1001
|
TAB2 Promotes the Biological Functions of Head and Neck Squamous Cell Carcinoma Cells via EMT and PI3K Pathway. DISEASE MARKERS 2022; 2022:1217918. [PMID: 35978886 PMCID: PMC9377915 DOI: 10.1155/2022/1217918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022]
Abstract
Background Transforming growth factor β1-activated kinase 1 binding protein 2 (TAB2) mediates a variety of biological processes through activated nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB) signaling pathways. TAB2 has been reported to be upregulated in a variety of tumors. However, little is known about its potential role in oral squamous cell carcinoma (OSCC). Material and Methods. Patients' clinicopathological and transcription data were obtained from The Cancer Genome Atlas (TCGA) database. Immunohistochemistry staining was used to determine TAB2 expression in OSCC tissues (IHC). The expression of TAB2 in OSCC cell lines was detected by western blotting. The CCK-8 test and flow cytometry assay were utilized to evaluate cell proliferation, apoptosis, and cell cycle in OSCC cell lines. Enrichment analysis and identification of predicted signaling pathways were performed by Gene Ontology and KEGG analysis. Finally, the expression of downstream signal molecules was performed using western blotting to validate the mechanism investigations. Results TAB2 expression level was aberrantly upregulated in OSCC patients. TAB2 expression was shown to be inversely associated to prognosis. The phenotypic of OSCC cells was considerably impacted by TAB2. OSCC cells with deleted TAB2 exhibit decreased proliferation and increased apoptosis. Additionally, OSCC progression is aided by TAB2 overexpression. Further mechanism studies showed that TAB2 could regulate the progression of OSCC by mediating the upregulation of EMT and PI3K-AKT signaling pathways. Conclusion This study sheds light on the carcinogenic role of TAB2 in OSCC and provides a potential therapeutic strategy.
Collapse
|
1002
|
Liu Y, Ma S, Ma Q, Zhu H. Silencing LINC00665 inhibits cutaneous melanoma in vitro progression and induces apoptosis via the miR-339-3p/TUBB. J Clin Lab Anal 2022; 36:e24630. [PMID: 35929185 PMCID: PMC9459347 DOI: 10.1002/jcla.24630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 12/22/2022] Open
Abstract
Background LncRNAs are closely related to cutaneous melanoma (CM) tumorigenesis and metastasis, and it can affect the progression of CM by regulating cell proliferation, migration, invasion, apoptosis, and other cellular mechanisms. This study investigated the role of LINC00665 in CM. Methods Expressions of LINC00665, miR‐339‐3p, and tubulin beta chain (TUBB) in CM cells were analyzed by qRT‐PCR and/or Western blot. The LINC00665/miR‐339‐3p/TUBB targeting network was predicted by bioinformatics tools, screened out by Venn diagrams and analyzed by Pearson's correlation coefficients, followed by validation via dual‐luciferase reporter assay and/or pull‐down assay. Transfection of siLINC00665 or miR‐339‐3p inhibitor/mimic was conducted with CM cells whose viability, proliferation, migration, invasion, cell cycle progression, and apoptosis were measured by CCK‐8 assay, colony formation assay, wound healing assay, Transwell assay, and flow cytometry. The associations of TUBB with tumor biological characteristics and other proteins were analyzed by CanserSEA and String, respectively. Results High‐expressed LINC00665 was detected in CM cells. Silencing LINC00665 decreased CM cell viability; inhibited colony formation, cell cycle progression, migration and invasion; enhanced apoptosis; and upregulated miR‐339‐3p. LINC00665 targeted miR‐339‐3p which targeted TUBB. MiR‐339‐3p upregulation induced effects similar to the LINC00665‐silencing‐induced effects and could downregulate TUBB, which was associated with malignant behaviors and related to other five proteins. MiR‐339‐3p downregulation induced the opposite effects of what miR‐339‐3p upregulation induced, and the miR‐339‐3p downregulation‐induced effects could be reversed by LINC00665 silencing. Conclusion Silencing LINC00665 inhibits in vitro CM progression and induces apoptosis via the miR‐339‐3p/TUBB axis.
Collapse
Affiliation(s)
- Yi Liu
- Dermatological Department, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin City, China
| | - Shanshan Ma
- Department of Dermatology & STD, QingDao No.8 People's Hospital, Qingdao, China
| | - Qichao Ma
- Dermatological Department, Ningbo Yinzhou No 2. Hospital, Ningbo City, China
| | - Haigang Zhu
- Dermatological Department, Ningbo Yinzhou No 2. Hospital, Ningbo City, China
| |
Collapse
|
1003
|
Tang K, Toyozumi T, Murakami K, Sakata H, Kano M, Endo S, Matsumoto Y, Suito H, Takahashi M, Sekino N, Otsuka R, Kinoshita K, Hirasawa S, Hu J, Uesato M, Hayano K, Matsubara H. HIF-1α stimulates the progression of oesophageal squamous cell carcinoma by activating the Wnt/β-catenin signalling pathway. Br J Cancer 2022; 127:474-487. [PMID: 35484214 PMCID: PMC9345968 DOI: 10.1038/s41416-022-01825-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study aimed to clarify the significance of the crosstalk between hypoxia-inducible factor-1α (HIF-1α) and the Wnt/β-catenin pathway in oesophageal squamous cell carcinoma (ESCC). METHODS The oncogenic role of HIF-1α in ESCC was investigated using in vitro and in vivo assays. The clinicopathological significance of HIF-1α, β-catenin and TCF4/TCF7L2 in ESCC were evaluated using quantitative real-time PCR and immunohistochemistry. RESULTS The expression level of HIF-1α, β-catenin, and TCF4/TCF7L2 in T.Tn and TE1 cell lines were elevated under hypoxia in vitro. HIF-1α knockdown suppressed proliferation, migration/invasion and epithelial-mesenchymal transition (EMT) progression, induced G0/G1 cell cycle arrest, promoted apoptosis and inhibited 5-fluorouracil chemoresistance in vitro. In vivo assays showed that HIF-1α is essential in maintaining tumour growth, angiogenesis, and 5-fluorouracil chemoresistance. Mechanically, we identified the complex between HIF-1α and β-catenin, HIF-1α can directly bind to the promoter region of TCF4/TCF7L2. The mRNA level of HIF-1α, β-catenin and TCF4/TCF7L2 were increased in ESCC tumour tissues compared to the corresponding non-tumour tissues. High levels of HIF-1α and TCF4/TCF7L2 expression were correlated with aggressive phenotypes and poor prognosis in ESCC patients. CONCLUSIONS HIF-1α serves as an oncogenic transcriptional factor in ESCC, probably by directly targeting TCF4/TCF7L2 and activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Kang Tang
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takeshi Toyozumi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Kentaro Murakami
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Haruhito Sakata
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Satoshi Endo
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Matsumoto
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroshi Suito
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masahiko Takahashi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobufumi Sekino
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ryota Otsuka
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuya Kinoshita
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Soichiro Hirasawa
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Jie Hu
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaya Uesato
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Koichi Hayano
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
1004
|
Song J, Lin Z, Liu Q, Huang S, Han L, Fang Y, Zhong P, Dou R, Xiang Z, Zheng J, Zhang X, Wang S, Xiong B. MiR-192-5p/RB1/NF-κBp65 signaling axis promotes IL-10 secretion during gastric cancer EMT to induce Treg cell differentiation in the tumour microenvironment. Clin Transl Med 2022; 12:e992. [PMID: 35969010 PMCID: PMC9377151 DOI: 10.1002/ctm2.992] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Regulatory T (Treg) cells are important components of the tumour microenvironment (TME) that play roles in gastric cancer (GC) metastasis. Although tumour cells that undergo epithelial-mesenchymal transition (EMT) regulate Treg cell function, their regulatory mechanism in GC remains unclear. METHODS The miR-192-5p was identified by examining three Gene Expression Omnibus GC miRNA expression datasets. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were conducted to identify interactions between miR-192-5p and RB1. The role of miR-192-5p/RB1 in GC progression was evaluated based on EdU incorporation, wound healing and Transwell assays. An in vitro co-culture assay was performed to measure the effect of miR-192-5p/RB1 on Treg cell differentiation. In vivo experiments were conducted to explore the role of miR-192-5p in GC progression and Treg cell differentiation. RESULTS MiR-192-5p was overexpressed in tumour and was associated with poor prognosis in GC. MiR-192-5p bound to the RB1 3'-untranslated region, resulting in GC EMT, proliferation, migration and invasion. MiR-192-5p/RB1 mediated interleukin-10 (IL-10) secretion by regulating nuclear factor-kappaBp65 (NF-κBp65), affecting Treg cell differentiation. NF-κBp65, in turn, promoted miR-192-5p expression and formed a positive feedback loop. Furthermore, in vivo experiments confirmed that miR-192-5p/RB1 promotes GC growth and Treg cell differentiation. CONCLUSION Collectively, our studies indicate that miR-192-5p/RB1 promotes EMT of tumour cells, and the miR-192-5p/RB1/NF-κBp65 signaling axis induces Treg cell differentiation by regulating IL-10 secretion in GC. Our results suggest that targeting miR-192-5p/RB1/NF-κBp65 /IL-10 may pave the way for the development of new immune treatments for GC.
Collapse
Affiliation(s)
- Jialin Song
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Zaihuan Lin
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Qing Liu
- Department of Respiratory and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhanChina
| | - Sihao Huang
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Lei Han
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Yan Fang
- Department of obstetrics and gynecologyGuangzhou Women and Children's Medical CenterGuangzhouChina
| | - Panyi Zhong
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Rongzhang Dou
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Zhenxian Xiang
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Jinsen Zheng
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Xinyao Zhang
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Shuyi Wang
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Bin Xiong
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| |
Collapse
|
1005
|
Peña-Flores JA, Bermúdez M, Ramos-Payán R, Villegas-Mercado CE, Soto-Barreras U, Muela-Campos D, Álvarez-Ramírez A, Pérez-Aguirre B, Larrinua-Pacheco AD, López-Camarillo C, López-Gutiérrez JA, Garnica-Palazuelos J, Estrada-Macías ME, Cota-Quintero JL, Barraza-Gómez AA. Emerging role of lncRNAs in drug resistance mechanisms in head and neck squamous cell carcinoma. Front Oncol 2022; 12:965628. [PMID: 35978835 PMCID: PMC9376329 DOI: 10.3389/fonc.2022.965628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) originates in the squamous cell lining the mucosal surfaces of the head and neck region, including the oral cavity, nasopharynx, tonsils, oropharynx, larynx, and hypopharynx. The heterogeneity, anatomical, and functional characteristics of the patient make the HNSCC a complex and difficult-to-treat disease, leading to a poor survival rate and a decreased quality of life due to the loss of important physiologic functions and aggressive surgical injury. Alteration of driver-oncogenic and tumor-suppressing lncRNAs has recently been recently in HNSCC to obtain possible biomarkers for diagnostic, prognostic, and therapeutic approaches. This review provides current knowledge about the implication of lncRNAs in drug resistance mechanisms in HNSCC. Chemotherapy resistance is a major therapeutic challenge in HNSCC in which lncRNAs are implicated. Lately, it has been shown that lncRNAs involved in autophagy induced by chemotherapy and epithelial-mesenchymal transition (EMT) can act as mechanisms of resistance to anticancer drugs. Conversely, lncRNAs involved in mesenchymal-epithelial transition (MET) are related to chemosensitivity and inhibition of invasiveness of drug-resistant cells. In this regard, long non-coding RNAs (lncRNAs) play a pivotal role in both processes and are important for cancer detection, progression, diagnosis, therapy response, and prognostic values. As the involvement of more lncRNAs is elucidated in chemoresistance mechanisms, an improvement in diagnostic and prognostic tools could promote an advance in targeted and specific therapies in precision oncology.
