1101
|
Howes OD, McCutcheon R. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Transl Psychiatry 2017; 7:e1024. [PMID: 28170004 PMCID: PMC5438023 DOI: 10.1038/tp.2016.278] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/27/2016] [Indexed: 12/12/2022] Open
Abstract
An interaction between external stressors and intrinsic vulnerability is one of the longest standing pathoaetiological explanations for schizophrenia. However, novel lines of evidence from genetics, preclinical studies, epidemiology and imaging have shed new light on the mechanisms that may underlie this, implicating microglia as a key potential mediator. Microglia are the primary immune cells of the central nervous system. They have a central role in the inflammatory response, and are also involved in synaptic pruning and neuronal remodeling. In addition to immune and traumatic stimuli, microglial activation occurs in response to psychosocial stress. Activation of microglia perinatally may make them vulnerable to subsequent overactivation by stressors experienced in later life. Recent advances in genetics have shown that variations in the complement system are associated with schizophrenia, and this system has been shown to regulate microglial synaptic pruning. This suggests a mechanism via which genetic and environmental influences may act synergistically and lead to pathological microglial activation. Microglial overactivation may lead to excessive synaptic pruning and loss of cortical gray matter. Microglial mediated damage to stress-sensitive regions such as the prefrontal cortex and hippocampus may lead directly to cognitive and negative symptoms, and account for a number of the structural brain changes associated with the disorder. Loss of cortical control may also lead to disinhibition of subcortical dopamine-thereby leading to positive psychotic symptoms. We review the preclinical and in vivo evidence for this model and consider the implications this has for treatment, and future directions.
Collapse
Affiliation(s)
- O D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK,MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK,PET Imaging Group, MRC Clinical Sciences Centre, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK. E-mail:
| | - R McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK,MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
1102
|
The role of neuroimmune signaling in alcoholism. Neuropharmacology 2017; 122:56-73. [PMID: 28159648 DOI: 10.1016/j.neuropharm.2017.01.031] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Alcohol consumption and stress increase brain levels of known innate immune signaling molecules. Microglia, the innate immune cells of the brain, and neurons respond to alcohol, signaling through Toll-like receptors (TLRs), high-mobility group box 1 (HMGB1), miRNAs, pro-inflammatory cytokines and their associated receptors involved in signaling between microglia, other glia and neurons. Repeated cycles of alcohol and stress cause a progressive, persistent induction of HMGB1, miRNA and TLR receptors in brain that appear to underlie the progressive and persistent loss of behavioral control, increased impulsivity and anxiety, as well as craving, coupled with increasing ventral striatal responses that promote reward seeking behavior and increase risk of developing alcohol use disorders. Studies employing anti-oxidant, anti-inflammatory, anti-depressant, and innate immune antagonists further link innate immune gene expression to addiction-like behaviors. Innate immune molecules are novel targets for addiction and affective disorders therapies. This article is part of the Special Issue entitled "Alcoholism".
Collapse
|
1103
|
Ano Y, Dohata A, Taniguchi Y, Hoshi A, Uchida K, Takashima A, Nakayama H. Iso-α-acids, Bitter Components of Beer, Prevent Inflammation and Cognitive Decline Induced in a Mouse Model of Alzheimer's Disease. J Biol Chem 2017; 292:3720-3728. [PMID: 28087694 DOI: 10.1074/jbc.m116.763813] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Alongside the rapid growth in aging populations worldwide, prevention and therapy for age-related memory decline and dementia are in great demand to maintain a long, healthy life. Here we found that iso-α-acids, hop-derived bitter compounds in beer, enhance microglial phagocytosis and suppress inflammation via activation of the peroxisome proliferator-activated receptor γ. In normal mice, oral administration of iso-α-acids led to a significant increase both in CD11b and CD206 double-positive anti-inflammatory type microglia (p < 0.05) and in microglial phagocytosis in the brain. In Alzheimer's model 5xFAD mice, oral administration of iso-α-acids resulted in a 21% reduction in amyloid β in the cerebral cortex as observed by immunohistochemical analysis, a significant reduction in inflammatory cytokines such as IL-1β and chemokines including macrophage inflammatory protein-1α in the cerebral cortex (p < 0.05) and a significant improvement in a novel object recognition test (p < 0.05), as compared with control-fed 5xFAD mice. The differences in iso-α-acid-fed mice were due to the induction of microglia to an anti-inflammatory phenotype. The present study is the first to report that amyloid β deposition and inflammation are suppressed in a mouse model of Alzheimer's disease by a single component, iso-α-acids, via the regulation of microglial activation. The suppression of neuroinflammation and improvement in cognitive function suggests that iso-α-acids contained in beer may be useful for the prevention of dementia.
Collapse
Affiliation(s)
- Yasuhisa Ano
- From the Research Laboratories for Health Science & Food Technologies and
| | - Atsushi Dohata
- the Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan, and
| | - Yoshimasa Taniguchi
- the Central Laboratories for Key Technologies, Kirin Company Ltd., Kanagawa 236-0004, Japan
| | - Ayaka Hoshi
- the Central Laboratories for Key Technologies, Kirin Company Ltd., Kanagawa 236-0004, Japan
| | - Kazuyuki Uchida
- the Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan, and
| | - Akihiko Takashima
- the Department of Neurobiology, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Hiroyuki Nakayama
- the Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan, and
| |
Collapse
|
1104
|
Sawano T, Tsuchihashi R, Morii E, Watanabe F, Nakane K, Inagaki S. Homology analysis detects topological changes of Iba1 localization accompanied by microglial activation. Neuroscience 2017; 346:43-51. [PMID: 28077279 DOI: 10.1016/j.neuroscience.2016.12.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 01/01/2023]
Abstract
The state of microglial activation provides important information about the central nervous system. However, a reliable index of microglial activation in histological samples has yet to be established. Here, we show that microglial activation induces topological changes of Iba1 localization that can be detected by analysis based on homology theory. Analysis of homology was applied to images of Iba1-stained tissue sections, and the 0-dimentional Betti number (b0: the number of solid components) and the 1-dimentional Betti number (b1: the number of windows surrounded by solid components) were obtained. We defined b1/b0 as the Homology Value (HV), and investigated its validity as an index of microglial activation using cerebral ischemia model mice. Microglial activation was accompanied by changes to Iba1 localization and morphology of microglial processes. In single microglial cells, the change of Iba1 localization increased b1. Conversely, thickening or retraction of microglial processes decreased b0. Consequently, microglial activation increased the HV. The HV of a tissue area increased with proximity to the ischemic core and showed a high degree of concordance with the number of microglia expressing activation makers. Furthermore, the HV of human metastatic brain tumor tissue also increased with proximity to the tumor. These results suggest that our index, based on homology theory, can be used to correctly evaluate microglial activation in various tissue images.
Collapse
Affiliation(s)
- Toshinori Sawano
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryo Tsuchihashi
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Fumiya Watanabe
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuaki Nakane
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Shinobu Inagaki
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
1105
|
Barata-Antunes S, Cristóvão AC, Pires J, Rocha SM, Bernardino L. Dual role of histamine on microglia-induced neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2017; 1863:764-769. [PMID: 28057587 DOI: 10.1016/j.bbadis.2016.12.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/16/2016] [Accepted: 12/29/2016] [Indexed: 12/17/2022]
Abstract
Several hypotheses have been raised about the dual role of histamine in neurological disorders, and evidences have shown its crucial involvement in the modulation of microglia-mediated neuroinflammation. Previously, we reported that the administration of histamine induces a deleterious effect by promoting a pro-inflammatory phenotype on microglia that in turn compromises dopaminergic neuronal survival. Contrary, under lipopolysaccharide challenge, histamine inhibits the injurious effect of microglia-mediated inflammation, protecting dopaminergic neurons, suggesting that the modulation of microglial activity is dependent on the environmental context. Thus, histamine and/or histamine receptor agonists may serve to develop new therapeutic approaches to overcome neurodegenerative disorders.
Collapse
Affiliation(s)
- S Barata-Antunes
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - A C Cristóvão
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - J Pires
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - S M Rocha
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - L Bernardino
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
1106
|
Tronson NC, Collette KM. (Putative) sex differences in neuroimmune modulation of memory. J Neurosci Res 2017; 95:472-486. [PMID: 27870428 PMCID: PMC5120654 DOI: 10.1002/jnr.23921] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022]
Abstract
The neuroimmune system is significantly sexually dimorphic, with sex differences evident in the number and activation states of microglia, in the activation of astrocytes, and in cytokine release and function. Neuroimmune cells and signaling are now recognized as critical for many neural functions throughout the life span, including synaptic plasticity and memory function. Here we address the question of how cytokines, astrocytes, and microglia contribute to memory, and specifically how neuroimmune modulation of memory differentially affects males and females. Understanding sex differences in both normal memory processes and dysregulation of memory in psychiatric and neurological disorders is critical for developing treatment and preventive strategies for memory disorders that are effective for both men and women. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Katie M Collette
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
1107
|
Peña-Ortega F. Pharmacological Tools to Activate Microglia and their Possible use to Study Neural Network Patho-physiology. Curr Neuropharmacol 2017; 15:595-619. [PMID: 27697040 PMCID: PMC5543677 DOI: 10.2174/1570159x14666160928151546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Microglia are the resident immunocompetent cells of the CNS and also constitute a unique cell type that contributes to neural network homeostasis and function. Understanding microglia cell-signaling not only will reveal their diverse functions but also will help to identify pharmacological and non-pharmacological tools to modulate the activity of these cells. METHODS We undertook a search of bibliographic databases for peer-reviewed research literature to identify microglial activators and their cell-specificity. We also looked for their effects on neural network function and dysfunction. RESULTS We identified several pharmacological targets to modulate microglial function, which are more or less specific (with the proper control experiments). We also identified pharmacological targets that would require the development of new potent and specific modulators. We identified a wealth of evidence about the participation of microglia in neural network function and their alterations in pathological conditions. CONCLUSION The identification of specific microglia-activating signals provides experimental tools to modulate the activity of this heterogeneous cell type in order to evaluate its impact on other components of the nervous system, and it also helps to identify therapeutic approaches to ease some pathological conditions related to microglial dysfunction.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
1108
|
Cho K, Choi GE. Microglia: Physiological Functions Revealed through Morphological Profiles. Folia Biol (Praha) 2017; 63:85-90. [PMID: 28805557 DOI: 10.14712/fb2017063030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Microglia play key immunological roles in the central nervous system. Upon activation, resident microglial cells transform from a ramified form to an amoeboid form and acquire the ability to phagocytose and release pro-inflammatory cytokines. Here, we review microglial phenotypes that contribute to their functional roles in the central nervous system with the emphasis on their molecular profiles. Deeper understanding of the functions performed by microglia in physiological and pathological conditions can promote investigation of microglia activities in brain injury or disease and facilitate development of new treatment approaches.
