1001
|
|
1002
|
Ghizzoni M, Haisma HJ, Maarsingh H, Dekker FJ. Histone acetyltransferases are crucial regulators in NF-κB mediated inflammation. Drug Discov Today 2011; 16:504-11. [PMID: 21477662 PMCID: PMC5218544 DOI: 10.1016/j.drudis.2011.03.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/15/2011] [Accepted: 03/29/2011] [Indexed: 10/18/2022]
Abstract
Post-translational modifications of proteins, such as acetylation, are important regulatory events in eukaryotic cells. Reversible acetylations of histones and non-histone proteins regulate gene expression and protein activity. Acetylation levels of proteins are regulated by a dynamic equilibrium between acetylation by (histone) acetyltransferases and deacetylation by (histone) deacetylases. Alterations in this equilibrium can result in pathological states. Inflammation is a physiological response that, under certain conditions, turns into a disease. This review focuses on the crucial regulatory roles of protein acetylation in NF-κB-mediated inflammation and the potential applications of small-molecule inhibitors of acetylation for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Massimo Ghizzoni
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan, The Netherlands
| | | | | | | |
Collapse
|
1003
|
Ruthenburg AJ, Li H, Milne TA, Dewell S, McGinty RK, Yuen M, Ueberheide B, Dou Y, Muir TW, Patel DJ, Allis CD. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 2011; 145:692-706. [PMID: 21596426 PMCID: PMC3135172 DOI: 10.1016/j.cell.2011.03.053] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 09/07/2010] [Accepted: 03/30/2011] [Indexed: 12/13/2022]
Abstract
Little is known about how combinations of histone marks are interpreted at the level of nucleosomes. The second PHD finger of human BPTF is known to specifically recognize histone H3 when methylated on lysine 4 (H3K4me2/3). Here, we examine how additional heterotypic modifications influence BPTF binding. Using peptide surrogates, three acetyllysine ligands are indentified for a PHD-adjacent bromodomain in BPTF via systematic screening and biophysical characterization. Although the bromodomain displays limited discrimination among the three possible acetyllysines at the peptide level, marked selectivity is observed for only one of these sites, H4K16ac, in combination with H3K4me3 at the mononucleosome level. In support, these two histone marks constitute a unique trans-histone modification pattern that unambiguously resides within a single nucleosomal unit in human cells, and this module colocalizes with these marks in the genome. Together, our data call attention to nucleosomal patterning of covalent marks in dictating critical chromatin associations.
Collapse
Affiliation(s)
- Alexander J Ruthenburg
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1004
|
Lee K, Kerner J, Hoppel CL. Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex. J Biol Chem 2011; 286:25655-62. [PMID: 21622568 DOI: 10.1074/jbc.m111.228692] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CPT1a (carnitine palmitoyltransferase 1a) in the liver mitochondrial outer membrane (MOM) catalyzes the primary regulated step in overall mitochondrial fatty acid oxidation. It has been suggested that the fundamental unit of CPT1a exists as a trimer, which, under native conditions, could form a dimer of the trimers, creating a hexamer channel for acylcarnitine translocation. To examine the state of CPT1a in the MOM, we employed a combined approach of sizing by mass and isolation using an immunological method. Blue native electrophoresis followed by detection with immunoblotting and mass spectrometry identified large molecular mass complexes that contained not only CPT1a but also long chain acyl-CoA synthetase (ACSL) and the voltage-dependent anion channel (VDAC). Immunoprecipitation with antisera against the proteins revealed a strong interaction between the three proteins. Immobilized CPT1a-specific antibodies immunocaptured not only CPT1a but also ACSL and VDAC, further strengthening findings with blue native electrophoresis and immunoprecipitation. This study shows strong protein-protein interaction between CPT1a, ACSL, and VDAC. We propose that this complex transfers activated fatty acids through the MOM.
Collapse
Affiliation(s)
- Kwangwon Lee
- Center for Mitochondrial Diseases, Cleveland, Ohio 44106-4981, USA
| | | | | |
Collapse
|
1005
|
Cai L, Sutter BM, Li B, Tu BP. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 2011; 42:426-37. [PMID: 21596309 PMCID: PMC3109073 DOI: 10.1016/j.molcel.2011.05.004] [Citation(s) in RCA: 537] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/06/2011] [Accepted: 05/05/2011] [Indexed: 12/16/2022]
Abstract
The decision by a cell to enter a round of growth and division must be intimately coordinated with nutrient availability and its metabolic state. These metabolic and nutritional requirements, and the mechanisms by which they induce cell growth and proliferation, remain poorly understood. Herein, we report that acetyl-CoA is the downstream metabolite of carbon sources that represents a critical metabolic signal for growth and proliferation. Upon entry into growth, intracellular acetyl-CoA levels increase substantially and consequently induce the Gcn5p/SAGA-catalyzed acetylation of histones at genes important for growth, thereby enabling their rapid transcription and commitment to growth. Thus, acetyl-CoA functions as a carbon-source rheostat that signals the initiation of the cellular growth program by promoting the acetylation of histones specifically at growth genes.
Collapse
Affiliation(s)
- Ling Cai
- Department of Biochemistry UT Southwestern Medical Center 5323 Harry Hines Blvd. Dallas, TX 75390-9038
| | - Benjamin M. Sutter
- Department of Biochemistry UT Southwestern Medical Center 5323 Harry Hines Blvd. Dallas, TX 75390-9038
| | - Bing Li
- Department of Molecular Biology UT Southwestern Medical Center 5323 Harry Hines Blvd. Dallas, TX 75390-9148
| | - Benjamin P. Tu
- Department of Biochemistry UT Southwestern Medical Center 5323 Harry Hines Blvd. Dallas, TX 75390-9038
| |
Collapse
|
1006
|
Fritz KS, Galligan JJ, Smathers RL, Roede JR, Shearn CT, Reigan P, Petersen DR. 4-Hydroxynonenal inhibits SIRT3 via thiol-specific modification. Chem Res Toxicol 2011; 24:651-62. [PMID: 21449565 PMCID: PMC3113719 DOI: 10.1021/tx100355a] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
4-Hydroxynonenal (4-HNE) is an endogenous product of lipid peroxidation known to play a role in cellular signaling through protein modification and is a major precursor for protein carbonyl adducts found in alcoholic liver disease (ALD). In the present study, a greater than 2-fold increase in protein carbonylation of sirtuin 3 (SIRT3), a mitochondrial class III histone deacetylase, is reported in liver mitochondrial extracts of ethanol-consuming mice. The consequence of this in vivo carbonylation on SIRT3 deacetylase activity is unknown. Interestingly, mitochondrial protein hyperacetylation was observed in a time-dependent increase in a model of chronic ethanol consumption; however, the underlying mechanisms for this remain unknown. Tandem mass spectrometry was used to identify and characterize the in vitro covalent modification of rSIRT3 by 4-HNE at Cys(280), a critical zinc-binding residue, and the resulting inhibition of rSIRT3 activity via pathophysiologically relevant concentrations of 4-HNE. Computational-based molecular modeling simulations indicate that 4-HNE modification alters the conformation of the zinc-binding domain inducing minor changes within the active site, resulting in the allosteric inhibition of SIRT3 activity. These conformational data are supported by the calculated binding energies derived from molecular docking studies suggesting the substrate peptide of acetyl-CoA synthetase 2 (AceCS2-K(ac)) and display a greater affinity for native SIRT3 as compared with the 4-HNE adducted protein. The results of this study characterize altered mitochondrial protein acetylation in a mouse model of chronic ethanol ingestion and thiol-specific allosteric inhibition of rSIRT3 resulting from 4-HNE adduction.
