101
|
Kreatsoulas D, Damante M, Cua S, Lonser RR. Adjuvant convection-enhanced delivery for the treatment of brain tumors. J Neurooncol 2024; 166:243-255. [PMID: 38261143 PMCID: PMC10834622 DOI: 10.1007/s11060-023-04552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Malignant gliomas are a therapeutic challenge and remain nearly uniformly fatal. While new targeted chemotherapeutic agentsagainst malignant glioma have been developed in vitro, these putative therapeutics have not been translated into successful clinical treatments. The lack of clinical effectiveness can be the result of ineffective biologic strategies, heterogeneous tumor targets and/or the result of poortherapeutic distribution to malignant glioma cells using conventional nervous system delivery modalities (intravascular, cerebrospinal fluid and/orpolymer implantation), and/or ineffective biologic strategies. METHODS The authors performed a review of the literature for the terms "convection enhanced delivery", "glioblastoma", and "glioma". Selectclinical trials were summarized based on their various biological mechanisms and technological innovation, focusing on more recently publisheddata when possible. RESULTS We describe the properties, features and landmark clinical trials associated with convection-enhanced delivery for malignant gliomas.We also discuss future trends that will be vital to CED innovation and improvement. CONCLUSION Efficacy of CED for malignant glioma to date has been mixed, but improvements in technology and therapeutic agents arepromising.
Collapse
Affiliation(s)
- Daniel Kreatsoulas
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, N1019 Doan Hall, 410 W 10Th Avenue, Columbus, OH, 43210, USA.
| | - Mark Damante
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, N1019 Doan Hall, 410 W 10Th Avenue, Columbus, OH, 43210, USA
| | - Santino Cua
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, N1019 Doan Hall, 410 W 10Th Avenue, Columbus, OH, 43210, USA
| | - Russell R Lonser
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, N1019 Doan Hall, 410 W 10Th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
102
|
Arora H, Mammi M, Patel NM, Zyfi D, Dasari HR, Yunusa I, Simjian T, Smith TR, Mekary RA. Dexamethasone and overall survival and progression free survival in patients with newly diagnosed glioblastoma: a meta-analysis. J Neurooncol 2024; 166:17-26. [PMID: 38151699 DOI: 10.1007/s11060-023-04549-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE Glioblastomas, the most common primary malignant brain tumors in adults, still hold poor prognosis. Corticosteroids, such as dexamethasone, are usually prescribed to reduce peritumoral edema and limit neurological symptoms, although potential detrimental effects of these drugs have been described. The present meta-analysis aimed to explore the association of dexamethasone with overall survival (OS) and progression free survival (PFS) in patients with newly diagnosed glioblastoma. METHODS PubMed, Cochrane Library, Embase, and ClinicalTrials.gov were searched for pertinent studies following the Preferred Reporting Items of Systematic Review and Meta-Analysis checklist. Pooled multivariable-adjusted hazard ratios (HR) for OS and PFS and their associated 95% confidence intervals (CIs) were calculated using the random-effects model and the heterogeneity among studies was assessed using I2. The quality of evidence was assessed using the GRADE criteria. RESULTS Seven studies were included, pooling data of 1,257 patients, with age varying from 11 to 81 years. Glioblastoma patients on pre- or peri-operative dexamethasone were associated with a significantly poorer overall survival (HR: 1.33, 95% CI: 1.15, 1.55; 7 studies; I2: 59.9%) and progression free survival (HR: 1.77, 95% CI: 1.05, 2.97; 3 studies; I2: 71.1%) compared to patients not on dexamethasone. The quality of evidence was moderate for overall survival and low for progression free survival. CONCLUSION Dexamethasone appeared to be associated with poor survival outcomes of glioblastoma patients.
Collapse
Affiliation(s)
- Harshit Arora
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Mammi
- Neurosurgery Division, "M. Bufalini" Hospital, Cesena, Italy
| | - Naisargi Manishkumar Patel
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Dea Zyfi
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Hema Reddy Dasari
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Ismael Yunusa
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
- College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Thomas Simjian
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Timothy R Smith
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rania A Mekary
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA.
| |
Collapse
|
103
|
Shields LB, O'Dell P, Daniels MW, Sevak PR, Highfield HA, Sinicrope KD, Sun DA, Spalding AC. Impact of Reirradiation Utilizing Fractionated Stereotactic Radiotherapy for Recurrent Glioblastoma. Cureus 2024; 16:e53001. [PMID: 38406061 PMCID: PMC10894660 DOI: 10.7759/cureus.53001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Patients with recurrent glioblastoma (GBM) have limited treatment options. This study determined whether patients with recurrent GBM treated with initial radiation/temozolomide (TMZ) and reirradiation using fractionated stereotactic radiotherapy (FSRT) had improved outcomes. MATERIALS AND METHODS We identified 95 patients with recurrent GBM, 50 of whom underwent FSRT at recurrence and 45 who had systemic treatment only (control). The median total FSRT dose at the time of GBM recurrence was 30 Gy in five fractions of the gadolinium-enhanced tumor only. RESULTS With a median follow-up of 18 months, the progression-free survival (PFS) and overall survival (OS) following initial GBM diagnosis were longer in the reirradiation group compared to the control group (13.5 vs. 7.5 months [p=0.001] and 24.6 vs. 12.6 months [p<0.001], respectively). For patients who underwent reirradiation, the median time interval between the end of the initial radiation and reirradiation was 15.2 months. The median OS after GBM recurrence was longer in the reirradiation group versus the control group (9.9 vs. 3.5 months [p<0.001]), with a one-year OS survival rate of 22%. The hazard ratio for death of patients in the reirradiation group was 0.31 [0.19-0.50]. The reirradiation group had a higher percentage of patients who received bevacizumab (BEV, 62.0% vs. 28.9%, p=0.002) and a lower percentage of patients whose TMZ was discontinued due to toxicity (8.0% vs. 28.9%, p=0.017) compared to the control group. CONCLUSIONS Reirradiation utilizing FSRT was associated with improved PFS and OS after GBM recurrence compared to the control group who did not receive additional irradiation.
Collapse
Affiliation(s)
- Lisa B Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, USA
| | - Patrick O'Dell
- Norton Cancer Institute, Norton Healthcare, Louisville, USA
| | - Michael W Daniels
- Bioinformatics and Biostatistics, University of Louisville, Louisville, USA
| | - Parag R Sevak
- Norton Cancer Institute, Norton Healthcare, Louisville, USA
| | - Hilary A Highfield
- Clinical Pathology Accreditation (CPA) Laboratory, Norton Healthcare, Louisville, USA
| | | | - David A Sun
- Norton Neuroscience Institute, Norton Healthcare, Louisville, USA
| | | |
Collapse
|
104
|
Goutnik M, Iakovidis A, Still MEH, Moor RSF, Melnick K, Yan S, Abbas M, Huang J, Ghiaseddin AP. Advancements in chimeric antigen receptor-expressing T-cell therapy for glioblastoma multiforme: Literature review and future directions. Neurooncol Adv 2024; 6:vdae025. [PMID: 38486856 PMCID: PMC10939440 DOI: 10.1093/noajnl/vdae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive cancer that has been difficult to treat and often requires multimodal therapy consisting of surgery, radiotherapy, and chemotherapy. Chimeric antigen receptor-expressing (CAR-T) cells have been efficacious in treating hematological malignancies, resulting in several FDA-approved therapies. CAR-T cells have been more recently studied for the treatment of GBM, with some promising preclinical and clinical results. The purpose of this literature review is to highlight the commonly targeted antigens, results of clinical trials, novel modifications, and potential solutions for challenges that exist for CAR-T cells to become more widely implemented and effective in eradicating GBM.
Collapse
Affiliation(s)
- Michael Goutnik
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Alexandria Iakovidis
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Megan E H Still
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Rachel S F Moor
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Kaitlyn Melnick
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Sandra Yan
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Muhammad Abbas
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jianping Huang
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ashley P Ghiaseddin
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
105
|
Olatunji G, Aderinto N, Adefusi T, Kokori E, Akinmoju O, Yusuf I, Olusakin T, Muzammil MA. Efficacy of tumour-treating fields therapy in recurrent glioblastoma: A narrative review of current evidence. Medicine (Baltimore) 2023; 102:e36421. [PMID: 38050252 PMCID: PMC10695547 DOI: 10.1097/md.0000000000036421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
Recurrent Glioblastoma presents a formidable challenge in oncology due to its aggressive nature and limited treatment options. Tumour-Treating Fields (TTFields) Therapy, a novel therapeutic modality, has emerged as a promising approach to address this clinical conundrum. This review synthesizes the current evidence surrounding the efficacy of TTFields Therapy in the context of recurrent Glioblastoma. Diverse academic databases were explored to identify relevant studies published within the last decade. Strategic keyword selection facilitated the inclusion of studies focusing on TTFields Therapy's efficacy, treatment outcomes, and patient-specific factors. The review reveals a growing body of evidence suggesting the potential clinical benefits of TTFields Therapy for patients with recurrent Glioblastoma. Studies consistently demonstrate its positive impact on overall survival (OS) and progression-free survival (PFS). The therapy's safety profile remains favorable, with mild to moderate skin reactions being the most commonly reported adverse events. Our analysis highlights the importance of patient selection criteria, with emerging biomarkers such as PTEN mutation status influencing therapy response. Additionally, investigations into combining TTFields Therapy with other treatments, including surgical interventions and novel approaches, offer promising avenues for enhancing therapeutic outcomes. The synthesis of diverse studies underscores the potential of TTFields Therapy as a valuable addition to the armamentarium against recurrent Glioblastoma. The narrative review comprehensively explains the therapy's mechanisms, clinical benefits, adverse events, and future directions. The insights gathered herein serve as a foundation for clinicians and researchers striving to optimize treatment strategies for patients facing the challenging landscape of recurrent Glioblastoma.
Collapse
Affiliation(s)
- Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | | | - Ismaila Yusuf
- Department of Medicine and Surgery, Obafemi Awolowo University, Ife, Nigeria
| | - Tobi Olusakin
- College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
106
|
de la Fuente MI. Adult-type Diffuse Gliomas. Continuum (Minneap Minn) 2023; 29:1662-1679. [PMID: 38085893 DOI: 10.1212/con.0000000000001352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE This article highlights key aspects of the diagnosis and management of adult-type diffuse gliomas, including glioblastomas and IDH-mutant gliomas relevant to the daily practice of the general neurologist. LATEST DEVELOPMENTS The advances in molecular characterization of gliomas have translated into more accurate prognostication and tumor classification. Gliomas previously categorized by histological appearance solely as astrocytomas or oligodendrogliomas are now also defined by molecular features. Furthermore, ongoing clinical trials have incorporated these advances to tailor more effective treatments for specific glioma subtypes. ESSENTIAL POINTS Despite recent insights into the molecular aspects of gliomas, these tumors remain incurable. Care for patients with these complex tumors requires a multidisciplinary team in which the general neurologist has an important role. Efforts focus on translating the latest data into more effective therapies that can prolong survival.