Collapse
Affiliation(s)
- K Cho
- Granduate School of International Studies, Dong-A University, Busan, Republic of Korea
| | - G-E Choi
- Institute of Convergence Bio-Health, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
1109
|
Pinho JPC, Bell-Temin H, Liu B, Stevens SM. Spike-In SILAC Approach for Proteomic Analysis of Ex Vivo Microglia. Methods Mol Biol 2017; 1598:295-312. [PMID: 28508369 DOI: 10.1007/978-1-4939-6952-4_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stable isotope labeling by amino acids in cell culture (SILAC) is a versatile mass spectrometry-based proteomic approach that can achieve accurate relative protein quantitation on a global scale. In this approach, proteins are labeled while being synthesized by the cell due to the presence of certain amino acids exclusively as heavier mass analogs than their regular (light) counterparts. This differential labeling allows for the identification of heavy and light forms of each peptide corresponding to two or more different experimental groups upon mass spectrometric analysis, the intensities of which reflect their abundance in the sample analyzed. Relative quantitation is straightforward when SILAC labeling efficiency is high (>99%) and the same cell proteome is used as the quantitation reference, which is typically the case for immortalized cell lines. However, the SILAC methodology for the proteomic analysis of primary cells isolated after in vivo experimentation is more challenging given the low labeling efficiency that would be achieved post-isolation. Alternatively, a stable-isotope-labeled cell line representing the cell type can be used as an internal standard (spike-in SILAC); however, adequate representation of the primary cell proteome with the stable-isotope-labeled internal standard may limit overall protein quantitation, especially for cell types that exhibit a broad range of phenotypes such as microglia, the resident immune cells in the brain. Here, we present a way to circumvent this limitation by combining multiple phenotypes of a single-cell type (the immortalized mouse BV2 microglial cell line) into a single spike-in standard using primary mouse microglia as our model system. We describe the preparation of media, incorporation of labels, induction of four different activation states (plus resting), isolation of primary microglia from adult mice brains, preparation of lysates for analysis, and general guidelines for data processing.
Collapse
Affiliation(s)
- Joao Paulo Costa Pinho
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E Fowler Ave, ISA 2015, Tampa, FL, 33620, USA
| | - Harris Bell-Temin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bin Liu
- Department of Pharmacodynamics, University of Florida, 1345 Center Drive, Box 100487, Gainesville, FL, 32610, USA.
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E Fowler Ave, ISA 2015, Tampa, FL, 33620, USA.
| |
Collapse
|
1110
|
Saal K, Galter D, Roeber S, Bähr M, Tönges L, Lingor P. Altered Expression of Growth Associated Protein-43 and Rho Kinase in Human Patients with Parkinson's Disease. Brain Pathol 2017; 27:13-25. [PMID: 26748453 PMCID: PMC8029215 DOI: 10.1111/bpa.12346] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
Causative treatment strategies for Parkinson's disease (PD) will have to address multiple underlying pathomechanisms to attenuate neurodegeneration. Additionally, the intrinsic regenerative capacity of the central nervous system is also an important factor contributing to restoration. Extracellular cues can limit sprouting and regrowth of adult neurons, but even aged neurons have a low intrinsic regeneration capacity. Whether this capacity has been lost or if growth inhibitory cues are increased during PD progression has not been resolved yet. In this study, we assessed the regenerative potential in the nigrostriatal system in post-mortem brain sections of PD patients compared to age-matched and young controls. Investigation of the expression pattern of the regeneration-associated protein GAP-43 suggested a lower regenerative capacity in nigral dopaminergic neurons of PD patients. Furthermore, the increase in protein expression of the growth-inhibitory protein ROCK2 in astrocytes and a similar trend in microglia, suggests an important role for ROCK2 in glial PD pathology, which is initiated already in normal aging. Considering the role of astro- and microglia in PD pathogenesis as well as beneficial effects of ROCK inhibition on neuronal survival and regeneration in neurodegenerative disease models, our data strengthens the importance of the ROCK pathway as a therapeutic target in PD.
Collapse
Affiliation(s)
- Kim‐Ann Saal
- Department of NeurologyUniversity Medicine GöttingenGöttingenGermany
| | - Dagmar Galter
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| | - Sigrun Roeber
- Department of NeuropathologyLudwig‐Maximilians‐UniversityMunichGermany
| | - Mathias Bähr
- Department of NeurologyUniversity Medicine GöttingenGöttingenGermany
- DFG‐Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)GöttingenGermany
| | - Lars Tönges
- Department of NeurologyUniversity Medicine GöttingenGöttingenGermany
- DFG‐Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)GöttingenGermany
| | - Paul Lingor
- Department of NeurologyUniversity Medicine GöttingenGöttingenGermany
- DFG‐Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)GöttingenGermany
| |
Collapse
|
1111
|
Bioaccessible (poly)phenol metabolites from raspberry protect neural cells from oxidative stress and attenuate microglia activation. Food Chem 2017; 215:274-83. [DOI: 10.1016/j.foodchem.2016.07.128] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/21/2016] [Accepted: 07/21/2016] [Indexed: 11/20/2022]
|
1112
|
Lee JH, Zhang J, Yu SP. Neuroprotective mechanisms and translational potential of therapeutic hypothermia in the treatment of ischemic stroke. Neural Regen Res 2017; 12:341-350. [PMID: 28469636 PMCID: PMC5399699 DOI: 10.4103/1673-5374.202915] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Stroke is a leading cause of disability and death, yet effective treatments for acute stroke has been very limited. Thus far, tissue plasminogen activator has been the only FDA-approved drug for thrombolytic treatment of ischemic stroke patients, yet its application is only applicable to less than 4–5% of stroke patients due to the narrow therapeutic window (< 4.5 hours after the onset of stroke) and the high risk of hemorrhagic transformation. Emerging evidence from basic and clinical studies has shown that therapeutic hypothermia, also known as targeted temperature management, can be a promising therapy for patients with different types of stroke. Moreover, the success in animal models using pharmacologically induced hypothermia (PIH) has gained increasing momentum for clinical translation of hypothermic therapy. This review provides an updated overview of the mechanisms and protective effects of therapeutic hypothermia, as well as the recent development and findings behind PIH treatment. It is expected that a safe and effective hypothermic therapy has a high translational potential for clinical treatment of patients with stroke and other CNS injuries.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| | - James Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| |
Collapse
|
1113
|
Phosphorylation of p53 by LRRK2 induces microglial tumor necrosis factor α-mediated neurotoxicity. Biochem Biophys Res Commun 2017; 482:1088-1094. [DOI: 10.1016/j.bbrc.2016.11.163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022]
|
1114
|
Song J, Jung C, Kim OY. The Novel Implication of Androgen in Diabetes-induced Alzheimer's Disease. J Lipid Atheroscler 2017. [DOI: 10.12997/jla.2017.6.2.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan, Korea
| |
Collapse
|
1115
|
Aalinkeel R, Mangum CS, Abou-Jaoude E, Reynolds JL, Liu M, Sundquist K, Parikh NU, Chaves LD, Mammen MJ, Schwartz SA, Mahajan SD. Galectin-1 Reduces Neuroinflammation via Modulation of Nitric Oxide-Arginase Signaling in HIV-1 Transfected Microglia: a Gold Nanoparticle-Galectin-1 “Nanoplex” a Possible Neurotherapeutic? J Neuroimmune Pharmacol 2016; 12:133-151. [DOI: 10.1007/s11481-016-9723-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
|
1116
|
M1 and M2 Functional Imprinting of Primary Microglia: Role of P2X7 Activation and miR-125b. Mediators Inflamm 2016; 2016:2989548. [PMID: 28090150 PMCID: PMC5206439 DOI: 10.1155/2016/2989548] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a most frequently occurring and severe form of motor neuron disease, causing death within 3-5 years from diagnosis and with a worldwide incidence of about 2 per 100,000 person-years. Mutations in over twenty genes associated with familial forms of ALS have provided insights into the mechanisms leading to motor neuron death. Moreover, mutations in two RNA binding proteins, TAR DNA binding protein 43 and fused in sarcoma, have raised the intriguing possibility that perturbations of RNA metabolism, including that of the small endogenous RNA molecules that repress target genes at the posttranscriptional level, that is, microRNAs, may contribute to disease pathogenesis. At present, the mechanisms by which microglia actively participate to both toxic and neuroprotective actions in ALS constitute an important matter of research. Among the pathways involved in ALS-altered microglia responses, in previous works we have uncovered the hyperactivation of P2X7 receptor by extracellular ATP and the overexpression of miR-125b, both leading to uncontrolled toxic M1 reactions. In order to shed further light on the complexity of these processes, in this short review we will describe the M1/M2 functional imprinting of primary microglia and a role played by P2X7 and miR-125b in ALS microglia activation.
