1251
|
Kakimi K, Karasaki T, Matsushita H, Sugie T. Advances in personalized cancer immunotherapy. Breast Cancer 2016; 24:16-24. [PMID: 27000871 DOI: 10.1007/s12282-016-0688-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/03/2016] [Indexed: 01/13/2023]
Abstract
There are currently three major approaches to T cell-based cancer immunotherapy, namely, active vaccination, adoptive cell transfer therapy and immune checkpoint blockade. Recently, this latter approach has demonstrated remarkable clinical benefits, putting cancer immunotherapy under the spotlight. Better understanding of the dynamics of anti-tumor immune responses (the "Cancer-Immunity Cycle") is crucial for the further development of this form of treatment. Tumors employ multiple strategies to escape from anti-tumor immunity, some of which result from the selection of cancer cells with immunosuppressive activity by the process of cancer immunoediting. Apart from this selective process, anti-tumor immune responses can also be inhibited in multiple different ways which vary from patient to patient. This implies that cancer immunotherapy must be personalized to (1) identify the rate-limiting steps in any given patient, (2) identify and combine strategies to overcome these hurdles, and (3) proceed with the next round of the "Cancer-Immunity Cycle". Cancer cells have genetic alterations which can provide the immune system with targets by which to recognize and eradicate the tumor. Mutated proteins expressed exclusively in cancer cells and recognizable by the immune system are known as neoantigens. The development of next-generation sequencing technology has made it possible to determine the genetic landscape of human cancer and facilitated the utilization of genomic information to identify such candidate neoantigens in individual cancers. Future immunotherapies will need to be personalized in terms of the identification of both patient-specific immunosuppressive mechanisms and target neoantigens.
Collapse
Affiliation(s)
- Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Takahiro Karasaki
- Department of Immunotherapeutics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Hirokazu Matsushita
- Department of Immunotherapeutics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Tomoharu Sugie
- Department of Surgery, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
1252
|
Kohrt HE, Tumeh PC, Benson D, Bhardwaj N, Brody J, Formenti S, Fox BA, Galon J, June CH, Kalos M, Kirsch I, Kleen T, Kroemer G, Lanier L, Levy R, Lyerly HK, Maecker H, Marabelle A, Melenhorst J, Miller J, Melero I, Odunsi K, Palucka K, Peoples G, Ribas A, Robins H, Robinson W, Serafini T, Sondel P, Vivier E, Weber J, Wolchok J, Zitvogel L, Disis ML, Cheever MA. Immunodynamics: a cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials. J Immunother Cancer 2016; 4:15. [PMID: 26981245 PMCID: PMC4791805 DOI: 10.1186/s40425-016-0118-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
The efficacy of PD-1/PD-L1 targeted therapies in addition to anti-CTLA-4 solidifies immunotherapy as a modality to add to the anticancer arsenal. Despite raising the bar of clinical efficacy, immunologically targeted agents raise new challenges to conventional drug development paradigms by highlighting the limited relevance of assessing standard pharmacokinetics (PK) and pharmacodynamics (PD). Specifically, systemic and intratumoral immune effects have not consistently correlated with standard relationships between systemic dose, toxicity, and efficacy for cytotoxic therapies. Hence, PK and PD paradigms remain inadequate to guide the selection of doses and schedules, both starting and recommended Phase 2 for immunotherapies. The promise of harnessing the immune response against cancer must also be considered in light of unique and potentially serious toxicities. Refining immune endpoints to better inform clinical trial design represents a high priority challenge. The Cancer Immunotherapy Trials Network investigators review the immunodynamic effects of specific classes of immunotherapeutic agents to focus immune assessment modalities and sites, both systemic and importantly intratumoral, which are critical to the success of the rapidly growing field of immuno-oncology.
Collapse
Affiliation(s)
- Holbrook E Kohrt
- Division of Oncology, Stanford Cancer Institute, Stanford University Medical Center, 269 Campus Drive, CCSR 1105, Stanford, CA 94305-5151 USA
| | - Paul C Tumeh
- Division of Dermatology, Department of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Don Benson
- Division of Hematology/Oncology, Ohio State University, Columbus, OH USA
| | - Nina Bhardwaj
- Medicine, Hematology and Medical Oncology, Mount Sinai Hospital, New York, NY USA
| | - Joshua Brody
- Medicine, Hematology and Medical Oncology, Mount Sinai Hospital, Ruttenberg Treatment Center, New York, NY USA
| | - Silvia Formenti
- Department of Radiation Oncology, New York Weill Cornell Medical Center, New York, NY USA
| | - Bernard A Fox
- SOM-Molecular Microbiology & Immunology Department, Laboratory of Molecular and Tumor Immunology, OHSU Cancer Institute, Portland, OR USA
| | - Jerome Galon
- INSERM, Integrative Cancer Immunology Team, Cordeliers Research Center, Paris, France
| | - Carl H June
- Perelman School of Medicine, University of Pennsylvania, Pathology and Laboratory Medicine, Philadelphia, PA USA
| | - Michael Kalos
- Cancer Immunobiology, Eli Lilly & Company, New York, NY USA
| | - Ilan Kirsch
- Translational Medicine, Adaptive Biotechnologies Corp, Seattle, WA USA
| | - Thomas Kleen
- Immune Monitoring, Epiontis GmbH, Berlin, Germany
| | - Guido Kroemer
- Faculty of Medicine, University of Paris Descartes, Paris, France
| | - Lewis Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, CA USA
| | - Ron Levy
- Division of Oncology, Stanford School of Medicine, Stanford, CA USA
| | - H Kim Lyerly
- Duke University School of Medicine, Durham, NC USA
| | - Holden Maecker
- Human Immune Monitoring Center Shared Resource, Stanford Cancer Institute, Stanford, CA USA
| | | | - Jos Melenhorst
- Product Development and Correlative Sciences, Smilow Center for Translational Research, Philadelphia, PA USA
| | - Jeffrey Miller
- Division of Hematology, Experimental Therapeutics, University of Minnesota, Oncology and Transplantation, Minneapolis, MN USA
| | - Ignacio Melero
- Centro de Investigacion Medica Aplicada, Universidad de Navarra, Avda. Pamplona, Spain
| | - Kunle Odunsi
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY USA
| | | | - George Peoples
- Cancer Vaccine Development Program, Brooke Army Medical Center, Houston, TX USA
| | - Antoni Ribas
- Tumor Immunology Program Area, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA USA
| | | | - William Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA USA
| | | | - Paul Sondel
- Cellular & Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI USA
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | | | - Jedd Wolchok
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY USA
| | - Laurence Zitvogel
- Institut National de la Santé et Recherche Médicale, Institut GrustaveRoussy, Villejuif, France
| | - Mary L Disis
- Tumor Vaccine Group, University of Washington, Seattle, WA USA
| | - Martin A Cheever
- Fred Hutchinson Cancer Research Center, 1100 Eastlake Ave N., E3-300, PO Box 19024, Seattle, WA 98109-1023 USA
| | | |
Collapse
|
1253
|
Abstract
PURPOSE OF REVIEW Natural killer (NK) cells are innate lymphoid cells specialized to eliminate malignant cells via direct cytotoxicity and immunoregulatory cytokine production. As such, NK cells are ideal as cellular therapy for cancer patients, and several studies have provided proof of principle that adoptively transferred NK cells can induce remissions in patients with leukemia. A clear understanding of the mechanisms underlying NK cell antitumor responses, including target cell recognition, activation status, and negative regulatory signals will improve NK cellular therapy for cancer patients. RECENT FINDINGS Clinical studies have demonstrated the safety and preliminary efficacy of NK cell adoptive transfer, especially in hematologic malignancies. Various NK cell sources, isolation techniques, activation approaches, and ex-vivo expansion strategies are under investigation. New approaches have been developed and are being tested to optimize NK cell therapy, including ways to better target NK cells to malignant cells, increase their functional competence, facilitate expansion in patients, and limit inhibitory signals or cells. SUMMARY NK cells represent a promising cellular immunotherapy for the treatment of cancer. In addition to adoptive cellular therapy, adjunct treatments that optimize NK cell targeting and function will enhance their potency and broaden their potential use to many cancer types.
Collapse
|
1254
|
Wang W, Qin DY, Zhang BL, Wei W, Wang YS, Wei YQ. Establishing guidelines for CAR-T cells: challenges and considerations. SCIENCE CHINA-LIFE SCIENCES 2016; 59:333-9. [DOI: 10.1007/s11427-016-5026-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/17/2016] [Indexed: 01/08/2023]
|
1255
|
Hoos A. Development of immuno-oncology drugs - from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov 2016; 15:235-47. [PMID: 26965203 DOI: 10.1038/nrd.2015.35] [Citation(s) in RCA: 460] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the regulatory approval of ipilimumab in 2011, the field of cancer immunotherapy has been experiencing a renaissance. This success is based on progress in both preclinical and clinical science, including the development of new methods of investigation. Immuno-oncology has become a sub-specialty within oncology owing to its unique science and its potential for substantial and long-term clinical benefit. Immunotherapy agents do not directly attack the tumour but instead mobilize the immune system - this can be achieved through various approaches that utilize adaptive or innate immunity. Therefore, immuno-oncology drug development encompasses a broad range of agents, including antibodies, peptides, proteins, small molecules, adjuvants, cytokines, oncolytic viruses, bi-specific molecules and cellular therapies. This Perspective summarizes the recent history of cancer immunotherapy, including the factors that led to its success, provides an overview of novel drug-development considerations, summarizes three generations of immunotherapies that have been developed since 2011 and, thus, illustrates the breadth of opportunities these new generations of immunotherapies represent.