Collapse
|
107
|
Kaina B. Temozolomide, Procarbazine and Nitrosoureas in the Therapy of Malignant Gliomas: Update of Mechanisms, Drug Resistance and Therapeutic Implications. J Clin Med 2023; 12:7442. [PMID: 38068493 PMCID: PMC10707404 DOI: 10.3390/jcm12237442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2024] Open
Abstract
The genotoxic methylating agents temozolomide (TMZ) and procarbazine and the chloroethylating nitrosourea lomustine (CCNU) are part of the standard repertoire in the therapy of malignant gliomas (CNS WHO grade 3 and 4). This review describes the mechanisms of their cytotoxicity and cytostatic activity through apoptosis, necroptosis, drug-induced senescence, and autophagy, interaction of critical damage with radiation-induced lesions, mechanisms of glioblastoma resistance to alkylating agents, including the alkyltransferase MGMT, mismatch repair, DNA double-strand break repair and DNA damage responses, as well as IDH-1 and PARP-1. Cyclin-dependent kinase inhibitors such as regorafenib, synthetic lethality using PARP inhibitors, and alternative therapies including tumor-treating fields (TTF) and CUSP9v3 are discussed in the context of alkylating drug therapy and overcoming glioblastoma chemoresistance. Recent studies have revealed that senescence is the main trait induced by TMZ in glioblastoma cells, exhibiting hereupon the senescence-associated secretory phenotype (SASP). Strategies to eradicate therapy-induced senescence by means of senolytics as well as attenuating SASP by senomorphics are receiving increasing attention, with therapeutic implications to be discussed.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
108
|
Pour ME, Moghadam SG, Shirkhani P, Sahebkar A, Mosaffa F. Therapeutic cell-based vaccines for glioblastoma multiforme. Med Oncol 2023; 40:354. [PMID: 37952224 DOI: 10.1007/s12032-023-02220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Glioblastoma multiforme (GBM), a highly aggressive tumor, poses significant challenges in achieving successful treatment outcomes. Conventional therapeutic modalities including surgery, radiation, and chemotherapy have demonstrated limited efficacy, primarily attributed to the complexities associated with drug delivery to the tumor site and tumor heterogeneity. To address this critical need for innovative therapies, the potential of cancer vaccines utilizing tumor cells and dendritic cells has been explored for GBM treatment. This article provides a comprehensive review of therapeutic vaccinations employing cell-based vaccine strategies for the management of GBM. A meticulous evaluation of 45 clinical trials involving more than 1500 participants revealed that cell-based vaccinations have exhibited favorable safety profiles with minimal toxicity. Moreover, these vaccines have demonstrated modest improvements in overall survival and progression-free survival among patients. However, certain limitations still persist. Notably, there is a need for advancements in the development of potent antigens to evoke immune responses, as well as the optimization of dosage regimens. Consequently, while cell-based vaccinations show promise as a potential therapeutic approach for GBM, further research is imperative to overcome the current limitations. The ultimate objective is to surmount these obstacles and establish cell-based vaccinations as a standard therapeutic modality for GBM.
Collapse
Affiliation(s)
- Mehrshad Ebrahim Pour
- School of Pharmacy, Department of Pharmaceutical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samin Ghorbani Moghadam
- School of Pharmacy, Department of Pharmaceutical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parian Shirkhani
- School of Pharmacy, Department of Pharmaceutical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
109
|
Colamaria A, Leone A, Fochi NP, Di Napoli V, Giordano G, Landriscina M, Patel K, Carbone F. Tumor treating fields for the treatment of glioblastoma: Current understanding and future perspectives. Surg Neurol Int 2023; 14:394. [PMID: 38053701 PMCID: PMC10695468 DOI: 10.25259/sni_674_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/13/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND This review focuses on the recently published evidence on tumor treating fields (TTFields) administered alone or in combination with locoregional and systemic options for treating glioblastoma (GBM) in the past ten years. The aim is to critically summarize the novelty and results obtained with this innovative tool, which is becoming part of the armamentarium of neurosurgeons and neuro-oncologists. METHODS A comprehensive search and analysis were conducted on pivotal studies published in the past ten years. Furthermore, all completed clinical trials, whose results were published on clinicaltrials.gov, were examined and included in the present review, encompassing both recurrent (r) and newly diagnosed (n) GBM. Finally, an additional examination of the ongoing clinical trials was also conducted. RESULTS Recent trials have shown promising results both in patients with nGBM and rGBM/progressive (rGBM), leading to Food and Drug Administration approval in selected patients and the Congress of Neurological Surgeons to include TTFields into current guidelines on the management of GBM (P100034/S001-029). Recently, different randomized trials have demonstrated promising results of TTFields in combination with standard treatment of n- and rGBM, especially when considering progression-free and overall survival, maintaining a low rate of mild to moderate adverse events. CONCLUSION Optimal outcomes were obtained in nGBM and progressive disease. A possible future refinement of TTFields could significantly impact the treatment of rGBM and the actual standard of care for GBM, given the better safety profile and survival effects.
Collapse
Affiliation(s)
| | - Augusto Leone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | | | | | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, University of Foggia, Foggia, Italy
| | - Matteo Landriscina
- Unit of Medical Oncology and Biomolecular Therapy, University of Foggia, Foggia, Italy
| | - Kashyap Patel
- Department of Neurosurgery, Baroda Medical College, Vadodara, Gujarat, India
| | - Francesco Carbone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| |
Collapse
|
110
|
Suzuki K, Ogawa D, Kanda T, Fujimori T, Shibayama Y, Rahman A, Ye J, Ohsaki H, Akimitsu K, Izumori K, Tamiya T, Nishiyama A, Miyake K. Antiproliferative effects of D-allose associated with reduced cell division frequency in glioblastoma. Sci Rep 2023; 13:19515. [PMID: 37945736 PMCID: PMC10636159 DOI: 10.1038/s41598-023-46796-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Recent studies have shown that D-allose, a rare sugar, elicits antitumor effects on different types of solid cancers, such as hepatocellular carcinoma, non-small-cell lung cancer, and squamous cell carcinoma of the head and neck. In this study, we examined the effects of D-allose on the proliferation of human glioblastoma (GBM) cell lines (i.e., U251MG and U87MG) in vitro and in vivo and the underlying mechanisms. D-allose treatment inhibited the proliferation of U251MG and U87MG cells in a dose-dependent manner (3-50 mM). However, D-allose treatment did not affect cell cycles or apoptosis in these cells but significantly decreased the cell division frequency in both GBM cell lines. In a subcutaneous U87MG cell xenograft model, intraperitoneal injection of D-allose (100 mg/kg/day) significantly reduced the tumor volume in 28 days. These data indicate that D-allose-induced reduction in cell proliferation is associated with a subsequent decrease in the number of cell divisions, independent of cell-cycle arrest and apoptosis. Thus, D-allose could be an attractive additive to therapeutic strategies for GBM.
Collapse
Affiliation(s)
- Kenta Suzuki
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Daisuke Ogawa
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Takahiro Kanda
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Takeshi Fujimori
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Yuki Shibayama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Asadur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Juanjuan Ye
- Molecular Oncologic Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Hiroyuki Ohsaki
- Department of Medical Biophysics, Kobe University Graduate School of Health Science, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Kazuya Akimitsu
- International Institute of Rare Sugar Research and Education, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Takashi Tamiya
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Keisuke Miyake
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| |
Collapse
|
111
|
Hambarde S, Manalo JM, Baskin DS, Sharpe MA, Helekar SA. Spinning magnetic field patterns that cause oncolysis by oxidative stress in glioma cells. Sci Rep 2023; 13:19264. [PMID: 37935811 PMCID: PMC10630398 DOI: 10.1038/s41598-023-46758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Raising reactive oxygen species (ROS) levels in cancer cells to cause macromolecular damage and cell death is a promising anticancer treatment strategy. Observations that electromagnetic fields (EMF) elevate intracellular ROS and cause cancer cell death, have led us to develop a new portable wearable EMF device that generates spinning oscillating magnetic fields (sOMF) to selectively kill cancer cells while sparing normal cells in vitro and to shrink GBM tumors in vivo through a novel mechanism. Here, we characterized the precise configurations and timings of sOMF stimulation that produce cytotoxicity due to a critical rise in superoxide in two types of human glioma cells. We also found that the antioxidant Trolox reverses the cytotoxic effect of sOMF on glioma cells indicating that ROS play a causal role in producing the effect. Our findings clarify the link between the physics of magnetic stimulation and its mechanism of anticancer action, facilitating the development of a potential new safe noninvasive device-based treatment for GBM and other gliomas.
Collapse
Affiliation(s)
- Shashank Hambarde
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - Jeanne M Manalo
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - David S Baskin
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY, USA
| | - Martyn A Sharpe
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - Santosh A Helekar
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA.
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA.
- Houston Methodist Research Institute, Houston, TX, USA.
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
112
|
Pan M, Xiao Y, Zhu L, Dong S, Liang L, Sun L, Shi W, Wang Y. Evaluation of Interfraction Setup Uncertainty of Patients With Glioblastoma Wearing TTFields (Tumor Treating Fields) During Radiation Therapy. Pract Radiat Oncol 2023; 13:522-530. [PMID: 37437806 DOI: 10.1016/j.prro.2023.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Tumor treating fields (TTFields) with concurrent radiation therapy (RT) might improve the outcome of patients with newly diagnosed glioblastoma. Several trials, including that conducted in our center, have allowed patients to wear TTFields during RT. We aimed to evaluate the setup uncertainty introduced by TTFields and calculate the planning target volume (PTV) margin for clinical reference. METHODS AND MATERIALS We collected and analyzed 201 cone beam computed tomography images of 22 patients in our center. Patients with or without TTFields were divided into the control and TTFields groups. We evaluated the setup errors in 6 degrees of freedom and 3 degrees of freedom and the magnitudes in the 3-dimensional vectors. An estimated PTV margin for patients requiring nonimaging-guided RT was recommended. RESULTS A significant difference was observed in the longitudinal axis between the TTFields and control groups (P < .05). These results were consistent with that of the intragroup comparison of the TTFields group. The position error of the longitudinal axis (from head to feet) was -0.51 ± 2.05 mm in the TTFields group. CONCLUSIONS Wearing TTFields during RT increased the uncertainty, especially in the longitudinal axis, with a system error of 1.40 mm and a random error of 1.28 mm. Daily image guided RT for TTFields patients seems necessary. However, the recommended expansion margin of the PTV is 5 mm for patients requiring nonimage-guided RT to enhance the safety and efficacy of treatment.
Collapse
Affiliation(s)
- Mingyuan Pan
- Radiation Oncology Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yixuan Xiao
- Radiation Oncology Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Liying Zhu
- Radiation Oncology Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengnan Dong
- Radiation Oncology Center, Huashan Hospital, Fudan University, Shanghai, China; Henan Province Hospital of TCM, Henan, China
| | - Liping Liang
- Radiation Oncology Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Sun
- Cyberknife Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yang Wang
- Radiation Oncology Center, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
113
|
Kumaria A, Ashkan K. Novel therapeutic strategies in glioma targeting glutamatergic neurotransmission. Brain Res 2023; 1818:148515. [PMID: 37543066 DOI: 10.1016/j.brainres.2023.148515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/11/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
High grade gliomas carry a poor prognosis despite aggressive surgical and adjuvant approaches including chemoradiotherapy. Recent studies have demonstrated a mitogenic association between neuronal electrical activity and glioma growth involving the PI3K-mTOR pathway. As the predominant excitatory neurotransmitter of the brain, glutamate signalling in particular has been shown to promote glioma invasion and growth. The concept of the neurogliomal synapse has been established whereby glutamatergic receptors on glioma cells have been shown to promote tumour propagation. Targeting glutamatergic signalling is therefore a potential treatment option in glioma. Antiepileptic medications decrease excess neuronal electrical activity and some may possess anti-glutamate effects. Although antiepileptic medications continue to be investigated for an anti-glioma effect, good quality randomised trial evidence is lacking. Other pharmacological strategies that downregulate glutamatergic signalling include riluzole, memantine and anaesthetic agents. Neuromodulatory interventions possessing potential anti-glutamate activity include deep brain stimulation and vagus nerve stimulation - this contributes to the anti-seizure efficacy of the latter and the possible neuroprotective effect of the former. A possible role of neuromodulation as a novel anti-glioma modality has previously been proposed and that hypothesis is extended to include these modalities. Similarly, the significant survival benefit in glioblastoma attributable to alternating electrical fields (Tumour Treating Fields) may be a result of disruption to neurogliomal signalling. Further studies exploring excitatory neurotransmission and glutamatergic signalling and their role in glioma origin, growth and propagation are therefore warranted.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK.
