1201
|
Duchniewicz M, Germaniuk A, Westermann B, Neupert W, Schwarz E, Marszalek J. Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol Cell Biol 1999; 19:8201-10. [PMID: 10567545 PMCID: PMC84904 DOI: 10.1128/mcb.19.12.8201] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/1999] [Accepted: 09/13/1999] [Indexed: 11/20/2022] Open
Abstract
Mdj1p, a homolog of the bacterial DnaJ chaperone protein, plays an essential role in the biogenesis of functional mitochondria in the yeast Saccharomyces cerevisiae. We analyzed the role of Mdj1p in the inheritance of mitochondrial DNA (mtDNA). Mitochondrial genomes were rapidly lost in a temperature-sensitive mdj1 mutant under nonpermissive conditions. The activity of mtDNA polymerase was severely reduced in the absence of functional Mdj1p at a nonpermissive temperature, demonstrating the dependence of the enzyme on Mdj1p. At a permissive temperature, the activity of mtDNA polymerase was not affected by the absence of Mdj1p. However, under these conditions, intact [rho(+)] genomes were rapidly converted to nonfunctional [rho(-)] genomes which were stably propagated in an mdj1 deletion strain. We propose that mtDNA polymerase depends on Mdj1p as a chaperone in order to acquire and/or maintain an active conformation at an elevated temperature. In addition, Mdj1p is required for the inheritance of intact mitochondrial genomes at a temperature supporting optimal growth; this second function appears to be unrelated to the function of Mdj1p in maintaining mtDNA polymerase activity.
Collapse
Affiliation(s)
- M Duchniewicz
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, 80-822 Gdansk, Poland
| | | | | | | | | | | |
Collapse
|
1202
|
Abstract
Accumulating molecular data, particularly complete organellar genome sequences, continue to advance our understanding of the evolution of mitochondrial and chloroplast DNAs. Although the notion of a single primary origin for each organelle has been reinforced, new models have been proposed that tie the acquisition of mitochondria more closely to the origin of the eukaryotic cell per se than is implied by classic endosymbiont theory. The form and content of the ancestral proto-mitochondrial and proto-chloroplast genomes are becoming clearer but unusual patterns of organellar genome structure and organization continue to be discovered. The 'single-gene circle' arrangement recently reported for dinoflagellate chloroplast genomes is a notable example of a highly derived organellar genome.
Collapse
Affiliation(s)
- M W Gray
- Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Canadian Institute for Advanced Research, Dalhousie University, Halifax, B3H 4H7, Canada.
| |
Collapse
|
1203
|
Nagata Y, Tanaka K, Iida T, Kera Y, Yamada R, Nakajima Y, Fujiwara T, Fukumori Y, Yamanaka T, Koga Y, Tsuji S, Kawaguchi-Nagata K. Occurrence of D-amino acids in a few archaea and dehydrogenase activities in hyperthermophile Pyrobaculum islandicum. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1435:160-6. [PMID: 10561548 DOI: 10.1016/s0167-4838(99)00208-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The contents of D-enantiomers of serine, alanine, proline, glutamate (glutamine) and aspartate (asparagine) were examined in the membrane fractions, soluble proteins and free amino acids from some species of archaea, Pyrobaculum islandicum, Methanosarcina barkeri and Halobacterium salinarium. Around 2% (D/D+L) of D-aspartate was found in the membrane fractions. In the soluble proteins, the D-amino acid content was higher in P. islandicum than that in the other archaeal cells: the concentrations in P. islandicum were 3 and 4% for D-serine and D-aspartate, respectively. High concentrations of free D-amino acids were found in P. islandicum and H. salinarium; the concentrations of D-serine (12-13%), D-aspartate (4-7%) and D-proline (3-4%) were higher than those of D-alanine and D-glutamate. This result showed a resemblance between these archaea and not bacterial, but eukaryotic cells. The presence of D-amino acids was confirmed by their digestion with D-amino acid oxidase and D-aspartate oxidase. The occurrence of D-amino acids was also confirmed by the presence of activities catalyzing catabolism of D-amino acids in the P. islandicum homogenate, as measured by 2-oxo acid formation. The catalytic activities oxidizing D-alanine, D-aspartate and D-serine at 90 degrees C were considerably high. Under anaerobic conditions, dehydrogenase activities of the homogenate were 69, 84 and 30% of the above oxidase activities toward D-alanine, D-aspartate and D-serine, respectively. Comparable or higher dehydrogenase activities were also detected with these D-amino acids as substrate by the reduction of 2, 6-dichlorophenolindophenol. No D-amino acid oxidase activity was detected in the homogenates of M. barkeri and H. salinarium.