Collapse
|
1117
|
Huang M, Wan Y, Mao L, He QW, Xia YP, Li M, Li YN, Jin HJ, Hu B. Inhibiting the Migration of M1 Microglia at Hyperacute Period Could Improve Outcome of tMCAO Rats. CNS Neurosci Ther 2016; 23:222-232. [PMID: 27991729 DOI: 10.1111/cns.12665] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 12/29/2022] Open
Abstract
AIM To study whether inhibiting microglia migration to the ischemic boundary zone (IBZ) at the early phase could improve neurological outcomes after stroke. METHODS The transient middle cerebral artery occlusion (tMCAO) was induced in adult male Sprague-Dawley rats. AMD3100, a highly selective CXC-chemokine receptor 4 (CXCR4) antagonist, was used to inhibit microglia migration. Microglia was evaluated by immunofluorescence in vivo, and their migration was tested by transwell assay in vitro. Expressions of cytokines were detected by real-time PCR. Infarct volume was determined by triphenyltetrazolium chloride (TTC) staining. Functional recovery of tMCAO rats was evaluated by behavior tests. RESULTS M1 microglia in the IBZ was rapidly increased within 3 days after tMCAO, accompanied with enhanced expression of CXCR4. Chemokine CXC motif chemokine ligand 12 (CXCL12) was also increased in the IBZ. And AMD3100 could obviously decline M1 microglia migration induced by CXCL12 and secretion of related inflammatory cytokines in the IBZ after stroke. This was accompanied by significant attenuated infarct volume and improved neurological outcomes. CONCLUSION This study confirms the protective efficacy of inhibiting microglia migration at the hyperacute phase as a therapeutic strategy for ischemic stroke in tMCAO model of rats, and its therapeutic time window could last for 24 h after cerebral ischemia reperfusion.
Collapse
Affiliation(s)
- Ming Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurology, Institute of Neural Regeneration and Repair, The First Hospital of Yichang, Three Gorges University College of Medicine, Yichang, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan-Wei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
1118
|
Shim HJ, Park S, Lee JW, Park HJ, Baek SH, Kim EK, Yu SW. Extracts from Dendropanax morbifera Leaves Have Modulatory Effects on Neuroinflammation in Microglia. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:119-32. [PMID: 26916918 DOI: 10.1142/s0192415x16500087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dendropanax morbifera (D. morbifera), a species endemic to Korea, is largely distributed throughout the southern part of the country. Its leaves, stems, roots, and seeds have been used as a form of alternative medicine for various diseases and neurological disorders including paralysis, stroke, and migraine. However, the molecular mechanisms that underlie the remedial effects of D. morbifera remain largely unknown. In this paper, extracts from D. morbifera leaves were prepared using ethyl acetate as a solvent (abbreviated as DMLE). The modulatory effects of DMLE on neuroinflammation were studied in a lipopolysaccharide (LPS)-stimulated BV2 murine microglial cell line. Production of pro-inflammatory cytokines, activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-[Formula: see text]B), and different M1/M2 activation states of microglia were examined. DMLE treatment suppressed the production of pro-inflammatory cytokines including tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]), interleukin-6 (IL-6), and nitric oxide (NO) in LPS-stimulated BV2 cells. DMLE treatment also attenuated the activation of MAPKs and NF-[Formula: see text]B. In a novel discovery, we found that DMLE up-regulated the marker genes representing an alternative, anti-inflammatory M2 polarization, while suppressing the expression of the classical, pro-inflammatory M1 activation state genes. Here, we uncovered the cellular mechanisms underlying the beneficial effects of D. morbifera against neuroinflammation using BV2 microglia cells. These results strongly suggest that DMLE was able to counter the effects of LPS on BV2 cells via control of microglia polarization states. Additionally, study results indicated that DMLE may have therapeutic potential as a neuroinflammation-suppressing treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun-Jung Shim
- * Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea
| | - Sinwoo Park
- * Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea
| | - Ji-Won Lee
- * Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea
| | - Hye-Jin Park
- † College of Pharmacy, Ajou University, Suwon, Gyeonggido 443-749, Republic of Korea
| | - Seung-Hoon Baek
- † College of Pharmacy, Ajou University, Suwon, Gyeonggido 443-749, Republic of Korea
| | - Eun-Kyoung Kim
- * Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea
| | - Seong-Woon Yu
- * Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea
| |
Collapse
|
1119
|
A 2B adenosine receptors stimulate IL-6 production in primary murine microglia through p38 MAPK kinase pathway. Pharmacol Res 2016; 117:9-19. [PMID: 27974241 DOI: 10.1016/j.phrs.2016.11.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/17/2016] [Accepted: 11/20/2016] [Indexed: 01/22/2023]
Abstract
The hallmark of neuroinflammation is the activation of microglia, the immunocompetent cells of the CNS, releasing a number of proinflammatory mediators implicated in the pathogenesis of neuronal diseases. Adenosine is an ubiquitous autacoid regulating several microglia functions through four receptor subtypes named A1, A2A, A2B and A3 (ARs), that represent good targets to suppress inflammation occurring in CNS. Here we investigated the potential role of ARs in the modulation of IL-6 secretion and cell proliferation in primary microglial cells. The A2BAR agonist 2-[[6-Amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]-2-pyridinyl]thio]-acetamide (BAY60-6583) stimulated IL-6 increase under normoxia and hypoxia, in a dose- and time-dependent way. In cells incubated with the blockers of phospholipase C (PLC), protein kinase C epsilon (PKC-ε) and PKC delta (PKC-δ) the IL-6 increase due to A2BAR activation was strongly reduced, whilst it was not affected by the inhibitor of adenylyl cyclase (AC). Investigation of cellular signalling involved in the A2BAR effect revealed that only the inhibitor of p38 mitogen activated protein kinase (MAPK) was able to block the agonist's effect on IL-6 secretion, whilst inhibitors of pERK1/2, JNK1/2 MAPKs and Akt were not. Stimulation of p38 by BAY60-6583 was A2BAR-dependent, through a pathway affecting PLC, PKC-ε and PKC-δ but not AC, in both normoxia and hypoxia. Finally, BAY60-6583 increased microglial cell proliferation involving A2BAR, PLC, PKC-ε, PKC-δ and p38 signalling. In conclusion, A2BARs activation increased IL-6 secretion and cell proliferation in murine primary microglial cells, through PLC, PKC-ε, PKC-δ and p38 pathways, thus suggesting their involvement in microglial activation and neuroinflammation.
Collapse
|
1120
|
Abstract
As the immune-competent cells of the brain, microglia play an increasingly important role in maintaining normal brain function. They invade the brain early in development, transform into a highly ramified phenotype, and constantly screen their environment. Microglia are activated by any type of pathologic event or change in brain homeostasis. This activation process is highly diverse and depends on the context and type of the stressor or pathology. Microglia can strongly influence the pathologic outcome or response to a stressor due to the release of a plethora of substances, including cytokines, chemokines, and growth factors. They are the professional phagocytes of the brain and help orchestrate the immunological response by interacting with infiltrating immune cells. We describe here the diversity of microglia phenotypes and their responses in health, aging, and disease. We also review the current literature about the impact of lifestyle on microglia responses and discuss treatment options that modulate microglial phenotypes.
Collapse
Affiliation(s)
- Susanne A Wolf
- Cellular Neurosciences, Max Delbrück Centre for Molecular Medicine in the Helmholtz Association, Berlin 13092, Germany;
| | - H W G M Boddeke
- Department of Neuroscience, University of Groningen, University Medical Center Groningen, Groningen 9713, The Netherlands
| | - Helmut Kettenmann
- Cellular Neurosciences, Max Delbrück Centre for Molecular Medicine in the Helmholtz Association, Berlin 13092, Germany;
| |
Collapse
|
1121
|
McConnell HL, Kersch CN, Woltjer RL, Neuwelt EA. The Translational Significance of the Neurovascular Unit. J Biol Chem 2016; 292:762-770. [PMID: 27920202 DOI: 10.1074/jbc.r116.760215] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mammalian brain is supplied with blood by specialized vasculature that is structurally and functionally distinct from that of the periphery. A defining feature of this vasculature is a physical blood-brain barrier (BBB). The BBB separates blood components from the brain microenvironment, regulating the entry and exit of ions, nutrients, macromolecules, and energy metabolites. Over the last two decades, physiological studies of cerebral blood flow dynamics have demonstrated that substantial intercellular communication occurs between cells of the vasculature and the neurons and glia that abut the vasculature. These findings suggest that the BBB does not function independently, but as a module within the greater context of a multicellular neurovascular unit (NVU) that includes neurons, astrocytes, pericytes, and microglia as well as the blood vessels themselves. Here, we describe the roles of these NVU components as well as how they act in concert to modify cerebrovascular function and permeability in health and in select diseases.
