1001
|
Ballaré CL. Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. TRENDS IN PLANT SCIENCE 2011; 16:249-57. [PMID: 21216178 DOI: 10.1016/j.tplants.2010.12.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/05/2010] [Accepted: 12/08/2010] [Indexed: 05/19/2023]
Abstract
Plants have sophisticated defense systems to protect their tissues against the attack of herbivorous organisms. Many of these defenses are orchestrated by the oxylipin jasmonate. A growing body of evidence indicates that the expression of jasmonate-induced responses is tightly regulated by the ecological context of the plant. Ecological information is provided by molecular signals that indicate the nature of the attacker, the value of the attacked organs, phytochrome status and thereby proximity of competing plants, association with beneficial organisms and history of plant interactions with pathogens and herbivores. This review discusses recent advances in this field and highlights the need to map the activities of informational modulators to specific control points within our emerging model of jasmonate signaling.
Collapse
Affiliation(s)
- Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, and Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina.
| |
Collapse
|
1002
|
Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pérez AC, Moses T, Seo M, Kanno Y, Häkkinen ST, Van Montagu MCE, Thevelein JM, Maaheimo H, Oksman-Caldentey KM, Rodriguez PL, Rischer H, Goossens A. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci U S A 2011; 108:5891-6. [PMID: 21436041 PMCID: PMC3078376 DOI: 10.1073/pnas.1103010108] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The phytohormones jasmonates (JAs) constitute an important class of elicitors for many plant secondary metabolic pathways. However, JAs do not act independently but operate in complex networks with crosstalk to several other phytohormonal signaling pathways. Here, crosstalk was detected between the JA and abscisic acid (ABA) signaling pathways in the regulation of tobacco (Nicotiana tabacum) alkaloid biosynthesis. A tobacco gene from the PYR/PYL/RCAR family, NtPYL4, the expression of which is regulated by JAs, was found to encode a functional ABA receptor. NtPYL4 inhibited the type-2C protein phosphatases known to be key negative regulators of ABA signaling in an ABA-dependent manner. Overexpression of NtPYL4 in tobacco hairy roots caused a reprogramming of the cellular metabolism that resulted in a decreased alkaloid accumulation and conferred ABA sensitivity to the production of alkaloids. In contrast, the alkaloid biosynthetic pathway was not responsive to ABA in control tobacco roots. Functional analysis of the Arabidopsis (Arabidopsis thaliana) homologs of NtPYL4, PYL4 and PYL5, indicated that also in Arabidopsis altered PYL expression affected the JA response, both in terms of biomass and anthocyanin production. These findings define a connection between a component of the core ABA signaling pathway and the JA responses and contribute to the understanding of the role of JAs in balancing tradeoffs between growth and defense.
Collapse
Affiliation(s)
- Petri Lackman
- VTTTechnical Research Center of Finland, FIN-02044 VTT, Espoo, Finland
| | - Miguel González-Guzmán
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, E-46022 Valencia, Spain
| | - Sofie Tilleman
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Inês Carqueijeiro
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
- Instituto de Biologia Molecular e Celular and Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4150-180 Porto, Portugal
| | - Amparo Cuéllar Pérez
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Tessa Moses
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
- Department of Molecular Microbiology, VIB, B-3001 Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, B-3001 Leuven-Heverlee, Belgium; and
| | - Mitsunori Seo
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Yuri Kanno
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Suvi T. Häkkinen
- VTTTechnical Research Center of Finland, FIN-02044 VTT, Espoo, Finland
| | | | - Johan M. Thevelein
- Department of Molecular Microbiology, VIB, B-3001 Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, B-3001 Leuven-Heverlee, Belgium; and
| | - Hannu Maaheimo
- VTTTechnical Research Center of Finland, FIN-02044 VTT, Espoo, Finland
