1001
|
The miRNA-mediated cross-talk between transcripts provides a novel layer of posttranscriptional regulation. ADVANCES IN GENETICS 2014; 85:149-99. [PMID: 24880735 DOI: 10.1016/b978-0-12-800271-1.00003-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Endogenously expressed transcripts that are posttranscriptionally regulated by the same microRNAs (miRNAs) will, in principle, compete for the binding of their shared small noncoding RNA regulators and modulate each other's abundance. Recently, the levels of some coding as well as noncoding transcripts have indeed been found to be regulated in this way. Transcripts that engage in such regulatory interactions are referred to as competitive endogenous RNAs (ceRNAs). This novel layer of posttranscriptional regulation has been shown to contribute to diverse aspects of organismal and cellular biology, despite the number of functionally characterized ceRNAs being as yet relatively low. Importantly, increasing evidence suggests that the dysregulation of some ceRNA interactions is associated with disease etiology, most preeminently with cancer. Here we review how posttranscriptional regulation by miRNAs contributes to the cross-talk between transcripts and review examples of known ceRNAs by highlighting the features underlying their interactions and what might be their biological relevance.
Collapse
|
1002
|
Gupta OP, Sharma P, Gupta RK, Sharma I. MicroRNA mediated regulation of metal toxicity in plants: present status and future perspectives. PLANT MOLECULAR BIOLOGY 2014; 84:1-18. [PMID: 23975146 DOI: 10.1007/s11103-013-0120-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 08/03/2013] [Indexed: 05/23/2023]
Abstract
The human population is increasing at an alarming rate, whereas heavy metals (HMs) pollution is mounting serious environmental problem, which could lead to serious concern about the future sufficiency of global food production. Some HMs such as Mn, Cu, and Fe, at lower concentration serves as an essential vital component of plant cell as they are crucial in various enzyme catalyzed biochemical reactions. At higher concentration, a vast variety of HMs such as Mn, Cu, Cd, Fe, Hg, Al and As, impose toxic reaction in the plant system which greatly affect the crop yield. Recently, microRNAs (miRNAs) that are small class of non-coding riboregulator have emerged as central regulator of numerous abiotic stresses including HMs. Increasing reports indicate that plants have evolved specialized inbuilt mechanism viz. signal transduction, translocation and sequestration to counteract the toxic response of HMs. Combining computational and wet laboratory approaches have produced sufficient evidences concerning active involvement of miRNAs during HMs toxicity response by regulating various transcription factors and protein coding genes involved in plant growth and development. However, the direct role of miRNA in controlling various signaling molecules, transporters and chelating agents of HM metabolism is poorly understood. This review focuses on the latest progress made in the area of direct involvement of miRNAs in signaling, translocation and sequestration as well as recently added miRNAs in response to different HMs in plants.
Collapse
Affiliation(s)
- O P Gupta
- Quality and Basic Sciences, Directorate of Wheat Research, Karnal, 132001, India,
| | | | | | | |
Collapse
|
1003
|
Ye CY, Xu H, Shen E, Liu Y, Wang Y, Shen Y, Qiu J, Zhu QH, Fan L. Genome-wide identification of non-coding RNAs interacted with microRNAs in soybean. FRONTIERS IN PLANT SCIENCE 2014; 5:743. [PMID: 25566308 PMCID: PMC4274897 DOI: 10.3389/fpls.2014.00743] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/05/2014] [Indexed: 05/19/2023]
Abstract
A wide range of RNA species interacting with microRNAs (miRNAs) form a complex gene regulation network and play vital roles in diverse biological processes. In this study, we performed a genome-wide identification of endogenous target mimics (eTMs) for miRNAs and phased-siRNA-producing loci (PHAS) in soybean with a focus on those involved in lipid metabolism. The results showed that a large number of eTMs and PHAS genes could be found in soybean. Additionally, we found that lipid metabolism related genes were potentially regulated by 28 miRNAs, and nine of them were potentially further regulated by a number of eTMs with expression evidence. Thirty-three miRNAs were found to trigger production of phasiRNAs from 49 PHAS genes, which were able to target lipid metabolism related genes. Degradome data supported miRNA- and/or phasiRNA-mediated cleavage of genes involved in lipid metabolism. Most eTMs for miRNAs involved in lipid metabolism and phasiRNAs targeting lipid metabolism related genes showed a tissue-specific expression pattern. Our bioinformatical evidences suggested that lipid metabolism in soybean is potentially regulated by a complex non-coding network, including miRNAs, eTMs, and phasiRNAs, and the results extended our knowledge on functions of non-coding RNAs.
Collapse
Affiliation(s)
- Chu-Yu Ye
- Department of Agronomy, Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Hao Xu
- Guhe InformationHangzhou, China
| | - Enhui Shen
- Department of Agronomy, Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Yang Liu
- Department of Agronomy, Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Yu Wang
- Department of Agronomy, Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Yifei Shen
- Department of Agronomy, Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Jie Qiu
- Department of Agronomy, Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Qian-Hao Zhu
- Commonwealth Scientific and Industrial Research Organisation, Agriculture FlagshipCanberra, ACT, Australia
| | - Longjiang Fan
- Department of Agronomy, Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
- *Correspondence: Longjiang Fan, Department of Agronomy, Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, China e-mail:
| |
Collapse
|
1004
|
Xu Y, Guo M, Liu X, Wang C, Liu Y. Inferring the soybean (Glycine max) microRNA functional network based on target gene network. Bioinformatics 2014; 30:94-103. [PMID: 24149053 DOI: 10.1093/bioinformatics/btt605] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION The rapid accumulation of microRNAs (miRNAs) and experimental evidence for miRNA interactions has ushered in a new area of miRNA research that focuses on network more than individual miRNA interaction, which provides a systematic view of the whole microRNome. So it is a challenge to infer miRNA functional interactions on a system-wide level and further draw a miRNA functional network (miRFN). A few studies have focused on the well-studied human species; however, these methods can neither be extended to other non-model organisms nor take fully into account the information embedded in miRNA-target and target-target interactions. Thus, it is important to develop appropriate methods for inferring the miRNA network of non-model species, such as soybean (Glycine max), without such extensive miRNA-phenotype associated data as miRNA-disease associations in human. RESULTS Here we propose a new method to measure the functional similarity of miRNAs considering both the site accessibility and the interactive context of target genes in functional gene networks. We further construct the miRFNs of soybean, which is the first study on soybean miRNAs on the network level and the core methods can be easily extended to other species. We found that miRFNs of soybean exhibit a scale-free, small world and modular architecture, with their degrees fit best to power-law and exponential distribution. We also showed that miRNA with high degree tends to interact with those of low degree, which reveals the disassortativity and modularity of miRFNs. Our efforts in this study will be useful to further reveal the soybean miRNA-miRNA and miRNA-gene interactive mechanism on a systematic level. AVAILABILITY AND IMPLEMENTATION A web tool for information retrieval and analysis of soybean miRFNs and the relevant target functional gene networks can be accessed at SoymiRNet: http://nclab.hit.edu.cn/SoymiRNet.
Collapse
Affiliation(s)
- Yungang Xu
- School of Computer Science and Technology, and School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, P.R. China
| | | | | | | | | |
Collapse
|
1005
|
Wu SH. Gene expression regulation in photomorphogenesis from the perspective of the central dogma. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:311-33. [PMID: 24779996 DOI: 10.1146/annurev-arplant-050213-040337] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Depending on the environment a young seedling encounters, the developmental program following seed germination could be skotomorphogenesis in the dark or photomorphogenesis in the light. Light signals are interpreted by a repertoire of photoreceptors followed by sophisticated gene expression networks, eventually resulting in developmental changes. The expression and functions of photoreceptors and key signaling molecules are highly coordinated and regulated at multiple levels of the central dogma in molecular biology. Light activates gene expression through the actions of positive transcriptional regulators and the relaxation of chromatin by histone acetylation. Small regulatory RNAs help attenuate the expression of light-responsive genes. Alternative splicing, protein phosphorylation/dephosphorylation, the formation of diverse transcriptional complexes, and selective protein degradation all contribute to proteome diversity and change the functions of individual proteins.
Collapse
Affiliation(s)
- Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| |
Collapse
|
1006
|
Billoud B, Nehr Z, Le Bail A, Charrier B. Computational prediction and experimental validation of microRNAs in the brown alga Ectocarpus siliculosus. Nucleic Acids Res 2014; 42:417-29. [PMID: 24078085 PMCID: PMC3874173 DOI: 10.1093/nar/gkt856] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 12/16/2022] Open
Abstract
We used an in silico approach to predict microRNAs (miRNAs) genome-wide in the brown alga Ectocarpus siliculosus. As brown algae are phylogenetically distant from both animals and land plants, our approach relied on features shared by all known organisms, excluding sequence conservation, genome localization and pattern of base-pairing with the target. We predicted between 500 and 1500 miRNAs candidates, depending on the values of the energetic parameters used to filter the potential precursors. Using quantitative polymerase chain reaction assays, we confirmed the existence of 22 miRNAs among 72 candidates tested, and of 8 predicted precursors. In addition, we compared the expression of miRNAs and their precursors in two life cycle states (sporophyte, gametophyte) and under salt stress. Several miRNA precursors, Argonaute and DICER messenger RNAs were differentially expressed in these conditions. Finally, we analyzed the gene organization and the target functions of the predicted candidates. This showed that E. siliculosus miRNA genes are, like plant miRNA genes, rarely clustered and, like animal miRNA genes, often located in introns. Among the predicted targets, several widely conserved functional domains are significantly overrepresented, like kinesin, nucleotide-binding/APAF-1, R proteins and CED-4 (NB-ARC) and tetratricopeptide repeats. The combination of computational and experimental approaches thus emphasizes the originality of molecular and cellular processes in brown algae.