Collapse
Affiliation(s)
- Heather L McConnell
- From the Departments of Neurology, Pathology, Neurosurgery, and Veterans Affairs, Oregon Health & Science University, Portland, Oregon 97239-2941
| | - Cymon N Kersch
- From the Departments of Neurology, Pathology, Neurosurgery, and Veterans Affairs, Oregon Health & Science University, Portland, Oregon 97239-2941
| | - Randall L Woltjer
- From the Departments of Neurology, Pathology, Neurosurgery, and Veterans Affairs, Oregon Health & Science University, Portland, Oregon 97239-2941
| | - Edward A Neuwelt
- From the Departments of Neurology, Pathology, Neurosurgery, and Veterans Affairs, Oregon Health & Science University, Portland, Oregon 97239-2941
| |
Collapse
|
1122
|
Portes A, Giestal-de-Araujo E, Fagundes A, Pandolfo P, de Sá Geraldo A, Lira MLF, Amaral VF, Lagrota-Candido J. Leishmania amazonensis infection induces behavioral alterations and modulates cytokine and neurotrophin production in the murine cerebral cortex. J Neuroimmunol 2016; 301:65-73. [DOI: 10.1016/j.jneuroim.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
|
1123
|
Littlefield A, Kohman RA. Differential response to intrahippocampal interleukin-4/interleukin-13 in aged and exercise mice. Neuroscience 2016; 343:106-114. [PMID: 27916728 DOI: 10.1016/j.neuroscience.2016.11.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/28/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023]
Abstract
Normal aging is associated with low-grade neuroinflammation that results from age-related priming of microglial cells. Further, aging alters the response to several anti-inflammatory factors, including interleukin (IL)-4 and IL-13. One intervention that has been shown to modulate microglia activation in the aged brain, both basally and following an immune challenge, is exercise. However, whether engaging in exercise can improve responsiveness to anti-inflammatory cytokines is presently unknown. The current study evaluated whether prior exercise training increases sensitivity to anti-inflammatory cytokines that promote the M2 (alternative) microglia phenotype in adult (5-month-old) and aged (23-month-old) C57BL/6J mice. After 8weeks of exercise or control housing, mice received bilateral hippocampal injections of an IL-4/IL-13 cocktail or vehicle. Twenty-four hours later hippocampal samples were collected and analyzed for expression of genes associated with the M1 (inflammatory) and M2 microglia phenotypes. Results show that IL-4/IL-13 administration increased expression of the M2-associated genes found in inflammatory zone 1 (Fizz1), chitinase-like 3 (Ym1), Arginase-1 (Arg1), SOCS1, IL-1ra, and CD206. In response to IL-4/IL-13 administration, aged mice showed increased hippocampal expression of the M2-related genes Arg1, SOCS1, Ym1, and CD206 relative to adult mice. Aged mice also showed increased expression of IL-1β relative to adults, which was unaffected by wheel running or IL-4/IL-13. Wheel running was found to have modest effects on expression of Ym1 and Fizz1 in aged and adult mice. Collectively, our findings indicate that aged mice show a differential response to anti-inflammatory cytokines relative to adult mice and that exercise has limited effects on modulating this response.
Collapse
Affiliation(s)
- Alyssa Littlefield
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA; Rosalind Franklin University of Medicine and Science, Department of Neuroscience, North Chicago, IL, USA.
| | - Rachel A Kohman
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| |
Collapse
|
1124
|
Taylor RA, Chang CF, Goods BA, Hammond MD, Mac Grory B, Ai Y, Steinschneider AF, Renfroe SC, Askenase MH, McCullough LD, Kasner SE, Mullen MT, Hafler DA, Love JC, Sansing LH. TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage. J Clin Invest 2016; 127:280-292. [PMID: 27893460 DOI: 10.1172/jci88647] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/14/2016] [Indexed: 02/06/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke that results from the rupture of a blood vessel in the brain, leading to a mass of blood within the brain parenchyma. The injury causes a rapid inflammatory reaction that includes activation of the tissue-resident microglia and recruitment of blood-derived macrophages and other leukocytes. In this work, we investigated the specific responses of microglia following ICH with the aim of identifying pathways that may aid in recovery after brain injury. We used longitudinal transcriptional profiling of microglia in a murine model to determine the phenotype of microglia during the acute and resolution phases of ICH in vivo and found increases in TGF-β1 pathway activation during the resolution phase. We then confirmed that TGF-β1 treatment modulated inflammatory profiles of microglia in vitro. Moreover, TGF-β1 treatment following ICH decreased microglial Il6 gene expression in vivo and improved functional outcomes in the murine model. Finally, we observed that patients with early increases in plasma TGF-β1 concentrations had better outcomes 90 days after ICH, confirming the role of TGF-β1 in functional recovery from ICH. Taken together, our data show that TGF-β1 modulates microglia-mediated neuroinflammation after ICH and promotes functional recovery, suggesting that TGF-β1 may be a therapeutic target for acute brain injury.
Collapse
|
1125
|
Sochocka M, Diniz BS, Leszek J. Inflammatory Response in the CNS: Friend or Foe? Mol Neurobiol 2016; 54:8071-8089. [PMID: 27889895 PMCID: PMC5684251 DOI: 10.1007/s12035-016-0297-1] [Citation(s) in RCA: 380] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022]
Abstract
Inflammatory reactions could be both beneficial and detrimental to the brain, depending on strengths of their activation in various stages of neurodegeneration. Mild activation of microglia and astrocytes usually reveals neuroprotective effects and ameliorates early symptoms of neurodegeneration; for instance, released cytokines help maintain synaptic plasticity and modulate neuronal excitability, and stimulated toll-like receptors (TLRs) promote neurogenesis and neurite outgrowth. However, strong activation of glial cells gives rise to cytokine overexpression/dysregulation, which accelerates neurodegeneration. Altered mutual regulation of p53 protein, a major tumor suppressor, and NF-κB, the major regulator of inflammation, seems to be crucial for the shift from beneficial to detrimental effects of neuroinflammatory reactions in neurodegeneration. Therapeutic intervention in the p53-NF-κB axis and modulation of TLR activity are future challenges to cope with neurodegeneration.
Collapse
Affiliation(s)
- Marta Sochocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Breno Satler Diniz
- Department of Psychiatry and Behavioral Sciences, and The Consortium on Aging, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wybrzeże L. Pasteura 10, 50-367, Wroclaw, Poland.
| |
Collapse
|
1126
|
Koutsouras GW, Ramos RL, Martinez LR. Role of microglia in fungal infections of the central nervous system. Virulence 2016; 8:705-718. [PMID: 27858519 DOI: 10.1080/21505594.2016.1261789] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most fungi are capable of disseminating into the central nervous system (CNS) commonly being observed in immunocompromised hosts. Microglia play a critical role in responding to these infections regulating inflammatory processes proficient at controlling CNS colonization by these eukaryotic microorganisms. Nonetheless, it is this inflammatory state that paradoxically yields cerebral mycotic meningoencephalitis and abscess formation. As peripheral macrophages and fungi have been investigated aiding our understanding of peripheral disease, ascertaining the key interactions between fungi and microglia may uncover greater abilities to treat invasive fungal infections of the brain. Here, we present the current knowledge of microglial physiology. Due to the existing literature, we have described to greater extent the opportunistic mycotic interactions with these surveillance cells of the CNS, highlighting the need for greater efforts to study other cerebral fungal infections such as those caused by geographically restricted dimorphic and rare fungi.
Collapse
Affiliation(s)
- George W Koutsouras
- a Department of Biomedical Sciences , NYIT College of Osteopathic Medicine, New York Institute of Technology , Old Westbury , NY , USA
| | - Raddy L Ramos
- a Department of Biomedical Sciences , NYIT College of Osteopathic Medicine, New York Institute of Technology , Old Westbury , NY , USA
| | - Luis R Martinez
- a Department of Biomedical Sciences , NYIT College of Osteopathic Medicine, New York Institute of Technology , Old Westbury , NY , USA
| |
Collapse
|
1127
|
Faber JE, Moore SM, Lucitti JL, Aghajanian A, Zhang H. Sex Differences in the Cerebral Collateral Circulation. Transl Stroke Res 2016; 8:273-283. [PMID: 27844273 DOI: 10.1007/s12975-016-0508-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 12/15/2022]
Abstract
Premenopausal women and intact female rodents sustain smaller cerebral infarctions than males. Several sex-dependent differences have been identified as potential contributors, but many questions remain unanswered. Mice exhibit wide variation in native collateral number and diameter (collateral extent) that is dependent on differences in genetic background, aging, and other comorbidities and that contributes to their also-wide differences in infarct volume. Likewise, variation in infarct volume correlates with differences in collateral-dependent blood flow in patients with acute ischemic stroke. We examined whether extent of pial collateral arterioles and posterior communicating collateral arteries (PComAs) differ depending on sex in young, aged, obese, hypertensive, and genetically different mice. We combined new data with meta-analysis of our previously published data. Females of C57BL/6J (B6) and BALB/cByJ (BC) strains sustained smaller infarctions than males after permanent MCA occlusion. This protection was unchanged in BC mice after introgression of the B6 allele of Dce1, the major genetic determinant of variation in pial collaterals among mouse strains. Consistent with this, collateral extent in these and other strains did not differ with sex. Extent of PComAs and primary cerebral arteries also did not vary with sex. No dimorphism was evident for loss of pial collateral number and/or diameter (collateral rarefaction) caused by aging, obesity, and hypertension, nor for collateral remodeling after pMCAO. However, rarefaction was greater in females with long-standing hypertension. We conclude that smaller infarct volume in female mice is not due to greater collateral extent, greater remodeling, or less rarefaction caused by aging, obesity, or hypertension.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Scott M Moore
- Department of Surgery, University of Colorado, Denver, CO, USA
| | - Jennifer L Lucitti
- Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Amir Aghajanian
- Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Hua Zhang
- Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
1128
|
Role of Microglia in Neurological Disorders and Their Potentials as a Therapeutic Target. Mol Neurobiol 2016; 54:7567-7584. [DOI: 10.1007/s12035-016-0245-0] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023]
|
1129
|
Eles JR, Vazquez AL, Snyder NR, Lagenaur C, Murphy MC, Kozai TDY, Cui XT. Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy. Biomaterials 2016; 113:279-292. [PMID: 27837661 DOI: 10.1016/j.biomaterials.2016.10.054] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/26/2016] [Accepted: 10/30/2016] [Indexed: 12/15/2022]
Abstract
Implantable neural electrode technologies for chronic neural recordings can restore functional control to paralysis and limb loss victims through brain-machine interfaces. These probes, however, have high failure rates partly due to the biological responses to the probe which generate an inflammatory scar and subsequent neuronal cell death. L1 is a neuronal specific cell adhesion molecule and has been shown to minimize glial scar formation and promote electrode-neuron integration when covalently attached to the surface of neural probes. In this work, the acute microglial response to L1-coated neural probes was evaluated in vivo by implanting coated devices into the cortex of mice with fluorescently labeled microglia, and tracking microglial dynamics with multi-photon microscopy for the ensuing 6 h in order to understand L1's cellular mechanisms of action. Microglia became activated immediately after implantation, extending processes towards both L1-coated and uncoated control probes at similar velocities. After the processes made contact with the probes, microglial processes expanded to cover 47.7% of the control probes' surfaces. For L1-coated probes, however, there was a statistically significant 83% reduction in microglial surface coverage. This effect was sustained through the experiment. At 6 h post-implant, the radius of microglia activation was reduced for the L1 probes by 20%, shifting from 130.0 to 103.5 μm with the coating. Microglia as far as 270 μm from the implant site displayed significantly lower morphological characteristics of activation for the L1 group. These results suggest that the L1 surface treatment works in an acute setting by microglial mediated mechanisms.