Collapse
Affiliation(s)
- Axel Hoos
- Oncology Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, USA
| |
Collapse
|
1256
|
Ben-Ami E, Schachter J. Adoptive transfer of tumor-infiltrating lymphocytes for melanoma: new players, old game. Immunotherapy 2016; 7:477-9. [PMID: 26065473 DOI: 10.2217/imt.15.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Eytan Ben-Ami
- Ella Lemelbaum Institute for Melanoma, Division of Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Jacob Schachter
- Ella Lemelbaum Institute for Melanoma, Division of Oncology, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
1257
|
Liu Z, Zhou H, Wang W, Fu YX, Zhu M. A novel dendritic cell targeting HPV16 E7 synthetic vaccine in combination with PD-L1 blockade elicits therapeutic antitumor immunity in mice. Oncoimmunology 2016; 5:e1147641. [PMID: 27471615 DOI: 10.1080/2162402x.2016.1147641] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/18/2016] [Accepted: 01/24/2016] [Indexed: 10/22/2022] Open
Abstract
Human papilliomavirus (HPV) oncogene E7, essential for the transformation and maintenance of the malignancy of cervical cancer cells, represents an ideal tumor-specific antigen for vaccine development. However, due to the poor immunogenicity of E7 protein, an effective therapeutic E7 vaccine is still lacking. Dendritic cells (DCs) are probably the most potent antigen presenting cells for the induction of cytotoxic T lymphocyte (CTL) response, which is crucial for tumor control. In this study, we tested whether targeting the E7 antigen to DCs in vivo would elicit therapeutic antitumor CTL response. We generated the DEC205-specific single-chain variable fragment (scFv) and E7 long peptide fusion protein [scFv(DEC205)-E7] based on the novel method of protein assembly we recently developed. This fusion protein vaccine demonstrated highly efficient DC-targeting in vivo and elicited much stronger protective CTL response than non-DC-targeting control vaccine in naive mice. Furthermore, the scFv(DEC205)-E7 vaccine showed significant therapeutic antitumor response in TC-1 tumor bearing mice. Importantly, PD-L1 blockade further improved the therapeutic effect of the scFv(DEC205)-E7 vaccine. Thus, the current study suggests an efficient strategy for cervical cancer immunotherapy by combining the DC(DEC205)-targeting E7 vaccine and PD-L1 blockade.
Collapse
Affiliation(s)
- Zhida Liu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Department of Pathology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Hang Zhou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wenjun Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yang-Xin Fu
- Department of Pathology, University of Texas, Southwestern Medical Center , Dallas, TX, USA
| | - Mingzhao Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences , Beijing, China
| |
Collapse
|
1258
|
Talmadge JE. Natural product derived immune-regulatory agents. Int Immunopharmacol 2016; 37:5-15. [PMID: 26968760 DOI: 10.1016/j.intimp.2016.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Abstract
We can now declare that the clinical goal of immune intervention as a therapeutic strategy for neoplastic, infectious, autoimmune and inflammatory diseases, has been achieved and in many instances obtained regulatory approval. Although, interest in and optimism for this approach has fluctuated, in the last 20years, immunotherapy has progressed from trials with crude microbial mixtures and extracts to the sophisticated use of pure cultured bacterial, synthetized active moieties identified from crude extracts, analogues therefrom and agonists and antagonists identified during screening resulting in reproducible pharmacologically active compounds with multiple mechanisms of action. Our current understanding of the mechanism of action for immunoregulatory agents contributes to the future discovery of improved strategies to use these and future immunotherapies. In this review we have identified and discussed, those drugs that have been approved and or are in clinical development as immunoregulatory agents, emphasizing those derived from or associated with natural product.
Collapse
Affiliation(s)
- James E Talmadge
- University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, United States
| |
Collapse
|
1259
|
Adoptive cellular therapy for chronic lymphocytic leukemia and B cell malignancies. CARs and more. Best Pract Res Clin Haematol 2016; 29:15-29. [DOI: 10.1016/j.beha.2016.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 11/18/2022]
|
1260
|
Heath JR, Ribas A, Mischel PS. Single-cell analysis tools for drug discovery and development. Nat Rev Drug Discov 2016; 15:204-16. [PMID: 26669673 PMCID: PMC4883669 DOI: 10.1038/nrd.2015.16] [Citation(s) in RCA: 348] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genetic, functional or compositional heterogeneity of healthy and diseased tissues presents major challenges in drug discovery and development. Such heterogeneity hinders the design of accurate disease models and can confound the interpretation of biomarker levels and of patient responses to specific therapies. The complex nature of virtually all tissues has motivated the development of tools for single-cell genomic, transcriptomic and multiplex proteomic analyses. Here, we review these tools and assess their advantages and limitations. Emerging applications of single cell analysis tools in drug discovery and development, particularly in the field of oncology, are discussed.
Collapse
Affiliation(s)
- James R Heath
- California Institute of Technology Division of Chemistry and Chemical Engineering, MC 127-72, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - Antoni Ribas
- Department of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research San Diego, Department of Pathology and Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
1261
|
Maeder ML, Gersbach CA. Genome-editing Technologies for Gene and Cell Therapy. Mol Ther 2016; 24:430-46. [PMID: 26755333 PMCID: PMC4786923 DOI: 10.1038/mt.2016.10] [Citation(s) in RCA: 449] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.
Collapse
Affiliation(s)
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
1262
|
Abstract
The discovery of immune inhibitory checkpoints has revolutionized the approach to the systemic treatment of cancer. The programmed death 1 (PD-1) inhibitory checkpoint, in particular, has played a key role in understanding how certain cancers can evade immune surveillance. Blocking the interaction between the PD-1 receptor and its primary ligand (PD-L1) has demonstrated remarkable anti-cancer activity, and has led to the recent accelerated approval of two anti-PD-1 drugs for use in unresectable and metastatic melanoma in the USA. Results of these therapeutic advances have solidified the role of immunotherapy in the treatment of melanoma, results that may be applicable to the treatment of other cancers. In this review, we discuss the role of the PD-1 pathway in the immune system and the anti-cancer mechanism of action of inhibiting the PD-1/PD-L1 interaction. We also review the efficacy and safety data of currently approved and in-development anti-PD-1 agents, and explore the next steps to further improve patient outcomes.
Collapse
|
1263
|
Zhuang X, Wu T, Zhao Y, Hu X, Bao Y, Guo Y, Song Q, Li G, Tan S, Zhang Z. Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2K(b) and H-2D(b)-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma. J Control Release 2016; 228:26-37. [PMID: 26921522 DOI: 10.1016/j.jconrel.2016.02.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 12/21/2022]
Abstract
Nanoimmunotherapy, the application of nanotechnology for sustained and targeted delivery of antigens to dendritic cells (DCs), has attracted much attention in stimulating antigen-specific immune response for antitumor therapy. In order to in situ deliver antigens to DCs for efficient antigen presentation and subsequent induction of strong cytotoxic T lymphocytes (CTL) response, here we developed a multi-peptide (TRP2180-188 and HGP10025-33) and toll-like receptor 4 agonist (monophosphoryl lipid A) codelivery system based on lipid-coated zinc phosphate hybrid nanoparticles (LZnP NPs). This delivery system equips with the chelating property of zinc to realize the high encapsulation efficiency with antigenic peptides and the influence on immune system with adjuvant-like feature. The combination of H-2K(b) and H-2D(b)-restricted peptides could provide multiple epitopes as the target of specific MHC alleles, making tumor more difficult to escape from the surveillance of immune system. The formulated LZnP nano-vaccine with the size of 30nm and outer leaflet lipid exhibited antitumor immunity as the secretion of cytokines in vitro and increased CD8(+) T cell response from IFN-γ ELISPOT analysis ex vivo. The antitumor effects were further evidenced from the prophylactic, therapeutic and metastatic melanoma tumor models compared with free antigens and single peptide-loaded nano-vaccines. These results validate the benefit of LZnP-based vaccine for antitumor immunity and indicate that co-delivery of tumor antigens along with adjuvant may be an optimized strategy for tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gao Li
- Tongji School of Pharmacy, PR China; National Engineering Research Center for Nanomedicine, PR China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan 430030, PR China
| | | | - Zhiping Zhang
- Tongji School of Pharmacy, PR China; National Engineering Research Center for Nanomedicine, PR China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
1264
|
Reversal of epigenetic silencing of MHC class I chain-related protein A and B improves immune recognition of Merkel cell carcinoma. Sci Rep 2016; 6:21678. [PMID: 26902929 PMCID: PMC4763224 DOI: 10.1038/srep21678] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 01/18/2016] [Indexed: 12/26/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a virally associated cancer characterized by its aggressive behavior and strong immunogenicity. Both viral infection and malignant transformation induce expression of MHC class I chain-related protein (MIC) A and B, which signal stress to cells of the immune system via Natural Killer group 2D (NKG2D) resulting in elimination of target cells. However, despite transformation and the continued presence of virally-encoded proteins, MICs are only expressed in a minority of MCC tumors in situ and are completely absent on MCC cell lines in vitro. This lack of MIC expression was due to epigenetic silencing via MIC promoter hypo-acetylation; indeed, MIC expression was re-induced by pharmacological inhibition of histone deacetylases (HDACs) both in vitro and in vivo. This re-induction of MICs rendered MCC cells more sensitive to immune-mediated lysis. Thus, epigenetic silencing of MICs is an important immune escape mechanism of MCCs.