Collapse
Affiliation(s)
- Bernard Billoud
- Université Pierre et Marie Curie (UPMC), UMR 7139 Végétaux marins et Biomolécules, Station Biologique, CS 90074, F29688, Roscoff, France and Centre National de la Recherche Scientifique (CNRS), UMR 7139 Végétaux marins et Biomolécules, Station Biologique, CS 90074, F29688, Roscoff, France
| | - Zofia Nehr
- Université Pierre et Marie Curie (UPMC), UMR 7139 Végétaux marins et Biomolécules, Station Biologique, CS 90074, F29688, Roscoff, France and Centre National de la Recherche Scientifique (CNRS), UMR 7139 Végétaux marins et Biomolécules, Station Biologique, CS 90074, F29688, Roscoff, France
| | - Aude Le Bail
- Université Pierre et Marie Curie (UPMC), UMR 7139 Végétaux marins et Biomolécules, Station Biologique, CS 90074, F29688, Roscoff, France and Centre National de la Recherche Scientifique (CNRS), UMR 7139 Végétaux marins et Biomolécules, Station Biologique, CS 90074, F29688, Roscoff, France
| | - Bénédicte Charrier
- Université Pierre et Marie Curie (UPMC), UMR 7139 Végétaux marins et Biomolécules, Station Biologique, CS 90074, F29688, Roscoff, France and Centre National de la Recherche Scientifique (CNRS), UMR 7139 Végétaux marins et Biomolécules, Station Biologique, CS 90074, F29688, Roscoff, France
| |
Collapse
|
1007
|
Abstract
The computational identification of novel microRNA (miRNA) genes is a challenging task in bioinformatics. Massive amounts of data describing unknown functional RNA transcripts have to be analyzed for putative miRNA candidates with automated computational pipelines. Beyond those miRNAs that meet the classical definition, high-throughput sequencing techniques have revealed additional miRNA-like molecules that are derived by alternative biogenesis pathways. Exhaustive bioinformatics analyses on such data involve statistical issues as well as precise sequence and structure inspection not only of the functional mature part but also of the whole precursor sequence of the putative miRNA. Apart from a considerable amount of species-specific miRNAs, the majority of all those genes are conserved at least among closely related organisms. Some miRNAs, however, can be traced back to very early points in the evolution of eukaryotic species. Thus, the investigation of the conservation of newly found miRNA candidates comprises an important step in the computational annotation of miRNAs.Topics covered in this chapter include a review on the obvious problem of miRNA annotation and family definition, recommended pipelines of computational miRNA annotation or detection, and an overview of current computer tools for the prediction of miRNAs and their limitations. The chapter closes discussing how those bioinformatic approaches address the problem of faithful miRNA prediction and correct annotation.
Collapse
Affiliation(s)
- Jana Hertel
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
1008
|
Li X, Hou Y, Zhang L, Zhang W, Quan C, Cui Y, Bian S. Computational identification of conserved microRNAs and their targets from expression sequence tags of blueberry (Vaccinium corybosum). PLANT SIGNALING & BEHAVIOR 2014; 9:e29462. [PMID: 25763692 PMCID: PMC4203583 DOI: 10.4161/psb.29462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) are a class of endogenous, approximately 21nt in length, non-coding RNA, which mediate the expression of target genes primarily at post-transcriptional levels. miRNAs play critical roles in almost all plant cellular and metabolic processes. Although numerous miRNAs have been identified in the plant kingdom, the miRNAs in blueberry, which is an economically important small fruit crop, still remain totally unknown. In this study, we reported a computational identification of miRNAs and their targets in blueberry. By conducting an EST-based comparative genomics approach, 9 potential vco-miRNAs were discovered from 22,402 blueberry ESTs according to a series of filtering criteria, designated as vco-miR156-5p, vco-miR156-3p, vco-miR1436, vco-miR1522, vco-miR4495, vco-miR5120, vco-miR5658, vco-miR5783, and vco-miR5986. Based on sequence complementarity between miRNA and its target transcript, 34 target ESTs from blueberry and 70 targets from other species were identified for the vco-miRNAs. The targets were found to be involved in transcription, RNA splicing and binding, DNA duplication, signal transduction, transport and trafficking, stress response, as well as synthesis and metabolic process. These findings will greatly contribute to future research in regard to functions and regulatory mechanisms of blueberry miRNAs.
Collapse
Affiliation(s)
- Xuyan Li
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
| | - Yanming Hou
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
| | - Li Zhang
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
| | - Wenhao Zhang
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
| | - Chen Quan
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
| | - Yuhai Cui
- Agriculture and Agri-Food Canada; Southern Crop Protection and Food Research Centre; London, ON Canada
- Department of Biology; Western University; London, ON Canada
| | - Shaomin Bian
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
- Correspondence to: Shaomin Bian,
| |
Collapse
|
1009
|
Ding D, Li W, Han M, Wang Y, Fu Z, Wang B, Tang J. Identification and characterisation of maize microRNAs involved in developing ears. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:9-15. [PMID: 23668946 DOI: 10.1111/plb.12013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/10/2013] [Indexed: 06/02/2023]
Abstract
In maize, kernel row number trait is determined during the period when spikelet pair meristems (SPMs) give rise to spikelet meristems (SMs). Expression levels of many genes change during this period due to regulation at transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) act as key regulating factors of post-transcriptional gene expression. To discover miRNAs involved in maize ear development, Solexa deep sequencing was performed on a maize inbred line, Zong3. Ears at the stage when SPMs produce SMs were harvested to extract RNA. Deep sequencing revealed 85 conserved miRNAs belonging to 17 miRNA families. miRNA families differed greatly in their abundance, from over 160,000 to only five reads. In addition, 31 novel maize miRNAs were identified using stringent criteria. The results show that miRNA-mediated regulation of gene expression is present in developing maize ears at the stage when SPMs produce SMs; both conserved and novel miRNAs are involved.
Collapse
Affiliation(s)
- D Ding
- College of Agronomy/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - W Li
- College of Agronomy/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - M Han
- College of Agronomy/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Y Wang
- College of Agronomy/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Z Fu
- College of Agronomy/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - B Wang
- College of Agronomy/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - J Tang
- College of Agronomy/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
1010
|
Chaudhary A, Mukherjee SK. The role of small RNAs in vaccination. Methods Mol Biol 2014; 1184:479-501. [PMID: 25048141 DOI: 10.1007/978-1-4939-1115-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The concept of vaccination came to light following Edward Jenner's classical observation on milkmaids who were protected against smallpox. However, plants lack the cellular based immunity system and thus it was not appreciated earlier that plants can also be protected from their pathogens. But phenomena like cross-protection, pathogen derived resistance (PDR), viral recovery, etc. in plants suggested that plants have also evolved immunity against their pathogens. The further advances in the field revealed that an endogenous defense system could have multiple prongs. With the advent of RNAi, it was clear that the antiviral immune responses are related to the induction of specific small RNAs. The detection of virus specific small RNAs (vsiRNA) in immunized plants confirmed their roles in the immunity against pathogens. Although many issues related to antiviral mechanisms are yet to be addressed, the existing tools of RNAi can be efficiently used to control the invading viruses in transgenic plants. It is also possible that the microRNA(s) induced in infected plants impart immunity against viral pathogens. So the small RNA molecules play a vital role in defense system and these can be engineered to enhance the immunity against specific viral pathogens.
Collapse
Affiliation(s)
- Ajeet Chaudhary
- Department of Genetics, University of Delhi-South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | | |
Collapse
|
1011
|
Ghorecha V, Patel K, Ingle S, Sunkar R, Krishnayya NSR. Analysis of biochemical variations and microRNA expression in wild ( Ipomoea campanulata ) and cultivated ( Jacquemontia pentantha ) species exposed to in vivo water stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2014; 20:57-67. [PMID: 24554839 PMCID: PMC3925483 DOI: 10.1007/s12298-013-0207-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 05/27/2023]
Abstract
The current study analyses few important biochemical parameters and microRNA expression in two closely related species (wild but tolerant Ipomoea campanulata L. and cultivated but sensitive Jacquemontia pentantha Jacq.G.Don) exposed to water deficit conditions naturally occurring in the field. Under soil water deficit, both the species showed reduction in their leaf area and SLA as compared to well-watered condition. A greater decrease in chlorophyll was noticed in J. pentantha (~50 %) as compared to I. campanulata (20 %) under stress. By contrast, anthocyanin and MDA accumulation was greater in J. pentantha as compared to I. campanulata. Multiple isoforms of superoxide dismutases (SODs) with differing activities were observed under stress in these two plant species. CuZnSOD isoforms showed comparatively higher induction (~10-40 %) in I. campanulata than J. pentantha. MicroRNAs, miR398, miR319, miR395 miR172, and miR408 showed opposing expression under water deficit in these two plant species. Expression of miR156, miR168, miR171, miR172, miR393, miR319, miR396, miR397 and miR408 from either I. campanulata or J. pentantha or both demonstrated opposite pattern of expression to that of drought stressed Arabidopsis. The better tolerance of the wild species (I. campanulata) to water deficit could be attributed to lesser variations in chlorophyll and anthocyanin levels; and relatively higher levels of SODs than J. pentantha. miRNA expression was different in I. campanulata than J. pentantha.