Collapse
Affiliation(s)
- José A. Peña-Flores
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | - Uriel Soto-Barreras
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | | | | | | | | | | | - Jorge A. López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | | | - Juan L. Cota-Quintero
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Odontology , Autonomous University of Sinaloa, Culiacán, Mexico
| | | |
Collapse
|
1006
|
Kim NY, Jung YY, Yang MH, Um JY, Sethi G, Ahn KS. Isoimperatorin down-regulates epithelial mesenchymal transition through modulating NF-κB signaling and CXCR4 expression in colorectal and hepatocellular carcinoma cells. Cell Signal 2022; 99:110433. [DOI: 10.1016/j.cellsig.2022.110433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
|
1007
|
Ye J, Deng W, Zhong Y, Liu H, Guo B, Qin Z, Li P, Zhong X, Wang L. MELK predicts poor prognosis and promotes metastasis in esophageal squamous cell carcinoma via activating the NF‑κB pathway. Int J Oncol 2022; 61:94. [PMID: 35730614 PMCID: PMC9256079 DOI: 10.3892/ijo.2022.5384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/23/2022] [Indexed: 11/12/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies worldwide with a low 5-year survival rate due to the lack of effective therapeutic strategies. Accumulating evidence has indicated that maternal embryonic leucine zipper kinase (MELK) is highly expressed in several tumors and associated with tumor development. However, the biological effects of MELK in ESCC remain unknown. In the present study, cell phenotypical experiments and animal metastasis assays were performed to detect the influence of MELK knockdown in vitro and in vivo. The potential molecular mechanism of MELK-mediated ESCC metastasis was further investigated by western blotting and immunofluorescence staining. The results revealed that the expression of MELK in human ESCC tissues was higher than that in adjacent normal tissues and was positively associated with the poor prognosis of patients. Reducing MELK expression resulted in growth inhibition and suppression of the invasive ability of ESCC cells in vitro and in vivo. MELK inhibition induced alterations of epithelial-mesenchymal transition-associated proteins. Mechanistically, MELK interacted with IκB kinase (IKK) and promoted the phosphorylation of IKK, by which MELK regulated activation of the NF-κB pathway. Collectively, the present study revealed the function and mechanism of MELK in the cell metastasis of ESCC, which may be a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jiecheng Ye
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Wanying Deng
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ying Zhong
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Hui Liu
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Baoyin Guo
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zixi Qin
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Peiwen Li
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xueyun Zhong
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Lihui Wang
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
1008
|
Liu Y, Zhu J, Yang L, Wu Q, Zhou Z, Zhang X, Zeng W. Lysyl Oxidase-Like Protein-2 Silencing Suppresses the Invasion and Proliferation of Esophageal Cancer Cells. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
This study explores the effect of silencing lysyl oxidase-like protein-2 (LOXL2) gene on TE-1 cells. TE-1 cells were transfected by LOXL2-siRNA. E-cadherin, LOXL2, and Snail were detected using Western blot and Real-time PCR. Transwell invasion and migration assay was performed. Flow
cytometry detected apoptosis. Cell growth was analyzed with CCK-8 and colony formation. After48 h of transfection, compared with control groups, LOXL2 mRNA in the LOXL2-siRNA group (0.40±0.01) lowered significantly (P < 0.05). Consistently, LOXL2 protein in LOXL2-siRNA group
was (0.48± 0.02), significantly lower than that in blank control (1.04± 0.03) and negative control (1.02± 0.02) (P < 0.05). After 72 h of cell culture, the absorbance of LOXL2-siRNA group was (0.43±0.04), which reduced significantly than blank control
(0.81±0.05) and negative control (0.84±0.06) (P < 0.05). Similarly, cell clone number after LOXL2-siRNA transfection (72.3±4.2)increased significantly than the negative control (178.8±4.6) and blank control (167.3±3.5) (P < 0.05). However,
LOXL2 silencing did not significantly affect cell apoptosis. Furthermore, LOXL2 silencing inhibited Snail while increased E-cadherin (P < 0.05). Conclusively, LOXL2 silencing may suppress the invasion and proliferation of esophageal cancer cells via down-regulating Snail, and up-regulating
E-cadherin to inhibit EMT in esophageal cancer cells.
Collapse
Affiliation(s)
- Yi Liu
- Department of Thoracic and Cardiovascular Surgery, Shenzhen University General Hospital, Shenzhen 518055, P. R. China
| | - Jinfeng Zhu
- Department of General Surgery, Shenzhen University General Hospital, Shenzhen 518055, P. R. China
| | - Longhai Yang
- Department of Thoracic and Cardiovascular Surgery, Shenzhen University General Hospital, Shenzhen 518055, P. R. China
| | - Qiang Wu
- Department of Thoracic and Cardiovascular Surgery, Shenzhen University General Hospital, Shenzhen 518055, P. R. China
| | - Zizi Zhou
- Department of Thoracic and Cardiovascular Surgery, Shenzhen University General Hospital, Shenzhen 518055, P. R. China
| | - Xiaoming Zhang
- Department of Thoracic and Cardiovascular Surgery, Shenzhen University General Hospital, Shenzhen 518055, P. R. China
| | - Wei Zeng
- Department of Oncology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
1009
|
Deng J, Jiang R, Meng E, Wu H. CXCL5: A coachman to drive cancer progression. Front Oncol 2022; 12:944494. [PMID: 35978824 PMCID: PMC9376318 DOI: 10.3389/fonc.2022.944494] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Chemokines are a class of pro-inflammatory cytokines that can recruit and activate chemotactic cells. C‐X‐C motif chemokine ligand 5 (CXCL5) is a member of the chemokine family binding CXCR2 (C-X-C Motif Chemokine Receptor 2), a G-protein coupled receptor. Accumulated evidence has shown that dysregulated CXCL5 participates in tumor metastasis and angiogenesis in human malignant tumors. In this review, we summarized the advances in research on CXCL5, including its dysregulation in different tumors and the mechanism associated with tumor behavior (formation of the immunosuppressive microenvironment, promotion of tumor angiogenesis, and metastasis). We also summarized and discussed the perspective about the potential application of CXCL5 in tumor therapy targeting the tumor inflammatory microenvironment.
Collapse
|
1010
|
López-Cortés R, Muinelo-Romay L, Fernández-Briera A, Gil-Martín E. Inhibition of α(1,6)fucosyltransferase: Effects on Cell Proliferation, Migration, and Adhesion in an SW480/SW620 Syngeneic Colorectal Cancer Model. Int J Mol Sci 2022; 23:ijms23158463. [PMID: 35955598 PMCID: PMC9369121 DOI: 10.3390/ijms23158463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
The present study explored the impact of inhibiting α(1,6)fucosylation (core fucosylation) on the functional phenotype of a cellular model of colorectal cancer (CRC) malignization formed by the syngeneic SW480 and SW620 CRC lines. Expression of the FUT8 gene encoding α(1,6)fucosyltransferase was inhibited in tumor line SW480 by a combination of shRNA-based antisense knockdown and Lens culinaris agglutinin (LCA) selection. LCA-resistant clones were subsequently assayed in vitro for proliferation, migration, and adhesion. The α(1,6)FT-inhibited SW480 cells showed enhanced proliferation in adherent conditions, unlike their α(1,6)FT-depleted SW620 counterparts, which displayed reduced proliferation. Under non-adherent conditions, α(1,6)FT-inhibited SW480 cells also showed greater growth capacity than their respective non-targeted control (NTC) cells. However, cell migration decreased in SW480 after FUT8 knockdown, while adhesion to EA.hy926 cells was significantly enhanced. The reported results indicate that the FUT8 knockdown strategy with subsequent selection for LCA-resistant clones was effective in greatly reducing α(1,6)FT expression in SW480 and SW620 CRC lines. In addition, α(1,6)FT impairment affected the proliferation, migration, and adhesion of α(1,6)FT-deficient clones SW480 and SW620 in a tumor stage-dependent manner, suggesting that core fucosylation has a dynamic role in the evolution of CRC.
Collapse
Affiliation(s)
- Rubén López-Cortés
- Doctoral Program in Methods and Applications in Life Sciences, Faculty of Biology, Campus Lagoas-Marcosende, Universidade de Vigo, 36310 Vigo, Spain;
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), CIBERONC, Travesía da Choupana, 15706 Santiago de Compostela, Spain;
| | - Almudena Fernández-Briera
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, Campus Lagoas-Marcosende, Universidade de Vigo, 36310 Vigo, Spain;
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, Campus Lagoas-Marcosende, Universidade de Vigo, 36310 Vigo, Spain;
- Correspondence: ; Tel.: +34-(986)-812-570
| |
Collapse
|
1011
|
Zheng Y, Zhou Z, Wei R, Xiao C, Zhang H, Fan T, Zheng B, Li C, He J. The RNA-binding protein PCBP1 represses lung adenocarcinoma progression by stabilizing DKK1 mRNA and subsequently downregulating β-catenin. J Transl Med 2022; 20:343. [PMID: 35907982 PMCID: PMC9338556 DOI: 10.1186/s12967-022-03552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/24/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND PolyC-RNA-binding protein 1 (PCBP1) functions as a tumour suppressor and RNA regulator that is downregulated in human cancers. Here, we aimed to reveal the biological function of PCBP1 in lung adenocarcinoma (LUAD). METHODS First, PCBP1 was identified as an important biomarker that maintains LUAD through The Cancer Genome Atlas (TCGA) project screening and confirmed by immunohistochemistry and qPCR. Via colony formation, CCK8, IncuCyte cell proliferation, wound healing and Transwell assays, we confirmed that PCBP1 was closely related to the proliferation and migration of LUAD cells. The downstream gene DKK1 was discovered by RNA sequencing of PCBP1 knockdown cells. The underlying mechanisms were further investigated using western blot, qPCR, RIP, RNA pulldown and mRNA stability assays. RESULTS We demonstrate that PCBP1 is downregulated in LUAD tumour tissues. The reduction in PCBP1 promotes the proliferation, migration and invasion of LUAD in vitro and in vivo. Mechanistically, the RNA-binding protein PCBP1 represses LUAD by stabilizing DKK1 mRNA. Subsequently, decreased expression of the DKK1 protein relieves the inhibitory effect on the Wnt/β-catenin signalling pathway. Taken together, these results show that PCBP1 acts as a tumour suppressor gene, inhibiting the tumorigenesis of LUAD. CONCLUSIONS We found that PCBP1 inhibits LUAD development by upregulating DKK1 to inactivate the Wnt/β-catenin pathway. Our findings highlight the potential of PCBP1 as a promising therapeutic target.
Collapse
Affiliation(s)
- Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Wei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
1012
|
Nanoparticles-Based Strategies to Improve the Delivery of Therapeutic Small Interfering RNA in Precision Oncology. Pharmaceutics 2022; 14:pharmaceutics14081586. [PMID: 36015212 PMCID: PMC9415718 DOI: 10.3390/pharmaceutics14081586] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 02/07/2023] Open
Abstract
Small interfering RNA (siRNA) can selectively suppress the expression of disease-causing genes, holding great promise in the treatment of human diseases, including malignant cancers. In recent years, with the development of chemical modification and delivery technology, several siRNA-based therapeutic drugs have been approved for the treatment of non-cancerous liver diseases. Nevertheless, the clinical development of siRNA-based cancer therapeutics remains a major translational challenge. The main obstacles of siRNA therapeutics in oncology include both extracellular and intracellular barriers, such as instability under physiological conditions, insufficient tumor targeting and permeability (particularly for extrahepatic tumors), off-target effects, poor cellular uptake, and inefficient endosomal escape. The development of clinically suitable and effective siRNA delivery systems is expected to overcome these challenges. Herein, we mainly discuss recent strategies to improve the delivery and efficacy of therapeutic siRNA in cancer, including the application of non-viral nanoparticle-based carriers, the selection of target genes for therapeutic silencing, and the combination with other therapeutic modalities. In addition, we also provide an outlook on the ongoing challenges and possible future developments of siRNA-based cancer therapeutics during clinical translation.
Collapse
|
1013
|
Cui X, Fu Q, Wang X, Xia P, Cui X, Bai X, Lu Z. Molecular mechanisms and clinical applications of exosomes in prostate cancer. Biomark Res 2022; 10:56. [PMID: 35906674 PMCID: PMC9338661 DOI: 10.1186/s40364-022-00398-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Prostate cancer (PC) is a common tumor in men, and the incidence rate is high worldwide. Exosomes are nanosized vesicles released by all types of cells into multiple biological fluid types. These vesicles contribute to intercellular communication by delivering both nucleic acids and proteins to recipient cells. In recent years, many studies have explored the mechanisms by which exosomes mediate the epithelial-mesenchymal transition, angiogenesis, tumor microenvironment establishment, and drug resistance acquisition in PC, and the mechanisms that have been identified and the molecules involved have provided new perspectives for the possible discovery of novel diagnostic markers in PC. Furthermore, the excellent biophysical properties of exosomes, such as their high stability, high biocompatibility and ability to cross biological barriers, have made exosomes promising candidates for use in novel targeted drug delivery system development. In this review, we summarize the roles of exosomes in the growth and signal transmission in PC and show the promising future of exosome contributions to PC diagnostics and treatment.