| | | |
Collapse
|
114
|
Zhang L, Zhang Y, Wang X, Zhou Y, Qi J, Gu L, Zhao Q, Yu R, Zhou X. A Trojan-Horse-Like Biomimetic Nano-NK to Elicit an Immunostimulatory Tumor Microenvironment for Enhanced GBM Chemo-Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301439. [PMID: 37420326 DOI: 10.1002/smll.202301439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/20/2023] [Indexed: 07/09/2023]
Abstract
Although the chemo- and immuno-therapies have obtained good responses for several solid tumors, including those with brain metastasis, their clinical efficacy in glioblastoma (GBM) is disappointing. The lack of safe and effective delivery systems across the blood-brain barrier (BBB) and the immunosuppressive tumor microenvironment (TME) are two main hurdles for GBM therapy. Herein, a Trojan-horse-like nanoparticle system is designed, which encapsulates biocompatible PLGA-coated temozolomide (TMZ) and IL-15 nanoparticles (NPs) with cRGD-decorated NK cell membrane (R-NKm@NP), to elicit the immunostimulatory TME for GBM chemo-immunotherapy. Taking advantage of the outer NK cell membrane cooperating with cRGD, the R-NKm@NPs effectively traversed across the BBB and targeted GBM. In addition, the R-NKm@NPs exhibited good antitumor ability and prolonged the median survival of GBM-bearing mice. Notably, after R-NKm@NPs treatment, the locally released TMZ and IL-15 synergistically stimulated the proliferation and activation of NK cells, leading to the maturation of dendritic cells and infiltration of CD8+ cytotoxic T cells, eliciting an immunostimulatory TME. Lastly, the R-NKm@NPs not only effectively prolonged the metabolic cycling time of the drugs in vivo, but also has no noticeable side effects. This study may offer valuable insights for developing biomimetic nanoparticles to potentiate GBM chemo- and immuno-therapies in the future.
Collapse
Affiliation(s)
- Long Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 2210002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yining Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 2210002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Xu Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 2210002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yi Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 2210002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Ji Qi
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 2210002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Linbo Gu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 2210002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Qiu Zhao
- Department of Anesthesiology, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, Anhui, 230001, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 2210002, China
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 2210002, China
| |
Collapse
|
115
|
Vamsi VS, Lukacova S, Dahlrot RH, Guldberg TL, Korshøj AR, Muhic A, Trip AK. The impact of short-course hypofractionated radiotherapy on multimodality treatment utilisation, compliance, and outcome in glioblastoma patients: a Danish patterns of care study. Acta Oncol 2023; 62:1511-1519. [PMID: 37558643 DOI: 10.1080/0284186x.2023.2238884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/02/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND The aim of this retrospective registry-based Danish patterns of care study was (1) to evaluate the real-world utilisation of short-course hypofractionated radiotherapy (HFRT) in glioblastoma (GBM) patients over time, and (2) to evaluate the impact of short-course HFRT by assessing trends in multimodality treatment utilisation, compliance, and outcome. MATERIAL AND METHODS Data of all adults with newly diagnosed pathology-confirmed GBM between 2011 and 2019 were extracted from the nationwide Danish Neuro-Oncology Registry. Short-course HFRT was defined as a fraction size of > 2 Gy to a planned dose of > 30 Gy. Patterns of care were assessed. To analyse trends in the assignment to short-course HFRT, and in radiotherapy (RT) compliance, multivariable logistic regression was applied. To analyse trends in survival, multivariable Cox regression was used. RESULTS In this cohort of 2416 GBM patients, the utilisation of short-course HFRT significantly increased from ca. 10% in 2011 to 33% in recent years. This coincided with the discontinued use of palliative regimens and a decreased use of conventional fractionation. The proportion of patients proceeding to RT remained stable at ca. 85%. The proportion of patients assigned to chemoradiotherapy (CRT) remained stable at ca. 60%; the use of short-course hypofractionated CRT increased with ca. 10%, while the use of conventionally fractionated CRT decreased with ca. 10%. Compliance with conventionally fractionated and short-course HFRT was respective 92% and 93%, and significantly increasing in recent years. In the complete cohort, the median overall survival remained stable at ca. 11 months. Assignment to short-course HFRT was independently associated with shorter survival. CONCLUSION In Denmark, the use of short-course HFRT significantly increased in recent years. Nonetheless, the overall utilisation of RT and chemotherapy did not increase on a population level. Nor did survival change. In contrast, compliance with both conventionally fractionated RT and short-course HFRT increased.
Collapse
Affiliation(s)
- Vishnuga Sivarasah Vamsi
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Slavka Lukacova
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Hedegaard Dahlrot
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Anders Rosendal Korshøj
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Aida Muhic
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anouk Kirsten Trip
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
116
|
Vincent CA, Nissen I, Dakhel S, Hörnblad A, Remeseiro S. Epigenomic perturbation of novel EGFR enhancers reduces the proliferative and invasive capacity of glioblastoma and increases sensitivity to temozolomide. BMC Cancer 2023; 23:945. [PMID: 37803333 PMCID: PMC10557167 DOI: 10.1186/s12885-023-11418-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Glioblastoma (GB) is the most aggressive of all primary brain tumours and due to its highly invasive nature, surgical resection is nearly impossible. Patients typically rely on radiotherapy with concurrent temozolomide (TMZ) treatment and face a median survival of ~ 14 months. Alterations in the Epidermal Growth Factor Receptor gene (EGFR) are common in GB tumours, but therapies targeting EGFR have not shown significant clinical efficacy. METHODS Here, we investigated the influence of the EGFR regulatory genome on GB cells and identified novel EGFR enhancers located near the GB-associated SNP rs723527. We used CRISPR/Cas9-based approaches to target the EGFR enhancer regions, generating multiple modified GB cell lines, which enabled us to study the functional response to enhancer perturbation. RESULTS Epigenomic perturbation of the EGFR regulatory region decreases EGFR expression and reduces the proliferative and invasive capacity of glioblastoma cells, which also undergo a metabolic reprogramming in favour of mitochondrial respiration and present increased apoptosis. Moreover, EGFR enhancer-perturbation increases the sensitivity of GB cells to TMZ, the first-choice chemotherapeutic agent to treat glioblastoma. CONCLUSIONS Our findings demonstrate how epigenomic perturbation of EGFR enhancers can ameliorate the aggressiveness of glioblastoma cells and enhance the efficacy of TMZ treatment. This study demonstrates how CRISPR/Cas9-based perturbation of enhancers can be used to modulate the expression of key cancer genes, which can help improve the effectiveness of existing cancer treatments and potentially the prognosis of difficult-to-treat cancers such as glioblastoma.
Collapse
Affiliation(s)
- Craig A Vincent
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Itzel Nissen
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Soran Dakhel
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Andreas Hörnblad
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Silvia Remeseiro
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| |
Collapse
|
117
|
Nguyen H, Schubert KE, Chang E, Nie Y, Pohling C, Van Buskirk S, Yamamoto V, Zeng Y, Schulte RW, Patel CB. Electric field distributions in realistic 3D rat head models during alternating electric field (AEF) therapy: a computational study. Phys Med Biol 2023; 68:205015. [PMID: 37703902 DOI: 10.1088/1361-6560/acf98d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Objective.Application of alternating electrical fields (AEFs) in the kHz range is an established treatment modality for primary and recurrent glioblastoma. Preclinical studies would enable innovations in treatment monitoring and efficacy, which could then be translated to benefit patients. We present a practical translational process converting image-based data into 3D rat head models for AEF simulations and study its sensitivity to parameter choices.Approach.Five rat head models composed of up to 7 different tissue types were created, and relative permittivity and conductivity of individual tissues obtained from the literature were assigned. Finite element analysis was used to model the AEF strength and distribution in the models with different combinations of head tissues, a virtual tumor, and an electrode pair.Main results.The simulations allowed for a sensitivity analysis of the AEF distribution with respect to different tissue combinations and tissue parameter values.Significance.For a single pair of 5 mm diameter electrodes, an average AEF strength inside the tumor exceeded 1.5 V cm-1, expected to be sufficient for a relevant therapeutic outcome. This study illustrates a robust and flexible approach for simulating AEF in different tissue types, suitable for preclinical studies in rodents and translatable to clinical use.
Collapse
Affiliation(s)
- Ha Nguyen
- Baylor University, Waco, TX 76706, United States of America
| | | | - Edwin Chang
- Stanford University, Stanford, CA 94305, United States of America
| | - Ying Nie
- Loma Linda University, Loma Linda, CA 92350, United States of America
| | - Christoph Pohling
- Loma Linda University, Loma Linda, CA 92350, United States of America
| | - Samuel Van Buskirk
- University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - Vicky Yamamoto
- University of Southern California-Keck School of Medicine, Los Angeles, CA 90033, United States of America
| | - Yuping Zeng
- University of Delaware, Newark, DE 19716, United States of America
| | | | - Chirag B Patel
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, United States of America
| |
Collapse
|
118
|
Strowd R, Ellingson B, Raymond C, Yao J, Wen PY, Ahluwalia M, Piotrowski A, Desai A, Clarke JL, Lieberman FS, Desideri S, Nabors LB, Ye X, Grossman S. Activity of a first-in-class oral HIF2-alpha inhibitor, PT2385, in patients with first recurrence of glioblastoma. J Neurooncol 2023; 165:101-112. [PMID: 37864646 PMCID: PMC10863646 DOI: 10.1007/s11060-023-04456-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/23/2023]
Abstract
INTRODUCTION Hypoxia inducible factor 2-alpha (HIF2α) mediates cellular responses to hypoxia and is over-expressed in glioblastoma (GBM). PT2385 is an oral HIF2α inhibitor with in vivo activity against GBM. METHODS A two-stage single-arm open-label phase II study of adults with GBM at first recurrence following chemoradiation with measurable disease was conducted through the Adult Brain Tumor Consortium. PT2385 was administered at the phase II dose (800 mg b.i.d.). The primary outcome was objective radiographic response (ORR = complete response + partial response, CR + PR); secondary outcomes were safety, overall survival (OS), and progression free survival (PFS). Exploratory objectives included pharmacokinetics (day 15 Cmin), pharmacodynamics (erythropoietin, vascular endothelial growth factor), and pH-weighted amine- chemical exchange saturation transfer (CEST) MRI to quantify tumor acidity at baseline and explore associations with drug response. Stage 1 enrolled 24 patients with early stoppage for ≤ 1 ORR. RESULTS Of the 24 enrolled patients, median age was 62.1 (38.7-76.7) years, median KPS 80, MGMT promoter was methylated in 46% of tumors. PT2385 was well tolerated. Grade ≥ 3 drug-related adverse events were hypoxia (n = 2), hyponatremia (2), lymphopenia (1), anemia (1), and hyperglycemia (1). No objective radiographic responses were observed; median PFS was 1.8 months (95% CI 1.6-2.5) and OS was 7.7 months (95% CI 4.9-12.6). Drug exposure varied widely and did not differ by corticosteroid use (p = 0.12), antiepileptics (p = 0.09), or sex (p = 0.37). Patients with high systemic exposure had significantly longer PFS (6.7 vs 1.8 months, p = 0.009). Baseline acidity by pH-weighted CEST MRI correlated significantly with treatment duration (R2 = 0.49, p = 0.017). Non-enhancing infiltrative disease with high acidity gave rise to recurrence. CONCLUSIONS PT2385 monotherapy had limited activity in first recurrent GBM. Drug exposure was variable. Signals of activity were observed in GBM patients with high systemic exposure and acidic lesions on CEST imaging. A second-generation HIF2α inhibitor is being studied.