Collapse
Affiliation(s)
- Vallabhi Ghorecha
- />Ecology Laboratory, Botany Department, Faculty of Science, M.S.University of Baroda, Baroda, 390002 India
| | - Ketan Patel
- />Microbiology Department, Faculty of Science, M.S.University of Baroda, Baroda, 390002 India
| | - S. Ingle
- />Microbiology Department, Faculty of Science, M.S.University of Baroda, Baroda, 390002 India
| | - Ramanjulu Sunkar
- />Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74074 USA
| | - N. S. R. Krishnayya
- />Ecology Laboratory, Botany Department, Faculty of Science, M.S.University of Baroda, Baroda, 390002 India
| |
Collapse
|
1012
|
Chen Z, Li F, Yang S, Dong Y, Yuan Q, Wang F, Li W, Jiang Y, Jia S, Pei X. Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rufipogon Griff.). PLoS One 2013; 8:e82844. [PMID: 24386120 PMCID: PMC3875430 DOI: 10.1371/journal.pone.0082844] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022] Open
Abstract
Background MicroRNAs (miRNAs) is a class of non-coding RNAs involved in post- transcriptional control of gene expression, via degradation and/or translational inhibition. Six-hundred sixty-one rice miRNAs are known that are important in plant development. However, flowering-related miRNAs have not been characterized in Oryza rufipogon Griff. It was approved by supervision department of Guangdong wild rice protection. We analyzed flowering-related miRNAs in O. rufipogon using high-throughput sequencing (deep sequencing) to understand the changes that occurred during rice domestication, and to elucidate their functions in flowering. Results Three O. rufipogon sRNA libraries, two vegetative stage (CWR-V1 and CWR-V2) and one flowering stage (CWR-F2) were sequenced using Illumina deep sequencing. A total of 20,156,098, 21,531,511 and 20,995,942 high quality sRNA reads were obtained from CWR-V1, CWR-V2 and CWR-F2, respectively, of which 3,448,185, 4,265,048 and 2,833,527 reads matched known miRNAs. We identified 512 known rice miRNAs in 214 miRNA families and predicted 290 new miRNAs. Targeted functional annotation, GO and KEGG pathway analyses predicted that 187 miRNAs regulate expression of flowering-related genes. Differential expression analysis of flowering-related miRNAs showed that: expression of 95 miRNAs varied significantly between the libraries, 66 are flowering-related miRNAs, such as oru-miR97, oru-miR117, oru-miR135, oru-miR137, et al. 17 are early-flowering -related miRNAs, including osa-miR160f, osa-miR164d, osa-miR167d, osa-miR169a, osa-miR172b, oru-miR4, et al., induced during the floral transition. Real-time PCR revealed the same expression patterns as deep sequencing. miRNAs targets were confirmed for cleavage by 5′-RACE in vivo, and were negatively regulated by miRNAs. Conclusions This is the first investigation of flowering miRNAs in wild rice. The result indicates that variation in miRNAs occurred during rice domestication and lays a foundation for further study of phase change and flowering in O. rufipogon. Complicated regulatory networks mediated by multiple miRNAs regulate the expression of flowering genes that control the induction of flowering.
Collapse
Affiliation(s)
- Zongxiang Chen
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - FuLi Li
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Songnan Yang
- College of Agriculture Science, MOE Key Lab of Tropic Biological Resources, Hainan University, Haikou, China
| | - Yibo Dong
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianhua Yuan
- College of Agriculture Science, MOE Key Lab of Tropic Biological Resources, Hainan University, Haikou, China
| | - Feng Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weimin Li
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Jiang
- Department of Pathophysiology, Capital Medical University, Beijing, China
- * E-mail: (YJ); (XP)
| | - Shirong Jia
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - XinWu Pei
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (YJ); (XP)
| |
Collapse
|
1013
|
Gao R, Wan ZY, Wong SM. Plant growth retardation and conserved miRNAs are correlated to Hibiscus chlorotic ringspot virus infection. PLoS One 2013; 8:e85476. [PMID: 24386476 PMCID: PMC3875576 DOI: 10.1371/journal.pone.0085476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 11/27/2013] [Indexed: 11/25/2022] Open
Abstract
Virus infection may cause a multiplicity of symptoms in their host including discoloration, distortion and growth retardation. Hibiscus chlorotic ringspot virus (HCRSV) infection was studied using kenaf (Hibiscus cannabinus L.), a non-wood fiber-producing crop in this study. Infection by HCRSV reduced the fiber yield and concomitant economic value of kenaf. We investigated kenaf growth retardation and fluctuations of four selected miRNAs after HCRSV infection. Vegetative growth (including plant height, leaf size and root development) was severely retarded. From the transverse and radial sections of the mock and HCRSV-infected kenaf stem, the vascular bundles of HCRSV-infected plants were severely disrupted. In addition, four conserved plant developmental and defence related microRNAs (miRNAs) (miR165, miR167, miR168 and miR171) and their respective target genes phabulosa (PHB), auxin response factor 8 (ARF8), argonaute 1 (AGO1) and scarecrow-like protein 1 (SCL1) displayed variation in expression levels after HCRSV infection. Compared with the mock inoculated kenaf plants, miR171 and miR168 and their targets SCL1 and AGO1 showed greater fluctuations after HCRSV infection. As HCRSV upregulates plant SO transcript in kenaf and upregulated AGO1 in HCRSV-infected plants, the expression level of AGO1 transcript was further investigated under sulfite oxidase (SO) overexpression or silencing condition. Interestingly, the four selected miRNAs were also up- or down-regulated upon overexpression or silencing of SO. Plant growth retardation and fluctuation of four conserved miRNAs are correlated to HCRSV infection.
Collapse
Affiliation(s)
- Ruimin Gao
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zi Yi Wan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Singapore
- Temasek Life Sciences Laboratory, Singapore
- National University of Singapore Suzhou Research Institute, Jiangsu, China
- * E-mail:
| |
Collapse
|
1014
|
microRNAs in a multicellular green alga Volvox carteri. SCIENCE CHINA-LIFE SCIENCES 2013; 57:36-45. [DOI: 10.1007/s11427-013-4580-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
|
1015
|
Exploring the interaction between small RNAs and R genes during Brachypodium response to Fusarium culmorum infection. Gene 2013; 536:254-64. [PMID: 24368332 DOI: 10.1016/j.gene.2013.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/22/2013] [Accepted: 12/10/2013] [Indexed: 01/15/2023]
Abstract
The present study aims to investigate small RNA interactions with putative disease response genes in the model grass species Brachypodium distachyon. The fungal pathogen Fusarium culmorum (Fusarium herein) and phytohormone salicylic acid treatment were used to induce the disease response in Brachypodium. Initially, 121 different putative disease response genes were identified using bioinformatic and homology based approaches. Computational prediction was used to identify 33 candidate new miRNA coding sequences, of which 9 were verified by analysis of small RNA sequence libraries. Putative Brachypodium miRNA target sites were identified in the disease response genes, and a subset of which were screened for expression and possible miRNA interactions in 5 different Brachypodium lines infected with Fusarium. An NBS-LRR family gene, 1g34430, was polymorphic among the lines, forming two major genotypes, one of which has its miRNA target sites deleted, resulting in altered gene expression during infection. There were siRNAs putatively involved in regulation of this gene, indicating a role of small RNAs in the B. distachyon disease response.
Collapse
|
1016
|
Identification and profiling of novel and conserved microRNAs during the flower opening process in Prunus mume via deep sequencing. Mol Genet Genomics 2013; 289:169-83. [DOI: 10.1007/s00438-013-0800-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/04/2013] [Indexed: 01/01/2023]
|
1017
|
Yi F, Xie S, Liu Y, Qi X, Yu J. Genome-wide characterization of microRNA in foxtail millet (Setaria italica). BMC PLANT BIOLOGY 2013; 13:212. [PMID: 24330712 PMCID: PMC3878754 DOI: 10.1186/1471-2229-13-212] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 11/27/2013] [Indexed: 05/23/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of short non-coding, endogenous RNAs that play key roles in many biological processes in both animals and plants. Although many miRNAs have been identified in a large number of organisms, the miRNAs in foxtail millet (Setaria italica) have, until now, been poorly understood. RESULTS In this study, two replicate small RNA libraries from foxtail millet shoots were sequenced, and 40 million reads representing over 10 million unique sequences were generated. We identified 43 known miRNAs, 172 novel miRNAs and 2 mirtron precursor candidates in foxtail millet. Some miRNA*s of the known and novel miRNAs were detected as well. Further, eight novel miRNAs were validated by stem-loop RT-PCR. Potential targets of the foxtail millet miRNAs were predicted based on our strict criteria. Of the predicted target genes, 79% (351) had functional annotations in InterPro and GO analyses, indicating the targets of the miRNAs were involved in a wide range of regulatory functions and some specific biological processes. A total of 69 pairs of syntenic miRNA precursors that were conserved between foxtail millet and sorghum were found. Additionally, stem-loop RT-PCR was conducted to confirm the tissue-specific expression of some miRNAs in the four tissues identified by deep-sequencing. CONCLUSIONS We predicted, for the first time, 215 miRNAs and 447 miRNA targets in foxtail millet at a genome-wide level. The precursors, expression levels, miRNA* sequences, target functions, conservation, and evolution of miRNAs we identified were investigated. Some of the novel foxtail millet miRNAs and miRNA targets were validated experimentally.
Collapse
Affiliation(s)
- Fei Yi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaojun Xie
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuwei Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xin Qi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
1018
|
Fang X, Zhao Y, Ma Q, Huang Y, Wang P, Zhang J, Nian H, Yang C. Identification and comparative analysis of cadmium tolerance-associated miRNAs and their targets in two soybean genotypes. PLoS One 2013; 8:e81471. [PMID: 24363811 PMCID: PMC3867309 DOI: 10.1371/journal.pone.0081471] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in regulating the expression of various stress responses genes in plants. To investigate soybean (Glycine max) miRNAs involved in the response to cadmium (Cd), microarrays containing 953 unique miRNA probes were employed to identify differences in the expression patterns of the miRNAs between different genotypes, Huaxia3 (HX3, Cd-tolerant) and Zhonghuang24 (ZH24, Cd-sensitive). Twenty six Cd-responsive miRNAs were identified in total. Among them, nine were detected in both cultivars, while five were expressed only in HX3 and 12 were only in ZH24. The expression of 16 miRNAs was tested by qRT-PCR and most of the identified miRNAs were found to have similar expression patterns with microarray. Three hundred and seventy six target genes were identified for 204 miRNAs from a mixture degradome library, which was constructed from the root of HX3 and ZH24 with or without Cd treatment. Fifty five genes were identified to be cleaved by 14 Cd-responsive miRNAs. Gene ontology (GO) annotations showed that these target transcripts are implicated in a broad range of biological processes. In addition, the expression patterns of ten target genes were validated by qRT-PCR. The characterization of the miRNAs and the associated target genes in response to Cd exposure provides a framework for understanding the molecular mechanism of heavy metal tolerance in plants.