Collapse
Affiliation(s)
- James R Eles
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States
| | - Alberto L Vazquez
- Bioengineering, University of Pittsburgh, United States; Radiology, University of Pittsburgh, United States; Neurobiology, University of Pittsburgh, United States
| | - Noah R Snyder
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States
| | - Carl Lagenaur
- Neurobiology, University of Pittsburgh, United States
| | | | - Takashi D Y Kozai
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States; NeuroTech Center of the University of Pittsburgh Brain Institute, United States.
| | - X Tracy Cui
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States.
| |
Collapse
|
1130
|
Park HJ, Oh SH, Kim HN, Jung YJ, Lee PH. Mesenchymal stem cells enhance α-synuclein clearance via M2 microglia polarization in experimental and human parkinsonian disorder. Acta Neuropathol 2016; 132:685-701. [PMID: 27497943 DOI: 10.1007/s00401-016-1605-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/31/2016] [Accepted: 08/01/2016] [Indexed: 11/26/2022]
Abstract
Microglia in the brain show distinctive phenotypes that serve different functions. In particular, M2-polarized microglia are anti-inflammatory and phagocytic cells that serve a restorative function. In this study, we investigated whether mesenchymal stem cells (MSCs) enhance the phagocytic clearance of α-synuclein via M2 microglia polarization, and thereby exert neuroprotective effects in α-synuclein-enriched experimental models and patients with multiple system atrophy (MSA). Treatment of BV2 cells with α-synuclein induced an inflammatory phenotype, whereas co-culture of α-synuclein-treated BV2 cells with MSCs induced an anti-inflammatory M2 phenotype, with decreased α-synuclein levels and increased lysosomal activity, leading to greater viability of neuronal cells co-cultured with BV2 cells. Using IL-4 receptor siRNA in BV2 cells and IL-4 siRNA in MSCs, we found that M2 microglia polarization was induced by IL-4 secreted from MSCs. In α-synuclein-inoculated mice, MSC treatment induced M2 microglia polarization decreased α-synuclein levels, and had a prosurvival effect on neurons. Using IL-4 and IL-4 receptor knockout mice, we further confirmed that IL-4 secreted from MSCs induced phagocytic clearance of α-synuclein through M2 microglia polarization. Next, we found that the cerebrospinal fluid (CSF) from MSC-transplanted MSA patients induced microglia M2 polarization and had a prosurvival effect via enhanced clearance of α-synuclein in α-synuclein-treated BV2 cells. Finally, a serial CSF study demonstrated that changes in oligomeric α-synuclein from baseline to 1-year follow-up were greater in the CSF of MSC-transplanted MSA patients than in placebo-transplanted MSA patients. These findings indicate that MSCs exert a neuroprotective effect via the clearance of extracellular α-synuclein by controlling microglia M2 polarization, suggesting that MSCs could be used as a disease-modifying therapy for patients with α-synucleinopathies.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Neurology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul, 120-752, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Se Hee Oh
- Department of Neurology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Ha Na Kim
- Department of Neurology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Yu Ju Jung
- Department of Neurology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul, 120-752, South Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul, 120-752, South Korea.
| |
Collapse
|
1131
|
Beli E, Dominguez JM, Hu P, Thinschmidt JS, Caballero S, Li Calzi S, Luo D, Shanmugam S, Salazar TE, Duan Y, Boulton ME, Mohr S, Abcouwer SF, Saban DR, Harrison JK, Grant MB. CX3CR1 deficiency accelerates the development of retinopathy in a rodent model of type 1 diabetes. J Mol Med (Berl) 2016; 94:1255-1265. [PMID: 27344677 PMCID: PMC5071129 DOI: 10.1007/s00109-016-1433-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 12/31/2022]
Abstract
In this study, the role of CX3CR1 in the progression of diabetic retinopathy (DR) was investigated. The retinas of wild-type (WT), CX3CR1 null (CX3CR1gfp/gfp, KO), and heterozygous (CX3CR1+/gfp, Het) mice were compared in the presence and absence of streptozotocin (STZ)-induced diabetes. CX3CR1 deficiency in STZ-KO increased vascular pathology at 4 months of diabetes, as a significant increase in acellular capillaries was observed only in the STZ-KO group. CX3CR1 deficiency and diabetes had similar effects on retinal neurodegeneration measured by an increase in DNA fragmentation. Retinal vascular pathology in STZ-KO mice was associated with increased numbers of monocyte-derived macrophages in the retina. Furthermore, compared to STZ-WT, STZ-KO mice exhibited increased numbers of inflammatory monocytes in the bone marrow and impaired homing of monocytes to the spleen. The induction of retinal IL-10 expression by diabetes was significantly less in KO mice, and when bone marrow-derived macrophages from KO mice were maintained in high glucose, they expressed significantly less IL-10 and more TNF-α in response to LPS stimulation. These findings support that CX3CR1 deficiency accelerates the development of vascular pathology in DR through increased recruitment of proinflammatory myeloid cells that demonstrate reduced expression of anti-inflammatory IL-10. KEY MESSAGES • CX3CR1 deletion in STZ-diabetic mice accelerated the onset of diabetic retinopathy (DR). • The early onset of DR was associated with increased retinal cell apoptosis. • The early onset of DR was associated with increased recruitment of bone marrow-derived macrophages to the retina. • Bone marrow-derived macrophages from CX3CR1 KO diabetic mice expressed more TNF-α and less IL-10. • The role of IL-10 in protection from progression of DR is highlighted.
Collapse
Affiliation(s)
- Eleni Beli
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James M Dominguez
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Ping Hu
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeffrey S Thinschmidt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sergio Caballero
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sergio Li Calzi
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Defang Luo
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, MI, USA
| | - Tatiana E Salazar
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Yaqian Duan
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael E Boulton
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susanna Mohr
- Department of Physiology, Michigan State University, East Lancing, MI, USA
| | - Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, MI, USA
| | - Daniel R Saban
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Jeffrey K Harrison
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Maria B Grant
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
1132
|
Kumar A, Barrett JP, Alvarez-Croda DM, Stoica BA, Faden AI, Loane DJ. NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury. Brain Behav Immun 2016; 58:291-309. [PMID: 27477920 PMCID: PMC5067217 DOI: 10.1016/j.bbi.2016.07.158] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022] Open
Abstract
Following traumatic brain injury (TBI), activation of microglia and peripherally derived inflammatory macrophages occurs in association with tissue damage. This neuroinflammatory response may have beneficial or detrimental effects on neuronal survival, depending on the functional polarization of these cells along a continuum from M1-like to M2-like activation states. The mechanisms that regulate M1-like and M2-like activation after TBI are not well understood, but appear in part to reflect the redox state of the lesion microenvironment. NADPH oxidase (NOX2) is a critical enzyme system that generates reactive oxygen species in microglia/macrophages. After TBI, NOX2 is strongly up-regulated in M1-like, but not in M2-like polarized cells. Therefore, we hypothesized that NOX2 drives M1-like neuroinflammation and contributes to neurodegeneration and loss of neurological function after TBI. In the present studies we inhibited NOX2 activity using NOX2-knockout mice or the selective peptide inhibitor gp91ds-tat. We show that NOX2 is highly up-regulated in infiltrating macrophages after injury, and that NOX2 deficiency reduces markers of M1-like activation, limits tissue loss and neurodegeneration, and improves motor recovery after moderate-level control cortical injury (CCI). NOX2 deficiency also promotes M2-like activation after CCI, through increased IL-4Rα signaling in infiltrating macrophages, suggesting that NOX2 acts as a critical switch between M1- and M2-like activation states after TBI. Administration of gp91ds-tat to wild-type CCI mice starting at 24h post-injury reduces deficits in cognitive function and increased M2-like activation in the hippocampus. Collectively, our data indicate that increased NOX2 activity after TBI drives M1-like activation that contributes to inflammatory-mediated neurodegeneration, and that inhibiting this pathway provides neuroprotection, in part by altering M1-/M2-like balance towards the M2-like neuroinflammatory response.