Collapse
Affiliation(s)
- Kristofer S. Fritz
- Department of Pharmaceutical Sciences, Graduate Program in Toxicology, School of Pharmacy, University of Colorado Denver, Aurora, CO
| | - James J. Galligan
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Rebecca L. Smathers
- Department of Pharmaceutical Sciences, Graduate Program in Toxicology, School of Pharmacy, University of Colorado Denver, Aurora, CO
| | - James R. Roede
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA
| | - Colin T. Shearn
- Department of Pharmaceutical Sciences, Graduate Program in Toxicology, School of Pharmacy, University of Colorado Denver, Aurora, CO
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Graduate Program in Toxicology, School of Pharmacy, University of Colorado Denver, Aurora, CO
| | - Dennis R. Petersen
- Department of Pharmaceutical Sciences, Graduate Program in Toxicology, School of Pharmacy, University of Colorado Denver, Aurora, CO
| |
Collapse
|
1007
|
Stintzing S, Kemmerling R, Kiesslich T, Alinger B, Ocker M, Neureiter D. Myelodysplastic syndrome and histone deacetylase inhibitors: "to be or not to be acetylated"? J Biomed Biotechnol 2011; 2011:214143. [PMID: 21629744 PMCID: PMC3100562 DOI: 10.1155/2011/214143] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 03/03/2011] [Indexed: 12/31/2022] Open
Abstract
Myelodysplastic syndrome (MDS) represents a heterogeneous group of diseases with clonal proliferation, bone marrow failure and increasing risk of transformation into an acute myeloid leukaemia. Structured guidelines are developed for selective therapy based on prognostic subgroups, age, and performance status. Although many driving forces of disease phenotype and biology are described, the complete and possibly interacting pathogenetic pathways still remain unclear. Epigenetic investigations of cancer and haematologic diseases like MDS give new insights into the pathogenesis of this complex disease. Modifications of DNA or histones via methylation or acetylation lead to gene silencing and altered physiology relevant for MDS. First clinical trials give evidence that patients with MDS could benefit from epigenetic treatment with, for example, DNA methyl transferase inhibitors (DNMTi) or histone deacetylase inhibitors (HDACi). Nevertheless, many issues of HDACi remain incompletely understood and pose clinical and translational challenges. In this paper, major aspects of MDS, MDS-associated epigenetics and the potential use of HDACi are discussed.
Collapse
Affiliation(s)
- Sebastian Stintzing
- Medical Department III, Klinikum Grosshadern, Ludwig Maximilians University of Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Ralf Kemmerling
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Müllner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Müllner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Beate Alinger
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Müllner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Matthias Ocker
- Philipps University of Marburg, Baldingerstrasse, 35032 Marburg, Germany
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Müllner Hauptstrasse 48, 5020 Salzburg, Austria
| |
Collapse
|
1008
|
Shaw PG, Chaerkady R, Zhang Z, Davidson NE, Pandey A. Monoclonal antibody cocktail as an enrichment tool for acetylome analysis. Anal Chem 2011; 83:3623-6. [PMID: 21466224 PMCID: PMC3205458 DOI: 10.1021/ac1026176] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The availability and robustness of methods to analyze phosphorylated proteins has greatly expanded our knowledge of phosphorylation based cell signaling. A key ingredient to the success of these studies is the ability to enrich phosphopeptides using antibodies or other chemical approaches. Most other post-translational modifications, such as lysine acetylation, are still poorly characterized because of the lack of availability of such enrichment methods. Recently, some groups have reported identification of acetylation sites in a global fashion by enriching acetylated peptides with a polyclonal antibody from a single source that was raised against pan-acetylated lysine. Instead of the use of this polyclonal antibody, we used a cocktail of monoclonal antibodies where each was directed against acetylated lysine in different contexts. Using high resolution Fourier transform mass spectrometry, we observed that the majority of acetylated lysine residues identified using the monoclonal antibody cocktail were distinct from those enriched by the polyclonal antibody used by the other groups. Our study demonstrates that immunoaffinity enrichment of acetylated peptides is somewhat limited by substrate specificity and that an optimal yield of enrichment can be achieved by employing a broader array of affinity reagents.
Collapse
Affiliation(s)
- Patrick G. Shaw
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore Maryland 21205
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232
| | - Raghothama Chaerkady
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
- McKusick-Nathans Institute of Genetic Medicine and Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Zhen Zhang
- Department of Pathology and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Nancy E. Davidson
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore Maryland 21205
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine and Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Pathology and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
1009
|
Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep 2011; 12:534-41. [PMID: 21566644 PMCID: PMC3128277 DOI: 10.1038/embor.2011.65] [Citation(s) in RCA: 444] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 03/07/2011] [Accepted: 03/15/2011] [Indexed: 12/21/2022] Open
Abstract
Mitochondria manganese superoxide dismutase (SOD2) is a major antioxidant enzyme associated with several diseases. This study shows that SOD2 is inhibited by acetylation and activated by SIRT3-mediated deacetylation in response to reactive oxygen species (ROS). Mitochondria manganese superoxide dismutase (SOD2) is an important antioxidant enzyme, deficiency of which is associated with various human diseases. The known primary regulation of SOD2 is through transcriptional activation. Here, we report that SOD2 is acetylated at Lys 68 and that this acetylation decreases SOD2 activity. Mitochondrial deacetylase SIRT3 binds to, deacetylates and activates SOD2. Increase of reactive oxygen species (ROS) levels stimulates SIRT3 transcription, leading to SOD2 deacetylation and activation. SOD2-mediated ROS reduction is synergistically increased by SIRT3 co-expression, but is cancelled by SIRT3 depletion. These results reveal a new post-translational regulation of SOD2 by means of acetylation and SIRT3-dependent deacetylation in response to oxidative stress.
Collapse
|
1010
|
Hu S, Xie Z, Qian J, Blackshaw S, Zhu H. Functional protein microarray technology. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2011; 3:255-68. [PMID: 20872749 PMCID: PMC3044218 DOI: 10.1002/wsbm.118] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Functional protein microarrays are emerging as a promising new tool for large-scale and high-throughput studies. In this article, we review their applications in basic proteomics research, where various types of assays have been developed to probe binding activities to other biomolecules, such as proteins, DNA, RNA, small molecules, and glycans. We also report recent progress of using functional protein microarrays in profiling protein post-translational modifications, including phosphorylation, ubiquitylation, acetylation, and nitrosylation. Finally, we discuss potential of functional protein microarrays in biomarker identification and clinical diagnostics. We strongly believe that functional protein microarrays will soon become an indispensible and invaluable tool in proteomics research and systems biology.
Collapse
Affiliation(s)
- Shaohui Hu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Center for High‐Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhi Xie
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth Blackshaw
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Center for High‐Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
1011
|
Wu X, Oh MH, Schwarz EM, Larue CT, Sivaguru M, Imai BS, Yau PM, Ort DR, Huber SC. Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1769-78. [PMID: 21311030 PMCID: PMC3091122 DOI: 10.1104/pp.110.165852] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 02/04/2011] [Indexed: 05/20/2023]
Abstract
Lysine acetylation (LysAc), a form of reversible protein posttranslational modification previously known only for histone regulation in plants, is shown to be widespread in Arabidopsis (Arabidopsis thaliana). Sixty-four Lys modification sites were identified on 57 proteins, which operate in a wide variety of pathways/processes and are located in various cellular compartments. A number of photosynthesis-related proteins are among this group of LysAc proteins, including photosystem II (PSII) subunits, light-harvesting chlorophyll a/b-binding proteins (LHCb), Rubisco large and small subunits, and chloroplastic ATP synthase (β-subunit). Using two-dimensional native green/sodium dodecyl sulfate gels, the loosely PSII-bound LHCb was separated from the LHCb that is tightly bound to PSII and shown to have substantially higher level of LysAc, implying that LysAc may play a role in distributing the LHCb complexes. Several potential LysAc sites were identified on eukaryotic elongation factor-1A (eEF-1A) by liquid chromatography/mass spectrometry and using sequence- and modification-specific antibodies the acetylation of Lys-227 and Lys-306 was established. Lys-306 is contained within a predicted calmodulin-binding sequence and acetylation of Lys-306 strongly inhibited the interactions of eEF-1A synthetic peptides with calmodulin recombinant proteins in vitro. These results suggest that LysAc of eEF-1A may directly affect regulatory properties and localization of the protein within the cell. Overall, these findings reveal the possibility that reversible LysAc may be an important and previously unknown regulatory mechanism of a large number of nonhistone proteins affecting a wide range of pathways and processes in Arabidopsis and likely in all plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Steven C. Huber
- Program in Physiological and Molecular Plant Biology (X.W., E.M.S.), United States Department of Agriculture-Agricultural Research Service and Department of Plant Biology (M.-H.O., C.T.L., D.R.O., S.C.H.), Microscopy Facility, Institute for Genomic Biology (M.S.), and Protein Sciences Facility, Carver Biotechnology Center (B.S.I., P.M.Y.), University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
1012
|
Sapountzi V, Côté J. MYST-family histone acetyltransferases: beyond chromatin. Cell Mol Life Sci 2011; 68:1147-56. [PMID: 21132344 PMCID: PMC11114825 DOI: 10.1007/s00018-010-0599-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 11/12/2010] [Indexed: 12/01/2022]
Abstract
Covalently modifying a protein has proven to be a powerful mechanism of functional regulation. N-epsilon acetylation of lysine residues was initially discovered on histones and has been studied extensively in the context of chromatin and DNA metabolism, such as transcription, replication and repair. However, recent research shows that acetylation is more widespread than initially thought and that it regulates various nuclear as well as cytoplasmic and mitochondrial processes. In this review, we present the multitude of non-histone proteins targeted by lysine acetyltransferases of the large and conserved MYST family, and known functional consequences of this acetylation. Substrates of MYST enzymes include factors involved in transcription, heterochromatin formation and cell cycle, DNA repair proteins, gluconeogenesis enzymes and finally subunits of MYST protein complexes themselves. Discovering novel substrates of MYST proteins is pivotal for the understanding of the diverse functions of these essential acetyltransferases in nuclear processes, signaling, stress response and metabolism.