Collapse
Affiliation(s)
- Xiaolong Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yunyun Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Qibin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yian Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Peng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jie Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hai Nian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Cunyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
1019
|
Zhang J, Zhang S, Han S, Li X, Tong Z, Qi L. Deciphering small noncoding RNAs during the transition from dormant embryo to germinated embryo in Larches (Larix leptolepis). PLoS One 2013; 8:e81452. [PMID: 24339932 PMCID: PMC3858266 DOI: 10.1371/journal.pone.0081452] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/11/2013] [Indexed: 11/25/2022] Open
Abstract
Small RNAs (sRNAs), as a key component of molecular biology, play essential roles in plant development, hormone signaling, and stress response. However, little is known about the relationships among sRNAs, hormone signaling, and dormancy regulation in gymnosperm embryos. To investigate the roles of sRNAs in embryo dormancy maintenance and release in Larix leptolepis, we deciphered the endogenous “sRNAome” in dormant and germinated embryos. High-throughput sequencing of sRNA libraries showed that dormant embryos exhibited a length bias toward 24-nt while germinated embryos showed a bias toward 21-nt lengths. This might be associated with distinct levels of RNA-dependent RNA polymerase2 (RDR2) and/or RDR6, which is regulated by hormones. Proportions of miRNAs to nonredundant and redundant sRNAs were higher in germinated embryos than in dormant embryos, while the ratio of unknown sRNAs was higher in dormant embryos than in germinated embryos. We identified a total of 160 conserved miRNAs from 38 families, 3 novel miRNAs, and 16 plausible miRNA candidates, of which many were upregulated in germinated embryos relative to dormant embryos. These findings indicate that larches and possibly other gymnosperms have complex mechanisms of gene regulation involving miRNAs and other sRNAs operating transcriptionally and posttranscriptionally during embryo dormancy and germination. We propose that abscisic acid modulates embryo dormancy and germination at least in part through regulation of the expression level of sRNA-biogenesis genes, thus changing the sRNA components.
Collapse
Affiliation(s)
- Junhong Zhang
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou, Zhejiang, P.R. China
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Shougong Zhang
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Suying Han
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, P.R. China
| | - Xinmin Li
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Zaikang Tong
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou, Zhejiang, P.R. China
- * E-mail: (ZT); (LQ)
| | - Liwang Qi
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
- * E-mail: (ZT); (LQ)
| |
Collapse
|
1020
|
Cao S, Zhu QH, Shen W, Jiao X, Zhao X, Wang MB, Liu L, Singh SP, Liu Q. Comparative profiling of miRNA expression in developing seeds of high linoleic and high oleic safflower (Carthamus tinctorius L.) plants. FRONTIERS IN PLANT SCIENCE 2013; 4:489. [PMID: 24348492 PMCID: PMC3844856 DOI: 10.3389/fpls.2013.00489] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/12/2013] [Indexed: 05/20/2023]
Abstract
Vegetable oils high in oleic acid are considered to be advantageous because of their better nutritional value and potential industrial applications. The oleic acid content in the classic safflower oil is normally 10-15% while a natural mutant (ol) accumulates elevated oleic acid up to 70% in seed oil. As a part of our investigation into the molecular features of the high oleic (HO) trait in safflower we have profiled the microRNA (miRNA) populations in developing safflower seeds expressing the ol allele in comparison to the wild type high linoleic (HL) safflower using deep sequencing technology. The small RNA populations of the mid-maturity developing embryos of homozygous ol HO and wild type HL safflower had a very similar size distribution pattern, however, only ~16.5% of the unique small RNAs were overlapping in these two genotypes. From these two small RNA populations we have found 55 known miRNAs and identified two candidate novel miRNA families to be likely unique to the developing safflower seeds. Target genes with conserved as well as novel functions were predicted for the conserved miRNAs. We have also identified 13 miRNAs differentially expressed between the HO and HL safflower genotypes. The results may lay a foundation for unraveling the miRNA-mediated molecular processes that regulate oleic acid accumulation in the HO safflower mutant and developmental processes in safflower embryos in general.
Collapse
Affiliation(s)
- Shijiang Cao
- Commonwealth Scientific and Industrial Research Organization Plant IndustryACT, Australia
| | - Qian-Hao Zhu
- Commonwealth Scientific and Industrial Research Organization Plant IndustryACT, Australia
| | - Wanxia Shen
- Commonwealth Scientific and Industrial Research Organization Plant IndustryACT, Australia
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest UniversityChongqing, China
| | - Xiaoming Jiao
- Commonwealth Scientific and Industrial Research Organization Plant IndustryACT, Australia
- National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Xiaochun Zhao
- Commonwealth Scientific and Industrial Research Organization Plant IndustryACT, Australia
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest UniversityChongqing, China
| | - Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organization Plant IndustryACT, Australia
| | - Lixia Liu
- School of Life Sciences, Northeast Normal UniversityChangchun, China
| | - Surinder P. Singh
- Commonwealth Scientific and Industrial Research Organization Plant IndustryACT, Australia
| | - Qing Liu
- Commonwealth Scientific and Industrial Research Organization Plant IndustryACT, Australia
| |
Collapse
|
1021
|
Identification and functional analysis of miRNAs in developing kernels of a viviparous mutant in maize. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.cj.2013.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
1022
|
Li Y, Zhang Y, Shi D, Liu X, Qin J, Ge Q, Xu L, Pan X, Li W, Zhu Y, Xu J. Spatial-temporal analysis of zinc homeostasis reveals the response mechanisms to acute zinc deficiency in Sorghum bicolor. THE NEW PHYTOLOGIST 2013; 200:1102-15. [PMID: 23915383 DOI: 10.1111/nph.12434] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/01/2013] [Indexed: 05/18/2023]
Abstract
Zinc (Zn) is an essential micronutrient in plants. The activity of copper/zinc superoxide dismutase (CSD) and carbonic anhydrase (CA) correlate with differences in Zn efficiency in plants; therefore, it is reasonable to hypothesize the existence of a Zn economy model that saves Zn for these essential Zn proteins during Zn deficiency. However, up to this point, direct evidence for the idea that CSD and/or CA might be priorities for Zn delivery has been lacking. Here, we investigated the spatial-temporal effects of acute Zn depletion and resupply by integrating physiological studies and molecular analyses using hydroponically grown Sorghum. The elevated expression of miR398 repressed CSD expression in roots, whereas the reduced expression of miR528 resulted in a relatively stable level of CSD expression in Sorghum leaves under Zn depletion. Spatial-temporal analysis after Zn resupply to previously depleted plants revealed that the expression and activity of CA were the first to recover after Zn addition, whereas the recovery of the activities of CSD and alcohol dehydrogenase (ADH) was delayed, suggesting that CA receives priority in Zn delivery over CSD and ADH. Our results also indicate that microRNAs (miRNAs) are important regulators of the response of Zn deficiency in plants.
Collapse
Affiliation(s)
- Yulong Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong RD, Shijiazhuang, 050021, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1023
|
Zuo J, Fu D, Zhu Y, Qu G, Tian H, Zhai B, Ju Z, Gao C, Wang Y, Luo Y, Zhu B. SRNAome parsing yields insights into tomato fruit ripening control. PHYSIOLOGIA PLANTARUM 2013; 149:540-53. [PMID: 23550530 DOI: 10.1111/ppl.12055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 05/15/2023]
Abstract
Small RNAs have emerged as critical regulators in the expression and function of eukaryotic genomes at the post-transcriptional level. To elucidate the functions of microRNA (miRNAs) and endogenous small-interfering RNAs (siRNAs) in tomato fruit ripening process, the deep sequencing and bioinformatics methods were combined to parse the small RNAs landscape in three fruit-ripening stages (mature green, breaker and red-ripe) on a whole genome. Two species-specific miRNAs and two members of TAS3 family were identified, 590 putative phased small RNAs and 125 cis-natural antisense (nat-siRNAs) were also found in our results which enriched the tomato small RNAs repository and all of them showed differential expression patterns during fruit ripening. A large amount of the targets of the small RNAs were predicted to be involved in fruit ripening and ethylene pathway. Furthermore, the promoters of the conserved and novel miRNAs were found to contain the conserved motifs of TATA-box and CT microsatellites which were also found in Arabidopsis and rice, and several species-specific motifs were found in parallel.
Collapse
Affiliation(s)
- Jinhua Zuo
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Laboratory of Postharvest Storage and Processing of Vegetables, National Engineering Research Center for Vegetables, Beijing, 100097, China
- Laboratory of Postharvest Storage and Processing of Vegetables, Vegetable Research Centre, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Daqi Fu
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yi Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guiqin Qu
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Huiqin Tian
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Baiqiang Zhai
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zheng Ju
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chao Gao
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunxiang Wang
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Benzhong Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
1024
|
Ding Y, Qu A, Gong S, Huang S, Lv B, Zhu C. Molecular identification and analysis of Cd-responsive microRNAs in rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11668-11675. [PMID: 23909695 DOI: 10.1021/jf401359q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cadmium (Cd) is a non-essential heavy metal with high toxicity to plants. MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important roles in plant abiotic stress responses. To investigate whether miRNAs function in Cd stress response, miRNA expression profiles in rice ( Oryza sativa ) under Cd stress were monitored using microarray assays. A total of 12 Cd-responsive novel miRNAs predicted previously were identified, of which 4 were further validated experimentally. A total of 44 target genes were predicted for the Cd-responsive miRNAs, many of which appeared to regulate gene networks mediating environmental stresses. Several target genes were validated to show a reciprocal regulation by miRNAs. A transgenic approach was also used to determine the role of miRNAs in rice response to Cd stress. Overexpression of miR192 retarded seed germination and seedling growth under Cd stress. These results implied the role of novel miRNAs in the involvement of Cd tolerance of rice.