Collapse
Affiliation(s)
- Y Nagata
- Department of Life Science, Himeji Institute of Technology, Himeji, Hyogo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1204
|
Affiliation(s)
- J L Boore
- Dept of Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
1205
|
Abstract
Whether we view the mitochondria as the headquarters for the leader of a crack suicide squad or as a prison for the leader of a militant coup, the role of the mitochondria in the apoptotic process is now well established. During apoptosis the integrity of the mitochondria is breeched, the mitochondrial transmembrane potential drops, the electron transport chain is disrupted. and proteins from the mitochondrial intermembrane space (MIS) such as cytochrome c are released into the cytosol, although not necessarily in that order. In the cytosol, cytochrome c forms part of a proteinaceous complex that directly activates caspase-9, one of the apical enzymes responsible for the dismantling of the cell. In this way a mitochondrial factor which is normally locked away from the rest of the cell can directly trigger apoptosis. The need to regulate the release of cytochrome c suggests that the mitochondria may be the decision center for whether a cell lives or dies. Various hypotheses have been formulated to explain how proteins of the MIS are released and how this process is regulated. These include the Bcl-2-regulated opening of a permeability transition pore or an increase in mitochondrial transmembrane potential followed by outer membrane rupture. It remains to be clarified which mitochondria specific events are essential for apoptosis and which are merely consequences of apoptosis.
Collapse
Affiliation(s)
- N J Waterhouse
- Division of Cellular Immunology, La Jolla Institute of Allergy and Immunology, San Diego, California 92121, USA
| | | |
Collapse
|
1206
|
Hackstein JH, Akhmanova A, Boxma B, Harhangi HR, Voncken FG. Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol 1999; 7:441-7. [PMID: 10542423 DOI: 10.1016/s0966-842x(99)01613-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Like mitochondria, hydrogenosomes compartmentalize crucial steps of eukaryotic energy metabolism; however, this compartmentalization differs substantially between mitochondriate aerobes and hydrogenosome-containing anaerobes. Because hydrogenosomes have arisen independently in different lineages of eukaryotic microorganisms, comparative analysis of the various types of hydrogenosomes can provide insights into the functional and evolutionary aspects of compartmentalized energy metabolism in unicellular eukaryotes.
Collapse
Affiliation(s)
- J H Hackstein
- Dept. of Microbiology and Evolutionary Biology, University of Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
1207
|
Abstract
Mitochondrial respiratory chain disorders are an established cause of liver failure in early childhood but they are probably under-diagnosed, partly due to under-recognition and partly due to the difficulty of investigation. It is particularly important to look for mitochondrial disorders if the liver disease presents with hypoglycaemia and lactic acidaemia or if it is accompanied by neurological, muscle or renal tubular abnormalities. Respiratory chain defects have been demonstrated in a number of patients who die of liver failure following severe epilepsy; this includes at least some cases of Alpers syndrome or 'progressive neuronal degeneration of childhood'. In mitochondrial liver disease, histology usually shows steatosis, often accompanied by fibrosis, cholestasis and loss of hepatocytes. Unless the clinical picture suggests a particular syndrome, such as Pearson syndrome, biochemical assays and histochemistry should be the initial investigations. Ideally, investigations should be carried out on liver as well as more standard tissues, such as muscle, since defects can be tissue-specific. Nuclear defects and mtDNA point mutations are probably responsible for many cases of mitochondrial liver disease but, as yet, the only identified molecular abnormalities are mtDNA rearrangements and mtDNA depletion. Treatment of mitochondrial liver disease is unsatisfactory. If the disease is confined to the liver, transplantation may be appropriate but in several patients transplantation has been followed by the appearance of disease in other organs, particularly the brain.