Collapse
Affiliation(s)
- Roy Strowd
- Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston Salem, NC, 27104, USA.
| | | | | | - Jingwen Yao
- University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | - Arati Desai
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - L Burt Nabors
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaobu Ye
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Stuart Grossman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
119
|
Bao J, Pan Z, Wei S. Initial Treatment of IDH-Wildtype Glioblastoma in Adults Older Than 70 Years. Cureus 2023; 15:e47602. [PMID: 37881322 PMCID: PMC10597738 DOI: 10.7759/cureus.47602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 10/27/2023] Open
Abstract
The incidence of glioblastoma, the most common malignant primary brain tumour in adults, increases after the age of 40 and peaks in adults aged 75-84 years. Initial management involves maximising surgical resection while preserving neurologic function. IDH mutations and MGMT promoter methylation should be checked in tumour samples. Radiation and temozolomide constitute initial treatment for newly diagnosed glioblastoma patients with good functional status. It is suggested that patients who have received concurrent and adjuvant temozolomide treatment should undergo six cycles of adjuvant monthly temozolomide, as opposed to a more extended treatment regimen. Low-intensity alternating electric field therapy improved survival in a large randomised trial. We provide a detailed review, providing the latest treatment viewpoint for IDH-wildtype glioblastoma and including the current situation of immunotherapy. The treatment ideas and methods reviewed here would be of help to physicians when they encounter patients with this kind of IDH-wildtype glioblastoma in clinical practice.
Collapse
Affiliation(s)
- Jing Bao
- Neurosurgery, Shidong Hospital of Yangpu District, Shanghai, CHN
| | - Zhenjiang Pan
- Neurosurgery, Shidong Hospital of Yangpu District, Shanghai, CHN
| | - Shepeng Wei
- Neurosurgery, Shidong Hospital of Yangpu District, Shanghai, CHN
| |
Collapse
|
120
|
Leonel AV, Alisson-Silva F, Santos RCM, Silva-Aguiar RP, Gomes JC, Longo GMC, Faria BM, Siqueira MS, Pereira MG, Vasconcelos-dos-Santos A, Chiarini LB, Slawson C, Caruso-Neves C, Romão L, Travassos LH, Carneiro K, Todeschini AR, Dias WB. Inhibition of O-GlcNAcylation Reduces Cell Viability and Autophagy and Increases Sensitivity to Chemotherapeutic Temozolomide in Glioblastoma. Cancers (Basel) 2023; 15:4740. [PMID: 37835434 PMCID: PMC10571858 DOI: 10.3390/cancers15194740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma (GB) is the most aggressive primary malignant brain tumor and is associated with short survival. O-GlcNAcylation is an intracellular glycosylation that regulates protein function, enzymatic activity, protein stability, and subcellular localization. Aberrant O-GlcNAcylation is related to the tumorigenesis of different tumors, and mounting evidence supports O-GlcNAc transferase (OGT) as a potential therapeutic target. Here, we used two human GB cell lines alongside primary human astrocytes as a non-tumoral control to investigate the role of O-GlcNAcylation in cell proliferation, cell cycle, autophagy, and cell death. We observed that hyper O-GlcNAcylation promoted increased cellular proliferation, independent of alterations in the cell cycle, through the activation of autophagy. On the other hand, hypo O-GlcNAcylation inhibited autophagy, promoted cell death by apoptosis, and reduced cell proliferation. In addition, the decrease in O-GlcNAcylation sensitized GB cells to the chemotherapeutic temozolomide (TMZ) without affecting human astrocytes. Combined, these results indicated a role for O-GlcNAcylation in governing cell proliferation, autophagy, cell death, and TMZ response, thereby indicating possible therapeutic implications for treating GB. These findings pave the way for further research and the development of novel treatment approaches which may contribute to improved outcomes and increased survival rates for patients facing this challenging disease.
Collapse
Affiliation(s)
- Amanda V. Leonel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Frederico Alisson-Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Ronan C. M. Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Rodrigo P. Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Julia C. Gomes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Gabriel M. C. Longo
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| | - Bruna M. Faria
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil (L.R.); (K.C.)
| | - Mariana S. Siqueira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Miria G. Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Andreia Vasconcelos-dos-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Luciana B. Chiarini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Luciana Romão
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil (L.R.); (K.C.)
| | - Leonardo H. Travassos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Katia Carneiro
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil (L.R.); (K.C.)
| | - Adriane R. Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Wagner B. Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| |
Collapse
|
121
|
Li X, Wang J, Yuan G, Pan Y. Efficacy of TTFields in high-grade gliomas: a protocol for systematic review and meta-analysis. BMJ Open 2023; 13:e073753. [PMID: 37730390 PMCID: PMC10514625 DOI: 10.1136/bmjopen-2023-073753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
INTRODUCTION Despite their recent FDA(Food and Drug Administration) approval, tumour treatment fields (TTFields) have not seen acceptance as part of standard of care (SOC) for the treatment of high-grade gliomas (HGGs). Few studies have reported the clinical effect of simultaneous or sequential use of TTFields with the current SOC. However, whether TTFields are beneficial over the standard treatment remains to be established with a meta-analysis. Therefore, we here performed a systematic review and meta-analysis to understand the benefit of TTFields for patients with HGGs. METHODS AND ANALYSIS We registered this systematic review with the PROSPERO network (registration number: CRD42023398972) and aimed to follow the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines in the study. All articles related to TTFields in glioma will be systematically searched for in the following databases since their inception until November 2023: the China National Knowledge Infrastructure, Embase, Cochrane Library, Wanfang Database, China Science Journal Database, China Biomedical Documentation Database, VIP database, Web of Science and PubMed. Article screening and data extraction will be done independently by the authors and cross-checked by two of the authors on completion. The Cochrane risk of bias assessment tool will be used for quality assessment of the included studies. Review Manager V.5.3 (Cochrane Collaboration) will be used to perform the meta-analysis. ETHICS AND DISSEMINATION Ethical approval is not required because the data used will be obtained from published studies, and there will be no concerns about privacy. The results of this study will be published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42023398972.
Collapse
Affiliation(s)
- Xinlong Li
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Juncheng Wang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Guoqiang Yuan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yawen Pan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
122
|
Homami E, Goliaei B, Shariatpanahi SP, Habibi-Kelishomi Z. Alternating electric fields can improve chemotherapy treatment efficacy in blood cancer cell U937 (non-adherent cells). BMC Cancer 2023; 23:861. [PMID: 37700230 PMCID: PMC10496298 DOI: 10.1186/s12885-023-11339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Recent achievements in cancer therapy are the use of alternating electrical fields at intermediate frequencies (100-300 kHz) and low intensities (1-3 V/cm), which specifically target cell proliferation while affecting different cellular activities depending on the frequency used. METHODS In this article, we examine the effect of electric fields on spherical suspended cells and propose the combination of Daunorubicin, a chemotherapy agent widely used in the treatment of acute myeloid leukemia, with electric field exposure. U937 cells were subjected to an electric field with a frequency of 200 kHz and an intensity of 0.75 V/cm, or to a combination of Daunorubicin and electric field exposure, resulting in a significant reduction in cell proliferation. Furthermore, the application of an electric field to U937 cells increased Daunorubicin uptake. RESULTS Apoptosis and DNA damage were induced by the electric field or in conjunction with Daunorubicin. Notably, normal cells exposed to an electric field did not show significant damage, indicating a selective effect on dividing cancer cells (U937). Moreover, the electric field affects the U937 cell line either alone or in combination with Daunorubicin. This effect may be due to increased membrane permeability. CONCLUSIONS Our findings suggest that the use of electric fields at intermediate frequencies and low intensities, either alone or in combination with Daunorubicin, has potential as a selective anti-cancer therapy for dividing cancer cells, particularly in the treatment of acute myeloid leukemia. Further research is needed to fully understand the underlying mechanisms and to optimize the use of this therapy.
Collapse
Affiliation(s)
- Elham Homami
- Institute of Biochemistry and Biophysics, University of Tehran, PO Box 13145-1384, Tehran, Iran
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, PO Box 13145-1384, Tehran, Iran.
| | | | - Zahra Habibi-Kelishomi
- Institute of Biochemistry and Biophysics, University of Tehran, PO Box 13145-1384, Tehran, Iran
| |
Collapse
|
123
|
Charbonneau M, Harper K, Brochu-Gaudreau K, Perreault A, Roy LO, Lucien F, Tian S, Fortin D, Dubois CM. The development of a rapid patient-derived xenograft model to predict chemotherapeutic drug sensitivity/resistance in malignant glial tumors. Neuro Oncol 2023; 25:1605-1616. [PMID: 36821432 PMCID: PMC10479744 DOI: 10.1093/neuonc/noad047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND High-grade gliomas (HGG) are aggressive brain tumors associated with short median patient survival and limited response to therapies, driving the need to develop tools to improve patient outcomes. Patient-derived xenograft (PDX) models, such as mouse PDX, have emerged as potential Avatar platforms for personalized oncology approaches, but the difficulty for some human grafts to grow successfully and the long time required for mice to develop tumors preclude their use for HGG. METHODS We used a rapid and efficient ex-ovo chicken embryo chorioallantoic membrane (CAM) culture system to evaluate the efficacy of oncologic drug options for HGG patients. RESULTS Implantation of fresh glioma tissue fragments from 59 of 60 patients, that include difficult-to-grow IDH-mutated samples, successfully established CAM tumor xenografts within 7 days, with a tumor take rate of 98.3%. These xenografts faithfully recapitulate the histological and molecular characteristics of the primary tumor, and the ability of individual fragments to form tumors was predictive of poor patient prognosis. Treatment of drug-sensitive or drug-resistant xenografts indicates that the CAM-glioma assay enables testing tumor sensitivity to temozolomide and carboplatin at doses consistent with those administered to patients. In a proof-of-concept study involving 14 HGG patients, we observed a correlation of 100% between the CAM xenograft response to temozolomide or carboplatin and the clinical response of patients. CONCLUSION The CAM-glioma model is a fast and reliable assay that has the potential to serve as a complementary model to drug discovery and a real-time Avatar platform to predict the best treatment for HGG patients.