Collapse
Affiliation(s)
- Vasileia Sapountzi
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, QC G1R 2J6 Canada
| | - Jacques Côté
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, QC G1R 2J6 Canada
| |
Collapse
|
1013
|
Morris KC, Lin HW, Thompson JW, Perez-Pinzon MA. Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning. J Cereb Blood Flow Metab 2011; 31:1003-19. [PMID: 21224864 PMCID: PMC3070983 DOI: 10.1038/jcbfm.2010.229] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/11/2010] [Accepted: 12/01/2010] [Indexed: 01/11/2023]
Abstract
Caloric restriction (CR), resveratrol, and ischemic preconditioning (IPC) have been shown to promote protection against ischemic injury in the heart and brain, as well as in other tissues. The activity of sirtuins, which are enzymes that modulate diverse biologic processes, seems to be vital in the ability of these therapeutic modalities to prevent against cellular dysfunction and death. The protective mechanisms of the yeast Sir2 and the mammalian homolog sirtuin 1 have been extensively studied, but the involvement of other sirtuins in ischemic protection is not yet clear. We examine the roles of mammalian sirtuins in modulating protective pathways against oxidative stress, energy depletion, excitotoxicity, inflammation, DNA damage, and apoptosis. Although many of these sirtuins have not been directly implicated in ischemic protection, they may have unique roles in enhancing function and preventing against stress-mediated cellular damage and death. This review will include in-depth analyses of the roles of CR, resveratrol, and IPC in activating sirtuins and in mediating protection against ischemic damage in the heart and brain.
Collapse
Affiliation(s)
- Kahlilia C Morris
- Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Hung Wen Lin
- Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - John W Thompson
- Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
1014
|
Finkemeier I, Laxa M, Miguet L, Howden AJM, Sweetlove LJ. Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1779-90. [PMID: 21311031 PMCID: PMC3091095 DOI: 10.1104/pp.110.171595] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/04/2011] [Indexed: 05/20/2023]
Abstract
Acetylation of the ε-amino group of lysine (Lys) is a reversible posttranslational modification recently discovered to be widespread, occurring on proteins outside the nucleus, in most subcellular locations in mammalian cells. Almost nothing is known about this modification in plants beyond the well-studied acetylation of histone proteins in the nucleus. Here, we report that Lys acetylation in plants also occurs on organellar and cytosolic proteins. We identified 91 Lys-acetylated sites on 74 proteins of diverse functional classes. Furthermore, our study suggests that Lys acetylation may be an important posttranslational modification in the chloroplast, since four Calvin cycle enzymes were acetylated. The plastid-encoded large subunit of Rubisco stands out because of the large number of acetylated sites occurring at important Lys residues that are involved in Rubisco tertiary structure formation and catalytic function. Using the human recombinant deacetylase sirtuin 3, it was demonstrated that Lys deacetylation significantly affects Rubisco activity as well as the activities of other central metabolic enzymes, such as the Calvin cycle enzyme phosphoglycerate kinase, the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase, and the tricarboxylic acid cycle enzyme malate dehydrogenase. Our results demonstrate that Lys acetylation also occurs on proteins outside the nucleus in Arabidopsis (Arabidopsis thaliana) and that Lys acetylation could be important in the regulation of key metabolic enzymes.
Collapse
|
1015
|
Senf SM, Sandesara PB, Reed SA, Judge AR. p300 Acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle. Am J Physiol Cell Physiol 2011; 300:C1490-501. [PMID: 21389279 DOI: 10.1152/ajpcell.00255.2010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Forkhead Box O (FOXO) transcription factors regulate diverse cellular processes, and in skeletal muscle are both necessary and sufficient for muscle atrophy. Although the regulation of FOXO by Akt is well evidenced in skeletal muscle, the current study demonstrates that FOXO is also regulated in muscle via the histone acetyltransferase (HAT) activities of p300/CREB-binding protein (CBP). Transfection of rat soleus muscle with a dominant-negative p300, which lacks HAT activity and inhibits endogenous p300 HAT activity, increased FOXO reporter activity and induced transcription from the promoter of a bona fide FOXO target gene, atrogin-1. Conversely, increased HAT activity via transfection of either wild-type (WT) p300 or WT CBP repressed FOXO activation in vivo in response to muscle disuse, and in C2C12 cells in response to dexamethasone and acute starvation. Importantly, manipulation of HAT activity differentially regulated the expression of various FOXO target genes. Cotransfection of FOXO1, FOXO3a, or FOXO4 with the p300 constructs further identified p300 HAT activity to also differentially regulate the activity of the FOXO homologues. Markedly, decreased HAT activity strongly increased FOXO3a transcriptional activity, while increased HAT activity repressed FOXO3a activity and prevented its nuclear localization in response to nutrient deprivation. In contrast, p300 increased FOXO1 nuclear localization. In summary, this study provides the first evidence to support the acetyltransferase activities of p300/CBP in regulating FOXO signaling in skeletal muscle and suggests that acetylation may be an important mechanism to differentially regulate the FOXO homologues and dictate which FOXO target genes are activated in response to varying atrophic stimuli.
Collapse
Affiliation(s)
- Sarah M Senf
- Dept. of Physical Therapy, University of Florida, 1275 Center Drive, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
1016
|
Wagner GR, Payne RM. Mitochondrial acetylation and diseases of aging. J Aging Res 2011; 2011:234875. [PMID: 21437190 PMCID: PMC3062109 DOI: 10.4061/2011/234875] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/08/2011] [Indexed: 01/25/2023] Open
Abstract
In recent years, protein lysine acetylation has emerged as a prominent and conserved regulatory posttranslational modification that is abundant on numerous enzymes involved in the processes of intermediary metabolism. Well-characterized mitochondrial processes of carbon utilization are enriched in acetyl-lysine modifications. Although seminal discoveries have been made in the basic biology of mitochondrial acetylation, an understanding of how acetylation states influence enzyme function and metabolic reprogramming during pathological states remains largely unknown. This paper will examine our current understanding of eukaryotic acetate metabolism and present recent findings in the field of mitochondrial acetylation biology. The implications of mitochondrial acetylation for the aging process will be discussed, as well as its potential implications for the unique and localized metabolic states that occur during the aging-associated conditions of heart failure and cancer growth.
Collapse
Affiliation(s)
- Gregory R Wagner
- Department of Medical & Molecular Genetics, Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
1017
|
Patel J, Pathak RR, Mujtaba S. The biology of lysine acetylation integrates transcriptional programming and metabolism. Nutr Metab (Lond) 2011; 8:12. [PMID: 21371315 PMCID: PMC3060110 DOI: 10.1186/1743-7075-8-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/03/2011] [Indexed: 11/18/2022] Open
Abstract
The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT), there has been a surge in the identification of new, non-histone targets of KATs. Added to the known substrates of KATs are metabolic enzymes, cytoskeletal proteins, molecular chaperones, ribosomal proteins and nuclear import factors. Emerging studies demonstrate that no fewer than 2000 proteins in any particular cell type may undergo lysine acetylation. As described in this review, our analyses of cellular acetylated proteins using DAVID 6.7 bioinformatics resources have facilitated organization of acetylated proteins into functional clusters integral to cell signaling, the stress response, proteolysis, apoptosis, metabolism, and neuronal development. In addition, these clusters also depict association of acetylated proteins with human diseases. These findings not only support lysine acetylation as a widespread cellular phenomenon, but also impel questions to clarify the underlying molecular and cellular mechanisms governing target selectivity by KATs. Present challenges are to understand the molecular basis for the overlapping roles of KAT-containing co-activators, to differentiate between global versus dynamic acetylation marks, and to elucidate the physiological roles of acetylated proteins in biochemical pathways. In addition to discussing the cellular 'acetylome', a focus of this work is to present the widespread and dynamic nature of lysine acetylation and highlight the nexus that exists between epigenetic-directed transcriptional regulation and metabolism.