| | | | - Pedro L. Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, E-46022 Valencia, Spain
| | - Heiko Rischer
- VTTTechnical Research Center of Finland, FIN-02044 VTT, Espoo, Finland
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
1003
|
Kajikawa M, Shoji T, Kato A, Hashimoto T. Vacuole-localized berberine bridge enzyme-like proteins are required for a late step of nicotine biosynthesis in tobacco. PLANT PHYSIOLOGY 2011; 155:2010-22. [PMID: 21343426 PMCID: PMC3091092 DOI: 10.1104/pp.110.170878] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 02/21/2011] [Indexed: 05/21/2023]
Abstract
Tobacco (Nicotiana tabacum) plants synthesize nicotine and related pyridine-type alkaloids, such as anatabine, in their roots and accumulate them in their aerial parts as chemical defenses against herbivores. Herbivory-induced jasmonate signaling activates structural genes for nicotine biosynthesis and transport by way of the NICOTINE (NIC) regulatory loci. The biosynthesis of tobacco alkaloids involves the condensation of an unidentified nicotinic acid-derived metabolite with the N-methylpyrrolinium cation or with itself, but the exact enzymatic reactions and enzymes involved remain unclear. Here, we report that jasmonate-inducible tobacco genes encoding flavin-containing oxidases of the berberine bridge enzyme family (BBLs) are expressed in the roots and regulated by the NIC loci. When expression of the BBL genes was suppressed in tobacco hairy roots or in tobacco plants, nicotine production was highly reduced, with a gradual accumulation of a novel nicotine metabolite, dihydromethanicotine. In the jasmonate-elicited cultured tobacco cells, suppression of BBL expression efficiently inhibited the formation of anatabine and other pyridine alkaloids. Subcellular fractionation and localization of green fluorescent protein-tagged BBLs showed that BBLs are localized in the vacuoles. These results indicate that BBLs are involved in a late oxidation step subsequent to the pyridine ring condensation reaction in the biosynthesis of tobacco alkaloids.
Collapse
Affiliation(s)
| | | | | | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630–0192, Japan
| |
Collapse
|
1004
|
Affiliation(s)
- Sean R. Cutler
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, Department of Chemistry, University of California Riverside, Riverside, CA 92507, USA
| |
Collapse
|
1005
|
Mosblech A, Thurow C, Gatz C, Feussner I, Heilmann I. Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:949-57. [PMID: 21205029 DOI: 10.1111/j.1365-313x.2011.04480.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant responses to wounding are part of their defense responses against insects, and are tightly regulated. The isoleucin conjugate of jasmonic acid (JA-Ile) is a major regulatory molecule. We have previously shown that inositol polyphosphate signals are required for defense responses in Arabidopsis; however, the way in which inositol polyphosphates contribute to plant responses to wounding has so far remained unclear. Arabidopsis F-box proteins involved in the perception of JA-Ile (COI1) and auxin (TIR1) are structurally similar. Because TIR1 has recently been shown to contain inositol hexakisphosphate (InsP₆) as a co-factor of unknown function, here we explored the possibility that InsP₆ or another inositol polyphosphate is required for COI1 function. In support of this hypothesis, COI1 variants with changes in putative inositol polyphosphate coordinating residues exhibited a reduced interaction with the COI1 target, JAZ9, in yeast two-hybrid tests. The equivalent COI1 variants displayed a reduced capability to rescue jasmonate-mediated root growth inhibition or silique development in Arabidopsis coi1 mutants. Yeast two-hybrid tests using wild-type COI1 in an ipk1Δ yeast strain exhibiting increased levels of inositol pentakisphosphate (InsP₅) and reduced levels of InsP₆ indicate an enhanced COI1/JAZ9 interaction. Consistent with these findings, Arabidopsis ipk1-1 mutants, also with increased InsP₅ and reduced InsP₆ levels, showed increased defensive capabilities via COI1-mediated processes, including wound-induced gene expression, defense against caterpillars or root growth inhibition by jasmonate. The combined data from experiments using mutated COI1 variants, as well as yeast and Arabidopsis backgrounds altered in inositol polyphosphate metabolism, indicate that an inositol polyphosphate, and probably InsP₅, contributes to COI1 function.