Collapse
Affiliation(s)
- Martine Charbonneau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Kelly Harper
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Karine Brochu-Gaudreau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Alexis Perreault
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Laurent-Olivier Roy
- Department of Surgery, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | | | - Shulan Tian
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - David Fortin
- Department of Surgery, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Claire M Dubois
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| |
Collapse
|
124
|
Salvador E, Hagemann C. Implications of cell's electrical properties for standard of care in glioblastoma therapy: Comment on "The distinguishing electrical properties of cancer cells" by E. Di Gregorio et al. Phys Life Rev 2023; 46:264-266. [PMID: 37567076 DOI: 10.1016/j.plrev.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Affiliation(s)
- Ellaine Salvador
- Section Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Carsten Hagemann
- Section Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany.
| |
Collapse
|
125
|
Martins C, Sarmento B. Multi-ligand functionalized blood-to-tumor sequential targeting strategies in the field of glioblastoma nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1893. [PMID: 37186374 DOI: 10.1002/wnan.1893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 05/17/2023]
Abstract
Glioblastoma (GBM) is an unmet clinical need characterized by a standard of care (SOC) 5-year survival rate of only 5%, and a treatment mostly palliative. Significant hurdles in GBM therapies include an effective penetration of therapeutics through the brain protective barrier, namely the blood-brain barrier (BBB), and a successful therapeutic delivery to brain-invading tumor cells post-BBB crossing. These hurdles, along with the poor prognosis and critical heterogeneity of the disease, have shifted attention to treatment modalities with capacity to precisely and sequentially target (i) BBB cells, inducing blood-to-brain transport, and (ii) GBM cells, leading to a higher therapeutic accumulation at the tumor site. This sequential targeting allows therapeutic molecules to reach the brain parenchyma and compromise molecular processes that support tumor cell invasion. Besides improving formulation and pharmacokinetics constraints of drugs, nanomedicines offer the possibility of being surface functionalized with multiple possibilities of targeting ligands, while delivering the desired therapeutic cargos to the biological sites of interest. Targeting ligands exploit the site-specific expression or overexpression of specific molecules on BBB and GBM cells, triggering brain plus tumor transport. Since the efficacy of single-ligand functionalized nanomedicines is limited due to the GBM anatomical site (brain) and disease complexity, this review presents an overview of multi-ligand functionalized, BBB and GBM sequentially- and dual-targeted nanomedicines reported in literature over the last 10 years. The role of the BBB in GBM progression, treatment options, and the multiple possibilities of currently available targeting ligands will be summarized. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Cláudia Martins
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- IUCS-CESPU, Gandra, Portugal
| |
Collapse
|
126
|
Li X, Liu K, Xing L, Rubinsky B. A review of tumor treating fields (TTFields): advancements in clinical applications and mechanistic insights. Radiol Oncol 2023; 57:279-291. [PMID: 37665740 PMCID: PMC10476910 DOI: 10.2478/raon-2023-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Tumor Treating Fields (TTFields) is a non-invasive modality for cancer treatment that utilizes a specific sinusoidal electric field ranging from 100 kHz to 300 kHz, with an intensity of 1 V/cm to 3 V/cm. Its purpose is to inhibit cancer cell proliferation and induce cell death. Despite promising outcomes from clinical trials, TTFields have received FDA approval for the treatment of glioblastoma multiforme (GBM) and malignant pleural mesothelioma (MPM). Nevertheless, global acceptance of TTFields remains limited. To enhance its clinical application in other types of cancer and gain a better understanding of its mechanisms of action, this review aims to summarize the current research status by examining existing literature on TTFields' clinical trials and mechanism studies. CONCLUSIONS Through this comprehensive review, we seek to stimulate novel ideas and provide physicians, patients, and researchers with a better comprehension of the development of TTFields and its potential applications in cancer treatment.
Collapse
Affiliation(s)
- Xing Li
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nan Jing, Jiang Su, China
| | - Kaida Liu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nan Jing, Jiang Su, China
| | - Lidong Xing
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nan Jing, Jiang Su, China
| | - Boris Rubinsky
- Department of Mechanical Engineering, University of California Berkeley, BerkeleyCA, United States of America
| |
Collapse
|
127
|
Guterres A, Abrahim M, da Costa Neves PC. The role of immune subtyping in glioma mRNA vaccine development. Immunotherapy 2023; 15:1057-1072. [PMID: 37431617 DOI: 10.2217/imt-2023-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
Studies on the development of mRNA vaccines for central nervous system tumors have used gene expression profiles, clinical data and RNA sequencing from sources such as The Cancer Genome Atlas and Chinese Glioma Genome Atlas to identify effective antigens. These studies revealed several immune subtypes of glioma, each one linked to unique prognoses and genetic/immune-modulatory changes. Potential antigens include ARPC1B, BRCA2, COL6A1, ITGB3, IDH1, LILRB2, TP53 and KDR, among others. Patients with immune-active and immune-suppressive phenotypes were found to respond better to mRNA vaccines. While these findings indicate the potential of mRNA vaccines in cancer therapy, further research is required to optimize administration and adjuvant selection, and precisely identify target antigens.
Collapse
Affiliation(s)
- Alexandro Guterres
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, 21040-360, Brazil
| | - Mayla Abrahim
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, 21040-360, Brazil
| | - Patrícia Cristina da Costa Neves
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
128
|
Ramesh KK, Xu KM, Trivedi AG, Huang V, Sharghi VK, Kleinberg LR, Mellon EA, Shu HKG, Shim H, Weinberg BD. A Fully Automated Post-Surgical Brain Tumor Segmentation Model for Radiation Treatment Planning and Longitudinal Tracking. Cancers (Basel) 2023; 15:3956. [PMID: 37568773 PMCID: PMC10417353 DOI: 10.3390/cancers15153956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Glioblastoma (GBM) has a poor survival rate even with aggressive surgery, concomitant radiation therapy (RT), and adjuvant chemotherapy. Standard-of-care RT involves irradiating a lower dose to the hyperintense lesion in T2-weighted fluid-attenuated inversion recovery MRI (T2w/FLAIR) and a higher dose to the enhancing tumor on contrast-enhanced, T1-weighted MRI (CE-T1w). While there have been several attempts to segment pre-surgical brain tumors, there have been minimal efforts to segment post-surgical tumors, which are complicated by a resection cavity and postoperative blood products, and tools are needed to assist physicians in generating treatment contours and assessing treated patients on follow up. This report is one of the first to train and test multiple deep learning models for the purpose of post-surgical brain tumor segmentation for RT planning and longitudinal tracking. Post-surgical FLAIR and CE-T1w MRIs, as well as their corresponding RT targets (GTV1 and GTV2, respectively) from 225 GBM patients treated with standard RT were trained on multiple deep learning models including: Unet, ResUnet, Swin-Unet, 3D Unet, and Swin-UNETR. These models were tested on an independent dataset of 30 GBM patients with the Dice metric used to evaluate segmentation accuracy. Finally, the best-performing segmentation model was integrated into our longitudinal tracking web application to assign automated structured reporting scores using change in percent cutoffs of lesion volume. The 3D Unet was our best-performing model with mean Dice scores of 0.72 for GTV1 and 0.73 for GTV2 with a standard deviation of 0.17 for both in the test dataset. We have successfully developed a lightweight post-surgical segmentation model for RT planning and longitudinal tracking.
Collapse
Affiliation(s)
- Karthik K. Ramesh
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.K.R.); (A.G.T.); (V.H.)
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Karen M. Xu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.K.R.); (A.G.T.); (V.H.)
| | - Anuradha G. Trivedi
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.K.R.); (A.G.T.); (V.H.)
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vicki Huang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.K.R.); (A.G.T.); (V.H.)
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Lawrence R. Kleinberg
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eric A. Mellon
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 45056, USA
| | - Hui-Kuo G. Shu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.K.R.); (A.G.T.); (V.H.)
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hyunsuk Shim
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.K.R.); (A.G.T.); (V.H.)
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brent D. Weinberg
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
129
|
Mekala JR, Adusumilli K, Chamarthy S, Angirekula HSR. Novel sights on therapeutic, prognostic, and diagnostics aspects of non-coding RNAs in glioblastoma multiforme. Metab Brain Dis 2023; 38:1801-1829. [PMID: 37249862 PMCID: PMC10227410 DOI: 10.1007/s11011-023-01234-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Glioblastoma Multiforme (GBM) is the primary brain tumor and accounts for 200,000 deaths each year worldwide. The standard therapy includes surgical resection followed by temozolomide (TMZ)-based chemotherapy and radiotherapy. The survival period of GBM patients is only 12-15 months. Therefore, novel treatment modalities for GBM treatment are urgently needed. Mounting evidence reveals that non-coding RNAs (ncRNAs) were involved in regulating gene expression, the pathophysiology of GBM, and enhancing therapeutic outcomes. The combinatory use of ncRNAs, chemotherapeutic drugs, and tumor suppressor gene expression induction might provide an innovative, alternative therapeutic approach for managing GBM. Studies have highlighted the role of Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in prognosis and diagnosis. Dysregulation of ncRNAs is observed in virtually all tumor types, including GBMs. Studies have also indicated the blood-brain barrier (BBB) as a crucial factor that hinders chemotherapy. Although several nanoparticle-mediated drug deliveries were degrading effectively against GBM in vitro conditions. However, the potential to cross the BBB and optimum delivery of oligonucleotide RNA into GBM cells in the brain is currently under intense clinical trials. Despite several advances in molecular pathogenesis, GBM remains resistant to chemo and radiotherapy. Targeted therapies have less clinical benefit due to high genetic heterogeneity and activation of alternative pathways. Thus, identifying GBM-specific prognostic pathways, essential genes, and genomic aberrations provide several potential benefits as subtypes of GBM. Also, these approaches will provide insights into new strategies to overcome the heterogenous nature of GBM, which will eventually lead to successful therapeutic interventions toward precision medicine and precision oncology.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India.
| | - Kowsalya Adusumilli
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Sahiti Chamarthy
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Hari Sai Ram Angirekula
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| |
Collapse
|
130
|
Chojak R, Fares J, Petrosyan E, Lesniak MS. Cellular senescence in glioma. J Neurooncol 2023; 164:11-29. [PMID: 37458855 DOI: 10.1007/s11060-023-04387-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/01/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Glioma is the most common primary brain tumor and is often associated with treatment resistance and poor prognosis. Standard treatment typically involves radiotherapy and temozolomide-based chemotherapy, both of which induce cellular senescence-a tumor suppression mechanism. DISCUSSION Gliomas employ various mechanisms to bypass or escape senescence and remain in a proliferative state. Importantly, senescent cells remain viable and secrete a large number of factors collectively known as the senescence-associated secretory phenotype (SASP) that, paradoxically, also have pro-tumorigenic effects. Furthermore, senescent cells may represent one form of tumor dormancy and play a role in glioma recurrence and progression. CONCLUSION In this article, we delineate an overview of senescence in the context of gliomas, including the mechanisms that lead to senescence induction, bypass, and escape. Furthermore, we examine the role of senescent cells in the tumor microenvironment and their role in tumor progression and recurrence. Additionally, we highlight potential therapeutic opportunities for targeting senescence in glioma.
Collapse
Affiliation(s)
- Rafał Chojak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edgar Petrosyan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA.
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
131
|
Soykut ED, Odabasi E, Sahin N, Tataroglu H, Baran A, Guney Y. Re-irradiation with stereotactic radiotherapy for recurrent high-grade glial tumors. Rep Pract Oncol Radiother 2023; 28:361-369. [PMID: 37795399 PMCID: PMC10547398 DOI: 10.5603/rpor.a2023.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/23/2023] [Indexed: 10/06/2023] Open
Abstract
Background Despite the radical treatments applied, recurrence is encountered in the majority of high-grade gliomas (HGG). There is no standard treatment when recurrence is detected, but stereotactic radiotherapy (SRT) is a preferable alternative. The aim of this retrospective study is to evaluate the efficacy of SRT for recurrent HGG, and to investigate the factors that affect survival. Materials and methods From 2013 to 2021, a total of 59 patients with 64 lesions were re-irradiated in a single center with the CyberKnife Robotic Radiosurgery System. The primary endpoints of the study were overall survival (OS), progression free survival (PFS) and local control rates (LCR). Results The median time to first recurrence was 13 (4-85) months. SRT was performed as a median prescription dose of 30 Gy (range 15-30), with a median of 5 fractions (1-5). The median follow-up time was 4 months (range 1-57). The median OS was 8 (95% CI: 4.66-11.33) months. Age, grade 3, tumor size were associated with better survival. The median PFS was 5 [95% confidence interval (CI): 3.39-6.60] months. Age, grade 3 and time to recurrence > 9 months were associated with improved PFS. Grade 3 gliomas (p = 0.027), size of tumor < 2 cm (p = 0.008) remained independent prognostic factors for OS in multivariate analysis. Conclusion SRT is a viable treatment modality with significant survival contribution. Since it may have a favorable prognostic effect on survival in patients with tumor size < 2 cm, we recommend early diagnosis of recurrence and a decision to re-irradiate a smaller tumor during follow-up.
