in the pancreas. Fitoterapia 2020; 146:104665. [DOI: 10.1016/j.fitote.2020.104665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 01/09/2023]
|
1004
|
Unger AL, Eckstrom K, Jetton TL, Kraft J. Facility-dependent metabolic phenotype and gut bacterial composition in CD-1 mice from a single vendor: A brief report. PLoS One 2020; 15:e0238893. [PMID: 32956361 PMCID: PMC7505418 DOI: 10.1371/journal.pone.0238893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Utilization of murine models remains a valuable tool in biomedical research, yet, disease phenotype of mice across studies can vary considerably. With advances in next generation sequencing, it is increasingly recognized that inconsistencies in host phenotype can be attributed, at least in part, to differences in gut bacterial composition. Research with inbred murine strains demonstrates that housing conditions play a significant role in variations of gut bacterial composition, however, few studies have assessed whether observed variation influences host phenotype in response to an intervention. Our study initially sought to examine the effects of a long-term (9-months) dietary intervention (i.e., diets with distinct fatty acid compositions) on the metabolic health, in particular glucose homeostasis, of genetically-outbred male and female CD-1 mice. Yet, mice were shipped from two different husbandry facilities of the same commercial vendor (Cohort A and B, respectively), and we observed throughout the study that diet, sex, and aging differentially influenced the metabolic phenotype of mice depending on their husbandry facility of origin. Examination of the colonic bacteria of mice revealed distinct bacterial compositions, including 23 differentially abundant genera and an enhanced alpha diversity in mice of Cohort B compared to Cohort A. We also observed that a distinct metabolic phenotype was linked with these differentially abundant bacteria and indices of alpha diversity. Our findings support that metabolic phenotypic variation of mice of the same strain but shipped from different husbandry facilities may be influenced by their colonic bacterial community structure. Our work is an important precautionary note for future research of metabolic diseases via mouse models, particularly those that seek to examine factors such diet, sex, and aging.
Collapse
Affiliation(s)
- Allison L. Unger
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, Vermont, United States of America
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, The University of Vermont, Burlington, Vermont, United States of America
| | - Thomas L. Jetton
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, The University of Vermont, Colchester, Vermont, United States of America
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, Vermont, United States of America
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, The University of Vermont, Colchester, Vermont, United States of America
- * E-mail:
| |
Collapse
|
1005
|
Kruglikov IL, Shah M, Scherer PE. Obesity and diabetes as comorbidities for COVID-19: Underlying mechanisms and the role of viral-bacterial interactions. eLife 2020; 9:e61330. [PMID: 32930095 PMCID: PMC7492082 DOI: 10.7554/elife.61330] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity and diabetes are established comorbidities for COVID-19. Adipose tissue demonstrates high expression of ACE2 which SARS- CoV-2 exploits to enter host cells. This makes adipose tissue a reservoir for SARS-CoV-2 viruses and thus increases the integral viral load. Acute viral infection results in ACE2 downregulation. This relative deficiency can lead to disturbances in other systems controlled by ACE2, including the renin-angiotensin system. This will be further increased in the case of pre-conditions with already compromised functioning of these systems, such as in patients with obesity and diabetes. Here, we propose that interactions of virally-induced ACE2 deficiency with obesity and/or diabetes leads to a synergistic further impairment of endothelial and gut barrier function. The appearance of bacteria and/or their products in the lungs of obese and diabetic patients promotes interactions between viral and bacterial pathogens, resulting in a more severe lung injury in COVID-19.
Collapse
Affiliation(s)
| | - Manasi Shah
- Division of Endocrinology, University of Texas Southwestern Medical CenterDallasUnited States
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
1006
|
Mojsak P, Rey-Stolle F, Parfieniuk E, Kretowski A, Ciborowski M. The role of gut microbiota (GM) and GM-related metabolites in diabetes and obesity. A review of analytical methods used to measure GM-related metabolites in fecal samples with a focus on metabolites' derivatization step. J Pharm Biomed Anal 2020; 191:113617. [PMID: 32971497 DOI: 10.1016/j.jpba.2020.113617] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Disruption of gut microbiota (GM) composition is increasingly related to the pathogenesis of various metabolic diseases. Additionally, GM is responsible for the production and transformation of metabolites involved in the development of metabolic disorders, such as obesity and type 2 diabetes mellitus (T2DM). The current state of knowledge regarding the composition of GM and GM-related metabolites in relation to the progress and development of obesity and T2DM is presented in this review. To understand the relationships between GM-related metabolites and the development of metabolic disorders, their accurate qualitative and quantitative measurement in biological samples is needed. Feces represent a valuable biological matrix which composition may reflect the health status of the lower gastrointestinal tract and the whole organism. Mass spectrometry (MS), mainly in combination with gas chromatography (GC) or liquid chromatography (LC), is commonly used to measure fecal metabolites. However, profiling metabolites in such a complex matrix as feces is challenging from both analytical chemistry and biochemistry standpoints. Chemical derivatization is one of the most effective methods used to overcome these problems. In this review, we provide a comprehensive summary of the derivatization methods of GM-related metabolites prior to GC-MS or LC-MS analysis, which have been published in the last five years (2015-2020). Additionally, analytical methods used for the analysis of GM-related metabolites without the derivatization step are also presented.