Collapse
Affiliation(s)
- Jigneshkumar Patel
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine New York, NY 10029 USA.
| | | | | |
Collapse
|
1018
|
Capello M, Ferri-Borgogno S, Cappello P, Novelli F. α-Enolase: a promising therapeutic and diagnostic tumor target. FEBS J 2011; 278:1064-74. [PMID: 21261815 DOI: 10.1111/j.1742-4658.2011.08025.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
α-enolase (ENOA) is a metabolic enzyme involved in the synthesis of pyruvate. It also acts as a plasminogen receptor and thus mediates activation of plasmin and extracellular matrix degradation. In tumor cells, ΕΝΟΑ is upregulated and supports anaerobic proliferation (Warburg effect), it is expressed at the cell surface, where it promotes cancer invasion, and is subjected to a specific array of post-translational modifications, namely acetylation, methylation and phosphorylation. Both ENOA overexpression and its post-translational modifications could be of diagnostic and prognostic value in cancer. This review will discuss recent information on the biochemical, proteomics and immunological characterization of ENOA, particularly its ability to trigger a specific humoral and cellular immune response. In our opinion, this information can pave the way for effective new therapeutic and diagnostic strategies to counteract the growth of the most aggressive human disease.
Collapse
Affiliation(s)
- Michela Capello
- Department of Medicine and Experimental Oncology, Center for Experimental Research and Medical Studies (CeRMS), San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | | | | | | |
Collapse
|
1019
|
Smith BC, Settles B, Hallows WC, Craven MW, Denu JM. SIRT3 substrate specificity determined by peptide arrays and machine learning. ACS Chem Biol 2011; 6:146-57. [PMID: 20945913 PMCID: PMC3042044 DOI: 10.1021/cb100218d] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Accumulating evidence suggests that reversible protein acetylation may be a major regulatory mechanism that rivals phosphorylation. With the recent cataloging of thousands of acetylation sites on hundreds of proteins comes the challenge of identifying the acetyltransferases and deacetylases that regulate acetylation levels. Sirtuins are a conserved family of NAD(+)-dependent protein deacetylases that are implicated in genome maintenance, metabolism, cell survival, and lifespan. SIRT3 is the dominant protein deacetylase in mitochondria, and emerging evidence suggests that SIRT3 may control major pathways by deacetylation of central metabolic enzymes. Here, to identify potential SIRT3 substrates, we have developed an unbiased screening strategy that involves a novel acetyl-lysine analogue (thiotrifluoroacetyl-lysine), SPOT-peptide libraries, machine learning, and kinetic validation. SPOT peptide libraries based on known and potential mitochondrial acetyl-lysine sites were screened for SIRT3 binding and then analyzed using machine learning to establish binding trends. These trends were then applied to the mitochondrial proteome as a whole to predict binding affinity of all lysine sites within human mitochondria. Machine learning prediction of SIRT3 binding correlated with steady-state kinetic k(cat)/K(m) values for 24 acetyl-lysine peptides that possessed a broad range of predicted binding. Thus, SPOT peptide-binding screens and machine learning prediction provides an accurate and efficient method to evaluate sirtuin substrate specificity from a relatively small learning set. These analyses suggest potential SIRT3 substrates involved in several metabolic pathways such as the urea cycle, ATP synthesis, and fatty acid oxidation.
Collapse
Affiliation(s)
- Brian C. Smith
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Burr Settles
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - William C. Hallows
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Mark W. Craven
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - John M. Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
1020
|
Mitochondrial localization of fission yeast manganese superoxide dismutase is required for its lysine acetylation and for cellular stress resistance and respiratory growth. Biochem Biophys Res Commun 2011; 406:42-6. [PMID: 21295010 DOI: 10.1016/j.bbrc.2011.01.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 11/23/2022]
Abstract
Manganese-dependent superoxide dismutase (MnSOD) is localized in the mitochondria and is important for oxidative stress resistance. Although transcriptional regulation of MnSOD has been relatively well studied, much less is known about the protein's posttranslational regulation. In budding yeast, MnSOD is activated after mitochondrial import by manganese ion incorporation. Here we characterize posttranslational modification of MnSOD in the fission yeast Schizosaccharomyces pombe. Fission yeast MnSOD is acetylated at the 25th lysine residue. This acetylation was diminished by deletion of N-terminal mitochondrial targeting sequence, suggesting that MnSOD is acetylated after import into mitochondria. Mitochondrial localization of MnSOD is not essential for the enzyme activity, but is crucial for oxidative stress resistance and growth under respiratory conditions of fission yeast. These results suggest that, unlike the situation in budding yeast, S. pombe MnSOD is already active even before mitochondrial localization; nonetheless, mitochondrial localization is critical to allow the cell to cope with reactive oxygen species generated inside or outside of mitochondria.
Collapse
|
1021
|
Mohammed S, Heck AJR. Strong cation exchange (SCX) based analytical methods for the targeted analysis of protein post-translational modifications. Curr Opin Biotechnol 2011; 22:9-16. [DOI: 10.1016/j.copbio.2010.09.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/05/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
|
1022
|
Guan KL, Xiong Y. Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci 2011; 36:108-16. [PMID: 20934340 PMCID: PMC3038179 DOI: 10.1016/j.tibs.2010.09.003] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 09/10/2010] [Accepted: 09/13/2010] [Indexed: 02/09/2023]
Abstract
Extensive studies during the past four decades have identified important roles for lysine acetylation in the regulation of nuclear transcription. Recent proteomic analyses on protein acetylation uncovered a large number of acetylated proteins in the cytoplasm and mitochondria, including most enzymes involved in intermediate metabolism. Acetylation regulates metabolic enzymes by multiple mechanisms, including via enzymatic activation or inhibition, and by influencing protein stability. Conversely, non-nuclear NAD(+)-dependent sirtuin deacetylases can regulate cellular and organismal metabolism, possibly through direct deacetylation of metabolic enzymes. Furthermore, acetylation of metabolic enzymes is highly conserved from prokaryotes to eukaryotes. Given the frequent occurrence of metabolic dysregulation in diabetes, obesity and cancer, enzymes modulating acetylation could provide attractive targets for therapeutic intervention for these diseases.
Collapse
Affiliation(s)
- Kun-Liang Guan
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Fudan University, Shanghai 20032, China.
| | | |
Collapse
|
1023
|
Kendrick AA, Choudhury M, Rahman SM, McCURDY CE, Friederich M, Van Hove JLK, Watson PA, Birdsey N, Bao J, Gius D, Sack MN, Jing E, Kahn CR, Friedman JE, Jonscher KR. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J 2011; 433:505-14. [PMID: 21044047 PMCID: PMC3398511 DOI: 10.1042/bj20100791] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acetylation has recently emerged as an important mechanism for controlling a broad array of proteins mediating cellular adaptation to metabolic fuels. Acetylation is governed, in part, by SIRTs (sirtuins), class III NAD(+)-dependent deacetylases that regulate lipid and glucose metabolism in liver during fasting and aging. However, the role of acetylation or SIRTs in pathogenic hepatic fuel metabolism under nutrient excess is unknown. In the present study, we isolated acetylated proteins from total liver proteome and observed 193 preferentially acetylated proteins in mice fed on an HFD (high-fat diet) compared with controls, including 11 proteins not previously identified in acetylation studies. Exposure to the HFD led to hyperacetylation of proteins involved in gluconeogenesis, mitochondrial oxidative metabolism, methionine metabolism, liver injury and the ER (endoplasmic reticulum) stress response. Livers of mice fed on the HFD had reduced SIRT3 activity, a 3-fold decrease in hepatic NAD(+) levels and increased mitochondrial protein oxidation. In contrast, neither SIRT1 nor histone acetyltransferase activities were altered, implicating SIRT3 as a dominant factor contributing to the observed phenotype. In Sirt3⁻(/)⁻ mice, exposure to the HFD further increased the acetylation status of liver proteins and reduced the activity of respiratory complexes III and IV. This is the first study to identify acetylation patterns in liver proteins of HFD-fed mice. Our results suggest that SIRT3 is an integral regulator of mitochondrial function and its depletion results in hyperacetylation of critical mitochondrial proteins that protect against hepatic lipotoxicity under conditions of nutrient excess.