Collapse
Affiliation(s)
- Alok Kumar
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James P. Barrett
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dulce-Mariely Alvarez-Croda
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA,Posgrado en Neuroetologia, Universidad Veracruzana, Xalapa, Mexico,Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
| | - Bogdan A. Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan I. Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J. Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA,Correspondence: David J. Loane PhD, Department of Anesthesiology, University of Maryland School of Medicine, 655 West Baltimore Street, #6-011, Baltimore, MD 21201. Tel: 410-706-5188 Fax: 410-706-1639,
| |
Collapse
|
1133
|
Bu W, Ren H, Deng Y, Del Mar N, Guley NM, Moore BM, Honig MG, Reiner A. Mild Traumatic Brain Injury Produces Neuron Loss That Can Be Rescued by Modulating Microglial Activation Using a CB2 Receptor Inverse Agonist. Front Neurosci 2016; 10:449. [PMID: 27766068 PMCID: PMC5052277 DOI: 10.3389/fnins.2016.00449] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
We have previously reported that mild TBI created by focal left-side cranial blast in mice produces widespread axonal injury, microglial activation, and a variety of functional deficits. We have also shown that these functional deficits are reduced by targeting microglia through their cannabinoid type-2 (CB2) receptors using 2-week daily administration of the CB2 inverse agonist SMM-189. CB2 inverse agonists stabilize the G-protein coupled CB2 receptor in an inactive conformation, leading to increased phosphorylation and nuclear translocation of the cAMP response element binding protein (CREB), and thus bias activated microglia from a pro-inflammatory M1 to a pro-healing M2 state. In the present study, we showed that SMM-189 boosts nuclear pCREB levels in microglia in several brain regions by 3 days after TBI, by using pCREB/CD68 double immunofluorescent labeling. Next, to better understand the basis of motor deficits and increased fearfulness after TBI, we used unbiased stereological methods to characterize neuronal loss in cortex, striatum, and basolateral amygdala (BLA) and assessed how neuronal loss was affected by SMM-189 treatment. Our stereological neuron counts revealed a 20% reduction in cortical and 30% reduction in striatal neurons bilaterally at 2-3 months post blast, with SMM-189 yielding about 50% rescue. Loss of BLA neurons was restricted to the blast side, with 33% of Thy1+ fear-suppressing pyramidal neurons and 47% of fear-suppressing parvalbuminergic (PARV) interneurons lost, and Thy1-negative fear-promoting pyramidal neurons not significantly affected. SMM-189 yielded 50-60% rescue of Thy1+ and PARV neuron loss in BLA. Thus, fearfulness after mild TBI may result from the loss of fear-suppressing neuron types in BLA, and SMM-189 may reduce fearfulness by their rescue. Overall, our findings indicate that SMM-189 rescues damaged neurons and thereby alleviates functional deficits resulting from TBI, apparently by selectively modulating microglia to the beneficial M2 state. CB2 inverse agonists thus represent a promising therapeutic approach for mitigating neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Wei Bu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Huiling Ren
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Yunping Deng
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Nobel Del Mar
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Natalie M. Guley
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Bob M. Moore
- Department of Pharmaceutical Sciences, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Marcia G. Honig
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
- Department of Ophthalmology, University of Tennessee Health Science CenterMemphis, TN, USA
| |
Collapse
|
1134
|
Uchoa MF, Moser VA, Pike CJ. Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Front Neuroendocrinol 2016; 43:60-82. [PMID: 27651175 PMCID: PMC5123957 DOI: 10.1016/j.yfrne.2016.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder for which there are no effective strategies to prevent or slow its progression. Because AD is multifactorial, recent research has focused on understanding interactions among the numerous risk factors and mechanisms underlying the disease. One mechanism through which several risk factors may be acting is inflammation. AD is characterized by chronic inflammation that is observed before clinical onset of dementia. Several genetic and environmental risk factors for AD increase inflammation, including apolipoprotein E4, obesity, and air pollution. Additionally, sex steroid hormones appear to contribute to AD risk, with age-related losses of estrogens in women and androgens in men associated with increased risk. Importantly, sex steroid hormones have anti-inflammatory actions and can interact with several other AD risk factors. This review examines the individual and interactive roles of inflammation and sex steroid hormones in AD, as well as their relationships with the AD risk factors apolipoprotein E4, obesity, and air pollution.
Collapse
Affiliation(s)
- Mariana F Uchoa
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - V Alexandra Moser
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian J Pike
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
1135
|
Rabenstein M, Vay SU, Flitsch LJ, Fink GR, Schroeter M, Rueger MA. Osteopontin directly modulates cytokine expression of primary microglia and increases their survival. J Neuroimmunol 2016; 299:130-138. [DOI: 10.1016/j.jneuroim.2016.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022]
|
1136
|
Mecha M, Carrillo-Salinas F, Feliú A, Mestre L, Guaza C. Microglia activation states and cannabinoid system: Therapeutic implications. Pharmacol Ther 2016; 166:40-55. [DOI: 10.1016/j.pharmthera.2016.06.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
|
1137
|
Guglielmetti C, Le Blon D, Santermans E, Salas-Perdomo A, Daans J, De Vocht N, Shah D, Hoornaert C, Praet J, Peerlings J, Kara F, Bigot C, Mai Z, Goossens H, Hens N, Hendrix S, Verhoye M, Planas AM, Berneman Z, van der Linden A, Ponsaerts P. Interleukin-13 immune gene therapy prevents CNS inflammation and demyelination via alternative activation of microglia and macrophages. Glia 2016; 64:2181-2200. [PMID: 27685637 DOI: 10.1002/glia.23053] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/01/2016] [Accepted: 08/11/2016] [Indexed: 02/06/2023]
Abstract
Detrimental inflammatory responses in the central nervous system are a hallmark of various brain injuries and diseases. With this study we provide evidence that lentiviral vector-mediated expression of the immune-modulating cytokine interleukin 13 (IL-13) induces an alternative activation program in both microglia and macrophages conferring protection against severe oligodendrocyte loss and demyelination in the cuprizone mouse model for multiple sclerosis (MS). First, IL-13 mediated modulation of cuprizone induced lesions was monitored using T2 -weighted magnetic resonance imaging and magnetization transfer imaging, and further correlated with quantitative histological analyses for inflammatory cell influx, oligodendrocyte death, and demyelination. Second, following IL-13 immune gene therapy in cuprizone-treated eGFP+ bone marrow chimeric mice, we provide evidence that IL-13 directs the polarization of both brain-resident microglia and infiltrating macrophages towards an alternatively activated phenotype, thereby promoting the conversion of a pro-inflammatory environment toward an anti-inflammatory environment, as further evidenced by gene expression analyses. Finally, we show that IL-13 immune gene therapy is also able to limit lesion severity in a pre-existing inflammatory environment. In conclusion, these results highlight the potential of IL-13 to modulate microglia/macrophage responses and to improve disease outcome in a mouse model for MS. GLIA 2016;64:2181-2200.
Collapse
Affiliation(s)
- Caroline Guglielmetti
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Debbie Le Blon
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Eva Santermans
- Center for Statistics, I-Biostat, Hasselt University, Hasselt, Belgium
| | - Angelica Salas-Perdomo
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jasmijn Daans
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Nathalie De Vocht
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Disha Shah
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Chloé Hoornaert
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Jelle Praet
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jurgen Peerlings
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Firat Kara
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christian Bigot
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Zhenhua Mai
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Icometrix, Leuven, Belgium
| | - Herman Goossens
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Niel Hens
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium.,Center for Statistics, I-Biostat, Hasselt University, Hasselt, Belgium.,Centre for Health Economic Research and Modelling Infectious Diseases (Chermid), University of Antwerp, Antwerp, Belgium
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Marleen Verhoye
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Annemie van der Linden
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium. .,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
1138
|
Wong SY, Tan MGK, Wong PTH, Herr DR, Lai MKP. Andrographolide induces Nrf2 and heme oxygenase 1 in astrocytes by activating p38 MAPK and ERK. J Neuroinflammation 2016; 13:251. [PMID: 27663973 PMCID: PMC5034653 DOI: 10.1186/s12974-016-0723-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Andrographolide is the major labdane diterpenoid originally isolated from Andrographis paniculata and has been shown to have anti-inflammatory and antioxidative effects. However, there is a dearth of studies on the potential therapeutic utility of andrographolide in neuroinflammatory conditions. Here, we aimed to investigate the mechanisms underlying andrographolide's effect on the expression of anti-inflammatory and antioxidant heme oxygenase-1 (HO-1) in primary astrocytes. METHODS Measurements of the effects of andrograholide on antioxidant HO-1 and its transcription factor, Nrf2, include gene expression, protein turnover, and activation of putative signaling regulators. RESULTS Andrographolide potently activated Nrf2 and also upregulated HO-1 expression in primary astrocytes. Andrographolide's effects on Nrf2 seemed to be biphasic, with acute (within 1 h) reductions in Nrf2 ubiquitination efficiency and turnover rate, followed by upregulation of Nrf2 mRNA between 8 and 24 h. The acute regulation of Nrf2 by andrographolide seemed to be independent of Keap1 and partly mediated by p38 MAPK and ERK signaling. CONCLUSIONS These data provide further insights into the mechanisms underlying andrographolide's effects on astrocyte-mediated antioxidant, and anti-inflammatory responses and support the further assessment of andrographolide as a potential therapeutic for neurological conditions in which oxidative stress and neuroinflammation are implicated.
Collapse
Affiliation(s)
- Siew Ying Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Unit 09-01, Centre for Translational Medicine (MD6), 14 Medical Drive, Kent Ridge, 117599 Singapore
| | - Michelle G. K. Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Unit 09-01, Centre for Translational Medicine (MD6), 14 Medical Drive, Kent Ridge, 117599 Singapore
- Department of Clinical Research, Singapore General Hospital, Outram, Singapore
| | - Peter T. H. Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Unit 09-01, Centre for Translational Medicine (MD6), 14 Medical Drive, Kent Ridge, 117599 Singapore
| | - Deron R. Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Unit 09-01, Centre for Translational Medicine (MD6), 14 Medical Drive, Kent Ridge, 117599 Singapore
| | - Mitchell K. P. Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Unit 09-01, Centre for Translational Medicine (MD6), 14 Medical Drive, Kent Ridge, 117599 Singapore
| |
Collapse
|
1139
|
Desai A, Park T, Barnes J, Kevala K, Chen H, Kim HY. Reduced acute neuroinflammation and improved functional recovery after traumatic brain injury by α-linolenic acid supplementation in mice. J Neuroinflammation 2016; 13:253. [PMID: 27663791 PMCID: PMC5035510 DOI: 10.1186/s12974-016-0714-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Adequate consumption of polyunsaturated fatty acids (PUFA) is vital for normal development and functioning of the central nervous system. The long-chain n-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid are anti-inflammatory and neuroprotective in the models of central nervous system injury including traumatic brain injury (TBI). In the present study, we tested whether a higher brain DHA status in a mouse model on an adequate dietary α-linolenic acid (ALA) leads to reduced neuroinflammation and improved spontaneous recovery after TBI in comparison to a moderately lowered brain DHA status that can occur in humans. METHODS Mice reared on diets with differing ALA content were injured by a single cortical contusion impact. Change in the expression of inflammatory cytokines was measured, and cellular changes occurring after injury were analyzed by immunostaining for macrophage/microglia and astrocytes. Behavioral studies included rotarod and beam walk tests and contextual fear conditioning. RESULTS Marginal supply (0.04 %) of ALA as the sole dietary source of n-3 PUFA from early gestation produced reduction of brain DHA by 35 % in adult offspring mice in comparison to the mice on adequate ALA diet (3.1 %). The DHA-depleted group showed significantly increased TBI-induced expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 in the brain as well as slower functional recovery from motor deficits compared to the adequate ALA group. Despite the reduction of pro-inflammatory cytokine expression, adequate ALA diet did not significantly alter either microglia/macrophage density around the contusion site or the relative M1/M2 phenotype. However, the glial fibrillary acidic protein immunoreactivity was reduced in the injured cerebral cortex of the mice on adequate ALA diet, indicating that astrocyte activation may have contributed to the observed differences in cellular and behavioral responses to TBI. CONCLUSIONS Increasing the brain DHA level even from a moderately DHA-depleted state can reduce neuroinflammation and improve functional recovery after TBI, suggesting possible improvement of functional outcome by increasing dietary n-3 PUFA in human TBI.