Collapse
Affiliation(s)
- Ela Delikgoz Soykut
- Department of Radiation Oncology, Samsun Education and Research Hospital, Samsun, Türkiye
| | - Eylem Odabasi
- Department of Radiation Oncology, Samsun Education and Research Hospital, Samsun, Türkiye
| | - Nilgun Sahin
- Department of Radiation Oncology, Samsun Education and Research Hospital, Samsun, Türkiye
| | - Hatice Tataroglu
- Department of Radiation Oncology, Samsun Education and Research Hospital, Samsun, Türkiye
| | - Ahmet Baran
- Department of Medical Oncology, Samsun Education and Research Hospital, Samsun, Türkiye
| | - Yildiz Guney
- Department of Radiation Oncology, Memorial Ankara Hospital, Ankara, Türkiye
| |
Collapse
|
132
|
Caserta S, Gangemi S, Murdaca G, Allegra A. Gender Differences and miRNAs Expression in Cancer: Implications on Prognosis and Susceptibility. Int J Mol Sci 2023; 24:11544. [PMID: 37511303 PMCID: PMC10380791 DOI: 10.3390/ijms241411544] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs are small, noncoding molecules of about twenty-two nucleotides with crucial roles in both healthy and pathological cells. Their expression depends not only on genetic factors, but also on epigenetic mechanisms like genomic imprinting and inactivation of X chromosome in females that influence in a sex-dependent manner onset, progression, and response to therapy of different diseases like cancer. There is evidence of a correlation between miRNAs, sex, and cancer both in solid tumors and in hematological malignancies; as an example, in lymphomas, with a prevalence rate higher in men than women, miR-142 is "silenced" because of its hypermethylation by DNA methyltransferase-1 and it is blocked in its normal activity of regulating the migration of the cell. This condition corresponds in clinical practice with a more aggressive tumor. In addition, cancer treatment can have advantages from the evaluation of miRNAs expression; in fact, therapy with estrogens in hepatocellular carcinoma determines an upregulation of the oncosuppressors miR-26a, miR-92, and miR-122 and, consequently, apoptosis. The aim of this review is to present an exhaustive collection of scientific data about the possible role of sex differences on the expression of miRNAs and the mechanisms through which miRNAs influence cancerogenesis, autophagy, and apoptosis of cells from diverse types of tumors.
Collapse
Affiliation(s)
- Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
133
|
Trivedi AG, Ramesh KK, Huang V, Mellon EA, Barker PB, Kleinberg LR, Weinberg BD, Shu HKG, Shim H. Spectroscopic MRI-Based Biomarkers Predict Survival for Newly Diagnosed Glioblastoma in a Clinical Trial. Cancers (Basel) 2023; 15:3524. [PMID: 37444634 PMCID: PMC10340675 DOI: 10.3390/cancers15133524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Despite aggressive treatment, glioblastoma has a poor prognosis due to its infiltrative nature. Spectroscopic MRI-measured brain metabolites, particularly the choline to N-acetylaspartate ratio (Cho/NAA), better characterizes the extent of tumor infiltration. In a previous pilot trial (NCT03137888), brain regions with Cho/NAA ≥ 2x normal were treated with high-dose radiation for newly diagnosed glioblastoma patients. This report is a secondary analysis of that trial where spectroscopic MRI-based biomarkers are evaluated for how they correlate with progression-free and overall survival (PFS/OS). Subgroups were created within the cohort based on pre-radiation treatment (pre-RT) median cutoff volumes of residual enhancement (2.1 cc) and metabolically abnormal volumes used for treatment (19.2 cc). We generated Kaplan-Meier PFS/OS curves and compared these curves via the log-rank test between subgroups. For the subgroups stratified by metabolic abnormality, statistically significant differences were observed for PFS (p = 0.019) and OS (p = 0.020). Stratification by residual enhancement did not lead to observable differences in the OS (p = 0.373) or PFS (p = 0.286) curves. This retrospective analysis shows that patients with lower post-surgical Cho/NAA volumes had significantly superior survival outcomes, while residual enhancement, which guides high-dose radiation in standard treatment, had little significance in PFS/OS. This suggests that the infiltrating, non-enhancing component of glioblastoma is an important factor in patient outcomes and should be treated accordingly.
Collapse
Affiliation(s)
- Anuradha G. Trivedi
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Karthik K. Ramesh
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vicki Huang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eric A. Mellon
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 45056, USA
| | - Peter B. Barker
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lawrence R. Kleinberg
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brent D. Weinberg
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui-Kuo G. Shu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hyunsuk Shim
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
134
|
Nisnboym M, Vincze SR, Xiong Z, Sneiderman CT, Raphael RA, Li B, Jaswal AP, Sever RE, Day KE, LaToche JD, Foley LM, Karimi H, Hitchens TK, Agnihotri S, Hu B, Rajasundaram D, Anderson CJ, Blumenthal DT, Pearce TM, Uttam S, Nedrow JR, Panigrahy A, Pollack IF, Lieberman FS, Drappatz J, Raphael I, Edwards WB, Kohanbash G. Immuno-PET Imaging of CD69 Visualizes T-Cell Activation and Predicts Survival Following Immunotherapy in Murine Glioblastoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1173-1188. [PMID: 37426447 PMCID: PMC10324623 DOI: 10.1158/2767-9764.crc-22-0434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/19/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Immunotherapy may be promising for the treatment of some patients with GBM; however, there is a need for noninvasive neuroimaging techniques to predict immunotherapeutic responses. The effectiveness of most immunotherapeutic strategies requires T-cell activation. Therefore, we aimed to evaluate an early marker of T-cell activation, CD69, for its use as an imaging biomarker of response to immunotherapy for GBM. Herein, we performed CD69 immunostaining on human and mouse T cells following in vitro activation and post immune checkpoint inhibitors (ICI) in an orthotopic syngeneic mouse glioma model. CD69 expression on tumor-infiltrating leukocytes was assessed using single-cell RNA sequencing (scRNA-seq) data from patients with recurrent GBM receiving ICI. Radiolabeled CD69 Ab PET/CT imaging (CD69 immuno-PET) was performed on GBM-bearing mice longitudinally to quantify CD69 and its association with survival following immunotherapy. We show CD69 expression is upregulated upon T-cell activation and on tumor-infiltrating lymphocytes (TIL) in response to immunotherapy. Similarly, scRNA-seq data demonstrated elevated CD69 on TILs from patients with ICI-treated recurrent GBM as compared with TILs from control cohorts. CD69 immuno-PET studies showed a significantly higher tracer uptake in the tumors of ICI-treated mice compared with controls. Importantly, we observed a positive correlation between survival and CD69 immuno-PET signals in immunotherapy-treated animals and established a trajectory of T-cell activation by virtue of CD69-immuno-PET measurements. Our study supports the potential use of CD69 immuno-PET as an immunotherapy response assessment imaging tool for patients with GBM. Significance Immunotherapy may hold promise for the treatment of some patients with GBM. There is a need to assess therapy responsiveness to allow the continuation of effective treatment in responders and to avoid ineffective treatment with potential adverse effects in the nonresponders. We demonstrate that noninvasive PET/CT imaging of CD69 may allow early detection of immunotherapy responsiveness in patients with GBM.
Collapse
Affiliation(s)
- Michal Nisnboym
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Sarah R. Vincze
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zujian Xiong
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Chaim T. Sneiderman
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rebecca A. Raphael
- Department of Computational and Systems Biology, UPMC Hillman Cancer Center, Cancer Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bo Li
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ambika P. Jaswal
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - ReidAnn E. Sever
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kathryn E. Day
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Joseph D. LaToche
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Lesley M. Foley
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Hanieh Karimi
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - T. Kevin Hitchens
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sameer Agnihotri
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Baoli Hu
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dhivyaa Rajasundaram
- Division of Health Informatics, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Deborah T. Blumenthal
- Neuro-oncology Division, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Thomas M. Pearce
- Division of Neuropathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shikhar Uttam
- Department of Computational and Systems Biology, UPMC Hillman Cancer Center, Cancer Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessie R. Nedrow
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Ashok Panigrahy
- Department of Radiology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ian F. Pollack
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Frank S. Lieberman
- Neuro-oncology Program, Division of Hematology/Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jan Drappatz
- Neuro-oncology Program, Division of Hematology/Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Itay Raphael
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wilson B. Edwards
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Gary Kohanbash
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
135
|
Smith NJ, Deaton TK, Territo W, Graner B, Gauger A, Snyder SE, Schulte ML, Green MA, Hutchins GD, Veronesi MC. Hybrid 18F-Fluoroethyltyrosine PET and MRI with Perfusion to Distinguish Disease Progression from Treatment-Related Change in Malignant Brain Tumors: The Quest to Beat the Toughest Cases. J Nucl Med 2023; 64:1087-1092. [PMID: 37116915 PMCID: PMC10315704 DOI: 10.2967/jnumed.122.265149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/16/2023] [Indexed: 04/30/2023] Open
Abstract
Conventional MRI has important limitations when assessing for progression of disease (POD) versus treatment-related changes (TRC) in patients with malignant brain tumors. We describe the observed impact and pitfalls of implementing 18F-fluoroethyltyrosine (18F-FET) perfusion PET/MRI into routine clinical practice. Methods: Through expanded-access investigational new drug use of 18F-FET, hybrid 18F-FET perfusion PET/MRI was performed during clinical management of 80 patients with World Health Organization central nervous system grade 3 or 4 gliomas or brain metastases of 6 tissue origins for which the prior brain MRI results were ambiguous. The diagnostic performance with 18F-FET PET/MRI was dually evaluated within routine clinical service and for retrospective parametric evaluation. Various 18F-FET perfusion PET/MRI parameters were assessed, and patients were monitored for at least 6 mo to confirm the diagnosis using pathology, imaging, and clinical progress. Results: Hybrid 18F-FET perfusion PET/MRI had high overall accuracy (86%), sensitivity (86%), and specificity (87%) for difficult diagnostic cases for which conventional MRI accuracy was poor (66%). 18F-FET tumor-to-brain ratio static metrics were highly reliable for distinguishing POD from TRC (area under the curve, 0.90). Dynamic tumor-to-brain intercept was more accurate (85%) than SUV slope (73%) or time to peak (73%). Concordant PET/MRI findings were 89% accurate. When PET and MRI conflicted, 18F-FET PET was correct in 12 of 15 cases (80%), whereas MRI was correct in 3 of 15 cases (20%). Clinical management changed after 88% (36/41) of POD diagnoses, whereas management was maintained after 87% (34/39) of TRC diagnoses. Conclusion: Hybrid 18F-FET PET/MRI positively impacted the routine clinical care of challenging malignant brain tumor cases at a U.S. institution. The results add to a growing body of literature that 18F-FET PET complements MRI, even rescuing MRI when it fails.
Collapse
Affiliation(s)
- Nathaniel J Smith
- School of Medicine, Indiana University, Indianapolis, Indiana
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana; and
| | | | - Wendy Territo
- School of Medicine, Indiana University, Indianapolis, Indiana
| | - Brian Graner
- School of Medicine, Indiana University, Indianapolis, Indiana
| | - Andrew Gauger
- School of Medicine, Indiana University, Indianapolis, Indiana
| | - Scott E Snyder
- School of Medicine, Indiana University, Indianapolis, Indiana
| | | | - Mark A Green
- School of Medicine, Indiana University, Indianapolis, Indiana
| | - Gary D Hutchins
- School of Medicine, Indiana University, Indianapolis, Indiana
| | | |
Collapse
|
136
|
Geraldo LH, Garcia C, Xu Y, Leser FS, Grimaldi I, de Camargo Magalhães ES, Dejaegher J, Solie L, Pereira CM, Correia AH, De Vleeschouwer S, Tavitian B, Canedo NHS, Mathivet T, Thomas JL, Eichmann A, Lima FRS. CCL21-CCR7 signaling promotes microglia/macrophage recruitment and chemotherapy resistance in glioblastoma. Cell Mol Life Sci 2023; 80:179. [PMID: 37314567 DOI: 10.1007/s00018-023-04788-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM) is the most common and fatal primary tumor of the central nervous system (CNS) and current treatments have limited success. Chemokine signaling regulates both malignant cells and stromal cells of the tumor microenvironment (TME), constituting a potential therapeutic target against brain cancers. Here, we investigated the C-C chemokine receptor type 7 (CCR7) and the chemokine (C-C-motif) ligand 21 (CCL21) for their expression and function in human GBM and then assessed their therapeutic potential in preclinical mouse GBM models. In GBM patients, CCR7 expression positively associated with a poor survival. CCL21-CCR7 signaling was shown to regulate tumor cell migration and proliferation while also controlling tumor associated microglia/macrophage recruitment and VEGF-A production, thereby controlling vascular dysmorphia. Inhibition of CCL21-CCR7 signaling led to an increased sensitivity to temozolomide-induced tumor cell death. Collectively, our data indicate that drug targeting of CCL21-CCR7 signaling in tumor and TME cells is a therapeutic option against GBM.