Collapse
|
1265
|
Soria JC, Marabelle A, Brahmer JR, Gettinger S. Immune checkpoint modulation for non-small cell lung cancer. Clin Cancer Res 2016; 21:2256-62. [PMID: 25979932 DOI: 10.1158/1078-0432.ccr-14-2959] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Therapies targeting immune checkpoints have recently shown encouraging activity in patients with heavily pretreated advanced non-small cell lung cancer (NSCLC), independently of NSCLC histology or mutational status, with low toxicity profiles when used as monotherapy. Objective response rates of approximately 20% have been reported in patients with advanced NSCLC treated with antagonist antibodies targeting the immune checkpoint, programmed death 1 (PD-1) on activated T cells, or its primary ligand, programmed death ligand 1 (PD-L1) expressed within the tumor microenvironment. Response rates appear to be higher in patients with tumor PD-L1 expression documented by immunohistochemistry, although responses have been appreciated in patients with reportedly PD-L1-negative tumor specimens. Antibodies directed against cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), another immunosuppressive T-cell signaling molecule, are also being evaluated in clinical trials, with one randomized phase II trial demonstrating improved immune-related progression-free survival in lung cancer patients when added to standard chemotherapy. Additional clinical trials are combining anti-CTLA-4 antibodies with either anti-PD-1 or anti-PD-L1 antibodies. Combinations of other immune checkpoint antagonists or agonist antibodies with anti-PD-1 or anti-PD-L1 antibodies are also being pursued.
Collapse
Affiliation(s)
- Jean-Charles Soria
- Gustave Roussy Cancer Campus, Villejuif, France. INSERM, U981, Villejuif, France. Université Paris Sud-XI, Faculté de Médecine, Le Kremlin Bicêtre, Paris, France.
| | - Aurélien Marabelle
- Gustave Roussy Cancer Campus, Villejuif, France. INSERM, U1015, Villejuif, France
| | - Julie R Brahmer
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Scott Gettinger
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
1266
|
Abstract
The excitement surrounding checkpoint inhibitors in the treatment of patients with cancer exemplifies a triumph of the long-term value of investing in basic science and fundamental questions of T-cell signaling. The pharmaceutical future actively embraces ways of making more patients’ cancers responsive to these inhibitors. Such a process will be aided by elucidation of signaling and regulation. With thousands of articles spread across almost 30 years, this commentary can touch only on portions of the canonical picture of T-cell signaling and provide a few parables from work on mammalian (or mechanistic) target of rapamycin (mTOR) pathways as they link to early and later phases of lymphocyte activation. The piece will turn a critical eye to some issues with models about these pathways in T cells. Many of the best insights lie in the future despite all that is uncovered already, but a contention is that further therapeutic successes will be fostered by dealing with disparities among findings and attention to the temporal, spatial, and stochastic aspects of T-cell responses. Finally, thoughts on some (though not all) items urgently needed for future progress will be mooted.
Collapse
Affiliation(s)
- Mark Boothby
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
1267
|
Mora J, Modak S, Cheung NK, Meyers P, de Alava E, Kushner B, Magnan H, Tirado OM, Laquaglia M, Ladanyi M, Rosai J. Desmoplastic small round cell tumor 20 years after its discovery. Future Oncol 2016; 11:1071-81. [PMID: 25804122 DOI: 10.2217/fon.15.32] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Desmoplastic small round cell tumor (DSRCT) was proposed as a distinct disease entity by William L Gerald and Juan Rosai in 1991. Over 850 patients have been reported in the medical literature. A specific translocation, t(11;22)(p13;q12), is seen in almost all cases, juxtaposing the EWS gene to the WT1 tumor suppressor gene. DSRCT is composed of nests of small round cells with polyphenotypic differentiation, typically a mixture of epithelial, mesenchymal and neural features, surrounded by a prominent desmoplastic stroma. DSRCT has a predilection for adolescent and young adult males, and primarily involves the abdominal cavity and pelvis. Survival is low despite their initial response to multimodal treatment. Most patients relapse with disseminated disease that is unresponsive to further therapy.
Collapse
Affiliation(s)
- Jaume Mora
- Department of Pediatric Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1268
|
Okamoto M, Kobayashi M, Yonemitsu Y, Koido S, Homma S. Dendritic cell-based vaccine for pancreatic cancer in Japan. World J Gastrointest Pharmacol Ther 2016; 7:133-138. [PMID: 26855819 PMCID: PMC4734946 DOI: 10.4292/wjgpt.v7.i1.133] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/28/2015] [Accepted: 11/17/2015] [Indexed: 02/06/2023] Open
Abstract
“Vaccell” is a dendritic cell (DC)-based cancer vaccine which has been established in Japan. The DCs play central roles in deciding the direction of host immune reactions as well as antigen presentation. We have demonstrated that DCs treated with a streptococcal immune adjuvant OK-432, produce interleukin-12, induce Th1-dominant state, and elicit anti-tumor effects, more powerful than those treated with the known DC-maturating factors. We therefore decided to mature DCs by the OK-432 for making an effective DC vaccine, Vaccell. The 255 patients with inoperable pancreatic cancer who received standard chemotherapy combined with DC vaccines, were analyzed retrospectively. Survival time of the patients with positive delayed type hypersensitivity (DTH) skin reaction was significantly prolonged as compared with that of the patients with negative DTH. The findings strongly suggest that there may be “Responders” for the DC vaccine in advanced pancreatic cancer patients. We next conducted a small-scale prospective clinical study. In this trial, we pulsed HLA class II-restricted WT1 peptide (WT1-II) in addition to HLA class I-restricted peptide (WT1-I) into the DCs. Survival of the patients received WT1-I and -II pulsed DC vaccine was significantly extended as compared to that of the patients received DCs pulsed with WT1-I or WT1-II alone. Furthermore, WT1-specific DTH positive patients showed significantly improved the overall survival as well as progression-free survival as compared to the DTH negative patients. The activation of antigen-specific immune responses by DC vaccine in combination with standard chemotherapy may be associated with a good clinical outcome in advanced pancreatic cancer. We are now planning a pivotal study of the Vaccell in appropriate protocols in Japan.
Collapse
|
1269
|
Tsukagoshi M, Wada S, Yokobori T, Altan B, Ishii N, Watanabe A, Kubo N, Saito F, Araki K, Suzuki H, Hosouchi Y, Kuwano H. Overexpression of natural killer group 2 member D ligands predicts favorable prognosis in cholangiocarcinoma. Cancer Sci 2016; 107:116-22. [PMID: 26608587 PMCID: PMC4768394 DOI: 10.1111/cas.12853] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 12/17/2022] Open
Abstract
The natural killer group 2 member D (NKG2D) receptor and its ligands are important mediators of immune responses to tumors. NKG2D ligands are overexpressed in several malignant tumor types; however, the prognostic value of these ligands is unclear. Here, we aimed to elucidate the role of NKG2D ligands in extrahepatic cholangiocarcinoma (EHCC). We therefore investigated the expression of the NKG2D receptor and its ligands MHC class I chain-related proteins A and B (MICA/B), unique long 16 binding protein (ULBP) 1, and ULBP2/5/6 in resected specimens from 82 patients with EHCC. All NKG2D ligands were highly expressed in EHCC. High expression of MICA/B or ULBP2/5/6 correlated with overall and disease-free survival. In contrast, high expression of ULBP1 was significantly associated with improved overall survival, but not disease-free survival. Concurrent high expression of multiple NKG2D ligands revealed significantly better overall and disease-free survival than that observed with the overexpression of any one NKG2D ligand. Co-expression of multiple NKG2D ligands was an independent prognostic indicator of improved survival. Furthermore, co-overexpression of multiple NKG2D ligands was significantly correlated with high expression of the NKG2D receptor. Inhibiting interactions between multiple NKG2D ligands and the NKG2D receptor might be a promising approach for controlling cancer progression and improving patient prognosis in EHCC.