Collapse
Affiliation(s)
- Agnieszka A. Kendrick
- Nutrition and Obesity Research Center (NORC), Mass Spectrometry Core Facility, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, U.S.A
| | - Mahua Choudhury
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, U.S.A
| | - Shaikh M. Rahman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, U.S.A
| | - Carrie E. McCURDY
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, U.S.A
| | - Marisa Friederich
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, U.S.A
| | - Johan L. K. Van Hove
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, U.S.A
| | | | | | - Jianjun Bao
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - David Gius
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Michael N. Sack
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Enxuan Jing
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - C. Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Jacob E. Friedman
- Nutrition and Obesity Research Center (NORC), Mass Spectrometry Core Facility, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, U.S.A
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, U.S.A
| | - Karen R. Jonscher
- Nutrition and Obesity Research Center (NORC), Mass Spectrometry Core Facility, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, U.S.A
| |
Collapse
|
1024
|
HDAC6 is required for invadopodia activity and invasion by breast tumor cells. Eur J Cell Biol 2011; 90:128-35. [DOI: 10.1016/j.ejcb.2010.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/17/2010] [Accepted: 09/01/2010] [Indexed: 11/23/2022] Open
|
1025
|
Albaugh BN, Arnold KM, Denu JM. KAT(ching) metabolism by the tail: insight into the links between lysine acetyltransferases and metabolism. Chembiochem 2011; 12:290-8. [PMID: 21243716 PMCID: PMC3327878 DOI: 10.1002/cbic.201000438] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Indexed: 12/22/2022]
Abstract
Post-translational modifications of histones elicit structural and functional changes within chromatin that regulate various epigenetic processes. Epigenetic mechanisms rely on enzymes whose activities are driven by coenzymes and metabolites from intermediary metabolism. Lysine acetyltransferases (KATs) catalyze the transfer of acetyl groups from acetyl-CoA to epsilon amino groups. Utilization of this critical metabolite suggests these enzymes are modulated by the metabolic status of the cell. This review highlights studies linking KATs to metabolism. We cover newly identified acyl modifications (propionylation and butyrylation), discuss the control of KAT activity by cellular acetyl-CoA levels, and provide insights into how acetylation regulates metabolic proteins. We conclude with a discussion of the current approaches to identifying novel KATs and their metabolic substrates.
Collapse
Affiliation(s)
- Brittany N. Albaugh
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, 1300 University Ave., Madison, WI 53706, Fax: 608.262.5253
| | - Kevin M. Arnold
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, 1300 University Ave., Madison, WI 53706, Fax: 608.262.5253
| | - John M Denu
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, 1300 University Ave., Madison, WI 53706, Fax: 608.262.5253
| |
Collapse
|
1026
|
Carlson SM, White FM. Using small molecules and chemical genetics to interrogate signaling networks. ACS Chem Biol 2011; 6:75-85. [PMID: 21077690 DOI: 10.1021/cb1002834] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The limited clinical success of therapeutics targeting cellular signaling processes is due to multiple factors, including off-target effects and complex feedback regulation encoded within the signaling network. To understand these effects, chemical proteomics and chemical genetics tools have been developed to map the direct targets of kinase inhibitors, determine the network-level response to inhibitor treatment, and to infer network topology. Here we provide an overview of chemical phosphoproteomic and chemical genetic methods, including specific examples where these methods have been applied to yield biological insight regarding network structure and the system-wide effects of targeted therapeutics. The challenges and caveats associated with each method are described, along with approaches being used to resolve some of these issues. With the broad array of available techniques the next decade should see a rapid improvement in our understanding of signaling networks regulation and response to targeted perturbations, leading to more efficacious therapeutic strategies.
Collapse
Affiliation(s)
- Scott M. Carlson
- Department of Biological Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Forest M. White
- Department of Biological Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
1027
|
Hallows WC, Yu W, Smith BC, Devries MK, Ellinger JJ, Someya S, Shortreed MR, Prolla T, Markley JL, Smith LM, Zhao S, Guan KL, Denu JM. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell 2011; 41:139-49. [PMID: 21255725 PMCID: PMC3101115 DOI: 10.1016/j.molcel.2011.01.002] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/13/2010] [Accepted: 01/04/2011] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3(-/-)) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3(-/-) mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino acid catabolism and β-oxidation.
Collapse
Affiliation(s)
- William C. Hallows
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Wei Yu
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Brian C. Smith
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Mark K. Devries
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - James J. Ellinger
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Shinichi Someya
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Tomas Prolla
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - John L. Markley
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Shimin Zhao
- Molecular and Cell Biology Lab, School of Life Sciences, Fudan University, Shanghai 20032, China
| | - Kun-Liang Guan
- Molecular and Cell Biology Lab, School of Life Sciences, Fudan University, Shanghai 20032, China
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, California 92093
| | - John M. Denu
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
1028
|
Mischerikow N, Heck AJR. Targeted large-scale analysis of protein acetylation. Proteomics 2011; 11:571-89. [DOI: 10.1002/pmic.201000397] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/10/2010] [Accepted: 09/27/2010] [Indexed: 11/06/2022]
|
1029
|
Yang YY, Hang HC. Chemical approaches for the detection and synthesis of acetylated proteins. Chembiochem 2011; 12:314-22. [PMID: 21243719 DOI: 10.1002/cbic.201000558] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Indexed: 12/17/2022]
Affiliation(s)
- Yu-Ying Yang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
1030
|
Choi S, Reddy P. HDAC inhibition and graft versus host disease. Mol Med 2011; 17:404-16. [PMID: 21298214 DOI: 10.2119/molmed.2011.00007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 01/07/2011] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors are currently used clinically as anticancer drugs. Recent data have demonstrated that some of these drugs have potent antiinflammatory or immunomodulatory effects at noncytotoxic doses. The immunomodulatory effects have shown potential for therapeutic benefit after allogeneic bone marrow transplantation in several experimental models of graft versus host disease (GVHD). These effects, at least in part, result from the ability of HDAC inhibitors (HDACi) to suppress the function of host antigen presenting cells such as dendritic cells (DC). HDACi reduce the dendritic cell (DC) responses, in part, by enhancing the expression of indoleamine 2,3-dioxygenase (IDO) in a signal transducer and activator of transcription-3 (STAT-3) dependent manner. They also alter the function of other immune cells such as T regulatory cells and natural killer (NK) cells, which also play important roles in the biology of GVHD. Based on these observations, a clinical trial has been launched to evaluate the impact of HDAC inhibitors on clinical GVHD. The experimental, mechanistic studies along with the brief preliminary observations from the ongoing clinical trial are discussed in this review.
Collapse
Affiliation(s)
- Sung Choi
- Department of Pediatrics, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48105, USA
| | | |
Collapse
|
1031
|
Song H, Li CW, Labaff AM, Lim SO, Li LY, Kan SF, Chen Y, Zhang K, Lang J, Xie X, Wang Y, Huo LF, Hsu SC, Chen X, Zhao Y, Hung MC. Acetylation of EGF receptor contributes to tumor cell resistance to histone deacetylase inhibitors. Biochem Biophys Res Commun 2011; 404:68-73. [PMID: 21094134 PMCID: PMC3049249 DOI: 10.1016/j.bbrc.2010.11.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/15/2010] [Indexed: 11/22/2022]
Abstract
Alteration of epidermal growth factor receptor (EGFR) is involved in various human cancers and has been intensively investigated. A plethora of evidence demonstrates that posttranslational modifications of EGFR play a pivotal role in controlling its function and metabolism. Here, we show that EGFR can be acetylated by CREB binding protein (CBP) acetyltransferase. Interestingly, EGFR acetylation affects its tyrosine phosphorylation, which may contribute to cancer cell resistance to histone deacetylase inhibitors (HDACIs). Since there is an increasing interest in using HDACIs to treat various cancers in the clinic, our current study provides insights and rationale for selecting effective therapeutic regimen. Consistent with the previous reports, we also show that HDACI combined with EGFR inhibitors achieves better therapeutic outcomes and provides a molecular rationale for the enhanced effect of combination therapy. Our results unveil a critical role of EGFR acetylation that regulates EGFR function, which may have an important clinical implication.