Collapse
Affiliation(s)
- Abhishek Desai
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rm. 3N-07, Bethesda, MD, 20892-9410, USA
| | - Taeyeop Park
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rm. 3N-07, Bethesda, MD, 20892-9410, USA
| | - Jaquel Barnes
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rm. 3N-07, Bethesda, MD, 20892-9410, USA
| | - Karl Kevala
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rm. 3N-07, Bethesda, MD, 20892-9410, USA
| | - Huazhen Chen
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rm. 3N-07, Bethesda, MD, 20892-9410, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rm. 3N-07, Bethesda, MD, 20892-9410, USA.
| |
Collapse
|
1140
|
Cohen S, Ke X, Liu Q, Fu Q, Majnik A, Lane R. Adverse early life environment increases hippocampal microglia abundance in conjunction with decreased neural stem cells in juvenile mice. Int J Dev Neurosci 2016; 55:56-65. [PMID: 27666383 DOI: 10.1016/j.ijdevneu.2016.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Adverse maternal lifestyle resulting in adverse early life environment (AELE) increases risks for neuropsychiatric disorders in offspring. Neuropsychiatric disorders are associated with impaired neurogenesis and neuro-inflammation in the hippocampus (HP). Microglia are neuro-inflammatory cells in the brain that regulate neurogenesis via toll-like receptors (TLR). TLR-9 is implicated in neurogenesis inhibition and is responsible for stress-related inflammatory responses. We hypothesized that AELE would increase microglia cell count and increase TLR-9 expression in juvenile mouse HP. These increases in microglia cell count and TLR-9 expression would be associated with decrease neural stem cell count and neuronal cell count. METHODS We developed a mouse model of AELE combining Western diet and a stress environment. Stress environment consisted of random change from embryonic day 13 (E13) to E17 as well as static change in maternal environment from E13 to postnatal day 21(P21). At P21, we measured hippocampal cell numbers of microglia, neural stem cell and neuron, as well as hippocampal TLR-9 expression. RESULTS AELE significantly increased total microglia number and TLR-9 expression in the hippocampus. Concurrently, AELE significantly decreased neural stem cell and neuronal numbers. CONCLUSIONS AELE increased the neuro-inflammatory cellular response in the juvenile HP. We speculate that increased neuro-inflammatory responses may contribute to impaired neurogenesis seen in this model.
Collapse
Affiliation(s)
- Susan Cohen
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.
| | - Xingrao Ke
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Qiuli Liu
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Qi Fu
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amber Majnik
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert Lane
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
1141
|
Yoon CS, Kim DC, Quang TH, Seo J, Kang DG, Lee HS, Oh H, Kim YC. A Prenylated Xanthone, Cudratricusxanthone A, Isolated from Cudrania tricuspidata Inhibits Lipopolysaccharide-Induced Neuroinflammation through Inhibition of NF-κB and p38 MAPK Pathways in BV2 Microglia. Molecules 2016; 21:E1240. [PMID: 27649130 PMCID: PMC6272989 DOI: 10.3390/molecules21091240] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/30/2016] [Accepted: 09/11/2016] [Indexed: 12/22/2022] Open
Abstract
Cudrania tricuspidata Bureau (Moraceae) is an important source of traditional Korean and Chinese medicines used to treat neuritis and inflammation. Cudratricusxanthone A (1), a prenylated xanthone, isolated from C. tricuspidata, has a variety of biological and therapeutic activities. The goal of this study was to examine the effects of compound 1 on neuroinflammation and characterize its mechanism of action in lipopolysaccharide (LPS)-stimulated BV2 microglia. Cudratricusxanthone A (1) suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 enzymes and decreased the production of iNOS-derived nitric oxide and COX-2-derived prostaglandin E2 in LPS-stimulated mouse BV2 microglia. The compound also decreased tumor necrosis factor-α, interleukin (IL)-1β, and IL-12 production; inhibited the phosphorylation and degradation of IκB-α; and blocked the nuclear translocation of p50 and p65 in mouse BV2 microglia induced by LPS. Cudratricusxanthone A (1) had inhibitory effects on nuclear factor kappa B DNA-binding activity. Additionally, it inhibited the p38 mitogen-activated protein kinase signaling pathway. Our data suggests that cudratricusxanthone A (1) may be a useful therapeutic agent in the treatment of neurodegenerative diseases caused by neuroinflammation.
Collapse
Affiliation(s)
- Chi-Su Yoon
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Korea.
| | - Dong-Cheol Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Korea.
| | - Tran Hong Quang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi 100000, Vietnam.
| | - Jungwon Seo
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Korea.
| | - Dae Gill Kang
- Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 54538, Korea.
| | - Ho Sub Lee
- Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 54538, Korea.
| | - Hyuncheol Oh
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Korea.
| | - Youn-Chul Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Korea.
- Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 54538, Korea.
| |
Collapse
|
1142
|
Poutiainen P, Jaronen M, Quintana FJ, Brownell AL. Precision Medicine in Multiple Sclerosis: Future of PET Imaging of Inflammation and Reactive Astrocytes. Front Mol Neurosci 2016; 9:85. [PMID: 27695400 PMCID: PMC5023680 DOI: 10.3389/fnmol.2016.00085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022] Open
Abstract
Non-invasive molecular imaging techniques can enhance diagnosis to achieve successful treatment, as well as reveal underlying pathogenic mechanisms in disorders such as multiple sclerosis (MS). The cooperation of advanced multimodal imaging techniques and increased knowledge of the MS disease mechanism allows both monitoring of neuronal network and therapeutic outcome as well as the tools to discover novel therapeutic targets. Diverse imaging modalities provide reliable diagnostic and prognostic platforms to better achieve precision medicine. Traditionally, magnetic resonance imaging (MRI) has been considered the golden standard in MS research and diagnosis. However, positron emission tomography (PET) imaging can provide functional information of molecular biology in detail even prior to anatomic changes, allowing close follow up of disease progression and treatment response. The recent findings support three major neuroinflammation components in MS: astrogliosis, cytokine elevation, and significant changes in specific proteins, which offer a great variety of specific targets for imaging purposes. Regardless of the fact that imaging of astrocyte function is still a young field and in need for development of suitable imaging ligands, recent studies have shown that inflammation and astrocyte activation are related to progression of MS. MS is a complex disease, which requires understanding of disease mechanisms for successful treatment. PET is a precise non-invasive imaging method for biochemical functions and has potential to enhance early and accurate diagnosis for precision therapy of MS. In this review we focus on modulation of different receptor systems and inflammatory aspect of MS, especially on activation of glial cells, and summarize the recent findings of PET imaging in MS and present the most potent targets for new biomarkers with the main focus on experimental MS research.
Collapse
Affiliation(s)
- Pekka Poutiainen
- Athinoula A Martinos Biomedical Imaging Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA
| | - Merja Jaronen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Francisco J. Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Anna-Liisa Brownell
- Athinoula A Martinos Biomedical Imaging Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA
| |
Collapse
|
1143
|
Tian DS, Li CY, Qin C, Murugan M, Wu LJ, Liu JL. Deficiency in the voltage-gated proton channel Hv1 increases M2 polarization of microglia and attenuates brain damage from photothrombotic ischemic stroke. J Neurochem 2016; 139:96-105. [PMID: 27470181 DOI: 10.1111/jnc.13751] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/16/2016] [Accepted: 07/21/2016] [Indexed: 02/03/2023]
Abstract
Microglia become activated during cerebral ischemia and exert pro-inflammatory or anti-inflammatory role dependent of microglial polarization. NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) production in microglia plays an important role in neuronal damage after ischemic stroke. Recently, NOX and ROS are consistently reported to participate in the microglial activation and polarization; NOX2 inhibition or suppression of ROS production are shown to shift the microglial polarization from M1 toward M2 state after stroke. The voltage-gated proton channel, Hv1, is selectively expressed in microglia and is required for NOX-dependent ROS generation in the brain. However, the effect of Hv1 proton channel on microglial M1/M2 polarization state after cerebral ischemia remains unknown. In this study, we investigated the role of microglial Hv1 proton channel in modulating microglial M1/M2 polarization during the pathogenesis of ischemic cerebral injury using a mouse model of photothrombosis. Following photothrombotic ischemic stroke, wild-type mice presented obvious brain infarct, neuronal damage, and impaired motor coordination. However, mice lacking Hv1 (Hv1(-/-)) were partially protected from brain damage and motor deficits compared to wild-type mice. These rescued phenotypes in Hv1(-/-) mice in ischemic stroke is accompanied by reduced ROS production, shifted the microglial polarization from M1 to M2 state. Hv1 deficiency was also found to shift the M1/M2 polarization in primary cultured microglia. Our study suggests that the microglial Hv1 proton channel is a unique target for modulation of microglial M1/M2 polarization in the pathogenesis of ischemic stroke. The voltage-gated proton channel, Hv1, is selectively expressed in microglia and is required for NOX-dependent generation of reactive oxygen species (ROS) in the brain. ROS participate in microglial activation and polarization. However, the effect of Hv1 on microglial M1/M2 polarization state after cerebral ischemia remains unknown. Hv1 deficiency was found to shift the microglial polarization from M1 to M2 state in ischemic stroke accompanied by reduced ROS production. Our study suggests that the microglial Hv1 proton channel is a unique target for modulation of microglial M1/M2 polarization in the pathogenesis of ischemic stroke.