Collapse
Affiliation(s)
- A A Morris
- Department of Child Health, University of Newcastle Upon Tyne, Royal Victoria Infirmary, Newcastle, UK
| |
Collapse
|
1208
|
Soltys BJ, Gupta RS. Mitochondrial proteins at unexpected cellular locations: export of proteins from mitochondria from an evolutionary perspective. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 194:133-96. [PMID: 10494626 DOI: 10.1016/s0074-7696(08)62396-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Researchers in a wide variety of unrelated areas studying functions of different proteins are unexpectedly finding that their proteins of interest are actually mitochondrial proteins, although functions would appear to be extramitochondrial. We review the leading current examples of mitochondrial macromolecules indicated to be also present outside of mitochondria that apparently exit from mitochondria to arrive at their destinations. Mitochondrial chaperones, which have been implicated in growth and development, autoimmune diseases, cell mortality, antigen presentation, apoptosis, and resistance to antimitotic drugs, provide some of the best studied examples pointing to roles for mitochondria and mitochondrial proteins in diverse cellular phenomena. To explain the observations, we propose that specific export mechanisms exist by which certain proteins exit mitochondria, allowing these proteins to have additional functions at specific extramitochondrial sites. Several possible mechanisms by which mitochondrial proteins could be exported are discussed. Gram-negative proteobacteria, from which mitochondria evolved, contain a number of different mechanisms for protein export. It is likely that mitochondria either retained or evolved export mechanisms for certain specific proteins.
Collapse
Affiliation(s)
- B J Soltys
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
1209
|
Abstract
Entamoeba histolytica lacks glutathione reductase activity and the ability to synthesise glutathione de novo. However, a recent report suggested that exogenous glutathione can be taken up and conjugated to spermidine to form trypanothione, a metabolite found so far only in trypanosomatids. Given the therapeutic implications of this observation, we have carefully analysed E. histolytica for evidence of trypanothione metabolism. Using a sensitive fluorescence-based HPLC detection system we could confirm previous reports that cysteine and hydrogen sulphide are the principal low molecular mass thiols. However, we were unable to detect trypanothione or its precursor N1-glutathionylspermidine [ < 0.01 nmol (10(6) cells)(-1) or < 1.7 microM]. In contrast, Trypanosoma cruzi epimastigotes (grown in a polyamine-supplemented medium) and Leishmania donovani promastigotes contained intracellular concentrations of trypanothione two to three orders of magnitude greater than the limits of detection. Likewise, trypanothione reductase activity was not detectable in E. histolytica [ < 0.003 U (mg protein)(-1)] and therefore at least 100-fold less than trypanosomatids. Moreover, although E. histolytica were found to contain trace amounts of glutathione (approximately 20 microM), glutathione reductase activity was below the limits of detection [ < 0.005 U (mg protein)(-1)]. These findings argue against the existence of trypanothione metabolism in E. histolytica.
Collapse
|
1210
|
O'KELLY CHARLESJ, NERAD THOMASA. Malawimonas jakobiformis n. gen., n. sp. (Malawimonadidae n. fam.): A Jakoba-like Heterotrophic Nanoflagellate with Discoidal Mitochondrial Cristae. J Eukaryot Microbiol 1999. [DOI: 10.1111/j.1550-7408.1999.tb06070.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
1211
|
Jarmuszkiewicz W, Sluse-Goffart CM, Hryniewiecka L, Sluse FE. Identification and characterization of a protozoan uncoupling protein in Acanthamoeba castellanii. J Biol Chem 1999; 274:23198-202. [PMID: 10438491 DOI: 10.1074/jbc.274.33.23198] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An uncoupling protein (UCP) has been identified in mitochondria from Acanthamoeba castellanii, a nonphotosynthetic soil amoeboid protozoon that, in molecular phylogenesis, appears on a branch basal to the divergence points of plants, animals, and fungi. The existence of UCP in A. castellanii (AcUCP) has been revealed using antibodies raised against plant UCP. Its molecular mass (32,000 Da) was similar to those of plant and mammalian UCPs. The activity of AcUCP has been investigated in mitochondria depleted of free fatty acids. Additions of linoleic acid stimulated state 4 respiration and decreased transmembrane electrical potential (DeltaPsi) in a manner expected from fatty acid cycling-linked H(+) reuptake. The half-maximal stimulation by linoleic acid was reached at 8.1 +/- 0.4 microM. Bovine serum albumin (fatty acid-free), which adsorbs linoleic acid, reversed the respiratory stimulation and correspondingly restored DeltaPsi. AcUCP was only weakly inhibited by purine nucleotides like UCP in plants. A single force-flow relationship has been observed for state 4 respiration with increasing concentration of linoleic acid or of an uncoupler and for state 3 respiration with increasing concentration of oligomycin, indicating that linoleic acid has a pure protonophoric effect. The activity of AcUCP in state 3 has been evidenced by ADP/oxygen atom determination. The discovery of AcUCP indicates that UCPs emerged, as specialized proteins for H(+) cycling, early during phylogenesis before the major radiation of phenotypic diversity in eukaryotes and could occur in the whole eukaryotic world.