Collapse
Affiliation(s)
- Alina Mosblech
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
1006
|
Lozano-Durán R, Rosas-Díaz T, Gusmaroli G, Luna AP, Taconnat L, Deng XW, Bejarano ER. Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. THE PLANT CELL 2011; 23:1014-32. [PMID: 21441437 PMCID: PMC3082251 DOI: 10.1105/tpc.110.080267] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/15/2011] [Accepted: 03/04/2011] [Indexed: 05/19/2023]
Abstract
Viruses must create a suitable cell environment and elude defense mechanisms, which likely involves interactions with host proteins and subsequent interference with or usurpation of cellular machinery. Here, we describe a novel strategy used by plant DNA viruses (Geminiviruses) to redirect ubiquitination by interfering with the activity of the CSN (COP9 signalosome) complex. We show that geminiviral C2 protein interacts with CSN5, and its expression in transgenic plants compromises CSN activity on CUL1. Several responses regulated by the CUL1-based SCF ubiquitin E3 ligases (including responses to jasmonates, auxins, gibberellins, ethylene, and abscisic acid) are altered in these plants. Impairment of SCF function is confirmed by stabilization of yellow fluorescent protein-GAI, a substrate of the SCF(SLY1). Transcriptomic analysis of these transgenic plants highlights the response to jasmonates as the main SCF-dependent process affected by C2. Exogenous jasmonate treatment of Arabidopsis thaliana plants disrupts geminivirus infection, suggesting that the suppression of the jasmonate response might be crucial for infection. Our findings suggest that C2 affects the activity of SCFs, most likely through interference with the CSN. As SCFs are key regulators of many cellular processes, the capability of viruses to selectively interfere with or hijack the activity of these complexes might define a novel and powerful strategy in viral infections.
Collapse
Affiliation(s)
- Rosa Lozano-Durán
- Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Celular y Genética, Universidad de Málaga, Campus de Teatinos, E-29071 Malaga, Spain
| | - Tabata Rosas-Díaz
- Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Celular y Genética, Universidad de Málaga, Campus de Teatinos, E-29071 Malaga, Spain
| | - Giuliana Gusmaroli
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Ana P. Luna
- Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Celular y Genética, Universidad de Málaga, Campus de Teatinos, E-29071 Malaga, Spain
| | - Ludivine Taconnat
- Unité Mixte de Recherche, Institut National de la Recherche Agronomique 1165, Centre National de la Recherche Scientifique 8114, UEVE, 91057 Evry, France
| | - Xing Wang Deng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Eduardo R. Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Celular y Genética, Universidad de Málaga, Campus de Teatinos, E-29071 Malaga, Spain
- Address correspondence to
| |
Collapse
|
1007
|
Nakamura Y, Mithöfer A, Kombrink E, Boland W, Hamamoto S, Uozumi N, Tohma K, Ueda M. 12-hydroxyjasmonic acid glucoside is a COI1-JAZ-independent activator of leaf-closing movement in Samanea saman. PLANT PHYSIOLOGY 2011; 155:1226-36. [PMID: 21228101 PMCID: PMC3046581 DOI: 10.1104/pp.110.168617] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 01/05/2011] [Indexed: 05/20/2023]
Abstract
Jasmonates are ubiquitously occurring plant growth regulators with high structural diversity that mediate numerous developmental processes and stress responses. We have recently identified 12-O-β-D-glucopyranosyljasmonic acid as the bioactive metabolite, leaf-closing factor (LCF), which induced nyctinastic leaf closure of Samanea saman. We demonstrate that leaf closure of isolated Samanea pinnae is induced upon stereospecific recognition of (-)-LCF, but not by its enantiomer, (+)-ent-LCF, and that the nonglucosylated derivative, (-)-12-hydroxyjasmonic acid also displays weak activity. Similarly, rapid and cell type-specific shrinkage of extensor motor cell protoplasts was selectively initiated upon treatment with (-)-LCF, whereas flexor motor cell protoplasts did not respond. In these bioassays related to leaf movement, all other jasmonates tested were inactive, including jasmonic acid (JA) and the potent derivates JA-isoleucine and coronatine. By contrast, (-)-LCF and (-)-12-hydroxyjasmonic acid were completely inactive with respect to activation of typical JA responses, such as induction of JA-responsive genes LOX2 and OPCL1 in Arabidopsis (Arabidopsis thaliana) or accumulation of plant volatile organic compounds in S. saman and lima bean (Phaseolus lunatus), generally considered to be mediated by JA-isoleucine in a COI1-dependent fashion. Furthermore, application of selective inhibitors indicated that leaf movement in S. saman is mediated by rapid potassium fluxes initiated by opening of potassium-permeable channels. Collectively, our data point to the existence of at least two separate JA signaling pathways in S. saman and that 12-O-β-D-glucopyranosyljasmonic acid exerts its leaf-closing activity through a mechanism independent of the COI1-JAZ module.