Collapse
Affiliation(s)
- Mariko Tsukagoshi
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| | - Satoshi Wada
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
- Department of Cancer ImmunotherapyKanagawa Cancer CenterYokohamaJapan
| | - Takehiko Yokobori
- Department of Molecular Pharmacology and OncologyGunma University Graduate School of MedicineMaebashiJapan
| | - Bolag Altan
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| | - Norihiro Ishii
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| | - Akira Watanabe
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| | - Norio Kubo
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| | - Fumiyoshi Saito
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| | - Kenichiro Araki
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| | - Hideki Suzuki
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| | - Yasuo Hosouchi
- Department of Surgery and Laparoscopic SurgeryGunma Prefecture Saiseikai‐Maebashi HospitalMaebashiJapan
| | - Hiroyuki Kuwano
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| |
Collapse
|
1270
|
Poleszczuk JT, Luddy KA, Prokopiou S, Robertson-Tessi M, Moros EG, Fishman M, Djeu JY, Finkelstein SE, Enderling H. Abscopal Benefits of Localized Radiotherapy Depend on Activated T-cell Trafficking and Distribution between Metastatic Lesions. Cancer Res 2016; 76:1009-18. [PMID: 26833128 DOI: 10.1158/0008-5472.can-15-1423] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/03/2015] [Indexed: 11/16/2022]
Abstract
It remains unclear how localized radiotherapy for cancer metastases can occasionally elicit a systemic antitumor effect, known as the abscopal effect, but historically, it has been speculated to reflect the generation of a host immunotherapeutic response. The ability to purposefully and reliably induce abscopal effects in metastatic tumors could meet many unmet clinical needs. Here, we describe a mathematical model that incorporates physiologic information about T-cell trafficking to estimate the distribution of focal therapy-activated T cells between metastatic lesions. We integrated a dynamic model of tumor-immune interactions with systemic T-cell trafficking patterns to simulate the development of metastases. In virtual case studies, we found that the dissemination of activated T cells among multiple metastatic sites is complex and not intuitively predictable. Furthermore, we show that not all metastatic sites participate in systemic immune surveillance equally, and therefore the success in triggering the abscopal effect depends, at least in part, on which metastatic site is selected for localized therapy. Moreover, simulations revealed that seeding new metastatic sites may accelerate the growth of the primary tumor, because T-cell responses are partially diverted to the developing metastases, but the removal of the primary tumor can also favor the rapid growth of preexisting metastatic lesions. Collectively, our work provides the framework to prospectively identify anatomically defined focal therapy targets that are most likely to trigger an immune-mediated abscopal response and therefore may inform personalized treatment strategies in patients with metastatic disease.
Collapse
Affiliation(s)
- Jan T Poleszczuk
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Kimberly A Luddy
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Sotiris Prokopiou
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mark Robertson-Tessi
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eduardo G Moros
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mayer Fishman
- Department of GU Oncology MMG, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Julie Y Djeu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
1271
|
Exploiting IL-17-producing CD4+ and CD8+ T cells to improve cancer immunotherapy in the clinic. Cancer Immunol Immunother 2016; 65:247-59. [PMID: 26825102 DOI: 10.1007/s00262-016-1797-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/12/2016] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy is one the most effective approaches for treating patients with tumors, as it bolsters the generation and persistence of memory T cells. In preclinical work, it has been reported that adoptively transferred CD4+ and CD8+ lymphocytes that secrete IL-17A (i.e., Th17 and Tc17 cells) regress tumors to a greater extent than IFN-γ(+)Th1 or Tc1 cells in vivo. Herein, we review the mechanisms underlying how infused Th17 and Tc17 cells regress established malignancies in clinically relevant mouse models of cancer. We also discuss how unique signaling cues--such as co-stimulatory molecules (ICOS and 41BB), cytokines (IL-12 and IL-23) or pharmaceutical reagents (Akt inhibitors, etc.)--can be exploited to bolster the therapeutic potential of IL-17(+) lymphocytes with an emphasis on using this knowledge to improve next-generation clinical trials for patients with cancer.
Collapse
|
1272
|
Suzuki S, Ishida T, Yoshikawa K, Ueda R. Current status of immunotherapy. Jpn J Clin Oncol 2016; 46:191-203. [PMID: 26819277 DOI: 10.1093/jjco/hyv201] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/12/2015] [Indexed: 02/07/2023] Open
Abstract
The successful use of immune checkpoint inhibitors has been big breakthrough in the development of cancer immunotherapy. Anti-CTLA-4 monoclonal antibody, ipilimumab, is the first-approved immune checkpoint inhibitor and has shown durable objective responses for advanced melanoma beyond the effect of dacarbazine. Anti-PD-1 monoclonal antibodies, nivolumab and pembrolizumab, are other immune checkpoint inhibitors that have demonstrated more effective results than conventional drugs in clinical trials for a variety of advanced solid tumors including melanoma, non-small cell lung carcinoma and renal carcinoma. These studies have indicated that the enhancement of anti-cancer immunity by controlling the immune suppressive environment in cancer tissues is an important issue for the development of cancer immune-therapy. Accordingly, in recent years, the enthusiasm for research of cancer immunology has shifted to studies regarding the formation of the immune suppressive environment, immune suppression mechanisms in cancer tissues and the molecules and cells involved in these pathways. Novel findings from these studies might lead to the development of cancer immunotherapy based on control of the immune suppressive environment.
Collapse
Affiliation(s)
- Susumu Suzuki
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute
| | - Takashi Ishida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya
| | - Kazuhiro Yoshikawa
- Center for Advanced Medical Research, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute
| |
Collapse
|
1273
|
Hernandez-Alcoceba R, Poutou J, Ballesteros-Briones MC, Smerdou C. Gene therapy approaches against cancer using in vivo and ex vivo gene transfer of interleukin-12. Immunotherapy 2016; 8:179-98. [PMID: 26786809 DOI: 10.2217/imt.15.109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IL-12 is an immunostimulatory cytokine with strong antitumor properties. Systemic administration of IL-12 in cancer patients led to severe toxic effects, prompting the development of gene therapy vectors able to express this cytokine locally in tumors. Both nonviral and viral vectors have demonstrated a high antitumor efficacy in preclinical tumor models. Some of these vectors, including DNA electroporation, adenovirus and ex vivo transduced dendritic cells, were tested in patients, showing low toxicity and moderate antitumor efficacy. IL-12 activity can be potentiated by molecules with immunostimulatory, antiangiogenic or cytotoxic activity. These combination therapies are of clinical interest because they could lower the threshold for IL-12 efficacy, increasing the therapeutic potential of gene therapy and preventing the toxicity mediated by this cytokine.
Collapse
Affiliation(s)
- Ruben Hernandez-Alcoceba
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - Joanna Poutou
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - María Cristina Ballesteros-Briones
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - Cristian Smerdou
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| |
Collapse
|
1274
|
Sholl LM, Aisner DL, Allen TC, Beasley MB, Borczuk AC, Cagle PT, Capelozzi V, Dacic S, Hariri L, Kerr KM, Lantuejoul S, Mino-Kenudson M, Raparia K, Rekhtman N, Roy-Chowdhuri S, Thunnissen E, Tsao MS, Yatabe Y. Programmed Death Ligand-1 Immunohistochemistry— A New Challenge for Pathologists: A Perspective From Members of the Pulmonary Pathology Society. Arch Pathol Lab Med 2016; 140:341-4. [DOI: 10.5858/arpa.2015-0506-sa] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The binding of programmed death ligand-1 and ligand-2 (PD-L1 and PD-L2) to PD-1 blocks T-cell–mediated immune response to tumor. Antibodies that target programmed death receptor-1 (PD-1) will block the ligand-receptor interface, thereby allowing T cells to attack the tumor and increase antitumor immune response. In clinical trials, PD-1 inhibitors have been associated with an approximately 20% overall response rate in unselected patients with non–small cell lung cancer, with sustained tumor response in a subset of patients treated by these immune checkpoint inhibitors. Facing a proliferation of PD-L1 immunohistochemistry clones, staining platforms, and scoring criteria, the pathologist must decide on the feasibility of introducing a newly approved companion diagnostic assay that may require purchase not only of a specific antibody kit but of a particular staining platform. Given the likely reality that clinical practice may, in the near future, demand access to 4 different PD-L1 antibodies coupled with different immunohistochemistry platforms, laboratories will be challenged with deciding among this variety of testing methods, each with its own potential benefits. Another immediate challenge to PD-L1 testing in lung cancer patients is that of access to adequate tumor tissue, given that non–small cell lung cancer samples are often extremely limited in size. With PD-L1 testing it has become clear that the historically used US regulatory approach of one assay–one drug will not be sustainable. One evolving concept is that of complementary diagnostics, a novel regulatory pathway initiated by the US Food and Drug Administration, which is distinct from companion diagnostics in that it may present additional flexibility. Although pathologists need to face the practical reality that oncologists will be asking regularly for the PD-L1 immunohistochemistry status of their patients' tumors, we should also keep in mind that there may be room for improvement of biomarkers for immunotherapy response. The field is rich with opportunities for investigation into biomarkers of immunotherapy response, particularly in the form of collaborative, multidisciplinary studies that incorporate oncologists, pathologists, and basic scientists. Pathologists must take the lead in the rational incorporation of these biomarkers into clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yasushi Yatabe
- From the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (Dr Sholl)
- the Department of Pathology, University of Colorado Cancer Center, Denver (Dr Aisner)
- the Department of Pathology, The University of Texas Medical Branch, Galveston (Dr Allen)
- the Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York (Dr Beasley)
- the Department of Pathology, Weill Cornell Medical College, New York, New York (Drs Borczuk and Cagle)
| | | |
Collapse
|
1275
|
Haque M, Song J, Fino K, Sandhu P, Wang Y, Ni B, Fang D, Song J. Melanoma Immunotherapy in Mice Using Genetically Engineered Pluripotent Stem Cells. Cell Transplant 2016; 25:811-27. [PMID: 26777320 DOI: 10.3727/096368916x690467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adoptive cell transfer (ACT) of antigen (Ag)-specific CD8(+) cytotoxic T lymphocytes (CTLs) is a highly promising treatment for a variety of diseases. Naive or central memory T-cell-derived effector CTLs are optimal populations for ACT-based immunotherapy because these cells have a high proliferative potential, are less prone to apoptosis than terminally differentiated cells, and have the higher ability to respond to homeostatic cytokines. However, such ACT with T-cell persistence is often not feasible due to difficulties in obtaining sufficient cells from patients. Here we present that in vitro differentiated HSCs of engineered PSCs can develop in vivo into tumor Ag-specific naive CTLs, which efficiently suppress melanoma growth. Mouse-induced PSCs (iPSCs) were retrovirally transduced with a construct encoding chicken ovalbumin (OVA)-specific T-cell receptors (TCRs) and survival-related proteins (i.e., BCL-xL and survivin). The gene-transduced iPSCs were cultured on the delta-like ligand 1-expressing OP9 (OP9-DL1) murine stromal cells in the presence of murine recombinant cytokines (rFlt3L and rIL-7) for a week. These iPSC-derived cells were then intravenously adoptively transferred into recipient mice, followed by intraperitoneal injection with an agonist α-Notch 2 antibody and cytokines (rFlt3L and rIL-7). Two weeks later, naive OVA-specific CD8(+) T cells were observed in the mouse peripheral lymphatic system, which were responsive to OVA-specific stimulation. Moreover, the mice were resistant to the challenge of B16-OVA melanoma induction. These results indicate that genetically modified stem cells may be used for ACT-based immunotherapy or serve as potential vaccines.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
1276
|
Themeli M, Rivière I, Sadelain M. New cell sources for T cell engineering and adoptive immunotherapy. Cell Stem Cell 2016; 16:357-66. [PMID: 25842976 DOI: 10.1016/j.stem.2015.03.011] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The promising clinical results obtained with engineered T cells, including chimeric antigen receptor (CAR) therapy, call for further advancements to facilitate and broaden their applicability. One potentially beneficial innovation is to exploit new T cell sources that reduce the need for autologous cell manufacturing and enable cell transfer across histocompatibility barriers. Here we review emerging T cell engineering approaches that utilize alternative T cell sources, which include virus-specific or T cell receptor-less allogeneic T cells, expanded lymphoid progenitors, and induced pluripotent stem cell (iPSC)-derived T lymphocytes. The latter offer the prospect for true off-the-shelf, genetically enhanced, histocompatible cell therapy products.