Collapse
Affiliation(s)
- Yanfei Ding
- College of Life Sciences, China Jiliang University , Hangzhou 310018, People's Republic of China
| | | | | | | | | | | |
Collapse
|
1025
|
Iwakawa HO, Tomari Y. Molecular insights into microRNA-mediated translational repression in plants. Mol Cell 2013; 52:591-601. [PMID: 24267452 DOI: 10.1016/j.molcel.2013.10.033] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/08/2013] [Accepted: 10/07/2013] [Indexed: 01/01/2023]
Abstract
microRNAs (miRNAs) bind Argonaute proteins in order to form RNA-induced silencing complexes (RISCs) that can silence the expression of complementary mRNAs. Plant miRNAs can mediate the cleavage of their target mRNAs as well as the repression of their translation. Here, by using an in vitro system prepared from plant culture cells, we biochemically dissect the mechanisms by which Arabidopsis thaliana ARGONAUTE1 RISC (AtAGO1-RISC) silences its mRNA targets. We find that AtAGO1-RISC has the ability to repress translation initiation without promoting deadenylation or mRNA decay. Strikingly, AtAGO1-RISC bound in the 5' untranslated region or the open reading frame can sterically block the recruitment or movement of ribosomes. These silencing effects require more extensive base pairing to the target site in comparison to typical animal miRNAs. Our data provide mechanistic insights into miRNA-mediated translational repression in plants.
Collapse
Affiliation(s)
- Hiro-oki Iwakawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | |
Collapse
|
1026
|
Zhang Q, Zhao C, Li M, Sun W, Liu Y, Xia H, Sun M, Li A, Li C, Zhao S, Hou L, Picimbon JF, Wang X, Zhao Y. Genome-wide identification of Thellungiella salsuginea microRNAs with putative roles in the salt stress response. BMC PLANT BIOLOGY 2013; 13:180. [PMID: 24237587 PMCID: PMC4225614 DOI: 10.1186/1471-2229-13-180] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/04/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND MicroRNAs are key regulators of plant growth and development with important roles in environmental adaptation. The microRNAs from the halophyte species Thellungiella salsuginea (salt cress), which exhibits extreme salt stress tolerance, remain to be investigated. The sequenced genome of T. salsuginea and the availability of high-throughput sequencing technology enabled us to discover the conserved and novel miRNAs in this plant species. It is interesting to identify the microRNAs from T. salsuginea genome wide and study their roles in salt stress response. RESULTS In this study, two T. salsuginea small RNA libraries were constructed and sequenced using Solexa technology. We identified 109 miRNAs that had previously been reported in other plant species. A total of 137 novel miRNA candidates were identified, among which the miR* sequence of 26 miRNAs was detected. In addition, 143 and 425 target mRNAs were predicted for the previously identified and Thellungiella-specific miRNAs, respectively. A quarter of these putative targets encode transcription factors. Furthermore, numerous signaling factor encoding genes, defense-related genes, and transporter encoding genes were amongst the identified targets, some of which were shown to be important for salt tolerance. Cleavage sites of seven target genes were validated by 5' RACE, and some of the miRNAs were confirmed by qRT-PCR analysis. The expression levels of 26 known miRNAs in the roots and leaves of plants subjected to NaCl treatment were determined by Affymetrix microarray analysis. The expression of most tested miRNA families was up- or down-regulated upon NaCl treatment. Differential response patterns between the leaves and roots were observed for these miRNAs. CONCLUSIONS Our results indicated that diverse set of miRNAs of T. salsuginea were responsive to salt stress and could play an important role in the salt stress response.
Collapse
Affiliation(s)
- Quan Zhang
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Chuanzhi Zhao
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Ming Li
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Wei Sun
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Yan Liu
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Han Xia
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Mingnan Sun
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Aiqin Li
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Changsheng Li
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Shuzhen Zhao
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Lei Hou
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Jean-François Picimbon
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Xingjun Wang
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Yanxiu Zhao
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
1027
|
Ballén-Taborda C, Plata G, Ayling S, Rodríguez-Zapata F, Becerra Lopez-Lavalle LA, Duitama J, Tohme J. Identification of Cassava MicroRNAs under Abiotic Stress. Int J Genomics 2013; 2013:857986. [PMID: 24328029 PMCID: PMC3845235 DOI: 10.1155/2013/857986] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022] Open
Abstract
The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants.
Collapse
Affiliation(s)
- Carolina Ballén-Taborda
- Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| | - Germán Plata
- Department of Systems Biology, Columbia University, 1130 Saint Nicholas Avenue, New York, NY 10032, USA
| | - Sarah Ayling
- The Genome Analysis Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Fausto Rodríguez-Zapata
- Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| | | | - Jorge Duitama
- Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| | - Joe Tohme
- Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| |
Collapse
|
1028
|
Xu L, Wang Y, Zhai L, Xu Y, Wang L, Zhu X, Gong Y, Yu R, Limera C, Liu L. Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4271-87. [PMID: 24014874 PMCID: PMC3808317 DOI: 10.1093/jxb/ert240] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are endogenous non-coding small RNAs that play vital regulatory roles in plant growth, development, and environmental stress responses. Cadmium (Cd) is a non-essential heavy metal that is highly toxic to living organisms. To date, a number of conserved and non-conserved miRNAs have been identified to be involved in response to Cd stress in some plant species. However, the miRNA-mediated gene regulatory networks responsive to Cd stress in radish (Raphanus sativus L.) remain largely unexplored. To dissect Cd-responsive miRNAs and their targets systematically at the global level, two small RNA libraries were constructed from Cd-treated and Cd-free roots of radish seedlings. Using Solexa sequencing technology, 93 conserved and 16 non-conserved miRNAs (representing 26 miRNA families) and 28 novel miRNAs (representing 22 miRNA families) were identified. In all, 15 known and eight novel miRNA families were significantly differently regulated under Cd stress. The expression patterns of a set of Cd-responsive miRNAs were validated by quantitative real-time PCR. Based on the radish mRNA transcriptome, 18 and 71 targets for novel and known miRNA families, respectively, were identified by the degradome sequencing approach. Furthermore, a few target transcripts including phytochelatin synthase 1 (PCS1), iron transporter protein, and ABC transporter protein were involved in plant response to Cd stress. This study represents the first transcriptome-based analysis of miRNAs and their targets responsive to Cd stress in radish roots. These findings could provide valuable information for functional characterization of miRNAs and their targets in regulatory networks responsive to Cd stress in radish.
Collapse
Affiliation(s)
- Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lulu Zhai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanyuan Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liangju Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Yiqin Gong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Rugang Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Cecilia Limera
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1029
|
Martínez de Alba AE, Elvira-Matelot E, Vaucheret H. Gene silencing in plants: a diversity of pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1300-8. [PMID: 24185199 DOI: 10.1016/j.bbagrm.2013.10.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
Eukaryotic organisms have evolved a variety of gene silencing pathways in which small RNAs, 20- to 30-nucleotides in length, repress the expression of sequence homologous genes at the transcriptional or post-transcriptional levels. In plants, RNA silencing pathways play important roles in regulating development and response to both biotic and abiotic stresses. The molecular basis of these complex and interconnected pathways has emerged only in recent years with the identification of many of the genes necessary for the biogenesis and action of small RNAs. This review covers the diversity of RNA silencing pathways identified in plants.
Collapse
|
1030
|
Yuan C, Sun Y. RNA-CODE: a noncoding RNA classification tool for short reads in NGS data lacking reference genomes. PLoS One 2013; 8:e77596. [PMID: 24204885 PMCID: PMC3808423 DOI: 10.1371/journal.pone.0077596] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/06/2013] [Indexed: 01/22/2023] Open
Abstract
The number of transcriptomic sequencing projects of various non-model organisms is still accumulating rapidly. As non-coding RNAs (ncRNAs) are highly abundant in living organism and play important roles in many biological processes, identifying fragmentary members of ncRNAs in small RNA-seq data is an important step in post-NGS analysis. However, the state-of-the-art ncRNA search tools are not optimized for next-generation sequencing (NGS) data, especially for very short reads. In this work, we propose and implement a comprehensive ncRNA classification tool (RNA-CODE) for very short reads. RNA-CODE is specifically designed for ncRNA identification in NGS data that lack quality reference genomes. Given a set of short reads, our tool classifies the reads into different types of ncRNA families. The classification results can be used to quantify the expression levels of different types of ncRNAs in RNA-seq data and ncRNA composition profiles in metagenomic data, respectively. The experimental results of applying RNA-CODE to RNA-seq of Arabidopsis and a metagenomic data set sampled from human guts demonstrate that RNA-CODE competes favorably in both sensitivity and specificity with other tools. The source codes of RNA-CODE can be downloaded at http://www.cse.msu.edu/~chengy/RNA_CODE.
Collapse
Affiliation(s)
- Cheng Yuan
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Yanni Sun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
1031
|
Han Y, Liu Y, Zhang H, Wang T, Diao R, Jiang Z, Gui Y, Cai Z. Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long noncoding RNA MALAT1. FEBS Lett 2013; 587:S0014-5793(13)00780-1. [PMID: 24512851 DOI: 10.1016/j.febslet.2013.10.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/07/2013] [Accepted: 10/15/2013] [Indexed: 11/29/2022]
Abstract
MicroRNAs mainly inhibit coding genes and long non-coding RNA expression. Here, we report that hsa-miR-125b and oncogene SIRT7/ oncogenic long noncoding RNA MALAT1 were inversely expressed in bladder cancer. Hsa-miR-125b mimic downregulated, whereas hsa-miR-125b inhibitor upregulated the expression of SIRT7 and MALAT1. Binding sites were confirmed between hsa-miR-125b and SIRT7/MALAT1. Upregulation of hsa-miR-125b or downregulation of SIRT7 inhibited proliferation, motility and increased apoptosis. The effects of upregulation of hsa-miR-125b were similar to that of silencing MALAT1 in bladder cancer as we had previously described. These data suggest that hsa-miR-125b suppresses bladder cancer development via inhibiting SIRT7 and MALAT1.