Collapse
Affiliation(s)
- Xiaolin Cui
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xueying Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Pengcheng Xia
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Xianglun Cui
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaohui Bai
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
1014
|
Hua T, Zeng Z, Chen J, Xue Y, Li Y, Sang Q. Human Malignant Rhabdoid Tumor Antigens as Biomarkers and Potential Therapeutic Targets. Cancers (Basel) 2022; 14:3685. [PMID: 35954348 PMCID: PMC9367328 DOI: 10.3390/cancers14153685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Atypical teratoid rhabdoid tumor (ATRT) is a lethal type of malignant rhabdoid tumor in the brain, seen mostly in children under two years old. ATRT is mainly linked to the biallelic inactivation of the SMARCB1 gene. To understand the deadly characteristics of ATRT and develop novel diagnostic and immunotherapy strategies for the treatment of ATRT, this study investigated tumor antigens, such as alpha-fetoprotein (AFP), mucin-16 (MUC16/CA125), and osteopontin (OPN), and extracellular matrix modulators, such as matrix metalloproteinases (MMPs), in different human malignant rhabdoid tumor cell lines. In addition, the roles of MMPs were also examined. MATERIALS AND METHODS Five human cell lines were chosen for this study, including two ATRT cell lines, CHLA-02-ATRT and CHLA-05-ATRT; a kidney malignant rhabdoid tumor cell line, G401; and two control cell lines, human embryonic kidney HEK293 and HEK293T. Both ATRT cell lines were treated with a broad-spectrum MMP inhibitor, GM6001, to investigate the effect of MMPs on cell proliferation, viability, and expression of tumor antigens and biomarkers. Gene expression was examined using a reverse transcription polymerase chain reaction (RT-PCR), and protein expression was characterized by immunocytochemistry and flow cytometry. RESULTS All the rhabdoid tumor cell lines tested had high gene expression levels of MUC16, OPN, AFP, and MSLN. Low expression levels of neuron-specific enolase (ENO2) by the two ATRT cell lines demonstrated their lack of neuronal genotype. Membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14) and tissue inhibitor of metalloproteinases-2 (TIMP-2) were highly expressed in these malignant rhabdoid tumor cells, indicating their invasive phenotypes. GM6001 significantly decreased ATRT cell proliferation and the gene expression of MSLN, OPN, and several mesenchymal markers, suggesting that inhibition of MMPs may reduce the aggressiveness of rhabdoid cancer cells. CONCLUSION The results obtained from this study may advance our knowledge of the molecular landscapes of human malignant rhabdoid tumors and their biomarkers for effective diagnosis and treatment. This work analyzed the expression of human malignant rhabdoid tumor antigens that may serve as biomarkers for the development of novel therapeutic strategies, such as cancer vaccines and targeted and immunotherapies targeting osteopontin and mesothelin, for the treatment of patients with ATRT and other malignant rhabdoid tumors.
Collapse
Affiliation(s)
- Timothy Hua
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
| | - Ziwei Zeng
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
| | - Junji Chen
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310-6046, USA;
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Qingxiang Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| |
Collapse
|
1015
|
Establishment and Analysis of an Individualized EMT-Related Gene Signature for the Prognosis of Breast Cancer in Female Patients. DISEASE MARKERS 2022; 2022:1289445. [PMID: 35937944 PMCID: PMC9352481 DOI: 10.1155/2022/1289445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
Abstract
Background. The current high mortality rate of female breast cancer (BC) patients emphasizes the necessity of identifying powerful and reliable prognostic signatures in BC patients. Epithelial-mesenchymal transition (EMT) was reported to be associated with the development of BC. The purpose of this study was to identify prognostic biomarkers that predict overall survival (OS) in female BC patients by integrating data from TCGA database. Method. We first downloaded the dataset in TCGA and identified gene signatures by overlapping candidate genes. Differential analysis was performed to find differential EMT-related genes. Univariate regression analysis was then performed to identify candidate prognostic variables. We then developed a prognostic model by multivariate analysis to predict OS. Calibration curves, receiver operating characteristics (ROC) curves,
-index, and decision curve analysis (DCA) were used to test the veracity of the prognostic model. Result. In this study, we identified and validated a prognostic model integrating age and six genes (CD44, P3H1, SDC1, COL4A1, TGFβ1, and SERPINE1).
-index values for BC patients were 0.672 (95% CI 0.611–0.732) and 0.692 (95% CI 0.586–0.798) in the training cohort and test set, respectively. The calibration curve and the DCA curve show the good predictive performance of the model. Conclusion. This study offered a robust predictive model for OS prediction in female BC patients and may provide a more accurate treatment strategy and personalized therapy in the future.
Collapse
|
1016
|
Shi S, Wang B, Wan J, Song L, Zhu G, Du J, Ye L, Zhao Q, Cai J, Chen Q, Xiao K, He J, Yu L, Dai Z. TMEM106A transcriptionally regulated by promoter methylation is involved in invasion and metastasis of hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1008-1020. [PMID: 35713314 PMCID: PMC9827947 DOI: 10.3724/abbs.2022069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Expression of transmembrane protein 106A (TMEM106A) has been reported to be dysregulated in several types of cancers. However, the role of TMEM106A in hepatocellular carcinoma (HCC) is still unknown. In the present study, we demonstrate that TMEM106A is markedly downregulated in HCC compared with normal liver tissue. In particular, tumor-specific DNA methylation of TMEM106A is frequently observed in tumor tissues from HCC patients. Immunohistochemistry and pyrosequencing reveal a significant relationship between TMEM106A methylation and downregulation of protein expression. Receiver operating characteristic (ROC) curve analysis reveals that methylation of TMEM106A in tumor samples is different from that in non-malignant adjacent tissues of HCC patients. Moreover, HCC patients with TMEM106A hypermethylation have a poor clinical prognosis. 5-Aza-2'-deoxycytidin treatment of hypermethylated TMEM106A in highly metastatic HCC cells increases the expression of TMEM106A. Functional assays reveal that overexpression of TMEM106A significantly suppresses the malignant behavior of HCC cells in vitro and decreases tumorigenicity and lung metastasis in vivo. Mechanistically, TMEM106A inhibits epithelial mesenchymal transition (EMT) of HCC cells through inactivation of the Erk1/2/Slug signaling pathway. In conclusion, our findings demonstrate that TMEM106A is an inhibitor of HCC EMT and metastasis, and TMEM106A is often transcriptionally downregulated by promoter methylation, which results in reduced levels of TMEM106A protein and predicts poor survival outcomes for HCC patients.
Collapse
Affiliation(s)
- Shiming Shi
- Liver Cancer InstituteZhongshan HospitalFudan University & State Key Laboratory of Genetic EngineeringFudan UniversityShanghai200032China
- Department of Radiation OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Department of Pediatric Surgerythe First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou510080China
| | - Biao Wang
- Liver Cancer InstituteZhongshan HospitalFudan University & State Key Laboratory of Genetic EngineeringFudan UniversityShanghai200032China
- Department of Radiation OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Jinglei Wan
- Liver Cancer InstituteZhongshan HospitalFudan University & State Key Laboratory of Genetic EngineeringFudan UniversityShanghai200032China
| | - Lina Song
- Liver Cancer InstituteZhongshan HospitalFudan University & State Key Laboratory of Genetic EngineeringFudan UniversityShanghai200032China
| | - Guiqi Zhu
- Liver Cancer InstituteZhongshan HospitalFudan University & State Key Laboratory of Genetic EngineeringFudan UniversityShanghai200032China
| | - Junxian Du
- Liver Cancer InstituteZhongshan HospitalFudan University & State Key Laboratory of Genetic EngineeringFudan UniversityShanghai200032China
| | - Luxi Ye
- Department of Radiation OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Qianqian Zhao
- Department of Radiation OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Jialiang Cai
- Liver Cancer InstituteZhongshan HospitalFudan University & State Key Laboratory of Genetic EngineeringFudan UniversityShanghai200032China
| | - Qing Chen
- Department of General SurgeryZhongshan Hospital (South)Fudan UniversityShanghai Public Health Clinical CenterFudan UniversityShanghai200083China
| | - Kun Xiao
- Liver Cancer InstituteZhongshan HospitalFudan University & State Key Laboratory of Genetic EngineeringFudan UniversityShanghai200032China
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| | - Jian He
- Department of Radiation OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Lei Yu
- Liver Cancer InstituteZhongshan HospitalFudan University & State Key Laboratory of Genetic EngineeringFudan UniversityShanghai200032China
- Department of Liver Surgery and TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghai200032China
| | - Zhi Dai
- Liver Cancer InstituteZhongshan HospitalFudan University & State Key Laboratory of Genetic EngineeringFudan UniversityShanghai200032China
| |
Collapse
|
1017
|
Agnetti J, Bou Malham V, Desterke C, Benzoubir N, Peng J, Jacques S, Rahmouni S, Di Valentin E, Tan TZ, Samuel D, Thiery JP, Gassama-Diagne A. PI3Kδ activity controls plasticity and discriminates between EMT and stemness based on distinct TGFβ signaling. Commun Biol 2022; 5:740. [PMID: 35879421 PMCID: PMC9314410 DOI: 10.1038/s42003-022-03637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
The stem cells involved in formation of the complex human body are epithelial cells that undergo apicobasal polarization and form a hollow lumen. Epithelial plasticity manifests as epithelial to mesenchymal transition (EMT), a process by which epithelial cells switch their polarity and epithelial features to adopt a mesenchymal phenotype. The connection between the EMT program and acquisition of stemness is now supported by a substantial number of reports, although what discriminates these two processes remains largely elusive. In this study, based on 3D organoid culture of hepatocellular carcinoma (HCC)-derived cell lines and AAV8-based protein overexpression in the mouse liver, we show that activity modulation of isoform δ of phosphoinositide 3-kinase (PI3Kδ) controls differentiation and discriminates between stemness and EMT by regulating the transforming growth factor β (TGFβ) signaling. This study provides an important tool to control epithelial cell fate and represents a step forward in understanding the development of aggressive carcinoma.
Collapse
Affiliation(s)
- Jean Agnetti
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | - Vanessa Bou Malham
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | | | - Nassima Benzoubir
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | - Juan Peng
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | - Sophie Jacques
- Laboratory of animal Genomics, GIGA-Medical Genomics, GIGA-institute, Université de Liège, Liège, Belgium
| | - Souad Rahmouni
- Laboratory of animal Genomics, GIGA-Medical Genomics, GIGA-institute, Université de Liège, Liège, Belgium
| | - Emanuel Di Valentin
- Plateforme des vecteurs viraux, GIGA B34, GIGA-institute, Université de Liège, Liège, Belgium
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore National University of Singapore, Center for Translational Medicine, 14 Medical Drive, #12-01, 117599, Singapore, Singapore
| | - Didier Samuel
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
- AP-HP Hôpital Paul Brousse, Centre Hepato-Biliaire, F-94800, Villejuif, France
| | - Jean Paul Thiery
- Guangzhou Laboratory, International biological Island Guangzhou, 510005, Guangzhou, China
| | - Ama Gassama-Diagne
- INSERM, Unité 1193, Villejuif, F-94800, France.
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France.
| |
Collapse
|
1018
|
Liang H, Liu Y, Fu L, Li L, Gong N. Berberine inhibits the development of endometrial cancer through circ_ZNF608/miR-377-3p/COX2 axis. Autoimmunity 2022; 55:485-495. [PMID: 35876160 DOI: 10.1080/08916934.2021.2010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Huan Liang
- Department of Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yi Liu
- Department of Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Lian Fu
- Department of Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Ling Li
- Department of Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Nianjin Gong
- Department of Respiratory Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
1019
|
Zhang L, Zhang C, Liu N. CEACAM5 targeted by miR-498 promotes cell proliferation, migration and epithelial to mesenchymal transition in gastric cancer. Transl Oncol 2022; 24:101491. [PMID: 35882167 PMCID: PMC9309501 DOI: 10.1016/j.tranon.2022.101491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
CEACAM5 was upregulated in GC tissues and cells. CEACAM5 knockdown repressed GC cell migration, proliferation, and EMT. Knockdown of CEACAM5 suppressed the growth of GC cells in mice with transplanted tumor. CEACAM5 was predicted as a miR-498 target. MiR-498 reduced GC cell migration, proliferation, and EMT by inhibiting CEACAM5.