Collapse
Affiliation(s)
- W Jarmuszkiewicz
- Department of Bioenergetics, Adam Mickiewicz University, Fredry 10, 61-701 Poznan, Poland.
| | | | | | | |
Collapse
|
1212
|
Vellai T, Vida G. The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells. Proc Biol Sci 1999; 266:1571-7. [PMID: 10467746 PMCID: PMC1690172 DOI: 10.1098/rspb.1999.0817] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eukaryotes have long been thought to have arisen by evolving a nucleus, endomembrane, and cytoskeleton. In contrast, it was recently proposed that the first complex cells, which were actually proto-eukaryotes, arose simultaneously with the acquisition of mitochondria. This so-called symbiotic association hypothesis states that eukaryotes emerged when some ancient anaerobic archaebacteria (hosts) engulfed respiring alpha-proteobacteria (symbionts), which evolved into the first energy-producing organelles. Therefore, the intracellular compartmentalization of the energy-converting metabolism that was bound originally to the plasma membrane appears to be the key innovation towards eukaryotic genome and cellular organization. The novel energy metabolism made it possible for the nucleotide synthetic apparatus of cells to be no longer limited by subsaturation with substrates and catalytic components. As a consequence, a considerable increase has occurred in the size and complexity of eukaryotic genomes, providing the genetic basis for most of the further evolutionary changes in cellular complexity. On the other hand, the active uptake of exogenous DNA, which is general in bacteria, was no longer essential in the genome organization of eukaryotes. The mitochondrion-driven scenario for the first eukaryotes explains the chimera-like composition of eukaryotic genomes as well as the metabolic and cellular organization of eukaryotes.
Collapse
Affiliation(s)
- T Vellai
- Institute for Advanced Study, Collegium Budapest, Hungary
| | | |
Collapse
|
1213
|
O'Kelly CJ, Farmer MA, Nerad TA. Ultrastructure of Trimastix pyriformis (Klebs) Bernard et al.: similarities of Trimastix species with retortamonad and jakobid flagellates. Protist 1999; 150:149-62. [PMID: 10505415 DOI: 10.1016/s1434-4610(99)70018-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Trimastix pyriformis (Klebs 1893) Bernard et al. 1999, is a quadriflagellate, free-living, bacterivorous heterotrophic nanoflagellate from anoxic freshwaters that lacks mitochondria. Monoprotist cultures of this species contained naked trophic cells with anterior flagellar insertion and a conspicuous ventral groove. Bacteria were ingested at the posterior end of the ventral groove, but there was no persistent cytopharyngeal complex. The posterior flagellum resided in this groove, and bore two prominent vanes. A Golgi body (dictyosome) was present adjacent to the flagellar insertion. The kinetid consisted of four basal bodies, four microtubular roots, and associated fibers and bands. Duplicated kinetids, each with four basal bodies and microtubular root templates, appeared at the poles of the open mitotic spindle. Trimastix pyriformis is distinguishable from other Trimastix species on the basis of external morphology, kinetid architecture and the distribution of endomembranes. Trimastix species are most similar to jakobid flagellates, especially Malawimonas jakobiformis, and to species of the retortamonad genus Chilomastix. Retortamonads may have evolved from a Trimastix-like ancestor through loss of "canonical" (easily seen with electron microscopy) endomembrane systems and elaboration of cytoskeletal elements associated with the cytostome/cytopharynx complex.