Collapse
Affiliation(s)
- Patrycja Mojsak
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Fernanda Rey-Stolle
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Ewa Parfieniuk
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
1007
|
Djekic D, Shi L, Brolin H, Carlsson F, Särnqvist C, Savolainen O, Cao Y, Bäckhed F, Tremaroli V, Landberg R, Frøbert O. Effects of a Vegetarian Diet on Cardiometabolic Risk Factors, Gut Microbiota, and Plasma Metabolome in Subjects With Ischemic Heart Disease: A Randomized, Crossover Study. J Am Heart Assoc 2020; 9:e016518. [PMID: 32893710 PMCID: PMC7726986 DOI: 10.1161/jaha.120.016518] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background A vegetarian diet (VD) may reduce future cardiovascular risk in patients with ischemic heart disease. Methods and Results A randomized crossover study was conducted in subjects with ischemic heart disease, assigned to 4-week intervention periods of isocaloric VD and meat diet (MD) with individually designed diet plans, separated by a 4-week washout period. The primary outcome was difference in oxidized low-density lipoprotein cholesterol (LDL-C) between diets. Secondary outcomes were differences in cardiometabolic risk factors, quality of life, gut microbiota, fecal short-chain and branched-chain fatty acids, and plasma metabolome. Of 150 eligible patients, 31 (21%) agreed to participate, and 27 (87%) participants completed the study. Mean oxidized LDL-C (-2.73 U/L), total cholesterol (-5.03 mg/dL), LDL-C (-3.87 mg/dL), and body weight (-0.67 kg) were significantly lower with the VD than with the MD. Differences between VD and MD were observed in the relative abundance of several microbe genera within the families Ruminococcaceae, Lachnospiraceae, and Akkermansiaceae. Plasma metabolites, including l-carnitine, acylcarnitine metabolites, and phospholipids, differed in subjects consuming VD and MD. The effect on oxidized LDL-C in response to the VD was associated with a baseline gut microbiota composition dominated by several genera of Ruminococcaceae. Conclusions The VD in conjunction with optimal medical therapy reduced levels of oxidized LDL-C, improved cardiometabolic risk factors, and altered the relative abundance of gut microbes and plasma metabolites in patients with ischemic heart disease. Our results suggest that composition of the gut microbiota at baseline may be related to the reduction of oxidized LDL-C observed with the VD. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02942628.
Collapse
Affiliation(s)
- Demir Djekic
- Department of Cardiology, Faculty of HealthÖrebro University HospitalÖrebroSweden
| | - Lin Shi
- Engineering and Nutritional ScienceShaanxi Normal UniversityXi’anChina
- Chalmers University of TechnologyGothenburgSweden
| | - Harald Brolin
- The Wallenberg Laboratory, Department of Molecular and Clinical MedicineUniversity of GothenburgSweden
| | | | - Charlotte Särnqvist
- Department of Cardiology, Faculty of HealthÖrebro University HospitalÖrebroSweden
| | | | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical SciencesÖrebro UniversityÖrebroSweden
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical MedicineUniversity of GothenburgSweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
- Department of Clinical Physiology, Region Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Valentina Tremaroli
- The Wallenberg Laboratory, Department of Molecular and Clinical MedicineUniversity of GothenburgSweden
| | - Rikard Landberg
- Chalmers University of TechnologyGothenburgSweden
- Department of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
| | - Ole Frøbert
- Department of Cardiology, Faculty of HealthÖrebro University HospitalÖrebroSweden
| |
Collapse
|
1008
|
Rodríguez-Daza MC, Roquim M, Dudonné S, Pilon G, Levy E, Marette A, Roy D, Desjardins Y. Berry Polyphenols and Fibers Modulate Distinct Microbial Metabolic Functions and Gut Microbiota Enterotype-Like Clustering in Obese Mice. Front Microbiol 2020; 11:2032. [PMID: 32983031 PMCID: PMC7479096 DOI: 10.3389/fmicb.2020.02032] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Berries are rich in polyphenols and plant cell wall polysaccharides (fibers), including cellulose, hemicellulose, arabinans and arabino-xyloglucans rich pectin. Most of polyphenols and fibers are known to be poorly absorbed in the small intestine and reach the colon where they interact with the gut microbiota, conferring health benefits to the host. This study assessed the contribution of polyphenol-rich whole cranberry and blueberry fruit powders (CP and BP), and that of their fibrous fractions (CF and BF) on modulating the gut microbiota, the microbial functional profile and influencing metabolic disorders induced by high-fat high-sucrose (HFHS) diet for 8 weeks. Lean mice-associated taxa, including Akkermansia muciniphila, Dubosiella newyorkensis, and Angelakisella, were selectively induced by diet supplementation with polyphenol-rich CP and BP. Fiber-rich CF also triggered polyphenols-degrading families Coriobacteriaceae and Eggerthellaceae. Diet supplementation with polyphenol-rich CP, but not with its fiber-rich CF, reduced fat mass depots, body weight and energy efficiency in HFHS-fed mice. However, CF reduced liver triglycerides in HFHS-fed mice. Importantly, polyphenol-rich CP-diet normalized microbial functions to a level comparable to that of Chow-fed controls. Using multivariate association modeling, taxa and predicted functions distinguishing an obese phenotype from healthy controls and berry-treated mice were identified. The enterotype-like clustering analysis underlined the link between a long-term diet intake and the functional stratification of the gut microbiota. The supplementation of a HFHS-diet with polyphenol-rich CP drove mice gut microbiota from Firmicutes/Ruminococcus enterotype into an enterotype linked to healthier host status, which is Prevotella/Akkermansiaceae. This study highlights the prebiotic role of polyphenols, and their contribution to the compositional and functional modulation of the gut microbiota, counteracting obesity.