Objective Recent studies have shown that carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) may serve as an independent predictor of advanced gastric cancer (GC). The purpose of this research is to explore the patterns of expression, functions, and upstream regulatory pathway of CEACAM5 in GC. Methods The levels of miR-498 and CEACAM5 expression in GC cells and tissues were measured via qRT-PCR. Wound-healing, CCK-8, and western blotting experiments were conducted for the evaluation of GC cell migration, proliferation, and epithelial-mesenchymal transition (EMT), respectively. The targeting relationship between miR-498 and CEACAM5 was validated via pull-down and luciferase reporter assays. Xenograft tumor mouse models were established to observe CEACAM5’s influence on the growth of tumors in vivo. Results Elevated levels of CEACAM5 were detected among the GC cells and tissues. The results of the in vitro experiments revealed that the knockdown of CEACAM5 in GC cells significantly inhibited their proliferation, migration, and EMT. Moreover, CEACAM5 inhibition effectively hampered GC cell growth within the nude mice. Moreover, miR-498 directly targeted CEACAM5. MiR-498 downregulation had been observed among the cells and tissues of GC. The stimulation of GC cell proliferation, migration, and EMT, which had been engendered by CEACAM5 overexpression, was reversible through the overexpression of miR-498. Conclusion The outcomes of this research suggest that miR-498 is capable of repressing the proliferation, migration, and EMT of GC cells through CEACAM5 downregulation.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Gastrointestinal Surgery, The Sixth Hospital of Wuhan, The Affiliated Hospital of Jianghan University, Wuhan 430015, Hubei, China
| | - Chao Zhang
- Department of Gastrointestinal Surgery, The Sixth Hospital of Wuhan, The Affiliated Hospital of Jianghan University, Wuhan 430015, Hubei, China
| | - Nian Liu
- Department of Gastrointestinal Surgery, The Sixth Hospital of Wuhan, The Affiliated Hospital of Jianghan University, Wuhan 430015, Hubei, China.
| |
Collapse
|
1020
|
Zheng B, Song K, Sun L, Gao Y, Qu Y, Ren C, Yan P, Chen W, Guo W, Zhou C, Yue B. Siglec-15-induced autophagy promotes invasion and metastasis of human osteosarcoma cells by activating the epithelial-mesenchymal transition and Beclin-1/ATG14 pathway. Cell Biosci 2022; 12:109. [PMID: 35842729 PMCID: PMC9287887 DOI: 10.1186/s13578-022-00846-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Pulmonary metastasis is the main cause of poor prognosis in osteosarcoma. Sialic acid-bound immunoglobulin lectin 15 (Siglec-15) has been demonstrated to be obviously correlated with pulmonary metastasis in osteosarcoma patients. However, the effect of Siglec-15 on autophagy in osteosarcoma remains unclear, while the role and mechanism of Siglec-15-related autophagy in lung metastasis also remain unknown. METHODS The expression levels of Siglec-15 and Beclin-1 were detected in osteosarcoma tissues using immunohistochemistry (IHC). The effect of Siglec-15 on metastasis was investigated using Transwell, wound healing and animal experiments with osteosarcoma cells. Corresponding proteins were confirmed using Western blotting when Siglec-15 or Beclin-1 was silenced or overexpressed. Changes in autophagy and the cytoskeleton were detected using immunofluorescence and transmission electron microscopy. RESULTS Siglec-15 and Beclin-1 expression was evaluated both in lung metastases and in patients who presented with pulmonary metastasis of osteosarcoma. Immunoprecipitation experiments revealed that Siglec-15 interacts directly with Beclin-1, an important autophagic protein. Moreover, loss of Siglec-15 distinctly inhibited autophagy and reduced Beclin-1/ATG14 expression. The decreased invasion and migration caused by Siglec-15 silencing could be reversed by Beclin-1 overexpression. Additionally, autophagy can promote the epithelial-mesenchymal transition (EMT) and affect cytoskeletal rearrangement, which was confirmed by overexpression or silencing of Beclin-1. CONCLUSIONS These findings confirmed the role of Siglec-15 in the regulation of autophagy and elaborated the relationship and mechanisms between autophagy and the metastasis of osteosarcoma cells.
Collapse
Affiliation(s)
- Bingxin Zheng
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266000, People's Republic of China
| | - Keliang Song
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266000, People's Republic of China
| | - Lingling Sun
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yang Gao
- Medical Department, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yan Qu
- Industrial Investment Department, Haier, Qingdao, People's Republic of China
| | - Chongmin Ren
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266000, People's Republic of China
| | - Peng Yan
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266000, People's Republic of China
| | - Wenfang Chen
- Department of Physiology, Medical College of Qingdao University, Qingdao, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China
| | - Chuanli Zhou
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266000, People's Republic of China.
| | - Bin Yue
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266000, People's Republic of China.
| |
Collapse
|
1021
|
Zhao W, Liu L, Li X, Xu S. EphA10 drives tumor progression and immune evasion by regulating the MAPK/ERK cascade in lung adenocarcinoma. Int Immunopharmacol 2022; 110:109031. [PMID: 35839564 DOI: 10.1016/j.intimp.2022.109031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/24/2022]
Abstract
Backgrounds Lung adenocarcinoma is the most frequent histological type among patients with lung cancer. Ephrin receptor A10 (EphA10), a member of the receptor tyrosine kinase family, has been reported to participate in tumor progression, but its role in lung adenocarcinoma (LUAD) remains unknown. Methods Immunohistochemistry staining and real-time PCR were employed to determine the expression of EphA10 in clinical LUAD samples. EphA10 silencing or overexpression in LUAD cells was achieved by transduction of lentivirus. The effects of EphA10 on LUAD cells were evaluated by CCK-8, EdU staining, flow cytometry, Transwell, and Western blot. The in vivo tumor growth was assessed in the xenograft mice model. Results EphA10 was overexpressed in LUAD tissues. Higher EphA10 expression was observed in the tissues at the advanced tumor stage and was positively correlated with the EGFR. Mechanistically, silencing of EphA10 suppressed proliferation, migration, invasion, and epithelial-mesenchymal transition of LUAD cells. Additionally, EphA10 knockdown significantly reduced the PD-L1 expression in LUAD cells and enhanced NK cell-mediated anti-tumor effects. Furthermore, EphA10 activated the MAPK/ERK pathway, and U0126, an inhibitor of MEK, markedly reversed the promoting impacts of EphA10 overexpression on LUAD cells. Consistently, results from subcutaneous tumor xenografts in nude mice confirmed that EphA10 knockdown significantly inhibited tumor growth in vivo. Conclusions This work demonstrates that EphA10 drives tumor progression and immune evasion by regulating the MAPK/ERK cascade in LUAD, implying that EphA10 has the potential to be a therapeutic target in treating LUAD.
Collapse
Affiliation(s)
- Wenyue Zhao
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Lu Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Xuehao Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China.
| |
Collapse
|
1022
|
Yang D, Niu Y, Ni H, Leng J, Xu X, Yuan X, Chen K, Wu Y, Wu H, Lu H, Xu J, Wang L, Jiang Y, Cui D, Hu J, Xia D, Wu Y. Identification of metastasis-related long non-coding RNAs in lung cancer through a novel tumor mesenchymal score. Pathol Res Pract 2022; 237:154018. [PMID: 35914372 DOI: 10.1016/j.prp.2022.154018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been proven to play critical roles in epithelial-mesenchymal transition (EMT) and metastasis of lung cancer. However, the biological functions and related mechanisms of lncRNAs are unclear. In addition, the EMT-based prognosis prediction in lung cancer still lacks investigation. Here, we established the methodology of identifying critical metastasis-related lncRNAs using comprehensive datasets of cancer transcriptome, genome and epigenome, and also provided tools for prognosis prediction in lung cancer. Initially, important mesenchymal marker genes were identified to compose the tumor mesenchymal score, which predicted patient prognosis in lung cancer, especially lung adenocarcinoma (LUAD). The score was also correlated with several crucial biological and physiological processes, such as tumor immune and hypoxia. Based on the score, lung cancer patients was classified into epithelial and mesenchymal subtypes, and lncRNAs which exhibited expressional dysregulation, promotor methylation alteration and copy number variation between the two subtypes in LUAD were identified and underwent further prognostic analyses. Finally, we identified 14 lncRNAs as EMT-related and significant biomarkers in prognosis prediction of LUAD. As validation, lncRNA RBPMS-AS1 was proven to be co-expressed with epithelial biomarkers, suppressive for A549 cell migration, invasion and EMT, and also significantly associated with better outcomes of LUAD patients, suggesting the potential of RBPMS-AS1 to serve as a lncRNA epithelial biomarker in metastasis of LUAD. Based on the identified lncRNAs, an EMT-linked lncRNA prognostic signature was further established. Taken together, our study provides robust predictive tools, potential lncRNA targets and feasible screening strategies for future study of lung cancer metastasis.
Collapse
Affiliation(s)
- Dexin Yang
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuequn Niu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Heng Ni
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Leng
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xian Xu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongfeng Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Han Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haohua Lu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jinming Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Luming Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yifan Jiang
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dongyu Cui
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
1023
|
Panchy N, Watanabe K, Takahashi M, Willems A, Hong T. Comparative single-cell transcriptomes of dose and time dependent epithelial–mesenchymal spectrums. NAR Genom Bioinform 2022; 4:lqac072. [PMID: 36159174 PMCID: PMC9492285 DOI: 10.1093/nargab/lqac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Epithelial–mesenchymal transition (EMT) is a cellular process involved in development and disease progression. Intermediate EMT states were observed in tumors and fibrotic tissues, but previous in vitro studies focused on time-dependent responses with single doses of signals; it was unclear whether single-cell transcriptomes support stable intermediates observed in diseases. Here, we performed single-cell RNA-sequencing with human mammary epithelial cells treated with multiple doses of TGF-β. We found that dose-dependent EMT harbors multiple intermediate states at nearly steady state. Comparisons of dose- and time-dependent EMT transcriptomes revealed that the dose-dependent data enable higher sensitivity to detect genes associated with EMT. We identified cell clusters unique to time-dependent EMT, reflecting cells en route to stable states. Combining dose- and time-dependent cell clusters gave rise to accurate prognosis for cancer patients. Our transcriptomic data and analyses uncover a stable EMT continuum at the single-cell resolution, and complementary information of two types of single-cell experiments.
Collapse
Affiliation(s)
- Nicholas Panchy
- Department of Biochemistry & Cellular and Molecular Biology. The University of Tennessee , Knoxville, Knoxville, TN 37996, USA
| | - Kazuhide Watanabe
- RIKEN Center for Integrative Medical Sciences , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masataka Takahashi
- RIKEN Center for Integrative Medical Sciences , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Andrew Willems
- School of Genome Science and Technology, The University of Tennessee , Knoxville, Knoxville, TN 37916, USA
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology. The University of Tennessee , Knoxville, Knoxville, TN 37996, USA
- National Institute for Mathematical and Biological Synthesis , Knoxville, TN 37996, USA
| |
Collapse
|
1024
|
Andrews MC, Oba J, Wu CJ, Zhu H, Karpinets T, Creasy CA, Forget MA, Yu X, Song X, Mao X, Robertson AG, Romano G, Li P, Burton EM, Lu Y, Sloane RS, Wani KM, Rai K, Lazar AJ, Haydu LE, Bustos MA, Shen J, Chen Y, Morgan MB, Wargo JA, Kwong LN, Haymaker CL, Grimm EA, Hwu P, Hoon DSB, Zhang J, Gershenwald JE, Davies MA, Futreal PA, Bernatchez C, Woodman SE. Multi-modal molecular programs regulate melanoma cell state. Nat Commun 2022; 13:4000. [PMID: 35810190 PMCID: PMC9271073 DOI: 10.1038/s41467-022-31510-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Melanoma cells display distinct intrinsic phenotypic states. Here, we seek to characterize the molecular regulation of these states using multi-omic analyses of whole exome, transcriptome, microRNA, long non-coding RNA and DNA methylation data together with reverse-phase protein array data on a panel of 68 highly annotated early passage melanoma cell lines. We demonstrate that clearly defined cancer cell intrinsic transcriptomic programs are maintained in melanoma cells ex vivo and remain highly conserved within melanoma tumors, are associated with distinct immune features within tumors, and differentially correlate with checkpoint inhibitor and adoptive T cell therapy efficacy. Through integrative analyses we demonstrate highly complex multi-omic regulation of melanoma cell intrinsic programs that provide key insights into the molecular maintenance of phenotypic states. These findings have implications for cancer biology and the identification of new therapeutic strategies. Further, these deeply characterized cell lines will serve as an invaluable resource for future research in the field.
Collapse
Affiliation(s)
- Miles C. Andrews
- grid.1002.30000 0004 1936 7857Department of Medicine, Monash University, Melbourne, VIC Australia ,grid.240145.60000 0001 2291 4776Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Junna Oba
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.26091.3c0000 0004 1936 9959Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Chang-Jiun Wu
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Haifeng Zhu
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Tatiana Karpinets
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Caitlin A. Creasy
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Marie-Andrée Forget
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Xiaoxing Yu
- grid.26091.3c0000 0004 1936 9959Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Xingzhi Song
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Xizeng Mao
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - A. Gordon Robertson
- grid.434706.20000 0004 0410 5424Canada’s Michael Smith Genome Sciences Center, BC Cancer, Vancouver, BC Canada ,Dxige Research Inc., Courtenay, BC Canada
| | - Gabriele Romano
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Peng Li
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Elizabeth M. Burton
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Yiling Lu
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Robert Szczepaniak Sloane
- grid.240145.60000 0001 2291 4776Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Khalida M. Wani
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Kunal Rai
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Alexander J. Lazar
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lauren E. Haydu
- grid.240145.60000 0001 2291 4776Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Matias A. Bustos
- grid.416507.10000 0004 0450 0360Departments of Translational Molecular Medicine and Genomic Sequencing Center, St John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA USA
| | - Jianjun Shen
- grid.240145.60000 0001 2291 4776Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX USA
| | - Yueping Chen
- grid.240145.60000 0001 2291 4776Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX USA
| | - Margaret B. Morgan
- grid.240145.60000 0001 2291 4776Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jennifer A. Wargo
- grid.240145.60000 0001 2291 4776Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lawrence N. Kwong
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Cara L. Haymaker
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Elizabeth A. Grimm
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Patrick Hwu
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.468198.a0000 0000 9891 5233H Lee Moffitt Cancer Center, Tampa, FL USA
| | - Dave S. B. Hoon
- grid.416507.10000 0004 0450 0360Departments of Translational Molecular Medicine and Genomic Sequencing Center, St John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA USA
| | - Jianhua Zhang
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jeffrey E. Gershenwald
- grid.240145.60000 0001 2291 4776Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Michael A. Davies
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - P. Andrew Futreal
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Chantale Bernatchez
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Biologics Development, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Scott E. Woodman
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
1025
|
Shao J, Feng Q, Jiang W, Yang Y, Liu Z, Li L, Yang W, Zou Y. E3 ubiquitin ligase RBX1 drives the metastasis of triple negative breast cancer through a FBXO45-TWIST1-dependent degradation mechanism. Aging (Albany NY) 2022; 14:5493-5510. [PMID: 35802537 PMCID: PMC9320552 DOI: 10.18632/aging.204163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Triple-negative breast cancer (TNBC) patients are at high risk of recurrence and metastasis in the early stages, although receiving standard treatment. However, the underlying mechanism of TNBC remains unclear. Here, the critical effect of E3 ubiquitin ligase RBX1 in the metastasis of TNBC was reported for the first time. We discovered that RBX1 expression was evidently raised in the tissues of TNBC. Our clinical research displayed that high RBX1 expression was markedly related to poor distant invasion and survival. Functional analysis exhibited that RBX1 facilitated metastasis of TNBC cells through increasing EMT. Furthermore, we demonstrated that RBX1 knockdown increased the levels of the Twist family bHLH transcription factor 1 (TWIST1), is a significant regulator in the EMT process in some cancers. It can be observed an evident positive correlation between the TWIST1 and RBX1 levels, further confirming that EMT induced by RBX1 in TNBC cells is determined by TWIST1. Mechanistically, RBX1 modulates the expression of TWIST1 via modulating FBXO45, directly binding to FBXO45, and facilitating its degradation and ubiquitination. Briefly, our findings confirm that RBX1 is probably a new biomarker of TNBC carcinogenesis, thus suggesting that targeting the RBX1/FBXO45/TWIST1 axis may be an underlying strategy for TNBC treatment.