Collapse
Affiliation(s)
- Maria Themeli
- The Center for Cell Engineering, Immunology and Molecular Pharmacology and Chemistry Programs, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Isabelle Rivière
- The Center for Cell Engineering, Immunology and Molecular Pharmacology and Chemistry Programs, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michel Sadelain
- The Center for Cell Engineering, Immunology and Molecular Pharmacology and Chemistry Programs, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
1277
|
Sharabi AB, Lim M, DeWeese TL, Drake CG. Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy. Lancet Oncol 2016; 16:e498-509. [PMID: 26433823 DOI: 10.1016/s1470-2045(15)00007-8] [Citation(s) in RCA: 644] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/11/2022]
Abstract
Checkpoint blockade immunotherapy has received mainstream attention as a result of striking and durable clinical responses in some patients with metastatic disease and a reasonable response rate in many tumour types. The activity of checkpoint blockade immunotherapy is not restricted to melanoma or lung cancer, and additional indications are expected in the future, with responses already reported in renal cancer, bladder cancer, and Hodgkin's lymphoma among many others. Additionally, the interactions between radiation and the immune system have been investigated, with several studies describing the synergistic effects on local and distant tumour control when radiation therapy is combined with immunotherapy. Clinical enthusiasm for this approach is strengthened by the many ongoing trials combining immunotherapy with definitive and palliative radiation. Herein, we discuss the biological and mechanistic rationale behind combining radiation with checkpoint blockade immunotherapy, with a focus on the preclinical data supporting this potentially synergistic combination. We explore potential hypotheses and important considerations for clinical trial designs. Finally, we reintroduce the notion of radiosensitising immunotherapy, akin to radiosensitising chemotherapy, as a potential definitive therapeutic modality.
Collapse
Affiliation(s)
- Andrew B Sharabi
- University of California, San Diego, Department of Radiation Medicine and Applied Sciences, La Jolla, CA, USA; Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| | - Michael Lim
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Theodore L DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles G Drake
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
1278
|
Lee CH, Yu CC, Wang BY, Chang WW. Tumorsphere as an effective in vitro platform for screening anti-cancer stem cell drugs. Oncotarget 2016; 7:1215-26. [PMID: 26527320 PMCID: PMC4811455 DOI: 10.18632/oncotarget.6261] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are a sub-population of cells within cancer tissues with tumor initiation, drug resistance and metastasis properties. CSCs also have been considered as the main cause of cancer recurrence. Targeting CSCs have been suggested as the key for successful treatment against cancer. Tumorsphere cultivation is based on culturing cancer cells onto ultralow attachment surface in serum-free media under the supplementation with growth factors such as epidermal growth factor and basic fibroblast growth factor. Tumorsphere cultivation is widely used to analyze the self-renewal capability of CSCs and to enrich these cells from bulk cancer cells. This method also provides a reliable platform for screening potential anti-CSC agents. The in vitro anti-proliferation activity of potential agents selected from tumorsphere assay is more translatable into in vivo anti-tumorigenic activity compared with general monolayer culture. Tumorsphere assay can also measure the outcome of clinical trials for potential anti-cancer agents. In addition, tumorsphere assay may be a promising strategy in the innovation of future cancer therapeutica and may help in the screening of anti-cancer small-molecule chemicals.
Collapse
Affiliation(s)
- Che-Hsin Lee
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung City, Taiwan
- Department of Microbiology, School of Medicine, China Medical University, Taichung City, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung City, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung City, Taiwan
| | - Bing-Yen Wang
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- Division of Thoracic Surgery, Department of Surgery, ChangHua Christian Hospital, ChangHua County, Taiwan
- School of Medicine, National Yang-Ming University, Taipei City, Taiwan
| | - Wen-Wei Chang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
1279
|
Kan A, Pavlyshyn D, Markham JF, Dowling MR, Heinzel S, Zhou JHS, Marchingo JM, Hodgkin PD. Stochastic Measurement Models for Quantifying Lymphocyte Responses Using Flow Cytometry. PLoS One 2016; 11:e0146227. [PMID: 26742110 PMCID: PMC4704825 DOI: 10.1371/journal.pone.0146227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/09/2015] [Indexed: 01/22/2023] Open
Abstract
Adaptive immune responses are complex dynamic processes whereby B and T cells undergo division and differentiation triggered by pathogenic stimuli. Deregulation of the response can lead to severe consequences for the host organism ranging from immune deficiencies to autoimmunity. Tracking cell division and differentiation by flow cytometry using fluorescent probes is a major method for measuring progression of lymphocyte responses, both in vitro and in vivo. In turn, mathematical modeling of cell numbers derived from such measurements has led to significant biological discoveries, and plays an increasingly important role in lymphocyte research. Fitting an appropriate parameterized model to such data is the goal of these studies but significant challenges are presented by the variability in measurements. This variation results from the sum of experimental noise and intrinsic probabilistic differences in cells and is difficult to characterize analytically. Current model fitting methods adopt different simplifying assumptions to describe the distribution of such measurements and these assumptions have not been tested directly. To help inform the choice and application of appropriate methods of model fitting to such data we studied the errors associated with flow cytometry measurements from a wide variety of experiments. We found that the mean and variance of the noise were related by a power law with an exponent between 1.3 and 1.8 for different datasets. This violated the assumptions inherent to commonly used least squares, linear variance scaling and log-transformation based methods. As a result of these findings we propose a new measurement model that we justify both theoretically, from the maximum entropy standpoint, and empirically using collected data. Our evaluation suggests that the new model can be reliably used for model fitting across a variety of conditions. Our work provides a foundation for modeling measurements in flow cytometry experiments thus facilitating progress in quantitative studies of lymphocyte responses.
Collapse
Affiliation(s)
- Andrey Kan
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Damian Pavlyshyn
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - John F. Markham
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Mark R. Dowling
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Susanne Heinzel
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jie H. S. Zhou
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Julia M. Marchingo
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Philip D. Hodgkin
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- * E-mail:
| |
Collapse
|
1280
|
Wang YG, Huang PP, Zhang R, Ma BY, Zhou XM, Sun YF. Targeting adeno-associated virus and adenoviral gene therapy for hepatocellular carcinoma. World J Gastroenterol 2016; 22:326-337. [PMID: 26755879 PMCID: PMC4698495 DOI: 10.3748/wjg.v22.i1.326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/14/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Human hepatocellular carcinoma (HCC) heavily endangers human heath worldwide. HCC is one of most frequent cancers in China because patients with liver disease, such as chronic hepatitis, have the highest cancer susceptibility. Traditional therapeutic approaches have limited efficacy in advanced liver cancer, and novel strategies are urgently needed to improve the limited treatment options for HCC. This review summarizes the basic knowledge, current advances, and future challenges and prospects of adeno-associated virus (AAV) and adenoviruses as vectors for gene therapy of HCC. This paper also reviews the clinical trials of gene therapy using adenovirus vectors, immunotherapy, toxicity and immunological barriers for AAV and adenoviruses, and proposes several alternative strategies to overcome the therapeutic barriers to using AAV and adenoviruses as vectors.