Collapse
Affiliation(s)
- Hui Song
- Department of Molecular & Cellular Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Cancer Biology Program, Graduate School of Biomedical Sciences, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chia-Wei Li
- Department of Molecular & Cellular Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Adam M. Labaff
- Department of Molecular & Cellular Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Cancer Biology Program, Graduate School of Biomedical Sciences, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Seung-Oe Lim
- Department of Molecular & Cellular Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Long-Yuan Li
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung 404, Taiwan
- Asia University, Taichung 413, Taiwan
| | - Shu-Fen Kan
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung 404, Taiwan
| | - Yue Chen
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Kai Zhang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Jingyu Lang
- Department of Molecular & Cellular Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Xiaoming Xie
- Department of Molecular & Cellular Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Yan Wang
- Department of Molecular & Cellular Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Long-Fei Huo
- Department of Molecular & Cellular Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Sheng-Chieh Hsu
- Department of Molecular & Cellular Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Xiaomin Chen
- Department of Biochemistry, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Mien-Chie Hung
- Department of Molecular & Cellular Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Cancer Biology Program, Graduate School of Biomedical Sciences, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung 404, Taiwan
| |
Collapse
|
1032
|
Lombard DB, Tishkoff DX, Bao J. Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation. Handb Exp Pharmacol 2011; 206:163-88. [PMID: 21879450 PMCID: PMC3245626 DOI: 10.1007/978-3-642-21631-2_8] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In eukaryotes, mitochondria carry out numerous functions that are central to cellular and organismal health. How mitochondrial activities are regulated in response to differing environmental conditions, such as variations in diet, remains an important unsolved question in biology. Here, we review emerging evidence suggesting that reversible acetylation of mitochondrial proteins on lysine residues represents a key mechanism by which mitochondrial functions are adjusted to meet environmental demands. In mammals, three members of the sirtuin class of NAD(+)-dependent deacetylases - SIRT3, SIRT4, and SIRT5 - localize to mitochondria and regulate targets involved in a diverse array of biochemical pathways. The importance of this activity is highlighted by recent studies of SIRT3 indicating that this protein suppresses the emergence of diverse age-related pathologies: hearing loss, cardiac fibrosis, and malignancy. Together, these findings argue that mitochondrial protein acetylation represents a central means by which mammals regulate mitochondrial functions to maintain cellular and organismal homeostasis.
Collapse
Affiliation(s)
- David B Lombard
- Department of Pathology, Institute of Gerontology, 3015 BSRB, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
1033
|
Sadoul K, Wang J, Diagouraga B, Khochbin S. The tale of protein lysine acetylation in the cytoplasm. J Biomed Biotechnol 2011; 2011:970382. [PMID: 21151618 PMCID: PMC2997609 DOI: 10.1155/2011/970382] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/29/2010] [Indexed: 12/21/2022] Open
Abstract
Reversible posttranslational modification of internal lysines in many cellular or viral proteins is now emerging as part of critical signalling processes controlling a variety of cellular functions beyond chromatin and transcription. This paper aims at demonstrating the role of lysine acetylation in the cytoplasm driving and coordinating key events such as cytoskeleton dynamics, intracellular trafficking, vesicle fusion, metabolism, and stress response.
Collapse
Affiliation(s)
- Karin Sadoul
- 1INSERM, U823, Institut Albert Bonniot, Université Joseph Fourier Grenoble 1, 38700 Grenoble, France
- *Karin Sadoul:
| | - Jin Wang
- 1INSERM, U823, Institut Albert Bonniot, Université Joseph Fourier Grenoble 1, 38700 Grenoble, France
- 2State Key Laboratory of Medical Genomics, Department of Hematology, Ruijin Hospital, Shanghai Institute of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Boubou Diagouraga
- 1INSERM, U823, Institut Albert Bonniot, Université Joseph Fourier Grenoble 1, 38700 Grenoble, France
| | - Saadi Khochbin
- 1INSERM, U823, Institut Albert Bonniot, Université Joseph Fourier Grenoble 1, 38700 Grenoble, France
| |
Collapse
|
1034
|
Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao T. Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 2011; 7:58-63. [PMID: 21151122 PMCID: PMC3065206 DOI: 10.1038/nchembio.495] [Citation(s) in RCA: 724] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/21/2010] [Indexed: 01/08/2023]
Abstract
Of the 20 ribosomally coded amino acid residues, lysine is the most frequently post-translationally modified, which has important functional and regulatory consequences. Here we report the identification and verification of a previously unreported form of protein post-translational modification (PTM): lysine succinylation. The succinyllysine residue was initially identified by mass spectrometry and protein sequence alignment. The identified succinyllysine peptides derived from in vivo proteins were verified by western blot analysis, in vivo labeling with isotopic succinate, MS/MS and HPLC coelution of their synthetic counterparts. We further show that lysine succinylation is evolutionarily conserved and that this PTM responds to different physiological conditions. Our study also implies that succinyl-CoA might be a cofactor for lysine succinylation. Given the apparent high abundance of lysine succinylation and the significant structural changes induced by this PTM, it is expected that lysine succinylation has important cellular functions.
Collapse
Affiliation(s)
- Zhihong Zhang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Minjia Tan
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Zhongyu Xie
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Lunzhi Dai
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Yue Chen
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Tingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
1035
|
Chalker JM, Gunnoo SB, Boutureira O, Gerstberger SC, Fernández-González M, Bernardes GJL, Griffin L, Hailu H, Schofield CJ, Davis BG. Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem Sci 2011. [DOI: 10.1039/c1sc00185j] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
1036
|
Frahm JL, Li LO, Grevengoed TJ, Coleman RA. Phosphorylation and Acetylation of Acyl-CoA Synthetase- I. ACTA ACUST UNITED AC 2011; 4:129-137. [PMID: 24039348 DOI: 10.4172/jpb.1000180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Long chain acyl-CoA synthetase 1 (ACSL1) contributes 50 to 90% of total ACSL activity in liver, adipose tissue, and heart and appears to direct the use of long chain fatty acids for energy. Although the functional importance of ACSL1 is becoming clear, little is understood about its post-translational regulation. In order to investigate the post-translational modifications of ACSL1 under different physiological conditions, we overexpressed ACSL1 in hepatocytes, brown adipocytes, and 3T3-L1 differentiated adipocytes, treated these cells with different hormones, and analyzed the resulting phosphorylated and acetylated amino acids by mass spectrometry. We then compared these results to the post-translational modifications observed in vivo in liver and brown adipose tissue after mice were fasted or exposed to a cold environment. We identified universal N-terminal acetylation, 15 acetylated lysines, and 25 phosphorylation sites on ACSL1. Several unique acetylation and phosphorylation sites occurred under conditions in which fatty acid β-oxidation is normally enhanced. Thirteen of the acetylated lysines had not previously been identified, and none of the phosphorylation sites had been previously identified. Site-directed mutagenesis was used to introduce mutations at three potential acetylation and phosphorylation sites believed to be important for ACSL1 function. At the ATP/AMP binding site and at a highly conserved site near the C terminus, modifications of Ser278 or Lys676, respectively, totally inhibited ACSL1 activity. In contrast, mutations of Lys285 that mimicked acetylation (Lys285Ala and Lys285Gln) reduced ACSL activity, whereas full activity was retained by Lys285Arg, suggesting that acetylation of Lys285 would be likely to decrease ACSL1 activity. These results indicate that ACSL1 is highly modified post-translationally. Several of these modifications would be expected to alter enzymatic function, but others may affect protein stability or protein-protein interactions.
Collapse
Affiliation(s)
- Jennifer L Frahm
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | | | | |
Collapse
|
1037
|
Atadja PW. HDAC inhibitors and cancer therapy. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2011; 67:175-95. [PMID: 21141730 DOI: 10.1007/978-3-7643-8989-5_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Maintenance of normal cell growth and differentiation is highly dependent on coordinated and tight transcriptional regulation of genes. In cancer, genes encoding growth regulators are abnormally expressed. Particularly, silencing of tumor suppressor genes under the control of chromatin modifications is a major underlying cause of unregulated cellular proliferation and transformation. Thus mechanisms, which regulate chromatin structure and gene expression, have become attractive targets for anticancer therapy. Histone deacetylases are enzymes that modify chromatin structure and contribute to aberrant gene expression in cancer. Research over the past decade has led to the development of histone deacetylase inhibitors as anticancer agents. In addition to their effect on chromatin and epigenetic mechanisms, HDAC inhibitors also modify the acetylation state of a large number of cellular proteins involved in oncogenic processes, resulting in antitumor effects. The current monograph will review the role of histone deacetylases in protumorigenic mechanisms and the current developmental status and prospects for their inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Peter W Atadja
- Novartis Institute for Biomedical Research, 898 Halei Rd, Building 8, Shanghai, China.
| |
Collapse
|
1038
|
Abstract
Lysine (K) acetylation refers to transfer of the acetyl moiety from acetyl-CoA to the ε-amino group of a lysine residue. This is posttranslational and reversible, with its level dynamically maintained by lysine acetyltransferases (KATs) and deacetylases (KDACs). Traditionally, eukaryotic KDACs have been referred to as HDACs (histone deacetylases). Recent proteomic studies have revealed that hundreds of bacterial proteins and thousands of eukaryotic proteins contain acetyl-lysine (AcK) residues, indicating that K-acetylomes are comparable to phosphoproteomes. The current challenges are to assign enzymes that execute specific acetylation events, to determine the impact of these events, and to relate this modification to other posttranslational modifications, cell signaling networks, and pathophysiology under different cellular and developmental contexts. In this chapter, we provide a brief overview about the acetylomes, KATs, HDACs, AcK-recognizing protein domains, and acetylation-modulating therapeutics, and emphasize the latest developments in related areas. The remaining chapters of the book focus on and cover various aspects of HDACs (both the Rpd3/Hda1 and sirtuin families), which shall provide novel insights into how to utilize these enzymes for developing a new generation of HDAC-related therapeutics.