Collapse
Affiliation(s)
- Jun Shao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qian Feng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Weifan Jiang
- Department of Urology Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yuting Yang
- Department of Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhiqiang Liu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| | - Liang Li
- Emergency Department, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, Jiangxi Province, China
| | - Wenlong Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yufeng Zou
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Nanchang 330006, Jiangxi Province, China.,Department of Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
1026
|
Wang G, Yang L, Wang Y, Hu R, Zhang K, Guo T, Chen B, Jiang X, Cui R. Characterization of Immune-Related Molecular Subtypes and a Prognostic Signature Correlating With the Response to Immunotherapy in Patients With Gastric Cancer. Front Immunol 2022; 13:939836. [PMID: 35898512 PMCID: PMC9309259 DOI: 10.3389/fimmu.2022.939836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Gastric cancer (GC) is a disease characterized by high molecular and phenotypic heterogeneity and represents a leading cause of cancer-related death worldwide. The tumor immune microenvironment (TIME) affects the response to immunotherapy and the prognosis of patients with GC. Explorations of the TIME in GC and characterization of molecular subtypes might enhance personalized treatment and facilitate clinical decision-making. In this study, two molecular subtypes were defined through unsupervised consensus clustering based on immune-related dysregulated genes. Then, patients with different molecular subtypes of GC were shown to have distinct differences in sensitivity to immune checkpoint blockers (ICBs). The immune-related prognostic signature was established utilizing least absolute shrinkage and selection operator (LASSO)-Cox regression analysis. Three independent external cohorts and the IMvigor210 cohort were introduced to validate the robustness of IPRS. scRNA-seq data of GC samples were used to decipher the underlying mechanisms of how IPRS contributes to the TIME. GC biospecimens were collected for RT-qPCR to further validate our findings. In summary, we characterized the abnormal TIME of GC and constructed a reliable immune-related prognostic signature correlating with the response to immunotherapy. This study may provide new strategies for developing individualized treatments for patients with GC.
Collapse
Affiliation(s)
- Gaoming Wang
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongkun Wang
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Renhao Hu
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kehui Zhang
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Taohua Guo
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bo Chen
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaohua Jiang
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Xiaohua Jiang, ; Ran Cui,
| | - Ran Cui
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Xiaohua Jiang, ; Ran Cui,
| |
Collapse
|
1027
|
Regulation of Tissue Factor by CD44 Supports Coagulant Activity in Breast Tumor Cells. Cancers (Basel) 2022; 14:cancers14133288. [PMID: 35805061 PMCID: PMC9266039 DOI: 10.3390/cancers14133288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Metastasis and thromboembolic complications are the main cause of cancer-associated death. An overexpression of coagulation factors, and particularly Tissue factor, by tumor cells is a key event implicated in this observed hypercoagulability. Tissue Factor is indeed a cellular initiator of the coagulation cascade which has been associated with aggressive tumor phenotypes such as those characteristic of Epithelial-Mesenchymal Transitions (EMTs) and Cancer Stem Cells (CSCs). Understanding molecular mechanisms controlling Tissue Factor overexpression in those tumor phenotypes is thus an important aspect of cancer research. We show here that CD44 (a transmembrane marker of CSC and EMT phenotypes) contributes to regulate TF expression at a transcriptional level, thereby supporting procoagulant properties in tumor cells that facilitate their metastatic spread. Abstract Previous work identified Tissue Factor (TF), a key activator of the coagulation cascade, as a gene induced in cellular contexts of Epithelial-Mesenchymal Transitions (EMTs), providing EMT+ Circulating Tumor Cells (CTCs) with coagulant properties that facilitate their metastatic seeding. Deciphering further molecular aspects of TF regulation in tumor cells, we report here that CD44 and TF coexpress in EMT contexts, and that CD44 acts as a regulator of TF expression supporting procoagulant properties and metastatic seeding. A transcriptional regulatory mechanism bridging CD44 to TF expression was further evidenced. Comparing different TF –promoter luciferase reporter constructs, we indeed found that the shortest -111 pb TF promoter fragment harboring three Specificity Protein 1 (Sp1) binding sites is still responsive to CD44 silencing. The observation that (i) mutation within Sp1 binding sites decreased the basal activity of the -111 pb TF promoter construct, (ii) CD44 silencing decreased Sp1 protein and mRNA levels and (iii) Sp1 silencing diminished TF expression further points to Sp1 as a key mediator linking CD44 to TF regulation. All together, these data thus report a transcriptional regulatory mechanism of TF expression by CD44 supporting procoagulant activity and metastatic competence of CTCs.
Collapse
|
1028
|
Li Q, Zhang X, Ke R. Spatial Transcriptomics for Tumor Heterogeneity Analysis. Front Genet 2022; 13:906158. [PMID: 35899203 PMCID: PMC9309247 DOI: 10.3389/fgene.2022.906158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
The molecular heterogeneity of cancer is one of the major causes of drug resistance that leads to treatment failure. Thus, better understanding the heterogeneity of cancer will contribute to more precise diagnosis and improved patient outcomes. Although single-cell sequencing has become an important tool for investigating tumor heterogeneity recently, it lacks the spatial information of analyzed cells. In this regard, spatial transcriptomics holds great promise in deciphering the complex heterogeneity of cancer by providing localization-indexed gene expression information. This study reviews the applications of spatial transcriptomics in the study of tumor heterogeneity, discovery of novel spatial-dependent mechanisms, tumor immune microenvironment, and matrix microenvironment, as well as the pathological classification and prognosis of cancer. Finally, future challenges and opportunities for spatial transcriptomics technology’s applications in cancer are also discussed.
Collapse
|
1029
|
Alba J, Barcia R, Gutiérrez-Berzal J, Ramos-Martínez JI. Could inhibition of metalloproteinases be used to block the process of metastasis? Cell Biochem Funct 2022; 40:600-607. [PMID: 35789101 PMCID: PMC9544369 DOI: 10.1002/cbf.3730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/14/2022]
Abstract
Metastasis is a multisequential process that allows tumor cells to migrate to tissues distant from the primary tumor. Only a small number of cells escape from the primary tumor; however, the metastases generated are responsible for more than 90% of cancer deaths. Many metastatic processes initially require the total or partial start‐up of a program for the transformation of tumor epithelial cells into mesenchymal cells (EMT). The launching of the EMT program is stimulated by cytokines and other elements produced by the diverse types of cells composing the tumor stroma. In parallel, a process of destabilization of the extracellular matrix (ECM) takes place by means of the synthesis of proteases of the matrix metalloproteinases (MMPs) family. EMC degradation allows the exportation of some tumor cells as mesenchymal cells to the circulatory system and their subsequent implantation in a tissue distant from the primary tumor. The blocking of these both processes appears as a hypothetical stop point in the metastatic mechanism. The present review deals with the different options to achieve the inhibition of MMPs, focusing on MMP7 as a target given its involvement in the metastatic processes of a wide variety of tumors. The simultaneous implantation of the epithelial–mesenchymal program and the synthesis and activation of matrix metalloproteinases during the first phases of the metastasis process is known. The inhibition of proteases could constitute a possible blockage of the process. The review describes the evolution of the different inhibition mechanisms that could inform applicable therapeutic mechanisms for the paralysis of the metastatic process.
Collapse
Affiliation(s)
- Jesús Alba
- Histobiomol, Hospital POLUSA, Lugo, Spain
| | - Ramiro Barcia
- Faculty of Sciences, University of Santiago de Compostela, Lugo, Spain
| | | | - Juan I Ramos-Martínez
- Department of Biochemistry and Molecular Biology, School of Veterinary, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
1030
|
Xu C, Lin S, Lu Y, Mao L, Li S, Li Z. C12orf59 Promotes Esophageal Squamous Cell Carcinoma Progression via YAP-Mediated Epithelial-Mesenchymal Transition. Front Oncol 2022; 12:927249. [PMID: 35860553 PMCID: PMC9289202 DOI: 10.3389/fonc.2022.927249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
C12orf59 is a novel gene widely expressed in diverse normal human tissues. Aberrant expression of C12orf59, which is involved in tumor progression, has been reported in a few types of cancer. However, its expression and biological function in esophageal squamous cell carcinoma (ESCC) remain largely unclear. Here, we found that the mRNA and protein levels of C12orf59 were prominently higher in both tumor tissues and most ESCC cell lines. Functionally, C12orf59 overexpression promoted ESCC cell proliferation, migration and invasion, whereas C12orf59 depletion worked oppositely. Mechanistically, C12orf59 exerted its oncogenic function through the induction of epithelial-mesenchymal transition (EMT) of ESCC cells, which relied on Yes-associated protein (YAP) dephosphorylation and nuclear translocation. Constitutively active YAP further facilitated cell migration, invasion and EMT induced by enforced C12orf59 overexpression. On the contrary, increased cell motility and EMT caused by enforced C12orf59 overexpression were dramatically repressed upon YAP inactivation by verteporfin. Thus, we conclude that YAP activation driven by C12orf59 contributes to the malignancy of ESCC through EMT and that targeting drugs for C12orf59 combined with YAP inhibitor may be a potential therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Chunhua Xu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Shan Lin
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Yanxin Lu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
- Basic Medical Science Department, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Longyi Mao
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Shi Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
- *Correspondence: Zesong Li,
| |
Collapse
|
1031
|
Cai FF, Xu HR, Yu SH, Li P, Lu YY, Chen J, Bi ZQ, Sun HS, Cheng J, Zhuang HQ, Hua ZC. ADT-OH inhibits malignant melanoma metastasis in mice via suppressing CSE/CBS and FAK/Paxillin signaling pathway. Acta Pharmacol Sin 2022; 43:1829-1842. [PMID: 34795411 PMCID: PMC9253130 DOI: 10.1038/s41401-021-00799-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is widely recognized as the third endogenous gas signaling molecule and may play a key role in cancer biological processes. ADT-OH (5-(4-hydroxyphenyl)-3H-1,2-dithiocyclopentene-3-thione) is one of the most widely used organic donors for the slow release of H2S and considered to be a potential anticancer compound. In this study, we investigated the antimetastatic effects of ADT-OH in highly metastatic melanoma cells. A tail-vein-metastasis model was established by injecting B16F10 and A375 cells into the tail veins of mice, whereas a mouse footpad-injection model was established by injecting B16F10 cells into mouse footpads. We showed that administration of ADT-OH significantly inhibited the migration and invasion of melanoma cells in the three different animal models. We further showed that ADT-OH dose-dependently inhibited the migration and invasion of B16F10, B16F1 and A375 melanoma cells as evaluated by wound healing and Transwell assays in vitro. LC-MS/MS and bioinformatics analyses revealed that ADT-OH treatment inhibited the EMT process in B16F10 and A375 cells by reducing the expression of FAK and the downstream response protein Paxillin. Overexpression of FAK reversed the inhibitory effects of ADT-OH on melanoma cell migration. Moreover, after ADT-OH treatment, melanoma cells showed abnormal expression of the H2S-producing enzymes CSE/CBS and the AKT signaling pathways. In addition, ADT-OH significantly suppressed the proliferation of melanoma cells. Collectively, these results demonstrate that ADT-OH inhibits the EMT process in melanoma cells by suppressing the CSE/CBS and FAK signaling pathways, thereby exerting its antimetastatic activity. ADT-OH may be used as an antimetastatic agent in the future.