Collapse
|
1008
|
Niu Y, Figueroa P, Browse J. Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2143-54. [PMID: 21321051 PMCID: PMC3060693 DOI: 10.1093/jxb/erq408] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 05/17/2023]
Abstract
The plant hormone jasmonate (JA) plays important roles in the regulation of plant defence and development. JASMONATE ZIM-DOMAIN (JAZ) proteins inhibit transcription factors that regulate early JA-responsive genes, and JA-induced degradation of JAZ proteins thus allows expression of these response genes. To date, MYC2 is the only transcription factor known to interact directly with JAZ proteins and regulate early JA responses, but the phenotype of myc2 mutants suggests that other transcription factors also activate JA responses. To identify JAZ1-interacting proteins, a yeast two-hybrid screen of an Arabidopsis cDNA library was performed. Two basic helix-loop-helix (bHLH) proteins, MYC3 and MYC4, were identified. MYC3 and MYC4 share high sequence similarity with MYC2, suggesting they may have similar biological functions. MYC3 and MYC4 interact not only with JAZ1 but also with other JAZ proteins (JAZ3 and JAZ9) in both yeast two-hybrid and pull-down assays. MYC2, MYC3, and MYC4 were all capable of inducing expression of JAZ::GUS reporter constructs following transfection of carrot protoplasts. Although myc3 and myc4 loss-of-function mutants showed no phenotype, transgenic plants overexpressing MYC3 and MYC4 had higher levels of anthocyanin compared to the wild-type plants. In addition, roots of MYC3 overexpression plants were hypersensitive to JA. Quantitative real-time RT-PCR expression analysis of nine JA-responsive genes revealed that eight of them were induced in MYC3 and MYC4 overexpression plants, except for a pathogen-responsive gene, PDF1.2. Similar to MYC2, MYC4 negatively regulates expression of PDF1.2. Together, these results suggest that MYC3 and MYC4 are JAZ-interacting transcription factors that regulate JA responses.
Collapse
Affiliation(s)
| | | | - John Browse
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1009
|
Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D. The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in Arabidopsis. THE PLANT CELL 2011; 23:1000-13. [PMID: 21447791 PMCID: PMC3082250 DOI: 10.1105/tpc.111.083089] [Citation(s) in RCA: 423] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 02/23/2011] [Accepted: 03/07/2011] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana F-box protein CORONATINE INSENSITIVE1 (COI1) perceives jasmonate (JA) signals and subsequently targets the Jasmonate-ZIM domain proteins (JAZs) for degradation by the SCF(COI1)-26S proteasome pathway to mediate various jasmonate-regulated processes, including fertility, root growth, anthocyanin accumulation, senescence, and defense. In this study, we screened JAZ-interacting proteins from an Arabidopsis cDNA library in the yeast two-hybrid system. MYB21 and MYB24, two R2R3-MYB transcription factors, were found to interact with JAZ1, JAZ8, and JAZ11 in yeast and in planta. Genetic and physiological experiments showed that the myb21 myb24 double mutant exhibited defects specifically in pollen maturation, anther dehiscence, and filament elongation leading to male sterility. Transgenic expression of MYB21 in the coi1-1 mutant was able to rescue male fertility partially but unable to recover JA-regulated root growth inhibition, anthocyanin accumulation, and plant defense. These results demonstrate that the R2R3-MYB transcription factors MYB21 and MYB24 function as direct targets of JAZs to regulate male fertility specifically. We speculate that JAZs interact with MYB21 and MYB24 to attenuate their transcriptional function; upon perception of JA signal, COI1 recruits JAZs to the SCF(COI1) complex for ubiquitination and degradation through the 26S proteasome; MYB21 and MYB24 are then released to activate expression of various genes essential for JA-regulated anther development and filament elongation.