Collapse
|
1281
|
Abstract
Recent exciting progress in cancer immunotherapy has ushered in a new era of cancer treatment. Immunotherapy can elicit unprecedented durable responses in advanced cancer patients that are much greater than conventional chemotherapy. However, such responses only occur in a relatively small fraction of patients. A positive response to immunotherapy usually relies on dynamic interactions between tumor cells and immunomodulators inside the tumor microenvironment (TME). Depending on the context of these interactions, the TME may play important roles to either dampen or enhance immune responses. Understanding the interactions between immunotherapy and the TME is not only critical to dissect the mechanisms of action but also important to provide new approaches in improving the efficiency of current immunotherapies. In this review, we will highlight recent work on how the TME can influence the efficacy of immunotherapy as well as how manipulating the TME can improve current immunotherapy regimens in some cases.
Collapse
Affiliation(s)
- Haidong Tang
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Jian Qiao
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Yang-Xin Fu
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
1282
|
Matić S, Quaglino E, Arata L, Riccardo F, Pegoraro M, Vallino M, Cavallo F, Noris E. The rat ErbB2 tyrosine kinase receptor produced in plants is immunogenic in mice and confers protective immunity against ErbB2(+) mammary cancer. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:153-9. [PMID: 25865255 PMCID: PMC11388968 DOI: 10.1111/pbi.12367] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
The rat ErbB2 (rErbB2) protein is a 185-kDa glycoprotein belonging to the epidermal growth factor-related proteins (ErbB) of receptor tyrosine kinases. Overexpression and mutations of ErbB proteins lead to several malignancies including breast, lung, pancreatic, bladder and ovary carcinomas. ErbB2 is immunogenic and is an ideal candidate for cancer immunotherapy. We investigated the possibility of expressing the extracellular (EC) domain of rErbB2 (653 amino acids, aa) in Nicotiana benthamiana plants, testing the influence of the 23 aa transmembrane (TM) sequence on protein accumulation. Synthetic variants of the rErbB2 gene portion encoding the EC domain, optimized with a human codon usage and either linked to the full TM domain (rErbB2_TM, 676 aa), to a portion of it (rErbB2-pTM, 662 aa), or deprived of it (rErbB2_noTM, 653 aa) were cloned in the pEAQ-HT expression vector as 6X His tag fusions. All rErbB2 variants (72-74.5 kDa) were transiently expressed, but the TM was detrimental for rErbB2 EC accumulation. rERbB2_noTM was the most expressed protein; it was solubilized and purified with Nickel affinity resin. When crude soluble extracts expressing rErbB2_noTM were administered to BALB/c mice, specific rErbB2 immune responses were triggered. A potent antitumour activity was induced when vaccinated mice were challenged with syngeneic transplantable ErbB2(+) mammary carcinoma cells. To our knowledge, this is the first report of expression of rErbB2 in plants and of its efficacy in inducing a protective antitumour immune response, opening interesting perspectives for further immunological testing.
Collapse
Affiliation(s)
- Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Lucia Arata
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Mattia Pegoraro
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| |
Collapse
|
1283
|
Abstract
Antibody-based immunotherapy has become a standard treatment for a variety of cancers. Many well-developed antibodies disrupt signaling of various growth factor receptors for the treatment of a number of cancers by targeting surface antigens expressed on tumor cells. In recent years, a new family of antibodies is currently emerging in the clinic, which target immune cells rather than cancer cells. These immune-targeted therapies strive to augment antitumor immune responses by antagonizing immunosuppressive pathways or providing exogenous immune-activating stimuli, which have achieved dramatic results in several cancers. The future of cancer therapies is likely to combine these approaches with other treatments, including conventional therapies, to generate more effective treatments.
Collapse
Affiliation(s)
- Shengdian Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Datun Road #15, Chaoyang District, 100101, Beijing, China.
| | - Mingming Jia
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Datun Road #15, Chaoyang District, 100101, Beijing, China
| |
Collapse
|
1284
|
Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer 2016; 52:50-66. [DOI: 10.1016/j.ejca.2015.08.021] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/22/2015] [Indexed: 02/08/2023]
|
1285
|
Lievense L, Aerts J, Hegmans J. Immune Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 893:59-90. [PMID: 26667339 DOI: 10.1007/978-3-319-24223-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lung cancer has long been considered an unsuitable target for immunotherapy due to its proposed immunoresistant properties. However, recent evidence has shown that anti-tumor immune responses can occur in lung cancer patients, paving the way for lung cancer as a novel target for immunotherapy. In order to take full advantage of the potential of immunotherapy, research is focusing on the presence and function of various immunological cell types in the tumor microenvironment. Immune cells which facilitate or inhibit antitumor responses have been identified and their prognostic value in lung cancer has been established. Knowledge regarding these pro- and anti-tumor immune cells and their mechanisms of action has facilitated the identification of numerous potential immunotherapeutic strategies and opportunities for intervention. A plethora of immunotherapeutic approaches is currently being developed and studied in lung cancer patients and phase 3 clinical trials are ongoing. Many different immunotherapies have shown promising clinical effects in patients with limited and advanced stage lung cancer, however, future years will have to tell whether immunotherapy will earn its place in the standard treatment of lung cancer.
Collapse
Affiliation(s)
- Lysanne Lievense
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Dr. Molewaterplein 50, Rotterdam, 3015 GD, The Netherlands
| | - Joachim Aerts
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Dr. Molewaterplein 50, Rotterdam, 3015 GD, The Netherlands
| | - Joost Hegmans
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Dr. Molewaterplein 50, Rotterdam, 3015 GD, The Netherlands.
| |
Collapse
|
1286
|
Berwick M, Buller DB, Cust A, Gallagher R, Lee TK, Meyskens F, Pandey S, Thomas NE, Veierød MB, Ward S. Melanoma Epidemiology and Prevention. Cancer Treat Res 2016; 167:17-49. [PMID: 26601858 DOI: 10.1007/978-3-319-22539-5_2] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The epidemiology of melanoma is complex, and individual risk depends on sun exposure, host factors, and genetic factors, and in their interactions as well. Sun exposure can be classified as intermittent, chronic, or cumulative (overall) exposure, and each appears to have a different effect on type of melanoma. Other environmental factors, such as chemical exposures-either through occupation, atmosphere, or food-may increase risk for melanoma, and this area warrants further study. Host factors that are well known to be important are the numbers and types of nevi and the skin phenotype. Genetic factors are classified as high-penetrant genes, moderate-risk genes, or low-risk genetic polymorphisms. Subtypes of tumors, such as BRAF-mutated tumors, have different risk factors as well as different therapies. Prevention of melanoma has been attempted using various strategies in specific subpopulations, but to date optimal interventions to reduce incidence have not emerged.
Collapse
Affiliation(s)
- Marianne Berwick
- Department of Internal Medicine, University of New Mexico, MSC10-5550, Albuquerque, NM, 87131-0001, USA.
| | - David B Buller
- Klein Buendel, Inc., 1667 Cole Boulevard, Suite 225, Golden, CO, 80401, USA.
| | - Anne Cust
- Sydney School of Public Health, Sydney Medical School, University of Sydney, Level 6, 119-143 Missenden Road, Camperdown, NSW, 2050, Australia.
| | - Richard Gallagher
- Cancer Control Research Program, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Tim K Lee
- Cancer Control Research Program, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Frank Meyskens
- Public Health and Epidemiology, University of California, Irvine, USA.
| | - Shaily Pandey
- Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Nancy E Thomas
- University of North Carolina, 413 Mary Ellen Jones Bldg. CB#7287, Chapel Hill, NC, 275992, USA.
| | - Marit B Veierød
- Department of Biostatistics, Institute of Basic Medical Sciences, P.O. Box 1122 Blindern, 0317, Oslo, Norway.
| | - Sarah Ward
- Centre for Genetic Origins of Health and Disease (GOHaD), The University of Western Australia, M409, 35 Stirling Hwy, Crawley, WA, 6009, Australia.
| |
Collapse
|
1287
|
Case AJ, Zimmerman MC. Sympathetic-mediated activation versus suppression of the immune system: consequences for hypertension. J Physiol 2015; 594:527-36. [PMID: 26830047 DOI: 10.1113/jp271516] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023] Open
Abstract
It is generally well-accepted that the immune system is a significant contributor in the pathogenesis of hypertension. Specifically, activated and pro-inflammatory T-lymphocytes located primarily in the vasculature and kidneys appear to have a causal role in exacerbating elevated blood pressure. It has been proposed that increased sympathetic nerve activity and noradrenaline outflow associated with hypertension may be primary contributors to the initial activation of the immune system early in the disease progression. However, it has been repeatedly demonstrated in many different human and experimental diseases that sympathoexcitation is immunosuppressive in nature. Moreover, human hypertensive patients have demonstrated increased susceptibility to secondary immune insults like infections. Thus, it is plausible, and perhaps even likely, that in diseases like hypertension, specific immune cells are activated by increased noradrenaline, while others are in fact suppressed. We propose a model in which this differential regulation is based upon activation status of the immune cell as well as the resident organ. With this, the concept of global immunosuppression is obfuscated as a viable target for hypertension treatment, and we put forth the concept of focused organ-specific immunotherapy as an alternative option.