Collapse
Affiliation(s)
- Yonghua Han
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, Postdoctroal Scientific Research Base, Zhongshan School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yuchen Liu
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, Postdoctroal Scientific Research Base, Zhongshan School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Hu Zhang
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
| | - Tiantian Wang
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ruiying Diao
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, Postdoctroal Scientific Research Base, Zhongshan School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhimao Jiang
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yaoting Gui
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Zhiming Cai
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, Postdoctroal Scientific Research Base, Zhongshan School of Medicine, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
1032
|
Identification and characterization of microRNAs in the leaf of ma bamboo (Dendrocalamus latiflorus) by deep sequencing. PLoS One 2013; 8:e78755. [PMID: 24205306 PMCID: PMC3804618 DOI: 10.1371/journal.pone.0078755] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs), a class of non-coding small endogenous RNAs of approximately 22 nucleotides, regulate gene expression at the post-transcriptional levels by targeting mRNAs for degradation or by inhibiting protein translation. Thousands of miRNAs have been identified in many species. However, there is no information available concerning miRNAs in ma bamboo (Dendrocalamus latiflorus), one of the most important non-timber forest products, which has essential ecological roles in forests. To identify miRNAs in D. latiflorus, a small RNA library was constructed from leaf tissues. Using next generation high-throughput sequencing technology and bioinformatics analysis, we obtained 11,513,607 raw sequence reads and identified 84 conserved miRNAs (54 mature miRNAs and 30 star miRNAs) belonging to 17 families, and 81 novel miRNAs (76 mature miRNAs and five star miRNAs) in D. latiflorus. One hundred and sixty-two potential targets were identified for the 81 novel bamboo miRNAs. Several targets for the novel miRNAs are transcription factors that play important roles in plant development. Among the novel miRNAs, 30 were selected and their expression profiles in response to different light conditions were validated by qRT-PCR. This study provides the first large-scale cloning and characterization of miRNAs in D. latiflorus. Eighty-four conserved and 81 novel miRNAs were identified in D. latiflorus. Our results present a broad survey of bamboo miRNAs based on experimental and bioinformatics analysis. Although it will be necessary to validate the functions of miRNAs by further experimental research, these results represent a starting point for future research on D. latiflorus and related species.
Collapse
|
1033
|
Yuan Z, Liu H, Nie Y, Ding S, Yan M, Tan S, Jin Y, Sun X. Identification of novel microRNAs in primates by using the synteny information and small RNA deep sequencing data. Int J Mol Sci 2013; 14:20820-32. [PMID: 24135875 PMCID: PMC3821645 DOI: 10.3390/ijms141020820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/22/2013] [Accepted: 10/09/2013] [Indexed: 11/16/2022] Open
Abstract
Current technologies that are used for genome-wide microRNA (miRNA) prediction are mainly based on BLAST tool. They often produce a large number of false positives. Here, we describe an effective approach for identifying orthologous pre-miRNAs in several primates based on syntenic information. Some of them have been validated by small RNA high throughput sequencing data. This approach uses the synteny information and experimentally validated miRNAs of human, and incorporates currently available algorithms and tools to identify the pre-miRNAs in five other primates. First, we identified 929 potential pre-miRNAs in the marmoset in which miRNAs have not yet been reported. Then, we predicted the miRNAs in other primates, and we successfully re-identified most of the published miRNAs and found 721, 979, 650 and 639 new potential pre-miRNAs in chimpanzee, gorilla, orangutan and rhesus macaque, respectively. Furthermore, the miRNA transcriptome in the four primates have been re-analyzed and some novel predicted miRNAs have been supported by the small RNA sequencing data. Finally, we analyzed the potential functions of those validated miRNAs and explored the regulatory elements and transcription factors of some validated miRNA genes of interest. The results show that our approach can effectively identify novel miRNAs and some miRNAs that supported by small RNA sequencing data maybe play roles in the nervous system.
Collapse
Affiliation(s)
- Zhidong Yuan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; E-Mails: (Z.Y.); (S.D.); (M.Y.); (S.T.); (Y.J.)
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; E-Mails: (H.L.); (Y.N.)
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; E-Mails: (H.L.); (Y.N.)
| | - Yumin Nie
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; E-Mails: (H.L.); (Y.N.)
| | - Suping Ding
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; E-Mails: (Z.Y.); (S.D.); (M.Y.); (S.T.); (Y.J.)
| | - Mingli Yan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; E-Mails: (Z.Y.); (S.D.); (M.Y.); (S.T.); (Y.J.)
| | - Shuhua Tan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; E-Mails: (Z.Y.); (S.D.); (M.Y.); (S.T.); (Y.J.)
| | - Yuanchang Jin
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; E-Mails: (Z.Y.); (S.D.); (M.Y.); (S.T.); (Y.J.)
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; E-Mails: (H.L.); (Y.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-258-379-5174; Fax: +86-258-379-2349
| |
Collapse
|
1034
|
Chen X, Gao W, Zhang J, Zhang X, Lin Z. Linkage mapping and expression analysis of miRNAs and their target genes during fiber development in cotton. BMC Genomics 2013; 14:706. [PMID: 24131852 PMCID: PMC4007520 DOI: 10.1186/1471-2164-14-706] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/08/2013] [Indexed: 02/21/2023] Open
Abstract
Background MicroRNAs (miRNAs) are small, endogenously expressed, non-coding RNA molecules involved in gene transcription and expression that combine with specific mRNA site of target genes to inhibit protein synthesis or degrade mRNA. Since the first plant miRNA was reported in 2002, numerous new miRNAs and their targets have been discovered via high-throughput sequencing and computational approaches. However, the genetic variation of miRNA genes is poorly understood due to the lack of miRNA-specific DNA markers. Results To study the genetic variation and map miRNAs and their putative target genes in cotton, we designed specific primers based on pre-miRNAs and published putative target genes. A total of 83 pre-miRNA primers and 1,255 putative target gene primers were surveyed, and 9 pre-miRNA polymorphic loci were mapped on 7 of the 26 tetraploid cotton chromosomes. Furthermore, 156 polymorphic loci of the target genes were mapped on the cotton genome. To map more miRNA loci, miRNA-based SRAP (sequence-related amplified polymorphism) markers were used to map an additional 54 polymorphic loci on the cotton genome with the exception of Chr01, Chr22, and Chr24. Finally, a network between miRNAs and their targets was constructed. All pre-miRNAs and 98 putative target genes were selected for RT-PCR analysis, revealing unique expression patterns across different fiber development stages between the mapping parents. Conclusions Our data provide an overview of miRNAs, their putative targets, and their network in cotton as well as comparative expression analyses between Gossypium hirsutum and G. barbadense. These data provide a foundation for understanding miRNA regulation during cotton fiber development.
Collapse
Affiliation(s)
| | | | | | | | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement & National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070 Wuhan, Hubei, China.
| |
Collapse
|
1035
|
Kamanu TKK, Radovanovic A, Archer JAC, Bajic VB. Exploration of miRNA families for hypotheses generation. Sci Rep 2013; 3:2940. [PMID: 24126940 PMCID: PMC3796740 DOI: 10.1038/srep02940] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/25/2013] [Indexed: 12/13/2022] Open
Abstract
Technological improvements have resulted in increased discovery of new microRNAs (miRNAs) and refinement and enrichment of existing miRNA families. miRNA families are important because they suggest a common sequence or structure configuration in sets of genes that hint to a shared function. Exploratory tools to enhance investigation of characteristics of miRNA families and the functions of family-specific miRNA genes are lacking. We have developed, miRNAVISA, a user-friendly web-based tool that allows customized interrogation and comparisons of miRNA families for hypotheses generation, and comparison of per-species chromosomal distribution of miRNA genes in different families. This study illustrates hypothesis generation using miRNAVISA in seven species. Our results unveil a subclass of miRNAs that may be regulated by genomic imprinting, and also suggest that some miRNA families may be species-specific, as well as chromosome- and/or strand-specific.
Collapse
Affiliation(s)
- Timothy K K Kamanu
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Kingdom of Saudi Arabia
| | | | | | | |
Collapse
|
1036
|
Klironomos FD, de Meaux J, Berg J. Can we always sweep the details of RNA-processing under the carpet? Phys Biol 2013; 10:056007. [PMID: 24091933 DOI: 10.1088/1478-3975/10/5/056007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
RNA molecules follow a succession of enzyme-mediated processing steps from transcription to maturation. The participating enzymes, for example the spliceosome for mRNAs and Drosha and Dicer for microRNAs, are also produced in the cell and their copy-numbers fluctuate over time. Enzyme copy-number changes affect the processing rate of the substrate molecules; high enzyme numbers increase the processing rate, while low enzyme numbers decrease it. We study different RNA-processing cascades where enzyme copy-numbers are either fixed or fluctuate. We find that for the fixed enzyme copy-numbers, the substrates at steady-state are Poisson-distributed, and the whole RNA cascade dynamics can be understood as a single birth-death process of the mature RNA product. In this case, solely fluctuations in the timing of RNA processing lead to variation in the number of RNA molecules. However, we show analytically and numerically that when enzyme copy-numbers fluctuate, the strength of RNA fluctuations increases linearly with the RNA transcription rate. This linear effect becomes stronger as the speed of enzyme dynamics decreases relative to the speed of RNA dynamics. Interestingly, we find that under certain conditions, the RNA cascade can reduce the strength of fluctuations in the expression level of the mature RNA product. Finally, by investigating the effects of processing polymorphisms, we show that it is possible for the effects of transcriptional polymorphisms to be enhanced, reduced or even reversed. Our results provide a framework to understand the dynamics of RNA processing.