Collapse
Affiliation(s)
- Susheng Song
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tiancong Qi
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huang Huang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingcuo Ren
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dewei Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Changqing Chang
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, China
| | - Wen Peng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yule Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, China
| | - Daoxin Xie
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
1010
|
Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. THE PLANT CELL 2011; 23:701-15. [PMID: 21335373 PMCID: PMC3077776 DOI: 10.1105/tpc.110.080788] [Citation(s) in RCA: 785] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/11/2011] [Accepted: 01/21/2011] [Indexed: 05/17/2023]
Abstract
Jasmonates (JAs) trigger an important transcriptional reprogramming of plant cells to modulate both basal development and stress responses. In spite of the importance of transcriptional regulation, only one transcription factor (TF), the Arabidopsis thaliana basic helix-loop-helix MYC2, has been described so far as a direct target of JAZ repressors. By means of yeast two-hybrid screening and tandem affinity purification strategies, we identified two previously unknown targets of JAZ repressors, the TFs MYC3 and MYC4, phylogenetically closely related to MYC2. We show that MYC3 and MYC4 interact in vitro and in vivo with JAZ repressors and also form homo- and heterodimers with MYC2 and among themselves. They both are nuclear proteins that bind DNA with sequence specificity similar to that of MYC2. Loss-of-function mutations in any of these two TFs impair full responsiveness to JA and enhance the JA insensitivity of myc2 mutants. Moreover, the triple mutant myc2 myc3 myc4 is as impaired as coi1-1 in the activation of several, but not all, JA-mediated responses such as the defense against bacterial pathogens and insect herbivory. Our results show that MYC3 and MYC4 are activators of JA-regulated programs that act additively with MYC2 to regulate specifically different subsets of the JA-dependent transcriptional response.
Collapse
Affiliation(s)
- Patricia Fernández-Calvo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Andrea Chini
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Gemma Fernández-Barbero
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - José-Manuel Chico
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Selena Gimenez-Ibanez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Jan Geerinck
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Fabian Schweizer
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Marta Godoy
- Genomics Unit, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - José Manuel Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Laurens Pauwels
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Erwin Witters
- Department of Biology, EBT-CEPROMA, University of Antwerp, B-2020 Antwerpen, Belgium
- Flemish Institute for Technological Research, VITO-MANT, B-2400 Mol, Belgium
| | - María Isabel Puga
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Javier Paz-Ares
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Roberto Solano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
- Genomics Unit, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
- Address correspondence to
| |
Collapse
|
1011
|
Duda DM, Scott DC, Calabrese MF, Zimmerman ES, Zheng N, Schulman BA. Structural regulation of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol 2011; 21:257-64. [PMID: 21288713 DOI: 10.1016/j.sbi.2011.01.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 01/19/2023]
Abstract
Cullin-RING ligases (CRLs) compose the largest class of E3 ubiquitin ligases. CRLs are modular, multisubunit enzymes, comprising interchangeable substrate receptors dedicated to particular Cullin-RING catalytic cores. Recent structural studies have revealed numerous ways in which CRL E3 ligase activities are controlled, including multimodal E3 ligase activation by covalent attachment of the ubiquitin-like protein NEDD8, inhibition of CRL assembly/activity by CAND1, and several mechanisms of regulated substrate recruitment. These features highlight the potential for CRL activities to be tuned in responses to diverse cellular cues, and for modulating CRL functions through small-molecule agonists or antagonists. As the second installment of a two-review series, this article focuses on recent structural studies advancing our knowledge of how CRL activities are regulated.