Collapse
Affiliation(s)
- Fang-Fang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Huang-Ru Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Shi-Hui Yu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Ping Li
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Yan-Yan Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Jia Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Zhi-Qian Bi
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Hui-Song Sun
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Jian Cheng
- Institute of Neuroscience, Soochow University, Suzhou, 215031, China.
| | - Hong-Qin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China.
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China.
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China.
| |
Collapse
|
1032
|
Shen T, Yang T, Yao M, Zheng Z, He M, Shao M, Li J, Fang C. BTC as a Novel Biomarker Contributing to EMT via the PI3K-AKT Pathway in OSCC. Front Genet 2022; 13:875617. [PMID: 35846125 PMCID: PMC9283838 DOI: 10.3389/fgene.2022.875617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors of the head and neck, while metastasis is the main cause of OSCC-related death. There is an urgent need to explore novel prognostic biomarkers and identify biological targets related to metastasis in OSCC treatment.Methods: Analysis of differential expression was performed using datasets in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Immunohistochemistry (IHC) was conducted to assess the expression of betacellulin (BTC) in OSCC. SCC4 and CAL27 cells were used for in vitro experiments, in which CCK-8, transwell assays, and wounding healing assays were performed to verify the biological functions of BTC. The role of BTC in EMT was analyzed by EMT score and Western blot.Results: Through the analysis of the mRNA expression profile data from TCGA database in OSCC, we found that only low expression of BTC was significantly correlated with a poor prognosis in OSCC patients. The results of IHC assays and TCGA databases showed that the expression level of BTC was related to the tumor stage, histological grade, and metastasis status. In vitro analysis showed that overexpression of BTC significantly suppressed the proliferation and migration of OSCC cells. Furthermore, we confirmed that BTC could affect EMT through the PI3K-AKT signaling pathway.Conclusion: The overexpression of BTC suppresses the proliferation, migration, and EMT of OSCC cells via the PI3K-AKT pathways, leading to a better prognosis in OSCC. BTC may be used as a novel molecular marker to assess the prognosis of OSCC patients.
Collapse
Affiliation(s)
- Ting Shen
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Tianru Yang
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Mianfeng Yao
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Ziran Zheng
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Mi He
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Mengying Shao
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Jiang Li
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
- *Correspondence: Jiang Li, ; Changyun Fang,
| | - Changyun Fang
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
- *Correspondence: Jiang Li, ; Changyun Fang,
| |
Collapse
|
1033
|
GREM1 is required to maintain cellular heterogeneity in pancreatic cancer. Nature 2022; 607:163-168. [PMID: 35768509 DOI: 10.1038/s41586-022-04888-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/20/2022] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) shows pronounced epithelial and mesenchymal cancer cell populations1-4. Cellular heterogeneity in PDAC is an important feature in disease subtype specification3-5, but how distinct PDAC subpopulations interact, and the molecular mechanisms that underlie PDAC cell fate decisions, are incompletely understood. Here we identify the BMP inhibitor GREM16,7 as a key regulator of cellular heterogeneity in pancreatic cancer in human and mouse. Grem1 inactivation in established PDAC in mice resulted in a direct conversion of epithelial into mesenchymal PDAC cells within days, suggesting that persistent GREM1 activity is required to maintain the epithelial PDAC subpopulations. By contrast, Grem1 overexpression caused an almost complete 'epithelialization' of highly mesenchymal PDAC, indicating that high GREM1 activity is sufficient to revert the mesenchymal fate of PDAC cells. Mechanistically, Grem1 was highly expressed in mesenchymal PDAC cells and inhibited the expression of the epithelial-mesenchymal transition transcription factors Snai1 (also known as Snail) and Snai2 (also known as Slug) in the epithelial cell compartment, therefore restricting epithelial-mesenchymal plasticity. Thus, constant suppression of BMP activity is essential to maintain epithelial PDAC cells, indicating that the maintenance of the cellular heterogeneity of pancreatic cancer requires continuous paracrine signalling elicited by a single soluble factor.
Collapse
|
1034
|
Luo SD, Tsai HT, Hwang CF, Chiu TJ, Li SH, Hsu YL, Hsiao CC, Chen CH. Aberrant miR-874-3p/leptin/EGFR/c-Myc signaling contributes to nasopharyngeal carcinoma pathogenesis. J Exp Clin Cancer Res 2022; 41:215. [PMID: 35778755 PMCID: PMC9248092 DOI: 10.1186/s13046-022-02415-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leptin is important in physiological and pathological functions in various cancers, however, the significance and mechanisms of leptin in nasopharyngeal carcinoma remain ambiguous. METHODS Leptin expression was analyzed by QPCR, immunohistochemistry, Western blotting, and TCGA database. The impact of gain- or loss-of-function of leptin were determined by MTT, colony formation, wound healing, and Transwell assays in NPC cells, and by a xenograft tumor model. Leptin-modulated glucose consumption and lactate production were assessed by ELISA. Furthermore, leptin-regulated signaling pathways were examined by QPCR and Western blotting assays. The immunoprecipitation assay was conducted to determine interaction between leptin and EGFR. In addition, miR-874-3p-regulated leptin expression was evaluated using bioinformatics, QPCR, luciferase assay, AGO2-RIP assay, and Western blotting. RESULTS In this study, we found that leptin was highly expressed in the sera and tumor tissues of patients with NPC, and elevated leptin expression was associated with advanced clinical features and poor prognosis. Functional assays demonstrated that leptin remarkably promoted NPC cell growth, motility, and glycolysis in vitro and in vivo. Mechanistically, leptin associated with EGFR, resulting in enhanced cell growth through the regulation of cell-cycle related markers, glycolysis-related genes, and EGFR/AKT/c-Myc signaling. Moreover, leptin potentiated the invasive capacity of NPC cells by promoting EMT. We further explored that miR-874-3p influenced leptin-mediated NPC progression. Overexpression of miR-874-3p prevented cell growth, motility, glucose consumption, and lactate production in NPC cells, whereas miR-874-3p inhibition had the opposite effects. AGO-RIP assays confirmed that Argonaute 2 (AGO2), a protein associated with miR-874-3p, regulated leptin expression in NPC cells. The rescue assays indicated that inhibition of leptin suppressed the effects of miR-874-3p inhibitor. In clinical specimens, miR-874-3p was negatively correlated with leptin. CONCLUSIONS Leptin may serve as a novel prognostic factor and potential therapeutic target for patients with NPC. In addition, a newly discovered regulatory axis of leptin/EGFR/AKT/c-Myc can provide a novel therapeutic strategy for NPC.
Collapse
Affiliation(s)
- Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyüan, 33302, Taiwan
| | - Hsin-Ting Tsai
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan
| | - Chung-Feng Hwang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Tai-Jan Chiu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyüan, 33302, Taiwan
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Shau-Hsuan Li
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Ya-Ling Hsu
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Chang-Chun Hsiao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyüan, 33302, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chang-Han Chen
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan.
- Institute of Medicine, Chung Shan Medical University, No.110, Sec.1, Jianguo N. Rd, Taichung City, 40201, Taiwan.
| |
Collapse
|
1035
|
Okuda S, Yamakado N, Higashikawa K, Uetsuki R, Ishida F, Rizqiawan A, Ono S, Mizuta K, Kamata N, Tobiume K. Dexamethasone resets stable association of nuclear Snail with LSD1 concomitant with transition from EMT to partial EMT. Biochem Biophys Rep 2022; 30:101277. [PMID: 35592611 PMCID: PMC9110894 DOI: 10.1016/j.bbrep.2022.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/23/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022] Open
Abstract
Cancer cells utilize epithelial to mesenchymal transition (EMT) during invasion and metastasis. This program has intermediate cell states with retained epithelial and gained mesenchymal features together, referred to as partial EMT. Histone demethylase LSD1 forms a complex with the EMT master transcription factor Snail to modify histone marks and regulate target gene expression. However, little is known about the formation of this complex during the Snail-dependent transition between partial EMT and EMT. Here we visualized the nuclear complex of Snail and LSD1 as foci signals using proximity ligation assay. We demonstrated that the nuclear foci numbers varied with the transition of exogenous Snail-dependent partial EMT to EMT. Furthermore, we found that long exposure to dexamethasone could revert exogenous Snail-dependent EMT to partial EMT. In this reversion, the nuclear foci numbers also returned to previous levels. Therefore, we concluded that Snail might select partial EMT or EMT by altering its association with LSD1. Nuclear complexes of Snail was visualized by PLA. Exogenous Snai1 differently induced pEMT and EMT in OM-1. Dexamethasone reverted Snail-induced EMT to pEMT. Nuclei showed distinct foci numbers of Snail/LSD1 and Snail/methylated H3 in EMT and pEMT.
Collapse
|
1036
|
Kuo YH, Lai HY, Chan TC, Hsing CH, Huang SK, Hsieh KL, Chen TJ, Li WS, Lu JC, Li CF. Upregulation of Cartilage Oligomeric Matrix Protein Predicts Poor Prognosis in Urothelial Carcinoma. Onco Targets Ther 2022; 15:727-740. [PMID: 35795328 PMCID: PMC9252317 DOI: 10.2147/ott.s370028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
PURPOSE Cartilage oligomeric matrix protein (COMP) is known as a large pentameric glycoprotein, which interacts with various extracellular matrix proteins in tissues. COMP has been reported to play a role in multiple connective tissue disorders. Recently, elevated COMP levels have been found to be associated with increased tumor size, metastases, faster recurrence of cancer, and overall poorer survival in several cancers. However, the clinical importance of COMP in urothelial carcinoma remains unclear. We investigated the association between COMP expression and clinical outcomes in urothelial carcinoma. PATIENTS AND METHODS In this retrospective study, we collected urothelial carcinoma (UC) tissue from 340 upper urinary tract UC (UTUC) patients and 295 urinary bladder UC (UBUC) patients. Pearson's chi-square test, Kaplan-Meier analysis, and the multivariate Cox proportional hazards model was used to examine the relationship between COMP expression and patient characteristics, pathological findings, and patient survival, such as metastasis-free survival (MFS) and disease-specific survival (DSS). RESULTS A total of 295 UBUC patients and 340 UTUC patients were recruited. The COMP mRNA level was significantly higher among invasive tumors (pT2-pT4) than in noninvasive tumors (pTa-T1) in UBUC groups (P < 0.01). COMP overexpression was associated with advanced T stage, nodal metastases, vascular invasion, perineural invasion, high histological grade, and high mitotic rate in both UBUC and UTUC cohorts. COMP overexpression was predictive of shorter DSS (hazard ratio [HR] in UBUC, 3.986, P < 0.001; in UTUC, 2.283, P = 0.027] and MFS (HR in UBUC, 6.813, P < 0.001; in UTUC, 4.070, P < 0.001). Kaplan-Meier analysis demonstrated high COMP expression associated with poor DSS and MFS in UTUC and UBUC groups (all P < 0.0001). CONCLUSION COMP overexpression was linked to poor clinical prognosis and poor pathological features in UC. These results suggest COMP as a biomarker for UC.
Collapse
Affiliation(s)
- Yu-Hsuan Kuo
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, 71004, Taiwan
- College of Pharmacy and Science, Chia Nan University, Tainan, 71710, Taiwan
| | - Hong-Yue Lai
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Chung-Hsi Hsing
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Steven K Huang
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Kun-Lin Hsieh
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Tzu-Ju Chen
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan, 710, Taiwan
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Wan-Shan Li
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Department of Pathology, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Jhih-Cheng Lu
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Liouying, 736, Taiwan
| | - Chien-Feng Li
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| |
Collapse
|
1037
|
Kim BK, Kim DM, Park H, Kim SK, Hwang MA, Lee J, Kang MJ, Byun JE, Im JY, Kang M, Park KC, Yeom YI, Kim SY, Jung H, Kweon DH, Cheong JH, Won M. Synaptotagmin 11 scaffolds MKK7-JNK signaling process to promote stem-like molecular subtype gastric cancer oncogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:212. [PMID: 35768842 PMCID: PMC9241269 DOI: 10.1186/s13046-022-02420-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022]
Abstract
Background Identifying biomarkers related to the diagnosis and treatment of gastric cancer (GC) has not made significant progress due to the heterogeneity of tumors. Genes involved in histological classification and genetic correlation studies are essential to develop an appropriate treatment for GC. Methods In vitro and in vivo lentiviral shRNA library screening was performed. The expression of Synaptotagmin (SYT11) in the tumor tissues of patients with GC was confirmed by performing Immunohistochemistry, and the correlation between the expression level and the patient’s survival rate was analyzed. Phospho-kinase array was performed to detect Jun N-terminal kinase (JNK) phosphorylation. SYT11, JNK, and MKK7 complex formation was confirmed by western blot and immunoprecipitation assays. We studied the effects of SYT11 on GC proliferation and metastasis, real-time cell image analysis, adhesion assay, invasion assay, spheroid formation, mouse xenograft assay, and liver metastasis. Results SYT11 is highly expressed in the stem-like molecular subtype of GC in transcriptome analysis of 527 patients with GC. Moreover, SYT11 is a potential prognostic biomarker for histologically classified diffuse-type GC. SYT11 functions as a scaffold protein, binding both MKK7 and JNK1 signaling molecules that play a role in JNK1 phosphorylation. In turn, JNK activation leads to a signaling cascade resulting in cJun activation and expression of downstream genes angiopoietin-like 2 (ANGPTL2), thrombospondin 4 (THBS4), Vimentin, and junctional adhesion molecule 3 (JAM3), which play a role in epithelial-mesenchymal transition (EMT). SNU484 cells infected with SYT11 shRNA (shSYT11) exhibited reduced spheroid formation, mouse tumor formation, and liver metastasis, suggesting a pro-oncogenic role of SYT11. Furthermore, SYT11-antisense oligonucleotide (ASO) displayed antitumor activity in our mouse xenograft model and was conferred an anti-proliferative effect in SNU484 and MKN1 cells. Conclusion SYT11 could be a potential therapeutic target as well as a prognostic biomarker in patients with diffuse-type GC, and SYT11-ASO could be used in therapeutic agent development for stem-like molecular subtype diffuse GC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02420-3.