Collapse
Affiliation(s)
- Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, NE, USA
| |
Collapse
|
1288
|
Tang J, Chen Z, Sun B, Dong J, Liu J, Zhou H, Wang L, Bai R, Miao Q, Zhao Y, Chen C, Liu Y. Polyhydroxylated fullerenols regulate macrophage for cancer adoptive immunotherapy and greatly inhibit the tumor metastasis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:945-954. [PMID: 26733256 DOI: 10.1016/j.nano.2015.11.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 12/26/2022]
Abstract
UNLABELLED Adoptive immunotherapy is a highly effective approach for cancer treatment. Several potential adoptive immunotherapies have high (though reversible) toxicities with disappointing results. Polyhydroxylated fullerenols have been demonstrated as promising antitumor drugs with low toxicities. In this study, we investigate whether polyhydroxylated fullerenols (C60(OH)22 and Gd@C82(OH)22) contribute to cancer immunotherapy by regulating macrophages. Our results show that fullerenols treatment enhances mitochondrial metabolism, phagocytosis and cytokine secretion. Moreover, activated macrophages inhibit the growth of several cancer cell types. It is likely that this inhibition is dependent on an NF-κB-mediated release of multiple cytokines. Using a lung metastasis model, we also show that autologous macrophages greatly suppress cancer cell metastasis to lung when they are activated by C60(OH)22 and Gd@C82(OH)22. More importantly, Gd@C82(OH)22 are shown to have stronger ability than C60(OH)22 to improve the macrophage function, which shed light on the rational design for nanomedicine and clinical application. FROM THE CLINICAL EDITOR The interest in the use of immunotherapy in cancer has rekindled recently. However, many approaches have shown disappointing results. In this study, the authors investigated the effects of polyhydroxylated fullerenol nanoparticles on regulating macrophages for immunotherapy. These positive findings may point a novel way to cancer treatment.
Collapse
Affiliation(s)
- Jinglong Tang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China; Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhiyun Chen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Baoyun Sun
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jinquan Dong
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jing Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Huige Zhou
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Liming Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ru Bai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Qing Miao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China; Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Chunying Chen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ying Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China.
| |
Collapse
|
1289
|
Aguiar-Ricardo A, Bonifácio VDB, Casimiro T, Correia VG. Supercritical carbon dioxide design strategies: from drug carriers to soft killers. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2015.0009. [PMID: 26574528 DOI: 10.1098/rsta.2015.0009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/17/2015] [Indexed: 06/05/2023]
Abstract
The integrated use of supercritical carbon dioxide (scCO(2)) and micro- and nanotechnologies has enabled new sustainable strategies for the manufacturing of new medications. 'Green' scCO(2)-based methodologies are well suited to improve either the synthesis or materials processing leading to the assembly of three-dimensional multifunctional constructs. By using scCO(2) either as C1 feedstock or as solvent, simple, economic, efficient and clean routes can be designed to synthesize materials with unique properties such as polyurea dendrimers and oxazoline-based polymers/oligomers. These new biocompatible, biodegradable and water-soluble polymeric materials can be engineered into multifunctional constructs with antimicrobial activity, targeting moieties, labelling units and/or efficiently loaded with therapeutics. This mini-review highlights the particular features exhibited by these materials resulting directly from the followed supercritical routes.
Collapse
Affiliation(s)
- Ana Aguiar-Ricardo
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal
| | - Vasco D B Bonifácio
- CQFM and IN, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Teresa Casimiro
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal
| | - Vanessa G Correia
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal
| |
Collapse
|
1290
|
Cook AM, Lesterhuis WJ, Nowak AK, Lake RA. Chemotherapy and immunotherapy: mapping the road ahead. Curr Opin Immunol 2015; 39:23-9. [PMID: 26724433 DOI: 10.1016/j.coi.2015.12.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022]
Abstract
Cancer immunotherapy, and in particular checkpoint blockade, is now standard clinical care for a growing number of cancers. Cytotoxic drugs have been the primary weapon against cancer for a long time and have typically been understood because of their capacity to directly kill tumour cells. It is now clear that these drugs are potential partners for checkpoint blockade and different drugs can influence the immune response to cancer through a wide variety of mechanisms. Some of these relate to immunogenic cell death, whilst others relate to changes in antigen-presentation, tumour cell targeting, or depletion of immunosuppressive cells. Here, we review some recent advances in our understanding of the immunological changes associated with chemotherapy, discuss progress in combining chemotherapy with checkpoint blockade, and comment on the difficulties encountered in translating promising preclinical data into successful treatments for cancer patients.
Collapse
Affiliation(s)
- Alistair M Cook
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia; School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - W Joost Lesterhuis
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia; School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia; School of Medicine and Pharmacology, University of Western Australia, Perth, Australia; Department of Medical Oncology, Sir Charles Gairdner Hospital, Perth, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia; School of Medicine and Pharmacology, University of Western Australia, Perth, Australia.
| |
Collapse
|
1291
|
Zhang QB, Meng XT, Jia QA, Bu Y, Ren ZG, Zhang BH, Tang ZY. Herbal Compound Songyou Yin and Moderate Swimming Suppress Growth and Metastasis of Liver Cancer by Enhancing Immune Function. Integr Cancer Ther 2015; 15:368-75. [PMID: 26699805 PMCID: PMC5739186 DOI: 10.1177/1534735415622011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective. Both the Chinese herbal compound Songyou Yin (SYY) and swimming exercise have been shown to have protective effects against liver cancer in animal models. In this study, we investigated whether SYY and moderate swimming (MS) have enhanced effect on suppressing progression of liver cancer by immunomodulation. Methods. C57BL/6 mice were transplanted with Hepa1-6 murine liver cancer cell lines and received treatment with SYY alone or SYY combined with MS. The green fluorescent protein (GFP)-positive metastatic foci in lungs were imaged with a stereoscopic fluorescence microscope. Flow cytometry was used to test the proportion of CD4 +, CD8 + T cells in peripheral blood and the proportions of CD4 + CD25 + Foxp3 + Treg cells in peripheral blood, spleen, and tumor tissues. Cytokine transforming growth factor (TGF)-β1 level in serum was detected by ELISA. Results. SYY plus MS significantly suppressed the growth and lung metastasis of liver cancer and prolonged survival in tumor-burdened mice. SYY plus MS markedly raised the CD4 to CD8 ratio in peripheral blood and lowered the serum TGF-β1 level and the proportions of Treg cells in peripheral blood, spleen, and tumor tissue. The effects of the combined intervention were significantly superior to SYY or MS alone. Conclusion. The combined application of SYY and MS exerted an enhanced effect on suppressing growth and metastasis of liver cancer by strengthening immunity.
Collapse
Affiliation(s)
- Quan-Bao Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China Cancer Metastasis Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang-Ting Meng
- School of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| | - Qing-An Jia
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yang Bu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng-Gang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bo-Heng Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao-You Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
1292
|
Specht HM, Neff T, Reuschel W, Wagner FM, Kampfer S, Wilkens JJ, Petry W, Combs SE. Paving the Road for Modern Particle Therapy - What Can We Learn from the Experience Gained with Fast Neutron Therapy in Munich? Front Oncol 2015; 5:262. [PMID: 26640777 PMCID: PMC4661227 DOI: 10.3389/fonc.2015.00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/11/2015] [Indexed: 12/17/2022] Open
Abstract
While neutron therapy was a highly topical subject in the 70s and 80s, today there are only a few remaining facilities offering fast neutron therapy (FNT). Nevertheless, up to today more than 30,000 patients were treated with neutron therapy. For some indications like salivary gland tumors and malignant melanoma, there is clinical evidence that the addition of FNT leads to superior local control compared to photon treatment alone. FNT was available in Munich from 1985 until 2000 at the Reactor Neutron Therapy (RENT) facility. Patient treatment continued at the new research reactor FRM II in 2007 under improved treatment conditions, and today it can still be offered to selected patients as an individual treatment option. As there is a growing interest in high-linear energy transfer (LET) therapy with new hadron therapy centers emerging around the globe, the clinical data generated by neutron therapy might help to develop biologically driven treatment planning algorithms. Also FNT might experience its resurgence as a combinational partner of modern immunotherapies.
Collapse
Affiliation(s)
- Hanno M Specht
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Teresa Neff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Waltraud Reuschel
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Franz M Wagner
- Forschungs-Neutronenquelle Heinz Maier-Leibnitz II (FRM II), Technische Universität München , Garching , Germany
| | - Severin Kampfer
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Jan J Wilkens
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany ; Institute of Innovative Radiotherapy (iRT), Department of Radiation Science, Helmholtz Zentrum München , Oberschleißheim , Germany
| | - Winfried Petry
- Forschungs-Neutronenquelle Heinz Maier-Leibnitz II (FRM II), Technische Universität München , Garching , Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany ; Institute of Innovative Radiotherapy (iRT), Department of Radiation Science, Helmholtz Zentrum München , Oberschleißheim , Germany
| |
Collapse
|
1293
|
Higuchi Y, Koya T, Yuzawa M, Yamaoka N, Mizuno Y, Yoshizawa K, Hirabayashi K, Kobayashi T, Sano K, Shimodaira S. Enzyme-Linked Immunosorbent Spot Assay for the Detection of Wilms' Tumor 1-Specific T Cells Induced by Dendritic Cell Vaccination. Biomedicines 2015; 3:304-315. [PMID: 28536414 PMCID: PMC5344226 DOI: 10.3390/biomedicines3040304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Despite recent advances in cancer immunotherapy and the development of various assays for T cell assessment, a lack of universal standards within immune monitoring remains. The objective of this study was to evaluate the enzyme-linked immunosorbent spot (ELISpot) assay in comparison with major histocompatibility complex-tetramer analysis in the context of dendritic cell (DC)-based cancer immunotherapy. METHODS The ELISpot assay was performed on peripheral blood mononuclear cells to assess reproducibility, daily precision, and linearity using HLA-A*24:02-restricted Cytomegalovirus peptide. Wilms' tumor 1 (WT1) antigen-specific cytotoxic T cells were then evaluated by both the ELISpot assay and WT1 tetramer analysis in peripheral blood from 46 cancer patients who received DC vaccinations pulsed with human leukocyte antigen (HLA)-A*24:02-restricted modified WT1 peptides. RESULTS The ELISpot assay was proven to have reproducibility (coefficient of variation (CV) ranged from 7.4% to 16.3%), daily precision (CV ranged from 5.0% to 17.3%), and linearity (r = 0.96-0.98). WT1-specific immune responses were detected by the ELISpot assay in 34 out of 46 patients (73.9%) post-vaccination. A Spearman's rank-correlation coefficient of 0.82 between the ELISpot assay and WT1 tetramer analysis was obtained. CONCLUSION This is the first report of a comparison of an ELISpot assay and tetramer analysis in the context of dendritic cell (DC)-based cancer immunotherapy. The ELISpot assay has reproducibility, linearity, and excellent correlation with the WT1 tetramer analysis. These findings suggest that the validated ELISpot assay is useful to monitor the acquired immunity by DC vaccination targeting WT1.