Collapse
Affiliation(s)
- David M Duda
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
1012
|
Hua Z, Zou C, Shiu SH, Vierstra RD. Phylogenetic comparison of F-Box (FBX) gene superfamily within the plant kingdom reveals divergent evolutionary histories indicative of genomic drift. PLoS One 2011; 6:e16219. [PMID: 21297981 PMCID: PMC3030570 DOI: 10.1371/journal.pone.0016219] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/07/2010] [Indexed: 11/18/2022] Open
Abstract
The emergence of multigene families has been hypothesized as a major contributor to the evolution of complex traits and speciation. To help understand how such multigene families arose and diverged during plant evolution, we examined the phylogenetic relationships of F-Box (FBX) genes, one of the largest and most polymorphic superfamilies known in the plant kingdom. FBX proteins comprise the target recognition subunit of SCF-type ubiquitin-protein ligases, where they individually recruit specific substrates for ubiquitylation. Through the extensive analysis of 10,811 FBX loci from 18 plant species, ranging from the alga Chlamydomonas reinhardtii to numerous monocots and eudicots, we discovered strikingly diverse evolutionary histories. The number of FBX loci varies widely and appears independent of the growth habit and life cycle of land plants, with a little as 198 predicted for Carica papaya to as many as 1350 predicted for Arabidopsis lyrata. This number differs substantially even among closely related species, with evidence for extensive gains/losses. Despite this extraordinary inter-species variation, one subset of FBX genes was conserved among most species examined. Together with evidence of strong purifying selection and expression, the ligases synthesized from these conserved loci likely direct essential ubiquitylation events. Another subset was much more lineage specific, showed more relaxed purifying selection, and was enriched in loci with little or no evidence of expression, suggesting that they either control more limited, species-specific processes or arose from genomic drift and thus may provide reservoirs for evolutionary innovation. Numerous FBX loci were also predicted to be pseudogenes with their numbers tightly correlated with the total number of FBX genes in each species. Taken together, it appears that the FBX superfamily has independently undergone substantial birth/death in many plant lineages, with its size and rapid evolution potentially reflecting a central role for ubiquitylation in driving plant fitness.
Collapse
Affiliation(s)
- Zhihua Hua
- Department of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Cheng Zou
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Richard D. Vierstra
- Department of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
1013
|
Robert-Seilaniantz A, Grant M, Jones JDG. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:317-43. [PMID: 21663438 DOI: 10.1146/annurev-phyto-073009-114447] [Citation(s) in RCA: 1084] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Until recently, most studies on the role of hormones in plant-pathogen interactions focused on salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). It is now clear that pathogen-induced modulation of signaling via other hormones contributes to virulence. A picture is emerging of complex crosstalk and induced hormonal changes that modulate disease and resistance, with outcomes dependent on pathogen lifestyles and the genetic constitution of the host. Recent progress has revealed intriguing similarities between hormone signaling mechanisms, with gene induction responses often achieved by derepression. Here, we report on recent advances, updating current knowledge on classical defense hormones SA, JA, and ET, and the roles of auxin, abscisic acid (ABA), cytokinins (CKs), and brassinosteroids in molding plant-pathogen interactions. We highlight an emerging theme that positive and negative regulators of these disparate hormone signaling pathways are crucial regulatory targets of hormonal crosstalk in disease and defense.
Collapse
|
1014
|
Kobayashi Y. Development of New Methods for Synthesis of Cyclopentanoids Using the Monoacetate of Cyclopent-4-ene-1,3-diol. J SYN ORG CHEM JPN 2011. [DOI: 10.5059/yukigoseikyokaishi.69.680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
1015
|
Abstract
The posttranslational addition of ubiquitin (Ub) helps control the half-life, localization, and action of many intracellular plant proteins. A primary function is the degradation of ubiquitylated proteins by the 26S proteasome, which in turn plays important housekeeping and regulatory roles by removing aberrant polypeptides and various normal short-lived regulators. Strikingly, both genetic and genomic studies reveal that Ub conjugation is extraordinarily complex in plants, with more than 1500 Ub-protein ligases (or E3s) possible that could direct the final transfer of the Ub moiety to an equally large number of targets. The cullin-RING ligases (CRLs) are a highly polymorphic E3 collection composed of a cullin backbone onto which binds carriers of activated Ub and a diverse assortment of adaptors that recruit appropriate substrates for ubiquitylation. Here, we review our current understanding of the organization and structure of CRLs in plants and their dynamics, substrates, potential functions, and evolution. The importance of CRLs is exemplified by their ability to serve as sensors of hormones and light; their essential participation in various signaling pathways; their control of the cell cycle, transcription, the stress response, self-incompatibility, and pathogen defense; and their dramatically divergent evolutionary histories in many plant lineages. Given both their organizational complexities and their critical influences, CRLs likely impact most, if not all, aspects of plant biology.