Collapse
Affiliation(s)
- Maria-Carolina Rodríguez-Daza
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Marcela Roquim
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of Quebec Heart and Lung Institute, Laval University, Québec, QC, Canada
| | - Emile Levy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of Quebec Heart and Lung Institute, Laval University, Québec, QC, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
1009
|
Alteration of Intestinal Microbiota in 3-Deoxyglucosone-Induced Prediabetic Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8406846. [PMID: 32908918 PMCID: PMC7468600 DOI: 10.1155/2020/8406846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022]
Abstract
Our previous research suggests that 3-deoxyglucosone (3DG), formed in the caramelization course and Maillard reactions in food, is an independent factor for the development of prediabetes. Since the relationship between type 2 diabetes (T2D) and intestinal microbiota is moving from correlation to causality, we investigated the alterations in the composition and function of the intestinal microbiota in 3DG-induced prediabetic rats. Rats were given 50 mg/kg 3DG by intragastric administration for two weeks. Microbial profiling in faeces samples was determined through the 16S rRNA gene sequence. The glucagon-like peptide 2 (GLP-2) and lipopolysaccharide (LPS) levels in plasma and intestinal tissues were measured by ELISA and Limulus test, respectively. 3DG treatment did not significantly change the richness and evenness but affected the composition of intestinal microbiota. At the phylum level, 3DG treatment increased the abundance of nondominant bacteria Proteobacteria but did not cause the change of the dominant bacteria. Meanwhile, the abundance of the Prevotellaceae family and Parasutterela genus and the Alcaligencaeae family and Burkholderiales order and its attachment to the Betaproteobacteria class were overrepresented in the 3DG group. The bacteria of Candidatus Soleaferrea genus, Gelria genus, and Thermoanaerobacteraceae family and its attachment to Thermoanaerobacterales order were apparently more abundant in the control group. In addition, 45 KEGG pathways were altered after two-week intragastric administration of 3DG. Among these KEGG pathways, 13 KEGG pathways were involved in host metabolic function related to amino acid metabolism, carbohydrate metabolism, metabolism of cofactors and vitamins, and metabolism of terpenoids and polyketides. Moreover, the increased LPS levels and the decreased GLP-2 concentration in plasma and intestinal tissues were observed in 3DG-treated rats, together with the impaired fasting glucose and oral glucose tolerance. The alterations in composition and function of the intestinal microbiota were observed in 3DG-treated rats, which provides a possible mechanism linking exogenous 3DG intake to the development of prediabetes.
Collapse
|
1010
|
Borse SP, Chhipa AS, Sharma V, Singh DP, Nivsarkar M. Management of Type 2 Diabetes: Current Strategies, Unfocussed Aspects, Challenges, and Alternatives. Med Princ Pract 2020; 30:109-121. [PMID: 32818934 PMCID: PMC8114074 DOI: 10.1159/000511002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) accounts for >90% of the cases of diabetes in adults. Resistance to insulin action is the major cause that leads to chronic hyperglycemia in diabetic patients. T2DM is the consequence of activation of multiple pathways and factors involved in insulin resistance and β-cell dysfunction. Also, the etiology of T2DM involves the complex interplay between genetics and environmental factors. This interplay can be governed efficiently by lifestyle modifications to achieve better management of diabetes. The present review aims at discussing the major factors involved in the development of T2DM that remain unfocussed during the anti-diabetic therapy. The review also focuses on lifestyle modifications that are warranted for the successful management of T2DM. In addition, it attempts to explain flaws in current strategies to combat diabetes. The employability of phytoconstituents as multitargeting molecules and their potential use as effective therapeutic adjuvants to first line hypoglycemic agents to prevent side effects caused by the synthetic drugs are also discussed.
Collapse
Affiliation(s)
- Swapnil P Borse
- AYUSH-Center of Excellence, Center for Complementary and Integrative Health (CCIH), Interdisciplinary School of Health Sciences, Savitribai Phule Pune University (SPPU), Pune, India
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej, India
| | - Abu Sufiyan Chhipa
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej, India
- Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Vipin Sharma
- Translational Health Science and Technology Institute, Faridabad, India
| | | | - Manish Nivsarkar
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej, India,
| |
Collapse
|
1011
|
Robertson MD. Prebiotics and type 2 diabetes: targeting the gut microbiota for improved glycaemic control? PRACTICAL DIABETES 2020. [DOI: 10.1002/pdi.2285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- M Denise Robertson
- Reader in Nutritional Physiology, Department of Nutritional Sciences, University of Surrey Guildford UK
| |
Collapse
|
1012
|
Wang L, Ren B, Hui Y, Chu C, Zhao Z, Zhang Y, Zhao B, Shi R, Ren J, Dai X, Liu Z, Liu X. Methionine Restriction Regulates Cognitive Function in High-Fat Diet-Fed Mice: Roles of Diurnal Rhythms of SCFAs Producing- and Inflammation-Related Microbes. Mol Nutr Food Res 2020; 64:e2000190. [PMID: 32729963 DOI: 10.1002/mnfr.202000190] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/15/2020] [Indexed: 12/11/2022]
Abstract
SCOPE Methionine restriction (MR) is known to potently alleviate inflammation and improve gut microbiome in obese mice. The gut microbiome exhibits diurnal rhythmicity in composition and function, and this, in turn, drives oscillations in host metabolism. High-fat diet (HFD) strongly altered microbiome diurnal rhythmicity, however, the role of microbiome diurnal rhythmicity in mediating the improvement effects of MR on obesity-related metabolic disorders remains unclear. METHODS AND RESULTS 10-week-old male C57BL/6J mice are fed a low-fat diet or HFD for 4 weeks, followed with a full diet (0.86% methionine, w/w) or a methionine-restricted diet (0.17% methionine, w/w) for 8 weeks. Analyzing microbiome diurnal rhythmicity at six time points, the results show that HFD disrupts the cyclical fluctuations of the gut microbiome in mice. MR partially restores these cyclical fluctuations, which lead to time-specifically enhance the abundance of short-chain fatty acids producing bacteria, increases the acetate and butyric, and dampens the oscillation of inflammation-related Desulfovibrionales and Staphylococcaceae over the course of 1 day. Notably, MR, which protects against systemic inflammation, influences brain function and synaptic plasticity. CONCLUSION MR could serve as a potential nutritional intervention for attenuating obesity-induced cognitive impairments by balancing the circadian rhythm in microbiome-gut-brain homeostasis.