Collapse
Affiliation(s)
- Yumiko Higuchi
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto 390-8621, Japan.
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan.
| | - Terutsugu Koya
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| | - Miki Yuzawa
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| | - Naoko Yamaoka
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| | - Yumiko Mizuno
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| | - Kiyoshi Yoshizawa
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| | - Koichi Hirabayashi
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| | - Takashi Kobayashi
- Shinshu Cancer Center, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| | - Kenji Sano
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| | - Shigetaka Shimodaira
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto 390-8621, Japan.
| |
Collapse
|
1294
|
Awuah SG, Zheng YR, Bruno PM, Hemann MT, Lippard SJ. A Pt(IV) Pro-drug Preferentially Targets Indoleamine-2,3-dioxygenase, Providing Enhanced Ovarian Cancer Immuno-Chemotherapy. J Am Chem Soc 2015; 137:14854-7. [PMID: 26561720 PMCID: PMC4772771 DOI: 10.1021/jacs.5b10182] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Expression of indoleamine-2,3-dioxygenase (IDO), an immunosuppressive enzyme in human tumors, leads to immune evasion and tumor tolerance. IDO is therefore a tumor immunotherapeutic target, and several IDO inhibitors are currently undergoing clinical trials. IDO inhibitors can enhance the efficacy of common cancer chemotherapeutics. Here we investigate Pt(IV)-(D)-1-methyltryptophan conjugates 1 and 2 for combined immunomodulation and DNA cross-link-triggered apoptosis for cancer "immuno-chemotherapy". Compound 2 effectively kills hormone-dependent, cisplatin-resistant human ovarian cancer cells, inhibiting IDO by transcriptional deregulation of the autocrine-signaling loop IDO-AHR-IL6, which blocks kynurenine production and promotes T-cell proliferation. Additionally, 1 and 2 display low toxicity in mice and are stable in blood. To our knowledge, this construct is the first Pt drug candidate with immune checkpoint blockade properties.
Collapse
Affiliation(s)
- Samuel G Awuah
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Yao-Rong Zheng
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Peter M Bruno
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Michael T Hemann
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
1295
|
van Rooijen JM, Stutvoet TS, Schröder CP, de Vries EG. Immunotherapeutic options on the horizon in breast cancer treatment. Pharmacol Ther 2015; 156:90-101. [DOI: 10.1016/j.pharmthera.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
1296
|
Gopalakrishnan V, Tao RH, Dobson T, Brugmann W, Khatua S. Medulloblastoma development: tumor biology informs treatment decisions. CNS Oncol 2015; 4:79-89. [PMID: 25768332 DOI: 10.2217/cns.14.58] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Medulloblastoma is the most common malignant pediatric brain tumor. Current treatments including surgery, craniospinal radiation and high-dose chemotherapy have led to improvement in survival. However, the risk for recurrence as well as significant long-term neurocognitive and endocrine sequelae associated with current treatment modalities underscore the urgent need for novel tumor-specific, normal brain-sparing therapies. It has also provided the impetus for research focused on providing a better understanding of medulloblastoma biology. The expectation is that such studies will lead to the identification of new therapeutic targets and eventually to an increase in personalized treatment approaches.
Collapse
Affiliation(s)
- Vidya Gopalakrishnan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
1297
|
Goldszmid RS, Dzutsev A, Viaud S, Zitvogel L, Restifo NP, Trinchieri G. Microbiota modulation of myeloid cells in cancer therapy. Cancer Immunol Res 2015; 3:103-9. [PMID: 25660553 DOI: 10.1158/2326-6066.cir-14-0225] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myeloid cells represent a major component of the tumor microenvironment, where they play divergent dual roles. They can induce antitumor immune responses, but mostly they promote immune evasion, tumor progression, and metastasis formation. Thus, strategies aiming at reprogramming the tumor microenvironment represent a promising immunotherapy approach. Myeloid cells respond to environmental factors including signals derived from commensal microbes. In this Cancer Immunology at the Crossroads overview, we discuss recent advances on the effects of the commensal microbiota on myeloid-cell functions and how they affect the response to cancer therapy.
Collapse
Affiliation(s)
- Romina S Goldszmid
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| | - Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland. Leidos Biomedical Research, Inc., Bethesda, Maryland
| | - Sophie Viaud
- Institut National de la Santé et de la Recherche Médicale, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud, Kremlin Bicêtre, France
| | - Laurence Zitvogel
- Institut National de la Santé et de la Recherche Médicale, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud, Kremlin Bicêtre, France
| | - Nicholas P Restifo
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
1298
|
Abstract
In 2000 the United States launched the National Nanotechnology Initiative and, along with it, a well-defined set of goals for nanomedicine. This Perspective looks back at the progress made toward those goals, within the context of the changing landscape in biomedicine that has occurred over the past 15 years, and considers advances that are likely to occur during the next decade. In particular, nanotechnologies for health-related genomics and single-cell biology, inorganic and organic nanoparticles for biomedicine, and wearable nanotechnologies for wellness monitoring are briefly covered.
Collapse
Affiliation(s)
- James R Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
1299
|
Carman CV, Martinelli R. T Lymphocyte-Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity. Front Immunol 2015; 6:603. [PMID: 26635815 PMCID: PMC4657048 DOI: 10.3389/fimmu.2015.00603] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/10/2015] [Indexed: 12/26/2022] Open
Abstract
Antigen-specific immunity requires regulated trafficking of T cells in and out of diverse tissues in order to orchestrate lymphocyte development, immune surveillance, responses, and memory. The endothelium serves as a unique barrier, as well as a sentinel, between the blood and the tissues, and as such it plays an essential locally tuned role in regulating T cell migration and information exchange. While it is well established that chemoattractants and adhesion molecules are major determinants of T cell trafficking, emerging studies have now enumerated a large number of molecular players as well as a range of discrete cellular remodeling activities (e.g., transmigratory cups and invadosome-like protrusions) that participate in directed migration and pathfinding by T cells. In addition to providing trafficking cues, intimate cell-cell interaction between lymphocytes and endothelial cells provide instruction to T cells that influence their activation and differentiation states. Perhaps the most intriguing and underappreciated of these "sentinel" roles is the ability of the endothelium to act as a non-hematopoietic "semiprofessional" antigen-presenting cell. Close contacts between circulating T cells and antigen-presenting endothelium may play unique non-redundant roles in shaping adaptive immune responses within the periphery. A better understanding of the mechanisms directing T cell trafficking and the antigen-presenting role of the endothelium may not only increase our knowledge of the adaptive immune response but also empower the utility of emerging immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Christopher V Carman
- Center for Vascular Biology Research, Department of Medicine and Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Roberta Martinelli
- Center for Vascular Biology Research, Department of Medicine and Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
1300
|
New strategies of DLI in the management of relapse of hematological malignancies after allogeneic hematopoietic SCT. Bone Marrow Transplant 2015; 51:324-32. [PMID: 26595077 DOI: 10.1038/bmt.2015.288] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/24/2015] [Accepted: 10/19/2015] [Indexed: 12/17/2022]
Abstract
DLI is an effective strategy for patients with recurrent hematological malignancies after allogeneic hematopoietic SCT (allo-HSCT). DLI has been widely applied to boost the graft vs tumor (GVT) or GVL effects. However, given the potentially severe complications associated with conventional DLI and transient GVL effect, new strategies for DLI are emerging. In this review, we have discussed the recent important studies on DLI as a prophylactic or therapeutic modality for relapsed hematological disorders after allo-HSCT. The strategies to separate GVL from GVHD have also been discussed. Leukemia-targeting therapy and lymphodepletion combined with DLI, and prophylactic DLI after allo-HSCT are often employed for patients with high risk of relapse, which has been reviewed as well. In addition, we have also discussed the issues on DLI to be further addressed, such as the doses, timing and frequency of DLI in different clinical settings, leukemic antigen-specific DLI as well as how to augment GVL effect while attenuating GVHD.
Collapse
|