Collapse
Affiliation(s)
- Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea. .,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea. .,R&D Center, oneCureGEN, Daejeon, South Korea.
| | - Da-Mi Kim
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hyunkyung Park
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Mi-Aie Hwang
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jungwoon Lee
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea.,Environmental Diseases Research Center, KRIBB, Daejeon, South Korea
| | - Mi-Jung Kang
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jae-Eun Byun
- Immunotherapy Research Center, KRIBB, Daejeon, South Korea
| | - Joo-Young Im
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Minho Kang
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Kyung Chan Park
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Young Il Yeom
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Seon-Young Kim
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea.,Korea Bioinformation Center, KRIBB, Daejeon, South Korea
| | - Haiyoung Jung
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea.,Immunotherapy Research Center, KRIBB, Daejeon, South Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea. .,Serverance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea. .,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea. .,R&D Center, oneCureGEN, Daejeon, South Korea.
| |
Collapse
|
1038
|
Bao X, Zhang Y, Zhang H, Xia L. Molecular Mechanism of β-Sitosterol and its Derivatives in Tumor Progression. Front Oncol 2022; 12:926975. [PMID: 35756648 PMCID: PMC9213880 DOI: 10.3389/fonc.2022.926975] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
β-Sitosterol (SIT), a white powdery organic substance with a molecular formula of C29H50O, is one of the most abundant naturally occurring phytosterols in plants. With a chemical composition similar to that of cholesterol, SIT is applied in various fields such as medicine, agriculture, and chemical industries, owing to its unique biological and physicochemical properties. Modern pharmacological studies have elucidated good anti-tumor therapeutic effect activity of SIT, which mainly manifests as pro-apoptotic, anti-proliferative, anti-metastatic, anti-invasive, and chemosensitizing on tumor cells. In addition, SIT exerts an anti-tumor effect on multiple malignant tumors such as breast, gastric, lung, kidney, pancreatic, prostate, and other cancers. Further, SIT derivatives with structural modifications are promising anti-tumor drugs with significant anti-tumor effects. This review article focuses on recent studies relevant to the anti-tumor effects of SIT and summarizes its anti-tumor mechanism to provide a reference for the clinical treatment of malignant tumors and the development of novel anti-tumor drugs.
Collapse
Affiliation(s)
- Xingxun Bao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
1039
|
Fusobacterium nucleatum and Malignant Tumors of the Digestive Tract: A Mechanistic Overview. Bioengineering (Basel) 2022; 9:bioengineering9070285. [PMID: 35877336 PMCID: PMC9312082 DOI: 10.3390/bioengineering9070285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) is an oral anaerobe that plays a role in several oral diseases. However, F. nucleatum is also found in other tissues of the digestive tract, and several studies have recently reported that the level of F. nucleatum is significantly elevated in malignant tumors of the digestive tract. F. nucleatum is proposed as one of the risk factors in the initiation and progression of digestive tract malignant tumors. In this review, we summarize recent reports on F. nucleatum and its role in digestive tract cancers and evaluate the mechanisms underlying the action of F. nucleatum in digestive tract cancers.
Collapse
|
1040
|
Margarido AS, Uceda-Castro R, Hahn K, de Bruijn R, Kester L, Hofland I, Lohuis J, Seinstra D, Broeks A, Jonkers J, Broekman MLD, Wesseling P, Vennin C, Vizoso M, van Rheenen J. Epithelial-to-Mesenchymal Transition Drives Invasiveness of Breast Cancer Brain Metastases. Cancers (Basel) 2022; 14:cancers14133115. [PMID: 35804890 PMCID: PMC9264851 DOI: 10.3390/cancers14133115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/30/2022] Open
Abstract
(1) Background: an increasing number of breast cancer patients develop lethal brain metastases (BM). The complete removal of these tumors by surgery becomes complicated when cells infiltrate into the brain parenchyma. However, little is known about the nature of these invading cells in breast cancer brain metastasis (BCBM). (2) Methods: we use intravital microscopy through a cranial window to study the behavior of invading cells in a mouse model of BCBM. (3) Results: we demonstrate that BCBM cells that escape from the metastatic mass and infiltrate into brain parenchyma undergo epithelial-to-mesenchymal transition (EMT). Moreover, cells undergoing EMT revert to an epithelial state when growing tumor masses in the brain. Lastly, through multiplex immunohistochemistry, we confirm the presence of these infiltrative cells in EMT in patient samples. (4) Conclusions: together, our data identify the critical role of EMT in the invasive behavior of BCBM, which warrants further consideration to target those cells when treating BCBM.
Collapse
Affiliation(s)
- Andreia S. Margarido
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Rebeca Uceda-Castro
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Kerstin Hahn
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Roebi de Bruijn
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Lennart Kester
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Ingrid Hofland
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (I.H.); (A.B.)
| | - Jeroen Lohuis
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Danielle Seinstra
- Department of Pathology, Amsterdam University Medical Centers/VUmc and Brain Tumor Center Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.S.); (P.W.)
| | - Annegien Broeks
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (I.H.); (A.B.)
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Marike L. D. Broekman
- Department of Neurosurgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Department of Neurosurgery, Haaglanden Medical Center, Lijnbaan, 2512 VA The Hague, The Netherlands
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc and Brain Tumor Center Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.S.); (P.W.)
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Claire Vennin
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Miguel Vizoso
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
- Correspondence: (M.V.); (J.v.R.)
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
- Correspondence: (M.V.); (J.v.R.)
| |
Collapse
|
1041
|
Essential role of aerobic glycolysis in epithelial-to-mesenchymal transition during carcinogenesis. Clin Transl Oncol 2022; 24:1844-1855. [PMID: 35751743 DOI: 10.1007/s12094-022-02851-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/02/2022] [Indexed: 10/17/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) confers the most lethal characteristics to cancer cells i.e., metastasis and resistance to chemo-and-radio-therapy, and therefore exhibit an appealing target in the field of oncology. Research in the past decade has demonstrated the crucial role of aerobic glycolysis in EMT, which is generally credited as the glucose metabolism for the creation of biomass such as fatty acids, amino acids, and nucleotides thereby providing building blocks for limitless proliferation. In the present review, apart from discussing EMT's evident role in the metastatic process and cancer stemness, we also talked about the vital role of glycolytic enzymes viz. GLUTs, HKs, PGI, PFK-1, aldolase, enolase, PK, LDHA, etc. in the induction of the EMT process in cancerous cells.
Collapse
|
1042
|
Akhbari MH, Zafari Z, Sheykhhasan M. Competing Endogenous RNAs (ceRNAs) in Colorectal Cancer: A Review. Expert Rev Mol Med 2022; 24:e27. [PMID: 35748050 DOI: 10.1017/erm.2022.21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) is a common type of cancer and the second leading cause of cancer-related deaths worldwide. Competing endogenous RNAs (ceRNAs) that contain microRNA response elements (MREs) are involved in CRC progression. They can compete with microRNAs (miRNAs) via their MREs, which can combine non-coding and coding RNAs via complex ceRNA networks. This molecular interaction has the potential to affect a wide variety of biological processes, and many cancers can occur as a result of an imbalanced ceRNA network. Recent research indicates that numerous dysregulated RNAs in CRC may function as ceRNAs, regulating multiple biological functions of the tumour, including proliferation, apoptosis, metastasis, invasion and migration. In this review, we discuss the role of protein-coding and non-coding RNAs, such as long non-coding RNAs, circular RNAs and pseudogenes, in the occurrence of ceRNA networks in CRC, and their function in cancer-related pathways, such as Wnt/β-catenin, mitogen-activated protein kinase and transforming growth factor-β signalling pathways. Additionally, we discuss validated ceRNAs associated with CRC biological functions and their potential role as novel prognostic and diagnostic biomarkers. Examining the role of ceRNAs in CRC sheds new light on cancer treatment and pathogenesis.
Collapse
Affiliation(s)
| | - Zahra Zafari
- Department of Biology, Shahed University, Tehran, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| |
Collapse
|
1043
|
Guo L, Jia L, Luo L, Xu X, Xiang Y, Ren Y, Ren D, Shen L, Liang T. Critical Roles of Circular RNA in Tumor Metastasis via Acting as a Sponge of miRNA/isomiR. Int J Mol Sci 2022; 23:ijms23137024. [PMID: 35806027 PMCID: PMC9267010 DOI: 10.3390/ijms23137024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs), a class of new endogenous non-coding RNAs (ncRNAs), are closely related to the carcinogenic process and play a critical role in tumor metastasis. CircRNAs can lay the foundation for tumor metastasis via promoting tumor angiogenesis, make tumor cells gain the ability of migration and invasion by regulating epithelial-mesenchymal transition (EMT), interact with immune cells, cytokines, chemokines, and other non-cellular components in the tumor microenvironment, damage the normal immune function or escape the immunosuppressive network, and further promote cell survival and metastasis. Herein, based on the characteristics and biological functions of circRNA, we elaborated on the effect of circRNA via circRNA-associated competing endogenous RNA (ceRNA) network by acting as miRNA/isomiR sponges on tumor angiogenesis, cancer cell migration and invasion, and interaction with the tumor microenvironment (TME), then explored the potential interactions across different RNAs, and finally discussed the potential clinical value and application as a promising biomarker. These results provide a theoretical basis for the further application of metastasis-related circRNAs in cancer treatment. In summary, we briefly summarize the diverse roles of a circRNA-associated ceRNA network in cancer metastasis and the potential clinical application, especially the interaction of circRNA and miRNA/isomiR, which may complicate the RNA regulatory network and which will contribute to a novel insight into circRNA in the future.
Collapse
Affiliation(s)
- Li Guo
- Smart Health Big Data Analysis and Location Services Engineering Laboratory of Jiangsu Province, Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.X.); (Y.R.); (D.R.)
| | - Lin Jia
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (L.J.); (L.L.); (X.X.); (L.S.)
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (L.J.); (L.L.); (X.X.); (L.S.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (L.J.); (L.L.); (X.X.); (L.S.)
| | - Yangyang Xiang
- Smart Health Big Data Analysis and Location Services Engineering Laboratory of Jiangsu Province, Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.X.); (Y.R.); (D.R.)
| | - Yujie Ren
- Smart Health Big Data Analysis and Location Services Engineering Laboratory of Jiangsu Province, Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.X.); (Y.R.); (D.R.)
| | - Dekang Ren
- Smart Health Big Data Analysis and Location Services Engineering Laboratory of Jiangsu Province, Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.X.); (Y.R.); (D.R.)
| | - Lulu Shen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (L.J.); (L.L.); (X.X.); (L.S.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (L.J.); (L.L.); (X.X.); (L.S.)
- Correspondence:
| |
Collapse
|
1044
|
Rao Q, Li R, Yu H, Xiang L, He B, Wu F, Zhao G. Effects of dihydroartemisinin combined with cisplatin on proliferation, apoptosis and migration of HepG2 cells. Oncol Lett 2022; 24:275. [PMID: 35782905 PMCID: PMC9247656 DOI: 10.3892/ol.2022.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/30/2022] [Indexed: 11/22/2022] Open
Abstract
Cisplatin (DDP) is a potent and widely applied chemotherapeutic agent. However, its clinical efficacy for the treatment of liver cancer is limited by adverse effects and the development of resistance. Combinatorial therapy may alleviate these issues. Dihydroartemisinin (DHA) is a first-generation derivative of artemisinin. The effects of DDP on liver cancer when applied in combination with DHA have not previously been studied. Therefore, the present study aimed to investigate the effects of DHA combined with DDP on HepG2 cells and their potential underlying molecular mechanisms. HepG2 cells were treated with different concentrations of DHA and/or DDP. Cell Counting Kit-8 assay was used to assess the cell viability. Cell proliferation and apoptosis were quantified using flow cytometry, acridine orange/ethidium bromide (AO/EB) fluorescent dual staining and the colony formation assay. Cell migration was quantified using the Transwell and wound healing assays. The HepG2 cell protein expression levels of Fas, Fas-associated death domain (FADD), procaspase-3, cleaved caspase-3, pro-caspase-8, cleaved caspase-8, Bax, Bcl-2, E-cadherin and N-cadherin, were detected via western blotting. Gelatin zymography was used to assess the levels of MMP-9 secreted by HepG2 cells into the supernatant. Following combined DHA and DDP treatment, the percentage of apoptotic cells was significantly increased, whereas cell proliferation and migration were significantly reduced, compared with cells treated with DDP only. DHA and DPP in combination significantly inhibited the expression of MMP-9, significantly increased the protein expression levels of Fas, FADD, Bax and E-cadherin, significantly increased the ratio of cleaved caspase-3 and cleaved caspase-8 to their precursor proteins and significantly decreased the protein expression levels of Bcl-2 and N-cadherin. The findings of the present study suggested that, DHA may confer synergistic effects with DDP in potentially promoting apoptosis and inhibiting the epithelial-mesenchymal transition for the treatment of liver cancer.