Collapse
Affiliation(s)
- C J O'Kelly
- Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine 04575, USA.
| | | | | |
Collapse
|
1214
|
Brazzolotto X, Gaillard J, Pantopoulos K, Hentze MW, Moulis JM. Human cytoplasmic aconitase (Iron regulatory protein 1) is converted into its [3Fe-4S] form by hydrogen peroxide in vitro but is not activated for iron-responsive element binding. J Biol Chem 1999; 274:21625-30. [PMID: 10419470 DOI: 10.1074/jbc.274.31.21625] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron regulatory protein 1 (IRP1) regulates the synthesis of proteins involved in iron homeostasis by binding to iron-responsive elements (IREs) of messenger RNA. IRP1 is a cytoplasmic aconitase when it contains a [4Fe-4S] cluster and an RNA-binding protein after complete removal of the metal center by an unknown mechanism. Human IRP1, obtained as the pure recombinant [4Fe-4S] form, is an enzyme as efficient toward cis-aconitate as the homologous mitochondrial aconitase. The aconitase activity of IRP1 is rapidly lost by reaction with hydrogen peroxide as the [4Fe-4S] cluster is quantitatively converted into the [3Fe-4S] form with release of a single ferrous ion per molecule. The IRE binding capacity of IRP1 is not elicited with H(2)O(2). Ferrous sulfate (but not other more tightly coordinated ferrous ions, such as the complex with ethylenediamine tetraacetic acid) counteracts the inhibitory action of hydrogen peroxide on cytoplasmic aconitase, probably by replenishing iron at the active site. These results cast doubt on the ability of reactive oxygen species to directly increase IRP1 binding to IRE and support a signaling role for hydrogen peroxide in the posttranscriptional control of proteins involved in iron homeostasis in vivo.
Collapse
Affiliation(s)
- X Brazzolotto
- Département de Biologie Moléculaire et Structurale, Laboratoire Métalloprotéines, Commissariat à l'Energie Atomique, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
1215
|
Abstract
A revolution in chemical pathology occurred about 40 years ago with the discovery of a patient with mitochondrial dysfunction. The field of mitochondrial medicine has experienced explosive growth during the last decade. More than 50 mtDNA mutations and several nuclear gene mutations have been identified in affected patients. The recent development of animal models will continue the revolution in mitochondrial medicine by facilitating in depth studies of the molecular pathogenesis and development of novel drug and gene therapy strategies for mitochondrial dysfunction. As we enter the next millennium, we can expect mitochondrial medicine to remain a dynamic and rapidly developing field.
Collapse
Affiliation(s)
- N G Larsson
- Department of Molecular Medicine, Karolinska Hospital, Stockholm, Sweden.
| | | |
Collapse
|
1216
|
Martin W. A briefly argued case that mitochondria and plastids are descendants of endosymbionts, but that the nuclear compartment is not. Proc Biol Sci 1999. [DOI: 10.1098/rspb.1999.0792] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- William Martin
- Institut für Genetik,Technische Universität Braunschweig, Spielmannstrasse 7, D–38023 Braunschweig, Germany
| |
Collapse
|
1217
|
Abstract
From comparative analyses of the nucleotide sequences of genes encoding ribosomal RNAs and several proteins, molecular phylogeneticists have constructed a "universal tree of life," taking it as the basis for a "natural" hierarchical classification of all living things. Although confidence in some of the tree's early branches has recently been shaken, new approaches could still resolve many methodological uncertainties. More challenging is evidence that most archaeal and bacterial genomes (and the inferred ancestral eukaryotic nuclear genome) contain genes from multiple sources. If "chimerism" or "lateral gene transfer" cannot be dismissed as trivial in extent or limited to special categories of genes, then no hierarchical universal classification can be taken as natural. Molecular phylogeneticists will have failed to find the "true tree," not because their methods are inadequate or because they have chosen the wrong genes, but because the history of life cannot properly be represented as a tree. However, taxonomies based on molecular sequences will remain indispensable, and understanding of the evolutionary process will ultimately be enriched, not impoverished.
Collapse
Affiliation(s)
- W F Doolittle
- Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
| |
Collapse
|