Collapse
Affiliation(s)
- Luanfeng Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Hui
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China.,Department of Food Science, University of Copenhagen, Copenhagen, 1958, Denmark
| | - Chuanqi Chu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenting Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Beita Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Renjie Shi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junli Ren
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
1013
|
Zhou LY, Deng MQ, Xiao XH. Potential contribution of the gut microbiota to hypoglycemia after gastric bypass surgery. Chin Med J (Engl) 2020; 133:1834-1843. [PMID: 32649508 PMCID: PMC7470015 DOI: 10.1097/cm9.0000000000000932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity has become a global health problem. Lifestyle modification and medical treatment only appear to yield short-term weight loss. Roux-en-Y gastric bypass (RYGB) is the most popular bariatric procedure, and it sustains weight reduction and results in the remission of obesity-associated comorbidities for obese individuals. However, patients who undergo this surgery may develop hypoglycemia. To date, the diagnosis is challenging and the prevalence of post-RYGB hypoglycemia (PRH) is unclear. RYGB alters the anatomy of the upper gastrointestinal tract and has a combined effect of caloric intake restriction and nutrient malabsorption. Nevertheless, the physiologic changes after RYGB are complex. Although hyperinsulinemia, incretin effects, dysfunction of β-cells and α-cells, and some other factors have been widely investigated and are reported to be possible mediators of PRH, the pathogenesis is still not completely understood. In light of the important role of the gut microbiome in metabolism, we hypothesized that the gut microbiome might also be a critical link between RYGB and hypoglycemia. In this review, we mainly highlight the current possible factors predisposing individuals to PRH, particularly related to the gut microbiota, which may yield significant insights into the intestinal regulation of glucose metabolic homeostasis and provide novel clues to improve the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Li-Yuan Zhou
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | | |
Collapse
|
1014
|
Gruneck L, Kullawong N, Kespechara K, Popluechai S. Gut microbiota of obese and diabetic Thai subjects and interplay with dietary habits and blood profiles. PeerJ 2020; 8:e9622. [PMID: 32832269 PMCID: PMC7409811 DOI: 10.7717/peerj.9622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) have become major public health issues globally. Recent research indicates that intestinal microbiota play roles in metabolic disorders. Though there are numerous studies focusing on gut microbiota of health and obesity states, those are primarily focused on Western countries. Comparatively, only a few investigations exist on gut microbiota of people from Asian countries. In this study, the fecal microbiota of 30 adult volunteers living in Chiang Rai Province, Thailand were examined using next-generation sequencing (NGS) in association with blood profiles and dietary habits. Subjects were categorized by body mass index (BMI) and health status as follows; lean (L) = 8, overweight (OV) = 8, obese (OB) = 7 and diagnosed T2DM = 7. Members of T2DM group showed differences in dietary consumption and fasting glucose level compared to BMI groups. A low level of high-density cholesterol (HDL) was observed in the OB group. Principal coordinate analysis (PCoA) revealed that microbial communities of T2DM subjects were clearly distinct from those of OB. An analogous pattern was additionally illustrated by multiple factor analysis (MFA) based on dietary habits, blood profiles, and fecal gut microbiota in BMI and T2DM groups. In all four groups, Bacteroidetes and Firmicutes were the predominant phyla. Abundance of Faecalibacterium prausnitzii, a butyrate-producing bacterium, was significantly higher in OB than that in other groups. This study is the first to examine the gut microbiota of adult Thais in association with dietary intake and blood profiles and will provide the platform for future investigations.
Collapse
Affiliation(s)
- Lucsame Gruneck
- School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand.,Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Niwed Kullawong
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand.,School of Health Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | | | - Siam Popluechai
- School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand.,Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| |
Collapse
|
1015
|
Murthy HS, Gharaibeh RZ, Al-Mansour Z, Kozlov A, Trikha G, Newsome RC, Gauthier J, Farhadfar N, Wang Y, Kelly DL, Lybarger J, Jobin C, Wang GP, Wingard JR. Baseline Gut Microbiota Composition Is Associated with Major Infections Early after Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2020; 26:2001-2010. [PMID: 32717434 DOI: 10.1016/j.bbmt.2020.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 01/03/2023]
Abstract
Infection is a major cause of morbidity and mortality after hematopoietic cell transplantation (HCT). Gut microbiota (GM) composition and metabolites provide colonization resistance against dominance of potential pathogens, and GM dysbiosis following HCT can be deleterious to immune reconstitution. Little is known about the composition, diversity, and evolution of GM communities in HCT patients and their association with subsequent febrile neutropenia (FN) and infection. Identification of markers before HCT that predict subsequent infection could be useful in developing individualized antimicrobial strategies. Fecal samples were collected prospectively from 33 HCT recipients at serial time points: baseline, post-conditioning regimen, neutropenia onset, FN onset (if present), and hematologic recovery. GM was assessed by 16S rRNA sequencing. FN and major infections (ie, bloodstream infection, typhlitis, invasive fungal infection, pneumonia, and Clostridium difficile enterocolitis) were identified. Significant shifts in GM composition and diversity were observed during HCT, with the largest alterations occurring after initiation of antibiotics. Loss of diversity persisted without a return to baseline at hematologic recovery. GM in patients with FN was enriched in Mogibacterium, Bacteroides fragilis, and Parabacteroides distasonis, whereas increased abundance of Prevotella, Ruminococcus, Dorea, Blautia, and Collinsella was observed in patients without fever. A baseline protective GM profile (BPGMP) was predictive of protection from major infection. The BPGMP was associated with subsequent major infections with 77% accuracy and an area under the curve of 79%, with sensitivity, specificity, and positive and negative predictive values of 0.71, 0.91, 0.77, and 0.87, respectively. Our data show that large shifts in GM composition occur early after HCT, and differences in baseline GM composition are associated with the development of subsequent major infections.