Collapse
Affiliation(s)
- Qi Rao
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Ruochan Li
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - He Yu
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Lei Xiang
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Bin He
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Fenghua Wu
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Gang Zhao
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
1045
|
Jones C, Dziadowicz S, Suite S, Eby A, Chen WC, Hu G, Hazlehurst LA. Emergence of Resistance to MTI-101 Selects for a MET Genotype and Phenotype in EGFR Driven PC-9 and PTEN Deleted H446 Lung Cancer Cell Lines. Cancers (Basel) 2022; 14:3062. [PMID: 35804837 PMCID: PMC9264848 DOI: 10.3390/cancers14133062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
MTI-101 is a first-in-class cyclic peptide that kills cells via calcium overload in a caspase-independent manner. Understanding biomarkers of response is critical for positioning a novel therapeutic toward clinical development. Isogenic MTI-101-acquired drug-resistant lung cancer cell line systems (PC-9 and H446) coupled with differential RNA-SEQ analysis indicated that downregulated genes were enriched in the hallmark gene set for epithelial-to-mesenchymal transition (EMT) in both MTI-101-acquired resistant cell lines. The RNA-SEQ results were consistent with changes in the phenotype, including a decreased invasion in Matrigel and expression changes in EMT markers (E-cadherin, vimentin and Twist) at the protein level. Furthermore, in the EGFR-driven PC-9 cell line, selection for resistance towards MTI-101 resulted in collateral sensitivity toward EGFR inhibitors. MTI-101 treatment showed synergistic activity with the standard of care agents erlotinib, osimertinib and cisplatin when used in combination in PC-9 and H446 cells, respectively. Finally, in vivo data indicate that MTI-101 treatment selects for increased E-cadherin and decreased vimentin in H446, along with a decreased incident of bone metastasis in the PC-9 in vivo model. Together, these data indicate that chronic MTI-101 treatment can lead to a change in cell state that could potentially be leveraged therapeutically to reduce metastatic disease.
Collapse
Affiliation(s)
- Clark Jones
- Department of Pharmaceutical Sciences, School of Pharmacy West Virginia University, Morgantown, WV 26505, USA;
| | - Sebastian Dziadowicz
- Department of Microbiology, Immunology and Cell Biology School of Medicine, West Virginia University, Morgantown, WV 26501, USA; (S.D.); (G.H.)
| | - Samuel Suite
- Modulation Therapeutics Inc., Morgantown, WV 26506, USA;
| | - Ashley Eby
- Cancer Institute, West Virginia University, Morgantown, WV 26501, USA; (A.E.); (W.-C.C.)
| | - Wei-Chih Chen
- Cancer Institute, West Virginia University, Morgantown, WV 26501, USA; (A.E.); (W.-C.C.)
| | - Gangqing Hu
- Department of Microbiology, Immunology and Cell Biology School of Medicine, West Virginia University, Morgantown, WV 26501, USA; (S.D.); (G.H.)
- Cancer Institute, West Virginia University, Morgantown, WV 26501, USA; (A.E.); (W.-C.C.)
| | - Lori A. Hazlehurst
- Department of Pharmaceutical Sciences, School of Pharmacy West Virginia University, Morgantown, WV 26505, USA;
- Cancer Institute, West Virginia University, Morgantown, WV 26501, USA; (A.E.); (W.-C.C.)
| |
Collapse
|
1046
|
Zhang M, Zhu J, Wang W, Jiang Z. Active legumain promotes invasion and migration of neuroblastoma by regulating epithelial-mesenchymal transition. Open Life Sci 2022; 17:676-685. [PMID: 35800070 PMCID: PMC9214917 DOI: 10.1515/biol-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroblastoma (NB) is a commonly occurring malignancy in children. Epithelial-mesenchymal transition (EMT) is an adaptive change in promoting tumor metastasis. As an important factor in regulating tumor metastasis, whether legumain could promote metastasis of NB by EMT is still unexplored. Legumain is the active form of prolegumain, abundant in tumor plasma. So in the current study, different forms of legumain were identified in NB. Second, correlation analysis of N-cadherin and active legumain was identified by western blot analysis. Third, legumain gene amplification or gene knockdown were proceeded to examine the effect of legumain on EMT by scratch and transwell assay; meanwhile, active mature legumain or its asparagine endopeptidase (AEP) inhibitor was also added in. Finally, legumain can be detected differently in NB cells. Changes in legumain could influence NB metastasis by regulating EMT markers (e.g., N-cadherin, vimentin, and slug). Besides, the effect of legumain on EMT by its AEP activity was proved by intervention experiment of AEP gene transfection and gene knockdown experiments or adding recombinant human legumain suspension or specific inhibitor of AEP in NB cells (p < 0.05). These results suggest that legumain can promote invasion and migration of NB by regulating EMT, and EMT of NB is regulated by AEP activity of legumain, which can be inhibited by a specific AEP inhibitor.
Collapse
Affiliation(s)
- Min Zhang
- Department of Emergency & Trauma Surgery, Shanghai University of Medicine and Health Sciences, Affiliated Zhoupu Hospital , Shanghai 201318 , P. R. China
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200092 , P. R. China
| | - Jianhua Zhu
- Department of Emergency & Trauma Surgery, Shanghai University of Medicine and Health Sciences, Affiliated Zhoupu Hospital , Shanghai 201318 , P. R. China
| | - Wei Wang
- Department of Emergency & Trauma Surgery, Shanghai University of Medicine and Health Sciences, Affiliated Zhoupu Hospital , Shanghai 201318 , P. R. China
| | - Zhiteng Jiang
- Colloge of Pharmacy, Shanghai University of Medicine and Health Sciences , Shanghai 201318 , P. R. China
| |
Collapse
|
1047
|
Wang L, Shi Q, Chen S. FoxM1 contributes to progestin resistance and epithelial-to-mesenchymal transition in endometrial carcinoma. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
1048
|
Yang ZY, Jiang CW, Zhang WL, Sun G. Treatment with eFT-508 increases chemosensitivity in breast cancer cells by modulating the tumor microenvironment. J Transl Med 2022; 20:276. [PMID: 35717238 PMCID: PMC9206753 DOI: 10.1186/s12967-022-03474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Patients with triple-negative breast cancer (TNBC) are better responders to neoadjuvant chemotherapy; however, they are poor in the durability of response with decreased overall and progression-free survival. Methods Given that significant improvements have been reported with PD-L1-PD-1 blockade in different cancers, we evaluated the in vitro and in vivo effectiveness of Tomivosertib (eFT-508), an anthracycline, adriamycin, and MNK1/2 inhibitor, which has been previously shown to inhibit translation of PD-L1 in mice model of liver cancer, alone or in combination using BC cell lines and an orthotopic xenograft mice model using the TNBC cell line MDA-MB-231. Results Within the context of The Cancer Genome Atlas (TCGA) dataset, expression of CD274 mRNA, which encodes programmed death-ligand 1 (PD-L1), was found to be significantly overexpressed in TNBC patients compared to patients with HER2 + or luminal breast cancer (BC). Even within TNBC sub-types, CD274 expression was significantly higher in the immune modulatory subtype (TNBC-IM). BC cells exhibited high IC50 = 0.85 ± 0.07 nM with Adriamycin and significantly lower IC50 = 0.23 ± 0.04 nM with eFT-508 (P < 0.01). Combination treatment showed in vitro synergism on chemosensitivity. Combination therapy also exhibited a synergistic effect on inhibition of tumor growth and lung colonization in vivo. Mass cytometry-based evaluation of the tumor microenvironment revealed significant attenuation of both PD-L1 and PD-L2 following mono- or combination therapy with eFT-508. Conclusions Treatment with eFT-508 restored effector and cytotoxic function of tumor-infiltrating CD8 + T cells in mice. The remarkable efficacy observed both in vitro and in vivo, and clinical synergism with adriamycin, highlights the potential of eFT-508 as an alternative, yet more efficacious, therapeutic option for patients with TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03474-9.
Collapse
Affiliation(s)
- Zhao-Ying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, 130033, Jilin, China
| | - Cheng-Wei Jiang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Wen-Long Zhang
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Guang Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
1049
|
Xu T, Yan Z, Lu J, Chen L, Li X, Li Y, Dong Z, Guo W. Long non-coding RNA NRSN2-AS1, transcribed by SOX2, promotes progression of esophageal squamous cell carcinoma by regulating the ubiquitin-degradation of PGK1. Clin Exp Metastasis 2022; 39:757-769. [PMID: 35715622 DOI: 10.1007/s10585-022-10174-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
Abstract
Aberrant expression of long non-coding RNAs (lncRNAs) plays pivotal roles in tumorigenesis of human malignant cancers, including esophageal squamous cell carcinoma (ESCC). However, the specific role of lncRNA NRSN2-AS1 in ESCC has not been investigated. Our analysis of clinical data revealed that NRSN2-AS1 was upregulated in ESCC tissues and negatively correlated with patient survival. Luciferase reporter assays and chromatin immunoprecipitation assays demonstrated that NRSN2-AS1 is transcribed by SOX2. In vitro functional experiments showed that NRSN2-AS1 can promote ESCC cell proliferation, migration, and invasion. Furthermore, NRSN2-AS1-binding proteins were detected using RNA pull-down assays and mass spectrometry. Mechanistically, NRSN2-AS1 can bind to phosphoglycerate kinase 1 (PGK1) and upregulate its protein levels by inhibiting its ubiquitination. Knockdown of PGK1 in part abolished the NRSN2-AS1 overexpression-induced effects on ESCC cell proliferation, migration, invasion, and epithelial‑mesenchymal transition (EMT). Thus, NRSN2-AS1 may be a diagnostic biomarker or treatment target for ESCC.
Collapse
Affiliation(s)
- Tongxin Xu
- Department of CT&MRI, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhaoyang Yan
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Juntao Lu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Rd. 12, Shijiazhuang, 050011, Hebei, China
| | - Liying Chen
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Rd. 12, Shijiazhuang, 050011, Hebei, China
| | - Xiaoxu Li
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Rd. 12, Shijiazhuang, 050011, Hebei, China
| | - Yan Li
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Rd. 12, Shijiazhuang, 050011, Hebei, China
| | - Zhiming Dong
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Rd. 12, Shijiazhuang, 050011, Hebei, China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Rd. 12, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
1050
|
Ginsenoside Rh3 Inhibits Lung Cancer Metastasis by Targeting Extracellular Signal-Regulated Kinase: A Network Pharmacology Study. Pharmaceuticals (Basel) 2022; 15:ph15060758. [PMID: 35745677 PMCID: PMC9229598 DOI: 10.3390/ph15060758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Lung cancer has a high mortality rate and is very common. One of the main reasons for the poor prognosis of patients with lung cancer is the high incidence of metastasis. Ginsenoside Rh3, a rare ginsenoside extracted from Panax notoginseng, exhibits excellent anti-inflammatory and anti-tumor effects. Nonetheless, the inhibitory potential of Rh3 against lung cancer remains unknown. The target genes of Rh3 were screened by the PharmMapper database; the proliferation of lung cancer cells was detected by MTT assay; the migration and invasion of cells were detected by the Transwell method; and the expression of extracellular signal-regulated kinase (ERK) and EMT-related proteins in vivo and in vitro were detected by Western blotting. In addition, we established a lung metastasis model in nude mice using A549 cells to assess the effect of Rh3 on NSCLC tumor metastasis in vivo. Our findings suggest that Rh3 significantly inhibited lung cancer metastasis both in vivo and in vitro. It was determined by flow cytometry analysis that Rh3 notably inhibited cell proliferation by blocking the G1 phase. In addition, Rh3 inhibited metastasis in lung cancer cells and regulated the expression of metastasis-related proteins under hypoxia. Mechanistic studies suggested that Rh3 targeted ERK to inhibit lung cancer metastasis. The ERK inhibitor U0126 or siRNA-mediated knockdown of ERK had an enhanced effect on Rh3’s ability to inhibit lung cancer metastasis. The studies revealed that the inhibitory effect of Rh3 on the metastatic ability of lung cancer cells may be supported by ERK-related signaling pathways.
Collapse
|