Collapse
|
1037
|
Li H, Mao W, Liu W, Dai H, Liu Y, Ma Y, Zhang Z. Deep sequencing discovery of novel and conserved microRNAs in wild type and a white-flesh mutant strawberry. PLANTA 2013; 238:695-713. [PMID: 23807373 DOI: 10.1007/s00425-013-1917-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/07/2013] [Indexed: 05/06/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by base pairing to mRNA target sequences, and play crucial roles in plant development and stress responses. The knowledge on post-transcriptional regulation by miRNAs in strawberry is rather limited so far. In order to understand the role of miRNA in the molecular control during strawberry fruit development, small RNA libraries were constructed from fruits at the turning stage of strawberry cultivar 'Sachinoka' and its white-flesh mutant by using the Solexa platform. One hundred and twenty conserved miRNAs belonging to 27 miRNA families and 33 putative novel strawberry miRNAs were identified in both libraries. Their target genes were predicted using the Fragaria vesca genome. Nine of all miRNAs showed significant expression differences between two types of samples. Four miRNAs were up-regulated and five were down-regulated in white-flesh mutant. The sequencing results were partially validated by quantitative RT-PCR. Among them, the expression of miR399a shows the biggest change between the two samples. The prediction of its target gene showed that miR399 may play an important role in phosphate homeostasis of strawberry fruits. Furthermore, we deduce that the expression of miR399 has negative correlation with the content of sugars.
Collapse
Affiliation(s)
- He Li
- College of Horticulture, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, Liaoning, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
1038
|
Zhou Z, Wang Z, Li W, Fang C, Shen Y, Li C, Wu Y, Tian Z. Comprehensive analyses of microRNA gene evolution in paleopolyploid soybean genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:332-44. [PMID: 23876088 DOI: 10.1111/tpj.12293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
miRNA genes are thought to undergo quick birth and death processes in genomes and the emergence of a MIRNA-like hairpin provides the base for functional miRNA gene formation. However, the factors affecting the formation of an active miRNA gene from a MIRNA-like hairpin within a genome remain unclear. We performed a genome-wide investigation of MIRNA-like hairpin accumulation, expression, structural changes and relationships with annotated genomic features in the paleopolyploid soybean genome. Our results showed that adjacent gene and transposable element content, rates of genetic recombination at location of emergence, along with its own gene structure divergence greatly affected miRNA gene evolution. Further investigation suggested that miRNA genes from different duplication sources followed distinct evolutionary trajectories and that the accumulation of MIRNA-like hairpins might be an important factor in causing long terminal repeat retrotransposons to lose activity during genome evolution.
Collapse
Affiliation(s)
- Zhengkui Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
1039
|
Wang L, Zheng J, Luo Y, Xu T, Zhang Q, Zhang L, Xu M, Wan J, Wang MB, Zhang C, Fan Y. Construction of a genomewide RNAi mutant library in rice. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:997-1005. [PMID: 23910936 DOI: 10.1111/pbi.12093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/18/2013] [Accepted: 05/24/2013] [Indexed: 05/04/2023]
Abstract
Long hairpin RNA (hpRNA) transgenes are a powerful tool for gene function studies in plants, but a genomewide RNAi mutant library using hpRNA transgenes has not been reported for plants. Here, we report the construction of a hpRNA library for the genomewide identification of gene function in rice using an improved rolling circle amplification-mediated hpRNA (RMHR) method. Transformation of rice with the library resulted in thousands of transgenic lines containing hpRNAs targeting genes of various function. The target mRNA was down-regulated in the hpRNA lines, and this was correlated with the accumulation of siRNAs corresponding to the double-stranded arms of the hpRNA. Multiple members of a gene family were simultaneously silenced by hpRNAs derived from a single member, but the degree of such cross-silencing depended on the level of sequence homology between the members as well as the abundance of matching siRNAs. The silencing of key genes tended to cause a severe phenotype, but these transgenic lines usually survived in the field long enough for phenotypic and molecular analyses to be conducted. Deep sequencing analysis of small RNAs showed that the hpRNA-derived siRNAs were characteristic of Argonaute-binding small RNAs. Our results indicate that RNAi mutant library is a high-efficient approach for genomewide gene identification in plants.
Collapse
Affiliation(s)
- Lei Wang
- Biotechnology Research Institute, The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1040
|
Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. Proc Natl Acad Sci U S A 2013; 110:16675-80. [PMID: 24065816 DOI: 10.1073/pnas.1311681110] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Within the cereal grasses, variation in inflorescence architecture results in a conspicuous morphological diversity that in crop species influences the yield of cereal grains. Although significant progress has been made in identifying some of the genes underlying this variation in maize and rice, in the temperate cereals, a group that includes wheat, barley, and rye, only the dosage-dependent and highly pleiotropic Q locus in hexaploid wheat has been molecularly characterized. Here we show that the characteristic variation in the density of grains along the inflorescence, or spike, of modern cultivated barley (Hordeum vulgare) is largely the consequence of a perturbed interaction between microRNA172 and its corresponding binding site in the mRNA of an APELATA2 (AP2)-like transcription factor, HvAP2. We used genome-wide association and biparental mapping to identify HvAP2. By comparing inflorescence development and HvAP2 transcript abundance in an extreme dense-spike mutant and its nearly isogenic WT line, we show that HvAP2 turnover driven by microRNA 172 regulates the length of a critical developmental window that is required for elongation of the inflorescence internodes. Our data indicate that this heterochronic change, an altered timing of developmental events caused by specific temporal variation in the efficiency of HvAP2 turnover, leads to the striking differences in the size and shape of the barley spike.
Collapse
|
1041
|
Meng F, Liu H, Wang K, Liu L, Wang S, Zhao Y, Yin J, Li Y. Development-associated microRNAs in grains of wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2013; 13:140. [PMID: 24060047 PMCID: PMC4015866 DOI: 10.1186/1471-2229-13-140] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/20/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of regulatory small RNAs (sRNAs) that down-regulate target genes by mRNA degradation or translational repression. Numerous plant miRNAs have been identified. Evidence is increasing for their crucial roles during plant development. In the globally important crop of wheat (Triticum aestivum L.), the process by which grains are formed determines yield and end-use quality. However, little is known about miRNA-mediated developmental regulation of grain production. Here, we applied high-throughput sRNA sequencing and genome-wide mining to identify miRNAs potentially involved in the developmental regulation of wheat grains. RESULTS Four sRNA libraries were generated and sequenced from developing grains sampled at 5, 15, 25, and 30 days after pollination (DAP). Through integrative analysis, we identified 605 miRNAs (representing 540 families) and found that 86 are possibly involved in the control of grain-filling. Additionally, 268 novel miRNAs (182 families) were identified, with 18 of them also potentially related to that maturation process. Our target predictions indicated that the 104 grain filling-associated miRNAs might target a set of wheat genes involved in various biological processes, including the metabolism of carbohydrates and proteins, transcription, cellular transport, cell organization and biogenesis, stress responses, signal transduction, and phytohormone signaling. Together, these results demonstrate that the developmental steps by which wheat grains are filled is correlated with miRNA-mediated gene regulatory networks. CONCLUSIONS We identified 605 conserved and 268 novel miRNAs from wheat grains. Of these, 104 are potentially involved in the regulation of grain-filling. Our dataset provides a useful resource for investigating miRNA-mediated regulatory mechanisms in cereal grains, and our results suggest that miRNAs contribute to this regulation during a crucial phase in determining grain yield and flour quality.
Collapse
Affiliation(s)
- Fanrong Meng
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Hao Liu
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Ketao Wang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Lulu Liu
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Shaohui Wang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanhong Zhao
- College of Agriculture, Ludong University, Yantai 264025, China
| | - Jun Yin
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongchun Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
1042
|
Patanun O, Lertpanyasampatha M, Sojikul P, Viboonjun U, Narangajavana J. Computational identification of microRNAs and their targets in cassava (Manihot esculenta Crantz.). Mol Biotechnol 2013; 53:257-69. [PMID: 22388699 DOI: 10.1007/s12033-012-9521-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNAs) are a newly discovered class of noncoding endogenous small RNAs involved in plant growth and development as well as response to environmental stresses. miRNAs have been extensively studied in various plant species, however, only few information are available in cassava, which serves as one of the staple food crops, a biofuel crop, animal feed and industrial raw materials. In this study, the 169 potential cassava miRNAs belonging to 34 miRNA families were identified by computational approach. Interestingly, mes-miR319b was represented as the first putative mirtron demonstrated in cassava. A total of 15 miRNA clusters involving 7 miRNA families, and 12 pairs of sense and antisense strand cassava miRNAs belonging to six different miRNA families were discovered. Prediction of potential miRNA target genes revealed their functions involved in various important plant biological processes. The cis-regulatory elements relevant to drought stress and plant hormone response were identified in the promoter regions of those miRNA genes. The results provided a foundation for further investigation of the functional role of known transcription factors in the regulation of cassava miRNAs. The better understandings of the complexity of miRNA-mediated genes network in cassava would unravel cassava complex biology in storage root development and in coping with environmental stresses, thus providing more insights for future exploitation in cassava improvement.