Collapse
Affiliation(s)
- Hemant S Murthy
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida; UF Health Cancer Center, Gainesville, Florida
| | - Raad Z Gharaibeh
- UF Health Cancer Center, Gainesville, Florida; Division of Gastroenterology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Zeina Al-Mansour
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida; UF Health Cancer Center, Gainesville, Florida
| | - Andrew Kozlov
- Division of Infectious Disease and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Gaurav Trikha
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Rachel C Newsome
- Division of Gastroenterology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Josee Gauthier
- Division of Gastroenterology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Nosha Farhadfar
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida; UF Health Cancer Center, Gainesville, Florida
| | - Yu Wang
- Division of Quantitative Sciences And Biostatistics, University of Florida Health Cancer Center, Gainesville, Florida
| | - Debra Lynch Kelly
- UF Health Cancer Center, Gainesville, Florida; College of Nursing, University of Florida, Gainesville, Florida
| | - John Lybarger
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Christian Jobin
- UF Health Cancer Center, Gainesville, Florida; Division of Gastroenterology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Gary P Wang
- Division of Infectious Disease and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - John R Wingard
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida; UF Health Cancer Center, Gainesville, Florida.
| |
Collapse
|
1016
|
Daryabor G, Atashzar MR, Kabelitz D, Meri S, Kalantar K. The Effects of Type 2 Diabetes Mellitus on Organ Metabolism and the Immune System. Front Immunol 2020; 11:1582. [PMID: 32793223 PMCID: PMC7387426 DOI: 10.3389/fimmu.2020.01582] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic abnormalities such as dyslipidemia, hyperinsulinemia, or insulin resistance and obesity play key roles in the induction and progression of type 2 diabetes mellitus (T2DM). The field of immunometabolism implies a bidirectional link between the immune system and metabolism, in which inflammation plays an essential role in the promotion of metabolic abnormalities (e.g., obesity and T2DM), and metabolic factors, in turn, regulate immune cell functions. Obesity as the main inducer of a systemic low-level inflammation is a main susceptibility factor for T2DM. Obesity-related immune cell infiltration, inflammation, and increased oxidative stress promote metabolic impairments in the insulin-sensitive tissues and finally, insulin resistance, organ failure, and premature aging occur. Hyperglycemia and the subsequent inflammation are the main causes of micro- and macroangiopathies in the circulatory system. They also promote the gut microbiota dysbiosis, increased intestinal permeability, and fatty liver disease. The impaired immune system together with metabolic imbalance also increases the susceptibility of patients to several pathogenic agents such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Thus, the need for a proper immunization protocol among such patients is granted. The focus of the current review is to explore metabolic and immunological abnormalities affecting several organs of T2DM patients and explain the mechanisms, whereby diabetic patients become more susceptible to infectious diseases.
Collapse
Affiliation(s)
- Gholamreza Daryabor
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
1017
|
Li WZ, Stirling K, Yang JJ, Zhang L. Gut microbiota and diabetes: From correlation to causality and mechanism. World J Diabetes 2020; 11:293-308. [PMID: 32843932 PMCID: PMC7415231 DOI: 10.4239/wjd.v11.i7.293] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 02/05/2023] Open
Abstract
In this review, we summarize the recent microbiome studies related to diabetes disease and discuss the key findings that show the early emerging potential causal roles for diabetes. On a global scale, diabetes causes a significant negative impact to the health status of human populations. This review covers type 1 diabetes and type 2 diabetes. We examine promising studies which lead to a better understanding of the potential mechanism of microbiota in diabetes diseases. It appears that the human oral and gut microbiota are deeply interdigitated with diabetes. It is that simple. Recent studies of the human microbiome are capturing the attention of scientists and healthcare practitioners worldwide by focusing on the interplay of gut microbiome and diabetes. These studies focus on the role and the potential impact of intestinal microflora in diabetes. We paint a clear picture of how strongly microbes are linked and associated, both positively and negatively, with the fundamental and essential parts of diabetes in humans. The microflora seems to have an endless capacity to impact and transform diabetes. We conclude that there is clear and growing evidence of a close relationship between the microbiota and diabetes and this is worthy of future investments and research efforts.
Collapse
Affiliation(s)
- Wei-Zheng Li
- Microbiome-X, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Kyle Stirling
- Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN 47408, United States
- The Crisis Technologies Innovation Lab, Indiana University, The Information Technology Services and the Pervasive Technology Institute, Bloomington, IN 47408, United States
- Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, Jinan 250000, Shandong Province, China
| | - Jun-Jie Yang
- College of Life Science, Qilu Normal University, Jinan 250000, Shandong Province, China
- Microbiome Research Center, Shandong Institutes for Food and Drug Control, Jinan 250000, Shandong Province, China
- Shandong Children’s Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan 250000, Shandong Province, China
- Microbiological Laboratory, Lin Yi People’s Hospital, Linyi 276000, Shandong Province, China
- Qingdao Human Microbiome Center, The Affiliated Central Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Lei Zhang
- Microbiome-X, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
- Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, Jinan 250000, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250000, Shandong Province, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, Shandong Province, China
- Shandong Children’s Microbiome Center, Research Institute of Pediatrics, Qilu Children's Hospital, Cheeloo College of Medicine, Shandong University, and Jinan Children's Hospital, Jinan 250022, Shandong Province, China
| |
Collapse
|
1018
|
Hashimoto Y, Hamaguchi M, Kaji A, Sakai R, Osaka T, Inoue R, Kashiwagi S, Mizushima K, Uchiyama K, Takagi T, Naito Y, Fukui M. Intake of sucrose affects gut dysbiosis in patients with type 2 diabetes. J Diabetes Investig 2020; 11:1623-1634. [PMID: 32412684 PMCID: PMC7610116 DOI: 10.1111/jdi.13293] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Aims/Introduction Gut dysbiosis is generally associated with type 2 diabetes mellitus. However, the effect of habitual dietary intake on gut dysbiosis in Japanese patients with type 2 diabetes mellitus has not yet been explicated. This study investigated whether alteration of the gut microbiota was influenced by dietary intake of sucrose in Japanese patients with type 2 diabetes mellitus. Materials and Methods In this cross‐sectional study, 97 patients with type 2 diabetes mellitus and 97 healthy individuals were matched by age and sex, and then, fecal samples were obtained. Next‐generation sequencing of the 16S ribosomal ribonucleic acid gene was carried out, and functional profiles for the gut microbiota were analyzed. We selected the top 30 gut microbial genera and top 20 functional profiles for the gut microbiota specified by the weighted average difference method. The association between gut microbial genera or functional profiles and habitual dietary intake was investigated by Spearman’s rank correlation coefficient, and then, clustering analysis was carried out to clarify the impact of habitual dietary intake. Results The Actinobacteria phylum was highly abundant in patients with type 2 diabetes mellitus, whereas the Bacteroidetes phylum was less abundant. Diabetic‐type gut microbes, specifically Bacteroides and Bifidobacterium, were altered by sucrose intake at the genus level. Furthermore, sucrose intake was associated with glycolysis/gluconeogenesis in the diabetic‐type functional profiles of the gut microbiota. Conclusions The gut microbiota and functional profiles for the gut microbiota in patients with type 2 diabetes mellitus were significantly different from those in healthy individuals. Furthermore, we showed that sucrose intake was closely associated with these differences.