Collapse
|
1039
|
Huber SC. Grand challenges in plant physiology: the underpinning of translational research. FRONTIERS IN PLANT SCIENCE 2011; 2:48. [PMID: 22639597 PMCID: PMC3355685 DOI: 10.3389/fpls.2011.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/22/2011] [Indexed: 05/04/2023]
Affiliation(s)
- Steven C. Huber
- United States Department of Agriculture–Agricultural Research Service, University of IllinoisUrbana-Champaign, IL, USA
- Departments of Plant Biology and Crop Science, University of IllinoisUrbana-Champaign, IL, USA
- *Correspondence:
| |
Collapse
|
1040
|
Abstract
Acetylation and deacetylation of lysine residues controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively, are among the most common posttranslational modifications of proteins. In addition to histones, a large number of nonhistone proteins that can undergo reversible acetylation have been identified. These nonhistone acetylated/deacetylated proteins are involved in a wide range of cellular processes including transcription, translation, DNA repair, metabolism, and cell structure. Aberrant deacetylation of nonhistone proteins is implicated in many human diseases, including cancer. In this chapter, we review and describe the involvement of HDACs in cancer-associated cellular processes via deacetylation of nonhistone proteins, and the possible implications for carcinogenesis and cancer development.
Collapse
|
1041
|
LEE SB, PARK JH, FOLK J, DECK JA, PEGG AE, SOKABE M, FRASER CS, PARK MH. Inactivation of eukaryotic initiation factor 5A (eIF5A) by specific acetylation of its hypusine residue by spermidine/spermine acetyltransferase 1 (SSAT1). Biochem J 2011; 433:205-13. [PMID: 20942800 PMCID: PMC3003598 DOI: 10.1042/bj20101322] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
eIF5A (eukaryotic translation initiation factor 5A) is the only cellular protein containing hypusine [Nϵ-(4-amino-2-hydroxybutyl)lysine]. eIF5A is activated by the post-translational synthesis of hypusine and the hypusine modification is essential for cell proliferation. In the present study, we report selective acetylation of the hypusine and/or deoxyhypusine residue of eIF5A by a key polyamine catabolic enzyme SSAT1 (spermidine/spermine-N1-acetyltransferase 1). This enzyme normally catalyses the N1-acetylation of spermine and spermidine to form acetyl-derivatives, which in turn are degraded to lower polyamines. Although SSAT1 has been reported to exert other effects in cells by its interaction with other cellular proteins, eIF5A is the first target protein specifically acetylated by SSAT1. Hypusine or deoxyhypusine, as the free amino acid, does not act as a substrate for SSAT1, suggesting a macromolecular interaction between eIF5A and SSAT1. Indeed, the binding of eIF5A and SSAT1 was confirmed by pull-down assays. The effect of the acetylation of hypusine on eIF5A activity was assessed by comparison of acetylated with non-acetylated bovine testis eIF5A in the methionyl-puromycin synthesis assay. The loss of eIF5A activity by this SSAT1-mediated acetylation confirms the strict structural requirement for the hypusine side chain and suggests a possible regulation of eIF5A by hypusine acetylation/deacetylation.
Collapse
Affiliation(s)
- Seung Bum LEE
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Jong Hwan PARK
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892 USA
| | - J.E. FOLK
- Chemical Biology Research Branch, National Institute of Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Jason A. DECK
- Chemical Biology Research Branch, National Institute of Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Anthony E. PEGG
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA, 17033 USA
| | - Masaaki SOKABE
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616
| | - Christopher S. FRASER
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Myung Hee PARK
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892 USA
| |
Collapse
|
1042
|
Histone deacetylase inhibitors: the epigenetic therapeutics that repress hypoxia-inducible factors. J Biomed Biotechnol 2010; 2011:197946. [PMID: 21151670 PMCID: PMC2997513 DOI: 10.1155/2011/197946] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/25/2010] [Indexed: 11/21/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) have been actively explored as a new generation of chemotherapeutics for cancers, generally known as epigenetic therapeutics. Recent findings indicate that several types of HDACIs repress angiogenesis, a process essential for tumor metabolism and progression. Accumulating evidence supports that this repression is mediated by disrupting the function of hypoxia-inducible factors (HIF-1, HIF-2, and collectively, HIF), which are the master regulators of angiogenesis and cellular adaptation to hypoxia. Since HIF also regulate glucose metabolism, cell survival, microenvironment remodeling, and other alterations commonly required for tumor progression, they are considered as novel targets for cancer chemotherapy. Though the precise biochemical mechanism underlying the HDACI-triggered repression of HIF function remains unclear, potential cellular factors that may link the inhibition of deacetylase activity to the repression of HIF function have been proposed. Here we review published data that inhibitors of type I/II HDACs repress HIF function by either reducing functional HIF-1α levels, or repressing HIF-α transactivation activity. In addition, underlying mechanisms and potential proteins involved in the repression will be discussed. A thorough understanding of HDACI-induced repression of HIF function may facilitate the development of future therapies to either repress or promote angiogenesis for cancer or chronic ischemic disorders, respectively.
Collapse
|
1043
|
Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol 2010; 2011:371832. [PMID: 21151613 PMCID: PMC2997516 DOI: 10.1155/2011/371832] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/01/2010] [Accepted: 10/27/2010] [Indexed: 01/18/2023] Open
Abstract
The balance between protein acetylation and deacetylation controls several physiological and pathological cellular processes, and the enzymes involved in the maintenance of this equilibrium—acetyltransferases (HATs) and deacetylases (HDACs)—have been widely studied. Presently, the evidences obtained in this field suggest that the dynamic acetylation equilibrium is mostly maintained through the physical and functional interplay between HAT and HDAC activities. This model overcomes the classical vision in which the epigenetic marks of acetylation have only an activating function whereas deacetylation marks have a repressing activity. Given the existence of several players involved in the preservation of this equilibrium, the identification of these complex networks of interacting proteins will likely foster our understanding of how cells regulate intracellular processes and respond to the extracellular environment and will offer the rationale for new therapeutic approaches based on epigenetic drugs in human diseases.
Collapse
|
1044
|
Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 2010; 12:662-7. [PMID: 21109198 DOI: 10.1016/j.cmet.2010.11.015] [Citation(s) in RCA: 1014] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 08/12/2010] [Accepted: 11/09/2010] [Indexed: 12/11/2022]
Abstract
A major cause of aging and numerous diseases is thought to be cumulative oxidative stress, resulting from the production of reactive oxygen species (ROS) during respiration. Calorie restriction (CR), the most robust intervention to extend life span and ameliorate various diseases in mammals, reduces oxidative stress and damage. However, the underlying mechanism is unknown. Here, we show that the protective effects of CR on oxidative stress and damage are diminished in mice lacking SIRT3, a mitochondrial deacetylase. SIRT3 reduces cellular ROS levels dependent on superoxide dismutase 2 (SOD2), a major mitochondrial antioxidant enzyme. SIRT3 deacetylates two critical lysine residues on SOD2 and promotes its antioxidative activity. Importantly, the ability of SOD2 to reduce cellular ROS and promote oxidative stress resistance is greatly enhanced by SIRT3. Our studies identify a defense program that CR provokes to reduce oxidative stress and suggest approaches to combat aging and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Xiaolei Qiu
- Department of Nutritional Science & Toxicology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
1045
|
Verdin E, Hirschey MD, Finley LW, Haigis MC. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 2010; 35:669-75. [PMID: 20863707 PMCID: PMC2992946 DOI: 10.1016/j.tibs.2010.07.003] [Citation(s) in RCA: 494] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/21/2010] [Accepted: 07/12/2010] [Indexed: 12/19/2022]
Abstract
Sirtuins are a highly conserved family of proteins whose activity can prolong the lifespan of model organisms such as yeast, worms and flies. Mammals contain seven sirtuins (SIRT1-7) that modulate distinct metabolic and stress response pathways. Three sirtuins, SIRT3, SIRT4 and SIRT5, are located in the mitochondria, dynamic organelles that function as the primary site of oxidative metabolism and play crucial roles in apoptosis and intracellular signaling. Recent findings have shed light on how the mitochondrial sirtuins function in the control of basic mitochondrial biology, including energy production, metabolism, apoptosis and intracellular signaling.