Collapse
Affiliation(s)
- Onsaya Patanun
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
1043
|
Gu Y, Liu Y, Zhang J, Liu H, Hu Y, Du H, Li Y, Chen J, Wei B, Huang Y. Identification and characterization of microRNAs in the developing maize endosperm. Genomics 2013; 102:472-8. [PMID: 24021532 DOI: 10.1016/j.ygeno.2013.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 08/04/2013] [Accepted: 08/22/2013] [Indexed: 11/16/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that are approximately 20-22 nucleotides long. miRNAs have been shown to be important regulators that control a large variety of biological functions in eukaryotic cells. To investigate the roles of miRNAs in maize endosperm development, two small RNA libraries of maize endosperm at two developmental stages were sequenced. A total of 17,773,394 and 18,586,523 small RNA raw reads were obtained, respectively. Further analysis identified and characterized 95 known miRNAs belonging to 20 miRNA families. In addition, 18 novel miRNAs were identified and grouped into 11 families. Potential targets for 5 of the novel miRNA families were successfully predicted. We had also identified 12 corresponding miRNAs* of these novel miRNAs. In summary, we investigated expression patterns of miRNA in maize endosperm at key developmental stages and identified miRNAs that are likely to playing an important role in endosperm development.
Collapse
Affiliation(s)
- Yong Gu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yinghong Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural Universities, Ya'an, Sichuan 625014, China
| | - Hanmei Liu
- College of Life Science, Sichuan Agricultural Universities, Ya'an, Sichuan 625014, China
| | - Yufeng Hu
- College of Agronomy, Sichuan Agricultural University, Chengd u, Sichuan 611130, China
| | - Hai Du
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yangping Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiang Chen
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bin Wei
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yubi Huang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
1044
|
Guo W, Liew JY, Yuan YA. Structural insights into the arms race between host and virus along RNA silencing pathways inArabidopsis thaliana. Biol Rev Camb Philos Soc 2013; 89:337-55. [DOI: 10.1111/brv.12057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 06/29/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Wei Guo
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Jia Yee Liew
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Y. Adam Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
- National University of Singapore (Suzhou) Research Institute; Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
1045
|
Zhou M, Luo H. MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. PLANT MOLECULAR BIOLOGY 2013; 83:59-75. [PMID: 23771582 DOI: 10.1007/s11103-013-0089-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/05/2013] [Indexed: 05/19/2023]
Abstract
Food security is one of the most important issues challenging the world today. Any strategies to solve this problem must include increasing crop yields and quality. MicroRNA-based genetic modification technology (miRNA-based GM tech) can be one of the most promising solutions that contribute to agricultural productivity directly by developing superior crop cultivars with enhanced biotic and abiotic stress tolerance and increased biomass yields. Indirectly, the technology may increase usage of marginal soils and decrease pesticide use, among other benefits. This review highlights the most recent progress of transgenic studies utilizing various miRNAs and their targets for plant trait modifications, and analyzes the potential of miRNA-mediated gene regulation for use in crop improvement. Strategies for manipulating miRNAs and their targets in transgenic plants including constitutive, stress-induced, or tissue-specific expression of miRNAs or their targets, RNA interference, expressing miRNA-resistant target genes, artificial target mimic and artificial miRNAs were discussed. We also discussed potential risks of utilizing miRNA-based GM tech. In general, miRNAs and their targets not only provide an invaluable source of novel transgenes, but also inspire the development of several new GM strategies, allowing advances in breeding novel crop cultivars with agronomically useful characteristics.
Collapse
MESH Headings
- Adaptation, Biological
- Crops, Agricultural/genetics
- Crops, Agricultural/immunology
- Crops, Agricultural/metabolism
- Disease Resistance
- Food Supply
- Food, Genetically Modified
- Gene Expression Regulation, Plant
- Genes, Plant
- Genetic Engineering/methods
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Risk Factors
- Transgenes
Collapse
Affiliation(s)
- Man Zhou
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | | |
Collapse
|
1046
|
Zhu J, Li W, Yang W, Qi L, Han S. Identification of microRNAs in Caragana intermedia by high-throughput sequencing and expression analysis of 12 microRNAs and their targets under salt stress. PLANT CELL REPORTS 2013; 32:1339-49. [PMID: 23649877 DOI: 10.1007/s00299-013-1446-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/17/2013] [Accepted: 04/15/2013] [Indexed: 05/20/2023]
Abstract
142 miRNAs were identified and 38 miRNA targets were predicted, 4 of which were validated, in C. intermedia . The expression of 12 miRNAs in salt-stressed leaves was assessed by qRT-PCR. MicroRNAs (miRNAs) are endogenous small RNAs that play important roles in various biological and metabolic processes in plants. Caragana intermedia is an important ecological and economic tree species prominent in the desert environment of west and northwest China. To date, no investigation into C. intermedia miRNAs has been reported. In this study, high-throughput sequencing of small RNAs and analysis of transcriptome data were performed to identify both conserved and novel miRNAs, and also their target mRNA genes in C. intermedia. Based on sequence similarity and hairpin structure prediction, 132 putative conserved miRNAs (12 of which were confirmed to form hairpin precursors) belonging to 31 known miRNA families were identified. Ten novel miRNAs (including the miRNA* sequences of three novel miRNAs) were also discovered. Furthermore, 36 potential target genes of 17 known miRNA families and 2 potential target genes of 1 novel miRNA were predicted; 4 of these were validated by 5' RACE. The expression of 12 miRNAs was validated in different tissues, and these and five target mRNAs were assessed by qRT-PCR after salt treatment. The expression levels of seven miRNAs (cin-miR157a, cin-miR159a, cin-miR165a, cin-miR167b, cin-miR172b, cin-miR390a and cin-miR396a) were upregulated, while cin-miR398a expression was downregulated after salt treatment. The targets of cin-miR157a, cin-miR165a, cin-miR172b and cin-miR396a were downregulated and showed an approximately negative correlation with their corresponding miRNAs under salt treatment. These results would help further understanding of miRNA regulation in response to abiotic stress in C. intermedia.
Collapse
Affiliation(s)
- Jianfeng Zhu
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, People's Republic of China
| | | | | | | | | |
Collapse
|
1047
|
Fischer JJ, Beatty PH, Good AG, Muench DG. Manipulation of microRNA expression to improve nitrogen use efficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:70-81. [PMID: 23849115 DOI: 10.1016/j.plantsci.2013.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/24/2013] [Accepted: 05/16/2013] [Indexed: 05/02/2023]
Abstract
Nitrogen is the key limiting nutrient required for plant growth. The application of nitrogen-based fertilizers to crops has risen dramatically in recent years, resulting in significant yield increases. However, increased production has come at the cost of substantial negative environmental consequences. Higher crop production costs, increased consumption of food and fertilizer, and a growing global population have led to calls for a "second green revolution" using modern genetic manipulation techniques to improve the production, yield, and quality of crops. Considerable research is being directed toward the study and engineering of nitrogen use efficiency in crop plants. The end goal is to reduce the amount of nitrogen-based fertilizer used and thereby reduce production costs and environmental damage while increasing yields. In this review, we present an overview of recent advances in understanding the regulation of nitrogen metabolism by the action of microRNAs with a view toward engineering crops with increased nitrogen use efficiency.
Collapse
Affiliation(s)
- Jeffrey J Fischer
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | | | | | | |
Collapse
|
1048
|
Guzman F, Almerão MP, Korbes AP, Christoff AP, Zanella CM, Bered F, Margis R. Identification of potential miRNAs and their targets in Vriesea carinata (Poales, Bromeliaceae). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:214-23. [PMID: 23849128 DOI: 10.1016/j.plantsci.2013.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 04/24/2013] [Accepted: 05/23/2013] [Indexed: 05/15/2023]
Abstract
The miRNAs play important roles in regulation of gene expression at the post-transcriptional level. A small RNA and RNA-seq of libraries were constructed to identify miRNAs in Vriesea carinata, a native bromeliad species from Brazilian Atlantic Rainforest. Illumina technology was used to perform high throughput sequencing and data was analyzed using bioinformatics tools. We obtained 2,191,509 mature miRNAs sequences representing 54 conserved families in plant species. Further analysis allowed the prediction of secondary structures for 19 conserved and 16 novel miRNAs. Potential targets were predicted from pre-miRNAs by sequence homology and validated using RTqPCR approach. This study provides the first identification of miRNAs and their potential targets of a bromeliad species.
Collapse
Affiliation(s)
- Frank Guzman
- PPGBM at Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
1049
|
Galla G, Volpato M, Sharbel TF, Barcaccia G. Computational identification of conserved microRNAs and their putative targets in the Hypericum perforatum L. flower transcriptome. PLANT REPRODUCTION 2013; 26:209-29. [PMID: 23846415 DOI: 10.1007/s00497-013-0227-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/28/2013] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) have recently emerged as important regulators of gene expression in plants. Many miRNA families and their targets have been extensively studied in model species and major crops. We have characterized mature miRNAs along with their precursors and potential targets in Hypericum to generate a comprehensive list of conserved miRNA families and to investigate the regulatory role of selected miRNAs in biological processes that occur in the flower. St. John's wort (Hypericum perforatum L., 2n = 4x = 32), a medicinal plant that produces pharmaceutically important metabolites with therapeutic activities, was chosen because it is regarded as an attractive model system for the study of apomixis. A computational in silico prediction of structure, in combination with an in vitro validation, allowed us to identify 7 pre-miRNAs, including miR156, miR166, miR390, miR394, miR396, and miR414. We demonstrated that H. perforatum flowers share highly conserved miRNAs and that these miRNAs potentially target dozens of genes with a wide range of molecular functions, including metabolism, response to stress, flower development, and plant reproduction. Our analysis paves the way toward identifying flower-specific miRNAs that may differentiate the sexual and apomictic reproductive pathways.
Collapse
Affiliation(s)
- Giulio Galla
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Italy
| | | | | | | |
Collapse
|
1050
|
Shao C, Wu Q, Qiu J, Jin S, Zhang B, Qian J, Chen M, Meng Y. Identification of novel microRNA-like-coding sites on the long-stem microRNA precursors in Arabidopsis. Gene 2013; 527:477-83. [DOI: 10.1016/j.gene.2013.06.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/14/2013] [Accepted: 06/20/2013] [Indexed: 12/15/2022]
|