Collapse
Affiliation(s)
- Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ayumi Kaji
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryosuke Sakai
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takafumi Osaka
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Kyoto Prefectural University, Kyoto, Japan.,Laboratory of Animal Science, Setsunan University, Hirakata, Japan
| | - Saori Kashiwagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
1019
|
Turner A, Veysey M, Keely S, Scarlett CJ, Lucock M, Beckett EL. Intense Sweeteners, Taste Receptors and the Gut Microbiome: A Metabolic Health Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4094. [PMID: 32521750 PMCID: PMC7312722 DOI: 10.3390/ijerph17114094] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
Intense sweeteners (IS) are often marketed as a healthier alternative to sugars, with the potential to aid in combating the worldwide rise of diabetes and obesity. However, their use has been counterintuitively associated with impaired glucose homeostasis, weight gain and altered gut microbiota. The nature of these associations, and the mechanisms responsible, are yet to be fully elucidated. Differences in their interaction with taste receptors may be a potential explanatory factor. Like sugars, IS stimulate sweet taste receptors, but due to their diverse structures, some are also able to stimulate bitter taste receptors. These receptors are expressed in the oral cavity and extra-orally, including throughout the gastrointestinal tract. They are involved in the modulation of appetite, glucose homeostasis and gut motility. Therefore, taste genotypes resulting in functional receptor changes and altered receptor expression levels may be associated with metabolic conditions. IS and taste receptors may both interact with the gastrointestinal microbiome, and their interactions may potentially explain the relationship between IS use, obesity and metabolic outcomes. While these elements are often studied in isolation, the potential interactions remain unexplored. Here, the current evidence of the relationship between IS use, obesity and metabolic outcomes is presented, and the potential roles for interactions with taste receptors and the gastrointestinal microbiota in modulating these relationships are explored.
Collapse
Affiliation(s)
- Alexandria Turner
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah 2258, Australia; (A.T.); (C.J.S.); (M.L.)
| | - Martin Veysey
- School of Medicine and Public Health, University of Newcastle, Ourimbah 2258, Australia;
- Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia;
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Christopher J. Scarlett
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah 2258, Australia; (A.T.); (C.J.S.); (M.L.)
| | - Mark Lucock
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah 2258, Australia; (A.T.); (C.J.S.); (M.L.)
| | - Emma L. Beckett
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah 2258, Australia; (A.T.); (C.J.S.); (M.L.)
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| |
Collapse
|
1020
|
Dhar D, Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Res 2020; 285:198018. [PMID: 32430279 PMCID: PMC7217790 DOI: 10.1016/j.virusres.2020.198018] [Citation(s) in RCA: 390] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
Covid-19 disease show gastrointestinal symptoms in some patients hinting at a role of gut-lung axis. Gut microbiota diversity and its role in immunity highlighted. Possible role of gut microbiota in Covid-19 discussed. Implications of gut dysbiosis in Covid-19 analysed. Role of diet in strengthening the gut microbiota and in the context of Covid-19 discussed. Suggestions on therapy and prophylaxis based on gut microbiota in Covid-19.
Covid-19 is a major pandemic facing the world today caused by SARS-CoV-2 which has implications on our understanding of infectious diseases. Although, SARS-Cov-2 primarily causes lung infection through binding of ACE2 receptors present on the alveolar epithelial cells, yet it was recently reported that SARS-CoV-2 RNA was found in the faeces of infected patients. Interestingly, the intestinal epithelial cells particularly the enterocytes of the small intestine also express ACE2 receptors. Role of the gut microbiota in influencing lung diseases has been well articulated. It is also known that respiratory virus infection causes perturbations in the gut microbiota. Diet, environmental factors and genetics play an important role in shaping gut microbiota which can influence immunity. Gut microbiota diversity is decreased in old age and Covid-19 has been mainly fatal in elderly patients which again points to the role the gut microbiota may play in this disease. Improving gut microbiota profile by personalized nutrition and supplementation known to improve immunity can be one of the prophylactic ways by which the impact of this disease can be minimized in old people and immune-compromised patients. More trials may be initiated to see the effect of co-supplementation of personalized functional food including prebiotics/probiotics along with current therapies.
Collapse
Affiliation(s)
| | - Abhishek Mohanty
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India.
| |
Collapse
|
1021
|
Ouyang J, Isnard S, Lin J, Fombuena B, Marette A, Routy B, Chen Y, Routy JP. Metformin effect on gut microbiota: insights for HIV-related inflammation. AIDS Res Ther 2020; 17:10. [PMID: 32156291 PMCID: PMC7063824 DOI: 10.1186/s12981-020-00267-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/24/2020] [Indexed: 12/25/2022] Open
Abstract
The gut microbiota is emerging as a prominent player in maintaining health through several metabolic and immune pathways. Dysregulation of gut microbiota composition, also known as dysbiosis, is involved in the clinical outcome of diabetes, inflammatory bowel diseases, cancer, aging and HIV infection. Gut dysbiosis and inflammation persist in people living with HIV (PLWH) despite receiving antiretroviral therapy, further contributing to non-AIDS comorbidities. Metformin, a widely used antidiabetic agent, has been found to benefit microbiota composition, promote gut barrier integrity and reduce inflammation in human and animal models of diabetes. Inspired by the effect of metformin on diabetes-related gut dysbiosis, we herein critically review the relevance of metformin to control inflammation in PLWH. Metformin may improve gut microbiota composition, in turn reducing inflammation and risk of non-AIDS comorbidities. This review will pave the way towards innovative strategies to counteract dysregulated microbiota and improve the lives of PLWH.