Collapse
Affiliation(s)
- Eric Verdin
- Gladstone Institute of Virology and Immunology, San Francisco, CA
- Department of Medicine, University of California, San Francisco, CA
| | - Matthew D. Hirschey
- Gladstone Institute of Virology and Immunology, San Francisco, CA
- Department of Medicine, University of California, San Francisco, CA
| | - Lydia W.S. Finley
- Department of Pathology, The Paul F. Glenn Labs for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA
| | - Marcia C. Haigis
- Department of Pathology, The Paul F. Glenn Labs for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA
| |
Collapse
|
1046
|
Zhou W, Capello M, Fredolini C, Piemonti L, Liotta LA, Novelli F, Petricoin EF. Mass spectrometry analysis of the post-translational modifications of alpha-enolase from pancreatic ductal adenocarcinoma cells. J Proteome Res 2010; 9:2929-36. [PMID: 20433201 DOI: 10.1021/pr901109w] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Enolase is a key glycolytic enzyme that catalyzes the dehydration of 2-phosphoglycerate to phosphoenolpyruvate. Recently, enolase was revealed as an important protein in pathophysiological processes since it was found on the surface of hematopoietic cells and overexpressed in several tumor cells. Our previous studies demonstrated that alpha-enolase is up-regulated in pancreatic ductal adenocarcinoma (PDAC). In this present work, we further characterized the alpha-enolase from PDAC and normal pancreatic duct cells by mass spectrometry using LTQ-Orbitrap and identified multiple post-translational modifications of alpha-enolase, such as phosphorylation, acetylation, and methylation. The result showed that more acetylated lysines, methylated aspartic acids, and glutamic acids were found in PDAC cells than that of normal pancreatic duct cells.
Collapse
Affiliation(s)
- Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, USA.
| | | | | | | | | | | | | |
Collapse
|
1047
|
Eberl HC, Mann M, Vermeulen M. Quantitative proteomics for epigenetics. Chembiochem 2010; 12:224-34. [PMID: 21243711 DOI: 10.1002/cbic.201000429] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Indexed: 12/12/2022]
Abstract
Mass spectrometry has made many contributions to the chromatin field through the mapping of histone modifications and the identification of protein complexes involved in gene regulation. MS-based proteomics has now evolved from the identification of single protein spots in gels to the identification and quantification of thousands of proteins in complex mixtures. Quantitative approaches also allow comparative and time-resolved analysis of post-translational modifications. An important emerging field is the unbiased interaction analysis of proteins with other proteins, defined protein modifications, specific DNA and RNA sequences, and small molecules. Quantitative proteomics can also accurately monitor whole proteome changes in response to perturbation of the gene expression machinery. We provide an up-to-date review of modern quantitative proteomic technology and its applications in the field of epigenetics.
Collapse
Affiliation(s)
- H Christian Eberl
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, Germany
| | | | | |
Collapse
|
1048
|
Kim GW, Yang XJ. Comprehensive lysine acetylomes emerging from bacteria to humans. Trends Biochem Sci 2010; 36:211-20. [PMID: 21075636 DOI: 10.1016/j.tibs.2010.10.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/06/2010] [Accepted: 10/13/2010] [Indexed: 12/14/2022]
Abstract
Recent proteomic studies reveal that 5-10% of mammalian and bacterial proteins undergo lysine acetylation, a post-translational modification that adds an acetyl group to the ɛ-amino group of lysine residues. Many of these proteins are not canonical targets, such as histones and transcription factors, suggesting that this modification plays a much wider role than previously appreciated. These studies also suggest that lysine acetylomes are at least comparable with (if not larger than) phosphoproteomes. Although many of the newly identified acetylation events still require validation, they constitute an important framework for further research and the development of new drugs useful in treating a variety of pathologies. Herein, we summarize these proteomic studies and highlight recent reports linking lysine acetylation to heterochromatin assembly, sister chromatid cohesion, cytoskeleton dynamics, autophagy, receptor signaling, RNA processing and metabolic control.
Collapse
Affiliation(s)
- Go-Woon Kim
- The Rosalind & Morris Goodman Cancer Research Center, McGill University, Montréal, Québec H3A 1A3, Canada
| | | |
Collapse
|
1049
|
Liu Z, Cao J, Gao X, Zhou Y, Wen L, Yang X, Yao X, Ren J, Xue Y. CPLA 1.0: an integrated database of protein lysine acetylation. Nucleic Acids Res 2010; 39:D1029-34. [PMID: 21059677 PMCID: PMC3013790 DOI: 10.1093/nar/gkq939] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
As a reversible post-translational modification (PTM) discovered decades ago, protein lysine acetylation was known for its regulation of transcription through the modification of histones. Recent studies discovered that lysine acetylation targets broad substrates and especially plays an essential role in cellular metabolic regulation. Although acetylation is comparable with other major PTMs such as phosphorylation, an integrated resource still remains to be developed. In this work, we presented the compendium of protein lysine acetylation (CPLA) database for lysine acetylated substrates with their sites. From the scientific literature, we manually collected 7151 experimentally identified acetylation sites in 3311 targets. We statistically studied the regulatory roles of lysine acetylation by analyzing the Gene Ontology (GO) and InterPro annotations. Combined with protein–protein interaction information, we systematically discovered a potential human lysine acetylation network (HLAN) among histone acetyltransferases (HATs), substrates and histone deacetylases (HDACs). In particular, there are 1862 triplet relationships of HAT-substrate-HDAC retrieved from the HLAN, at least 13 of which were previously experimentally verified. The online services of CPLA database was implemented in PHP + MySQL + JavaScript, while the local packages were developed in JAVA 1.5 (J2SE 5.0). The CPLA database is freely available for all users at: http://cpla.biocuckoo.org.
Collapse
Affiliation(s)
- Zexian Liu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | | | | | | | | | | | | | |
Collapse
|
1050
|
Du Z, Song J, Wang Y, Zhao Y, Guda K, Yang S, Kao HY, Xu Y, Willis J, Markowitz SD, Sedwick D, Ewing RM, Wang Z. DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci Signal 2010; 3:ra80. [PMID: 21045206 PMCID: PMC3116231 DOI: 10.1126/scisignal.2001462] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA methyltransferase 1 (DNMT1) is the primary enzyme that maintains DNA methylation. We describe a previously unknown mode of regulation of DNMT1 protein stability through the coordinated action of an array of DNMT1-associated proteins. DNMT1 was destabilized by acetylation by the acetyltransferase Tip60, which triggered ubiquitination by the E3 ligase UHRF1, thereby targeting DNMT1 for proteasomal degradation. In contrast, DNMT1 was stabilized by histone deacetylase 1 (HDAC1) and the deubiquitinase HAUSP (herpes virus-associated ubiquitin-specific protease). Analysis of the abundance of DNMT1 and Tip60, as well as the association between HAUSP and DNMT1, suggested that during the cell cycle the initiation of DNMT1 degradation was coordinated with the end of DNA replication and the need for DNMT activity. In human colon cancers, the abundance of DNMT1 correlated with that of HAUSP. HAUSP knockdown rendered colon cancer cells more sensitive to killing by HDAC inhibitors both in tissue culture and in tumor xenograft models. Thus, these studies provide a mechanism-based rationale for the development of HDAC and HAUSP inhibitors for combined use in cancer therapy.
Collapse
Affiliation(s)
- Zhanwen Du
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jing Song
- Case Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yong Wang
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yiqing Zhao
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kishore Guda
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Howard Hughes Medical Institute, Cleveland, OH 44106, USA
| | - Shuming Yang
- Cancer Pharmacology Core Facility, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hung-Ying Kao
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yan Xu
- Cancer Pharmacology Core Facility, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Joseph Willis
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sanford D. Markowitz
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Howard Hughes Medical Institute, Cleveland, OH 44106, USA
| | - David Sedwick
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Robert M. Ewing
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zhenghe Wang
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Genomic Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|