Collapse
Affiliation(s)
- Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Yu Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Madhuvika Murugan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Long-Jun Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA.
| | - Jun-Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
1144
|
Yang X, Hondur G, Tezel G. Antioxidant Treatment Limits Neuroinflammation in Experimental Glaucoma. Invest Ophthalmol Vis Sci 2016; 57:2344-54. [PMID: 27127934 PMCID: PMC4855827 DOI: 10.1167/iovs.16-19153] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose Besides primary neurotoxicity, oxidative stress may compromise the glial immune regulation and shift the immune homeostasis toward neurodegenerative inflammation in glaucoma. We tested this hypothesis through the analysis of neuroinflammatory and neurodegenerative outcomes in mouse glaucoma using two experimental paradigms of decreased or increased oxidative stress. Methods The first experimental paradigm tested the effects of Tempol, a multifunctional antioxidant, given through osmotic mini-pumps for drug delivery by constant infusion. Following a 6-week treatment period after microbead/viscoelastic injection-induced ocular hypertension, retina and optic nerve samples were analyzed for markers of oxidative stress and cytokine profiles using specific bioassays. We also analyzed a redox-sensitive transcriptional regulator of neuroinflammation, namely NF-κB. The second paradigm included a similar analysis of the effects of overloaded oxidative stress on retina and optic nerve inflammation in mice knockout for a major antioxidant enzyme (SOD1−/−). Results Increased antioxidant capacity and decreased protein carbonyls and HNE adducts with Tempol treatment verified the drug delivery and biological function. Among a range of cytokines measured, proinflammatory cytokines, including IL-1, IL-2, IFN-γ, and TNF-α, exhibited more than 2-fold decreased titers in Tempol-treated ocular hypertensive eyes. Antioxidant treatment also resulted in a prominent decrease in NF-κB activation in the ocular hypertensive retina and optic nerve. Although pharmacological treatment limiting the oxidative stress resulted in decreased neuroinflammation, ocular hypertension–induced neuroinflammatory responses were increased in SOD1−/− mice with defective antioxidant response. Conclusions These findings support the oxidative stress–related mechanisms of neuroinflammation and the potential of antioxidant treatment as an immunomodulation strategy for neuroprotection in glaucoma.
Collapse
|
1145
|
Macht VA. Neuro-immune interactions across development: A look at glutamate in the prefrontal cortex. Neurosci Biobehav Rev 2016; 71:267-280. [PMID: 27593444 DOI: 10.1016/j.neubiorev.2016.08.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/26/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023]
Abstract
Although the primary role for the immune system is to respond to pathogens, more recently, the immune system has been demonstrated to have a critical role in signaling developmental events. Of particular interest for this review is how immunocompetent microglia and astrocytes interact with glutamatergic systems to influence the development of neural circuits in the prefrontal cortex (PFC). Microglia are the resident macrophages of the brain, and astrocytes mediate both glutamatergic uptake and coordinate with microglia to respond to the general excitatory state of the brain. Cross-talk between microglia, astrocytes, and glutamatergic neurons forms a quad-partite synapse, and this review argues that interactions within this synapse have critical implications for the maturation of PFC-dependent cognitive function. Similarly, understanding developmental shifts in immune signaling may help elucidate variations in sensitivities to developmental disruptions.
Collapse
Affiliation(s)
- Victoria A Macht
- University of South Carolina, 1512 Pendleton St., Department of Psychology, Columbia, SC 29208, United States.
| |
Collapse
|
1146
|
Kaiser M, Penk A, Franke H, Krügel U, Nörenberg W, Huster D, Schaefer M. Lack of functional P2X7 receptor aggravates brain edema development after middle cerebral artery occlusion. Purinergic Signal 2016; 12:453-63. [PMID: 27048203 PMCID: PMC5023626 DOI: 10.1007/s11302-016-9511-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/23/2016] [Indexed: 12/01/2022] Open
Abstract
Effective therapeutic measures against the development of brain edema, a life-threatening complication of cerebral ischemia, are necessary to improve the functional outcome for the patient. Here, we identified a beneficial role of purinergic receptor P2X7 activation in acute ischemic stroke. Involvement of P2X7 in the development of neurological deficits, infarct size, brain edema, and glial responses after ischemic cerebral infarction has been analyzed. Neurologic evaluation, magnetic resonance imaging, and immunofluorescence assays were used to characterize the receptor's effect on the disease progress during 72 h after transient middle cerebral artery occlusion (tMCAO). Sham-operated animals were included in all experiments for control purposes. We found P2X7-deficient mice to develop a more prominent brain edema with a trend towards more severe neurological deficits 24 h after tMCAO. Infarct sizes, T2 times, and apparent diffusion coefficients did not differ significantly between wild-type and P2X7(-/-) animals. Our results show a characteristic spatial distribution of reactive glia cells with strongly attenuated microglia activation in P2X7(-/-) mice 72 h after tMCAO. Our data indicate that P2X7 exerts a role in limiting the early edema formation, possibly by modulating glial responses, and supports later microglia activation.
Collapse
Affiliation(s)
- Melanie Kaiser
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Universität Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Anja Penk
- Institute of Medical Physics and Biophysics, Medical Faculty, Universität Leipzig, Leipzig, Germany
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Universität Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Universität Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Wolfgang Nörenberg
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Universität Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, Medical Faculty, Universität Leipzig, Leipzig, Germany
| | - Michael Schaefer
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Universität Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany.
| |
Collapse
|
1147
|
Berger T. Immunological processes related to cognitive impairment in MS. Acta Neurol Scand 2016; 134 Suppl 200:34-8. [PMID: 27580904 DOI: 10.1111/ane.12647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2016] [Indexed: 12/20/2022]
Abstract
In this review, the immune-to-brain communication pathways are briefly summarized, with emphasis on the impact of immune cells and their mediators on learning, memory and other cognitive domains. Further, the acute response of the central nervous system to peripherally generated inflammatory stimuli - termed as sickness behaviour - is described, and the central role of microglia in this immune-to-brain crosstalk in physiological and pathological conditions is highlighted. Finally, the role and consequences of immunological processes related to cognitive impairment in multiple sclerosis are discussed.
Collapse
Affiliation(s)
- T. Berger
- Clinical Department of Neurology; Medical University of Innsbruck; Innsbruck Austria
| |
Collapse
|
1148
|
Suk K. Lipocalin-2 as a therapeutic target for brain injury: An astrocentric perspective. Prog Neurobiol 2016; 144:158-72. [DOI: 10.1016/j.pneurobio.2016.08.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 06/18/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
|
1149
|
Plastira I, Bernhart E, Goeritzer M, Reicher H, Kumble VB, Kogelnik N, Wintersperger A, Hammer A, Schlager S, Jandl K, Heinemann A, Kratky D, Malle E, Sattler W. 1-Oleyl-lysophosphatidic acid (LPA) promotes polarization of BV-2 and primary murine microglia towards an M1-like phenotype. J Neuroinflammation 2016; 13:205. [PMID: 27565558 PMCID: PMC5002165 DOI: 10.1186/s12974-016-0701-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/20/2016] [Indexed: 01/09/2023] Open
Abstract
Background Microglia, the immunocompetent cells of the CNS, rapidly respond to brain injury and disease by altering their morphology and phenotype to adopt an activated state. Microglia can exist broadly between two different states, namely the classical (M1) and the alternative (M2) phenotype. The first is characterized by the production of pro-inflammatory cytokines/chemokines and reactive oxygen and/or nitrogen species. In contrast, alternatively activated microglia are typified by an anti-inflammatory phenotype supporting wound healing and debris clearance. The objective of the present study was to determine the outcome of lysophosphatidic acid (LPA)-mediated signaling events on microglia polarization. Methods LPA receptor expression and cyto-/chemokine mRNA levels in BV-2 and primary murine microglia (PMM) were determined by qPCR. M1/M2 marker expression was analyzed by Western blotting, immunofluorescence microscopy, or flow cytometry. Cyto-/chemokine secretion was quantitated by ELISA. Results BV-2 cells express LPA receptor 2 (LPA2), 3, 5, and 6, whereas PMM express LPA1, 2, 4, 5, and 6. We show that LPA treatment of BV-2 and PMM leads to a shift towards a pro-inflammatory M1-like phenotype. LPA treatment increased CD40 and CD86 (M1 markers) and reduced CD206 (M2 marker) expression. LPA increased inducible nitric oxide synthase (iNOS) and COX-2 levels (both M1), while the M2 marker Arginase-1 was suppressed in BV-2 cells. Immunofluorescence studies (iNOS, COX-2, Arginase-1, and RELMα) extended these findings to PMM. Upregulation of M1 markers in BV-2 and PMM was accompanied by increased cyto-/chemokine transcription and secretion (IL-1β, TNFα, IL-6, CCL5, and CXCL2). The pharmacological LPA5 antagonist TCLPA5 blunted most of these pro-inflammatory responses. Conclusions LPA drives BV-2 and PMM towards a pro-inflammatory M1-like phenotype. Suppression by TCLPA5 indicates that the LPA/LPA5 signaling axis could represent a potential pharmacological target to interfere with microglia polarization in disease.
Collapse
Affiliation(s)
- Ioanna Plastira
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Madeleine Goeritzer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Vishwanath Bhat Kumble
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Nora Kogelnik
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Andrea Wintersperger
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Stefanie Schlager
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Katharina Jandl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria. .,BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
1150
|
Effect of GDNF on Morphology, Proliferation, and Phagocytic Activity of Rat Neonatal Cortex Isolated Microglia. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0247-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|