Collapse
Affiliation(s)
- Luiz Henrique Geraldo
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1.766, Cidade Universitária da UFRJ, Rio de Janeiro, RJ, 21949-590, Brazil.
- Université de Paris, PARCC, INSERM, 75015, Paris, France.
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06510-3221, USA.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510-3221, USA.
| | - Celina Garcia
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1.766, Cidade Universitária da UFRJ, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Yunling Xu
- Université de Paris, PARCC, INSERM, 75015, Paris, France
| | - Felipe Saceanu Leser
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1.766, Cidade Universitária da UFRJ, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Izabella Grimaldi
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1.766, Cidade Universitária da UFRJ, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Eduardo Sabino de Camargo Magalhães
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1.766, Cidade Universitária da UFRJ, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Joost Dejaegher
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, KU Leuven, Leuven, Belgium
| | - Lien Solie
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, KU Leuven, Leuven, Belgium
| | - Cláudia Maria Pereira
- Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Ana Helena Correia
- Departmento de Patologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Steven De Vleeschouwer
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, KU Leuven, Leuven, Belgium
| | | | - Nathalie Henriques Silva Canedo
- Departmento de Patologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jean-Leon Thomas
- Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Paris, France.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510-3221, USA.
| | - Anne Eichmann
- Université de Paris, PARCC, INSERM, 75015, Paris, France
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06510-3221, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510-3221, USA
| | - Flavia Regina Souza Lima
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1.766, Cidade Universitária da UFRJ, Rio de Janeiro, RJ, 21949-590, Brazil.
| |
Collapse
|
137
|
Vishnoi M, Dereli Z, Yin Z, Kong EK, Kinali M, Thapa K, Babur O, Yun K, Abdelfattah N, Li X, Bozorgui B, Rostomily RC, Korkut A. A prognostic matrix code defines functional glioblastoma phenotypes and niches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543903. [PMID: 37333072 PMCID: PMC10274725 DOI: 10.1101/2023.06.06.543903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Interactions among tumor, immune and vascular niches play major roles in driving glioblastoma (GBM) malignancy and treatment responses. The composition, heterogeneity, and localization of extracellular core matrix proteins (CMPs) that mediate such interactions, however, are not well understood. Here, we characterize functional and clinical relevance of genes encoding CMPs in GBM at bulk, single cell, and spatial anatomical resolution. We identify a "matrix code" for genes encoding CMPs whose expression levels categorize GBM tumors into matrisome-high and matrisome-low groups that correlate with worse and better survival, respectively, of patients. The matrisome enrichment is associated with specific driver oncogenic alterations, mesenchymal state, infiltration of pro-tumor immune cells and immune checkpoint gene expression. Anatomical and single cell transcriptome analyses indicate that matrisome gene expression is enriched in vascular and leading edge/infiltrative anatomic structures that are known to harbor glioma stem cells driving GBM progression. Finally, we identified a 17-gene matrisome signature that retains and further refines the prognostic value of genes encoding CMPs and, importantly, potentially predicts responses to PD1 blockade in clinical trials for GBM. The matrisome gene expression profiles may provide biomarkers of functionally relevant GBM niches that contribute to mesenchymal-immune cross talk and patient stratification to optimize treatment responses.
Collapse
Affiliation(s)
- Monika Vishnoi
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurosurgery, University of Washington School of Medicine, Seattle WA, 98195
| | - Zeynep Dereli
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, TX, 77030 USA
| | - Elisabeth K. Kong
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Statistics, Rice University, Houston, TX, 77030, USA
| | - Meric Kinali
- Computer Science, College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, 02125
| | - Kisan Thapa
- Computer Science, College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, 02125
| | - Ozgun Babur
- Computer Science, College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, 02125
| | - Kyuson Yun
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurology, Weill Cornell Medical School, New York NY, 10065
| | - Nourhan Abdelfattah
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurology, Weill Cornell Medical School, New York NY, 10065
| | - Xubin Li
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Behnaz Bozorgui
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert C. Rostomily
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurosurgery, University of Washington School of Medicine, Seattle WA, 98195
- Department of Neurosurgery, Weill Cornell Medical School, New York NY, 10065
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
138
|
Smothers AR, Henderson JR, O'Connell JJ, Stenbeck JM, Dean D, Booth BW. Optimization of tumor-treating field therapy for triple-negative breast cancer cells in vitro via frequency modulation. Cancer Cell Int 2023; 23:110. [PMID: 37287008 DOI: 10.1186/s12935-023-02959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023] Open
Abstract
PURPOSE Currently, tumor-treating field (TTField) therapy utilizes a single "optimal" frequency of electric fields to achieve maximal cell death in a targeted population of cells. However, because of differences in cell size, shape, and ploidy during mitosis, optimal electric field characteristics for universal maximal cell death may not exist. This study investigated the anti-mitotic effects of modulating electric field frequency as opposed to utilizing uniform electric fields. METHODS We developed and validated a custom device that delivers a wide variety of electric field and treatment parameters including frequency modulation. We investigated the efficacy of frequency modulating tumor-treating fields on triple-negative breast cancer cells compared to human breast epithelial cells. RESULTS We show that frequency-modulated (FM) TTFields are as selective at treating triple-negative breast cancer (TNBC) as uniform TTFields while having a greater efficacy for combating TNBC cell growth. TTField treatment at a mean frequency of 150 kHz with a frequency range of ± 10 kHz induced apoptosis in a greater number of TNBC cells after 24 h as compared to unmodulated treatment which led to further decreased cell viability after 48 h. Furthermore, all TNBC cells died after 72 h of FM treatment while cells that received unmodulated treatment were able to recover to cell number equivalent to the control. CONCLUSION TTFields were highly efficacious against TNBC growth, FM TTFields showed minimal effects on epithelial cells similar to unmodulated treatment.
Collapse
Affiliation(s)
- Austin R Smothers
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, USA
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | | | - John J O'Connell
- Prisma Health Cancer Institute, Prisma Health, Greenville, SC, USA
- Clemson University School of Health Research, Clemson, SC, USA
- University of South Carolina School of Medicine-Greenville, Greenville, SC, USA
| | | | - Delphine Dean
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, USA
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Brian W Booth
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
139
|
Capareli F, Costa F, Tuszynski JA, Sousa MC, Setogute YDC, Lima PD, Carvalho L, Santos E, Gumz BP, Sabbaga J, de Castria TB, Jardim DL, Freitas D, Horvat N, Bezerra ROF, Testagrossa L, Costa T, Zanesco T, Iemma AF, Abou‐Alfa GK. Low-energy amplitude-modulated electromagnetic field exposure: Feasibility study in patients with hepatocellular carcinoma. Cancer Med 2023; 12:12402-12412. [PMID: 37184216 PMCID: PMC10278519 DOI: 10.1002/cam4.5944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Patients with advanced hepatocellular carcinoma (HCC) and poor liver function lack effective systemic therapies. Low-energy electromagnetic fields (EMFs) can influence cell biological processes via non-thermal effects and may represent a new treatment option. METHODS This single-site feasibility trial enrolled patients with advanced HCC, Child-Pugh A and B, Eastern Cooperative Oncology Group 0-2. Patients underwent 90-min amplitude-modulated EMF exposure procedures every 2-4 weeks, using the AutEMdev (Autem Therapeutics). Patients could also receive standard care. The primary endpoints were safety and the identification of hemodynamic variability patterns. Exploratory endpoints included health-related quality of life (HRQoL), overall survival (OS). and objective response rate (ORR) using RECIST v1.1. RESULTS Sixty-six patients with advanced HCC received 539 AutEMdev procedures (median follow-up, 30 months). No serious adverse events occurred during procedures. Self-limiting grade 1 somnolence occurred in 78.7% of patients. Hemodynamic variability during EMF exposure was associated with specific amplitude-modulation frequencies. HRQoL was maintained or improved among patients remaining on treatment. Median OS was 11.3 months (95% confidence interval [CI]: 6.0, 16.6) overall (16.0 months [95% CI: 4.4, 27.6] and 12.0 months [6.4, 17.6] for combination therapy and monotherapy, respectively). ORR was 24.3% (32% and 17% for combination therapy and monotherapy, respectively). CONCLUSION AutEMdev EMF exposure has an excellent safety profile in patients with advanced HCC. Hemodynamic alterations at personalized frequencies may represent a surrogate of anti-tumor efficacy. NCT01686412.
Collapse
Affiliation(s)
| | - Frederico Costa
- Oncology DepartmentHospital Sírio‐LibanêsSão PauloBrazil
- Autem Medical LLCHanoverNew HampshireUSA
| | - Jack A. Tuszynski
- Autem Medical LLCHanoverNew HampshireUSA
- Division of Experimental Oncology, Department of OncologyCross Cancer Institute, University of AlbertaEdmontonAlbertaCanada
| | | | | | - Pablo D. Lima
- Oncology DepartmentHospital Sírio‐LibanêsSão PauloBrazil
| | | | - Elizabeth Santos
- Oncology DepartmentHospital Sírio‐LibanêsSão PauloBrazil
- Oncology DepartmentA. C. Camargo Cancer CenterSão PauloBrazil
| | - Brenda P. Gumz
- Oncology DepartmentHospital Sírio‐LibanêsSão PauloBrazil
| | - Jorge Sabbaga
- Oncology DepartmentHospital Sírio‐LibanêsSão PauloBrazil
| | | | | | | | - Natally Horvat
- Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | | | | | - Tiago Costa
- Santa Casa de São Paulo School of Medical SciencesSão PauloBrazil
| | | | - Antonio F. Iemma
- Institute of Mathematics and Statistics, University of São PauloSão PauloBrazil
| | - Ghassan K. Abou‐Alfa
- Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Weill Medical College at Cornell UniversityNew YorkNew YorkUSA
| |
Collapse
|
140
|
Singh H. Role of Molecular Targeted Therapeutic Drugs in Treatment of Glioblastoma: A Review Article. Glob Med Genet 2023; 10:42-47. [PMID: 37077370 PMCID: PMC10110362 DOI: 10.1055/s-0043-57028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Glioblastoma is remarkably periodic primary brain tumor, characterizing an eminently heterogeneous pattern of neoplasms that are utmost destructive and threatening cancers. An enhanced and upgraded knowledge of the various molecular pathways that cause malignant changes in glioblastoma has resulted in advancement of numerous biomarkers and the interpretation of various agents that pointedly target tumor cells and microenvironment. In this review, literature or information on various targeted therapy for glioblastoma is discussed. English language articles were scrutinized in plentiful directory or databases like PubMed, ScienceDirect, Web of Sciences, Google Scholar, and Scopus. The important keywords used for searching databases are "Glioblastoma," "Targeted therapy in glioblastoma," "Therapeutic drugs in glioblastoma," and "Molecular targets in glioblastoma."