Collapse
Affiliation(s)
- Zhihua Hua
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706-1574, USA.
| | | |
Collapse
|
1016
|
Verhage A, Vlaardingerbroek I, Raaymakers C, Van Dam NM, Dicke M, Van Wees SCM, Pieterse CMJ. Rewiring of the Jasmonate Signaling Pathway in Arabidopsis during Insect Herbivory. FRONTIERS IN PLANT SCIENCE 2011; 2:47. [PMID: 22645537 PMCID: PMC3355780 DOI: 10.3389/fpls.2011.00047] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/19/2011] [Indexed: 05/19/2023]
Abstract
Plant defenses against insect herbivores and necrotrophic pathogens are differentially regulated by different branches of the jasmonic acid (JA) signaling pathway. In Arabidopsis, the basic helix-loop-helix leucine zipper transcription factor (TF) MYC2 and the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain TF ORA59 antagonistically control these distinct branches of the JA pathway. Feeding by larvae of the specialist insect herbivore Pieris rapae activated MYC2 transcription and stimulated expression of the MYC2-branch marker gene VSP2, while it suppressed transcription of ORA59 and the ERF-branch marker gene PDF1.2. Mutant jin1 and jar1-1 plants, which are impaired in the MYC2-branch of the JA pathway, displayed a strongly enhanced expression of both ORA59 and PDF1.2 upon herbivory, indicating that in wild-type plants the MYC2-branch is prioritized over the ERF-branch during insect feeding. Weight gain of P. rapae larvae in a no-choice setup was not significantly affected, but in a two-choice setup the larvae consistently preferred jin1 and jar1-1 plants, in which the ERF-branch was activated, over wild-type Col-0 plants, in which the MYC2-branch was induced. In MYC2- and ORA59-impaired jin1-1/RNAi-ORA59 plants this preference was lost, while in ORA59-overexpressing 35S:ORA59 plants it was gained, suggesting that the herbivores were stimulated to feed from plants that expressed the ERF-branch rather than that they were deterred by plants that expressed the MYC2-branch. The feeding preference of the P. rapae larvae could not be linked to changes in glucosinolate levels. Interestingly, application of larval oral secretion into wounded leaf tissue stimulated the ERF-branch of the JA pathway, suggesting that compounds in the oral secretion have the potential to manipulate the plant response toward the caterpillar-preferred ERF-regulated branch of the JA response. Our results suggest that by activating the MYC2-branch of the JA pathway, plants prevent stimulation of the ERF-branch by the herbivore, thereby becoming less attractive to the attacker.
Collapse
Affiliation(s)
- Adriaan Verhage
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Ido Vlaardingerbroek
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Ciska Raaymakers
- Multitrophic Interactions, Netherlands Institute of EcologyWageningen, Netherlands
| | - Nicole M. Van Dam
- Multitrophic Interactions, Netherlands Institute of EcologyWageningen, Netherlands
- Ecogenomics, Institute for Water and Wetland Research, Radboud University NijmegenNijmegen, Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
| | - Saskia C. M. Van Wees
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
- Centre for BioSystems GenomicsWageningen, Netherlands
- *Correspondence: Corné M. J. Pieterse, Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, Netherlands. e-mail:
| |
Collapse
|
1017
|
Adams E, Turner J. Illuminating COI1: a component of the Arabidopsis jasomonate receptor complex also interacts with ethylene signaling. PLANT SIGNALING & BEHAVIOR 2010; 5:1682-1684. [PMID: 21139440 PMCID: PMC3115136 DOI: 10.4161/psb.5.12.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 05/30/2023]
Abstract
A significant portion of developmental and environmental responses in plants is mediated through phytohormone signaling, often if not always integrated with outputs from other signals. We have recently shown that CORONATINE INSENSITIVE1 (COI1), a component of a jasmonate receptor complex, is involved in ethylene-induced root growth inhibition of Arabidopsis, in the light. This response is neither due to elevated levels of jasmonates in response to ethylene treatment nor dependent on the known jasmonate signal-transduction cascade, except that it requires COI1. Further, we have shown that the ethylene-induced COI1-mediated pathway functions in parallel with, and additively to, the conventional ethylene signaling pathway, and that the light requirement is primarily for long photoperiods. This unexpected interaction of COI1 with ethylene signaling has also been extended to other developmental processes including germination and fertility. This addendum summarizes the earlier findings with some new insights, and describes and speculates on the mechanisms by which these processes are regulated, in the context of the interaction between COI1 and ethylene signaling.
Collapse
Affiliation(s)
- Eri Adams
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | | |
Collapse
|