Collapse
Affiliation(s)
- Jing Ouyang
- Chongqing Public Health Medical Center, Baoyu Road 109, Shapingba District, Chongqing, China
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, 1001 Blvd Décarie, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, 1001 Blvd Décarie, Montréal, QC, Canada
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, 1001 Blvd Décarie, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, 1001 Blvd Décarie, Montréal, QC, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, 1001 Blvd Décarie, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, 1001 Blvd Décarie, Montréal, QC, Canada
| | - Brandon Fombuena
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, 1001 Blvd Décarie, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, 1001 Blvd Décarie, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, 845 Sherbrooke Street West, Montréal, QC, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, 2325 Rue de l'Université, Laval, QC, Canada
- Institute of Nutrition and Functional Foods, Laval University, 2325 Rue de l'Université, Laval, QC, Canada
| | - Bertrand Routy
- Research Centre for the University of Montréal (CRCHUM), 900 St Denis St, Montréal, QC, Canada
- Hematology-Oncology Division, Department of Medicine, University of Montreal Healthcare Centre (CHUM), 1051 Rue Sanguinet, Montréal, QC, Canada
| | - Yaokai Chen
- Chongqing Public Health Medical Center, Baoyu Road 109, Shapingba District, Chongqing, China.
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, 1001 Blvd Décarie, Montréal, QC, Canada.
- Chronic Viral Illness Service, McGill University Health Centre, 1001 Blvd Décarie, Montréal, QC, Canada.
- Division of Hematology, McGill University Health Centre, 1001 Blvd Décarie, Montréal, QC, Canada.
| |
Collapse
|
1022
|
Yang M, Shi FH, Liu W, Zhang MC, Feng RL, Qian C, Liu W, Ma J. Dapagliflozin Modulates the Fecal Microbiota in a Type 2 Diabetic Rat Model. Front Endocrinol (Lausanne) 2020; 11:635. [PMID: 33312157 PMCID: PMC7707060 DOI: 10.3389/fendo.2020.00635] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Background: The gut microbiota is recognized as a major modulator of metabolic disorders such as type 2 diabetes. Dapagliflozin, sodium glucose cotransporter 2 inhibitors (SGLT2i), enhances renal glucose excretion, and lowers blood glucose levels. The study aimed to determine the effects of dapagliflozin on fecal microbiota in a type 2 diabetic rat model. Methods: Four-week-old male Sprague Dawley rats (n = 24) were fed a high-fat diet (HFD) for 8 weeks and then given a single dose of STZ injection (30 mg/kg, i.p). They were randomly divided into three groups (n = 8). Each group received intragastric infusion of normal saline (2 ml, 0.9%) or metformin (215.15 mg/kg/day) or dapagliflozin (1 mg/kg/day) for 4 weeks. Blood glucose levels and plasma insulin levels were detected during intragastric glucose tolerance. Fecal samples were collected to access microbiome by 16S ribosomal RNA gene sequencing. Results: Dapagliflozin significantly decreased fasting and postprandial blood glucose levels as metformin in type 2 diabetic rats (P < 0.001). Enterotype was composed of Ruminococcaceae after treatment of dapagliflozin, whereas Ruminococcaceae and Muribaculaceae were the main enterotypes following metformin treatment. Dapagliflozin did not increase the abundance of beneficial bacteria including Lactobacillaceae and Bifidobacteriaceae. However, these were increased in the metformin group. It is surprising to find that Proteobacteria (especially Desulfovibrionaceae) were enriched in the dapagliflozin group. Conclusion: Dapagliflozin and metformin exerted complementary effects on the main beneficial bacteria. A combination of these two drugs might be beneficial to improve the structure of fecal microbiota in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Mei Yang
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang-Hong Shi
- Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Liu
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min-Chun Zhang
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ri-Lu Feng
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Qian
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Ma
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jing Ma
| |
Collapse
|
1023
|
Cao TTB, Wu KC, Hsu JL, Chang CS, Chou C, Lin CY, Liao YM, Lin PC, Yang LY, Lin HW. Effects of Non-insulin Anti-hyperglycemic Agents on Gut Microbiota: A Systematic Review on Human and Animal Studies. Front Endocrinol (Lausanne) 2020; 11:573891. [PMID: 33071980 PMCID: PMC7538596 DOI: 10.3389/fendo.2020.573891] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/20/2020] [Indexed: 01/30/2023] Open
Abstract
Background: As growing evidence links gut microbiota with the therapeutic efficacy and side effects of anti-hyperglycemic drugs, this article aims to provide a systematic review of the reciprocal interactions between anti-hyperglycemic drugs and gut microbiota taxa, which underlie the effect of the gut microbiome on diabetic control via bug-host interactions. Method: We followed the PRISMA requirements to perform a systematic review on human vs. animal gut microbiota data in PubMed, SCOPUS, and EMBASE databases, and used Cochrane, ROBIN-I, and SYRCLE tools to assess potential bias risks. The outcomes of assessment were trends on gut microbiota taxa, diversity, and associations with metabolic control (e.g., glucose, lipid) following anti-hyperglycemic treatment. Results: Of 2,804 citations, 64 studies (17/humans; 47/mice) were included. In human studies, seven were randomized trials using metformin or acarbose in obese, pre-diabetes, and type 2 diabetes (T2D) patients. Treatment of pre-diabetes and newly diagnosed T2D patients with metformin or acarbose was associated with decreases in genus of Bacteroides, accompanied by increases in both Bifidobacterium and Lactobacillus. Additionally, T2D patients receiving metformin showed increases in various taxa of the order Enterobacteriales and the species Akkermansia muciniphila. Of seven studies with significant differences in beta-diversity, the incremental specific taxa were associated with the improvement of glucose and lipid profiles. In mice, the effects of metformin on A. muciniphila were similar, but an inverse association with Bacteroides was reported. Animal studies on other anti-hyperglycemic drugs, however, showed substantial variations in results. Conclusions: The changes in specific taxa and β-diversity of gut microbiota were associated with metformin and acarbose in humans while pertinent information for other anti-hyperglycemic drugs could only be obtained in rodent studies. Further human studies on anti-hyperglycemic drugs other than metformin and acarbose are needed to explore gut microbiota's role in their therapeutic efficacies and side effects.
Collapse
Affiliation(s)
- Thao T. B. Cao
- School of Pharmacy and Graduate Institute, China Medical University, Taichung City, Taiwan
- Department of Clinical Pharmacy, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Kun-Chang Wu
- School of Pharmacy and Graduate Institute, China Medical University, Taichung City, Taiwan
| | - Jye-Lin Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan
| | - Chih-Shiang Chang
- School of Pharmacy and Graduate Institute, China Medical University, Taichung City, Taiwan
| | - Chiahung Chou
- Department of Health Outcomes Research and Policy, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Department of Medical Research, China Medical University Hospital, Taichung City, Taiwan
| | - Chen-Yuan Lin
- School of Pharmacy and Graduate Institute, China Medical University, Taichung City, Taiwan
- Division of Hematology and Oncology, China Medical University Hospital, Taichung City, Taiwan
| | - Yu-Min Liao
- Division of Hematology and Oncology, China Medical University Hospital, Taichung City, Taiwan
| | - Pei-Chun Lin
- School of Pharmacy and Graduate Institute, China Medical University, Taichung City, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung City, Taiwan
- Biomedical Technology Research and Development Center, China Medical University Hospital, Taichung City, Taiwan
| | - Hsiang-Wen Lin
- School of Pharmacy and Graduate Institute, China Medical University, Taichung City, Taiwan
- Department of Pharmacy, China Medical University Hospital, Taichung City, Taiwan
- Department of Pharmacy System, Outcomes and Policy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Hsiang-Wen Lin
| |
Collapse
|
1024
|
Kang X, Zhan L, Lu X, Song J, Zhong Y, Wang Y, Yang Y, Fan Z, Jiang X, Sun R. Characteristics of Gastric Microbiota in GK Rats with Spontaneous Diabetes: A Comparative Study. Diabetes Metab Syndr Obes 2020; 13:1435-1447. [PMID: 32431527 PMCID: PMC7201022 DOI: 10.2147/dmso.s242698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Goto-Kakizaki (GK) rat, developed from repeated inbreeding of glucose-intolerant Wistar rats, has been widely used to explore the development of spontaneous type-2 diabetes mellitus (T2DM). However, the gastric microbiota of GK and Wistar rats are still unclear. This study aimed to understand the gastric microbiota characteristics of GK rats by comparing it with non-diabetic Wistar rats. MATERIALS AND METHODS Male Wistar rats and GK rats were housed in specific pathogen-free (SPF) environment for 12 weeks with free access to sterilized food and water. Body weight and random blood glucose (BG) levels were determined. At the end of the experiment, the gastric contents of the rats were collected for the identification of gastric microbiota using 16S rRNA gene sequencing. RESULTS The richness of gastric microbiota in GK rats was similar to that of Wistar rats (P > 0.05). The results of Shannon, Simpson, beta diversity indices, and ANOSIM analysis showed that alpha and beta diversity of gastric microbiota in GK rats were significantly lower than that of Wistar rats (P < 0.01). Firmicutes (96.0%), Proteobacteria (1.9%) and Cyanobacteria (0.8%) were the dominant gastric microbiota in GK rats accounting for 72.9%, 14.7% and 10.9%, respectively. Linear discriminant analysis effect size (LEfSe) revealed that phylum Firmicutes and four genera (Anaerovibrio, Collinsella, Prevotellaceae_UCG_001, and Lactobacillus) were significantly abundant in the stomachs of GK rats. In contrast, seven genera (unidentified_Chloroplast, Porphyromonas, Neisseria, Rubrobacter, Veillonella, Lachnospiraceae_UCG_005, and unidentified_Erysipelotrichaceae) were significantly abundant in the stomachs of Wistar rats. Blood glucose was positively correlated with Anaerobibrio and Lactobacillus, and negatively correlated with four genera (Porphyromonas, Rubrobacter, Lachnospiraceae_UCG_005, and unidentified_Erysipelotrichaceae). In addition, chemoheterotrophy and fermentation were the most important functions of gastric microbiota. CONCLUSION The gastric microbiota of GK rats with spontaneous T2DM showed the typical characteristics of low diversity and significant enrichment of Firmicutes phylum and four genera (Anaerovibrio, Collinsella, Prevotellaceae_UCG_001, and Lactobacillus) compared with gastric microbiota of Wistar rats.
Collapse
Affiliation(s)
- Xin Kang
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Department of Emergency Medicine, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning, People’s Republic of China
| | - Libin Zhan
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Correspondence: Libin Zhan Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of ChinaTel +86 25-85811569 Email
| | - Xiaoguang Lu
- Department of Emergency Medicine, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning, People’s Republic of China
- Xiaoguang Lu Department of Emergency Medicine, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning, People’s Republic of China Email
| | - Jianbo Song
- Department of Emergency Medicine, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning, People’s Republic of China
| | - Yilong Zhong
- Department of Emergency Medicine, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning, People’s Republic of China
| | - Yi Wang
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Yilun Yang
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, Republic of China
| | - Zhiwei Fan
- Department of Emergency Medicine, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning, People’s Republic of China
| | - Xiaozheng Jiang
- Department of Emergency Medicine, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning, People’s Republic of China
| | - Ruru Sun
- Department of Emergency Medicine, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning, People’s Republic of China
| |
Collapse
|