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| |
Collapse
|
141
|
Panizza E, Regalado BD, Wang F, Nakano I, Vacanti NM, Cerione RA, Antonyak MA. Proteomic analysis reveals microvesicles containing NAMPT as mediators of radioresistance in glioma. Life Sci Alliance 2023; 6:e202201680. [PMID: 37037593 PMCID: PMC10087103 DOI: 10.26508/lsa.202201680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Tumor-initiating cells contained within the aggressive brain tumor glioma (glioma stem cells, GSCs) promote radioresistance and disease recurrence. However, mechanisms of resistance are not well understood. Herein, we show that the proteome-level regulation occurring upon radiation treatment of several patient-derived GSC lines predicts their resistance status, whereas glioma transcriptional subtypes do not. We identify a mechanism of radioresistance mediated by the transfer of the metabolic enzyme NAMPT to radiosensitive cells through microvesicles (NAMPT-high MVs) shed by resistant GSCs. NAMPT-high MVs rescue the proliferation of radiosensitive GSCs and fibroblasts upon irradiation, and upon treatment with a radiomimetic drug or low serum, and increase intracellular NAD(H) levels. Finally, we show that the presence of NAMPT within the MVs and its enzymatic activity in recipient cells are necessary to mediate these effects. Collectively, we demonstrate that the proteome of GSCs provides unique information as it predicts the ability of glioma to resist radiation treatment. Furthermore, we establish NAMPT transfer via MVs as a mechanism for rescuing the proliferation of radiosensitive cells upon irradiation.
Collapse
Affiliation(s)
- Elena Panizza
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | | | - Fangyu Wang
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Ichiro Nakano
- Department of Neurosurgery, Medical Institute Hokuto Hospital, Hokkaido, Japan
| | | | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
142
|
Feldheim J, Kessler AF, Feldheim JJ, Schmitt D, Oster C, Lazaridis L, Glas M, Ernestus RI, Monoranu CM, Löhr M, Hagemann C. BRMS1 in Gliomas-An Expression Analysis. Cancers (Basel) 2023; 15:cancers15112907. [PMID: 37296870 DOI: 10.3390/cancers15112907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The metastatic suppressor BRMS1 interacts with critical steps of the metastatic cascade in many cancer entities. As gliomas rarely metastasize, BRMS1 has mainly been neglected in glioma research. However, its interaction partners, such as NFκB, VEGF, or MMPs, are old acquaintances in neurooncology. The steps regulated by BRMS1, such as invasion, migration, and apoptosis, are commonly dysregulated in gliomas. Therefore, BRMS1 shows potential as a regulator of glioma behavior. By bioinformatic analysis, in addition to our cohort of 118 specimens, we determined BRMS1 mRNA and protein expression as well as its correlation with the clinical course in astrocytomas IDH mutant, CNS WHO grade 2/3, and glioblastoma IDH wild-type, CNS WHO grade 4. Interestingly, we found BRMS1 protein expression to be significantly decreased in the aforementioned gliomas, while BRMS1 mRNA appeared to be overexpressed throughout. This dysregulation was independent of patients' characteristics or survival. The protein and mRNA expression differences cannot be finally explained at this stage. However, they suggest a post-transcriptional dysregulation that has been previously described in other cancer entities. Our analyses present the first data on BRMS1 expression in gliomas that can provide a starting point for further investigations.
Collapse
Affiliation(s)
- Jonas Feldheim
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45131 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Almuth F Kessler
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Julia J Feldheim
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
- Department of Neurosurgery, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Dominik Schmitt
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
- Department of Nuclear Medicine, University of Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christoph Oster
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45131 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Lazaros Lazaridis
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45131 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45131 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Ralf-Ingo Ernestus
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Camelia M Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Mario Löhr
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Carsten Hagemann
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| |
Collapse
|
143
|
Trivedi AG, Kim SH, Ramesh KK, Giuffrida AS, Weinberg BD, Mellon EA, Kleinberg LR, Barker PB, Han H, Shu HKG, Shim H, Schreibmann E. Applying a Radiation Therapy Volume Analysis Pipeline to Determine the Utility of Spectroscopic MRI-Guided Adaptive Radiation Therapy for Glioblastoma. Tomography 2023; 9:1052-1061. [PMID: 37218946 PMCID: PMC10204497 DOI: 10.3390/tomography9030086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023] Open
Abstract
Accurate radiation therapy (RT) targeting is crucial for glioblastoma treatment but may be challenging using clinical imaging alone due to the infiltrative nature of glioblastomas. Precise targeting by whole-brain spectroscopic MRI, which maps tumor metabolites including choline (Cho) and N-acetylaspartate (NAA), can quantify early treatment-induced molecular changes that other traditional modalities cannot measure. We developed a pipeline to determine how spectroscopic MRI changes during early RT are associated with patient outcomes to provide insight into the utility of adaptive RT planning. Data were obtained from a study (NCT03137888) where glioblastoma patients received high-dose RT guided by the pre-RT Cho/NAA twice normal (Cho/NAA ≥ 2x) volume, and received spectroscopic MRI scans pre- and mid-RT. Overlap statistics between pre- and mid-RT scans were used to quantify metabolic activity changes after two weeks of RT. Log-rank tests were used to quantify the relationship between imaging metrics and patient overall and progression-free survival (OS/PFS). Patients with lower Jaccard/Dice coefficients had longer PFS (p = 0.045 for both), and patients with lower Jaccard/Dice coefficients had higher OS trending towards significance (p = 0.060 for both). Cho/NAA ≥ 2x volumes changed significantly during early RT, putting healthy tissue at risk of irradiation, and warranting further study into using adaptive RT planning.
Collapse
Affiliation(s)
- Anuradha G. Trivedi
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Su Hyun Kim
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Karthik K. Ramesh
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alexander S. Giuffrida
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Brent D. Weinberg
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric A. Mellon
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 45056, USA
| | - Lawrence R. Kleinberg
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Peter B. Barker
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Han
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hui-Kuo G. Shu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hyunsuk Shim
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eduard Schreibmann
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
144
|
Ramachandran M, Vaccaro A, van de Walle T, Georganaki M, Lugano R, Vemuri K, Kourougkiaouri D, Vazaios K, Hedlund M, Tsaridou G, Uhrbom L, Pietilä I, Martikainen M, van Hooren L, Olsson Bontell T, Jakola AS, Yu D, Westermark B, Essand M, Dimberg A. Tailoring vascular phenotype through AAV therapy promotes anti-tumor immunity in glioma. Cancer Cell 2023:S1535-6108(23)00136-8. [PMID: 37172581 DOI: 10.1016/j.ccell.2023.04.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/13/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
Glioblastomas are aggressive brain tumors that are largely immunotherapy resistant. This is associated with immunosuppression and a dysfunctional tumor vasculature, which hinder T cell infiltration. LIGHT/TNFSF14 can induce high endothelial venules (HEVs) and tertiary lymphoid structures (TLS), suggesting that its therapeutic expression could promote T cell recruitment. Here, we use a brain endothelial cell-targeted adeno-associated viral (AAV) vector to express LIGHT in the glioma vasculature (AAV-LIGHT). We found that systemic AAV-LIGHT treatment induces tumor-associated HEVs and T cell-rich TLS, prolonging survival in αPD-1-resistant murine glioma. AAV-LIGHT treatment reduces T cell exhaustion and promotes TCF1+CD8+ stem-like T cells, which reside in TLS and intratumoral antigen-presenting niches. Tumor regression upon AAV-LIGHT therapy correlates with tumor-specific cytotoxic/memory T cell responses. Our work reveals that altering vascular phenotype through vessel-targeted expression of LIGHT promotes efficient anti-tumor T cell responses and prolongs survival in glioma. These findings have broader implications for treatment of other immunotherapy-resistant cancers.
Collapse
Affiliation(s)
- Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Alessandra Vaccaro
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Tiarne van de Walle
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Maria Georganaki
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Kalyani Vemuri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Despoina Kourougkiaouri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Konstantinos Vazaios
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Marie Hedlund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Georgia Tsaridou
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Ilkka Pietilä
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Miika Martikainen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Luuk van Hooren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Thomas Olsson Bontell
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Clinical Pathology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Asgeir S Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden; Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| |
Collapse
|
145
|
Fishman H, Monin R, Dor-On E, Kinzel A, Haber A, Giladi M, Weinberg U, Palti Y. Tumor Treating Fields (TTFields) increase the effectiveness of temozolomide and lomustine in glioblastoma cell lines. J Neurooncol 2023; 163:83-94. [PMID: 37131108 DOI: 10.1007/s11060-023-04308-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE Tumor Treating Fields (TTFields) are electric fields that disrupt cellular processes critical for cancer cell viability and tumor progression, ultimately leading to cell death. TTFields therapy is approved for treatment of newly-diagnosed glioblastoma (GBM) concurrent with maintenance temozolomide (TMZ). Recently, the benefit of TMZ in combination with lomustine (CCNU) was demonstrated in patients with O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. The addition of adjuvant TTFields to TMZ plus CCNU further improved patient outcomes, leading to a CE mark for this regimen. The current in vitro study aimed to elucidate the mechanism underlying the benefit of this treatment protocol. METHODS Human GBM cell lines with different MGMT promoter methylation statuses were treated with TTFields, TMZ, and CCNU, and effectiveness was tested by cell count, apoptosis, colony formation, and DNA damage measurements. Expression levels of relevant DNA-repair proteins were examined by western blot analysis. RESULTS TTFields concomitant with TMZ displayed an additive effect, irrespective of MGMT expression levels. TTFields concomitant with CCNU or with CCNU plus TMZ was additive in MGMT-expressing cells and synergistic in MGMT-non-expressing cells. TTFields downregulated the FA-BRCA pathway and increased DNA damage induced by the chemotherapy combination. CONCLUSIONS The results support the clinical benefit demonstrated for TTFields concomitant with TMZ plus CCNU. Since the FA-BRCA pathway is required for repair of DNA cross-links induced by CCNU in the absence of MGMT, the synergy demonstrated in MGMT promoter methylated cells when TTFields and CCNU were co-applied may be attributed to the BRCAness state induced by TTFields.
Collapse
|
146
|
Rocha Pinheiro SL, Lemos FFB, Marques HS, Silva Luz M, de Oliveira Silva LG, Faria Souza Mendes dos Santos C, da Costa Evangelista K, Calmon MS, Sande Loureiro M, Freire de Melo F. Immunotherapy in glioblastoma treatment: Current state and future prospects. World J Clin Oncol 2023; 14:138-159. [PMID: 37124134 PMCID: PMC10134201 DOI: 10.5306/wjco.v14.i4.138] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
Glioblastoma remains as the most common and aggressive malignant brain tumor, standing with a poor prognosis and treatment prospective. Despite the aggressive standard care, such as surgical resection and chemoradiation, median survival rates are low. In this regard, immunotherapeutic strategies aim to become more attractive for glioblastoma, considering its recent advances and approaches. In this review, we provide an overview of the current status and progress in immunotherapy for glioblastoma, going through the fundamental knowledge on immune targeting to promising strategies, such as Chimeric antigen receptor T-Cell therapy, immune checkpoint inhibitors, cytokine-based treatment, oncolytic virus and vaccine-based techniques. At last, it is discussed innovative methods to overcome diverse challenges, and future perspectives in this area.
Collapse
Affiliation(s)
- Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Matheus Sande Loureiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
147
|
Alalami H, Bannykh S, Fan X, Hu J. Very long-term survival of an older glioblastoma patient after treatment with cilengitide: a case report. CNS Oncol 2023; 12:CNS96. [PMID: 37092563 PMCID: PMC10171035 DOI: 10.2217/cns-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor. Less than 1% of patients survive longer than 10 years. A 77-year-old woman was diagnosed with MGMT-methylated GBM in 2009. The patient received cilengitide as part of the CENTRIC clinical trial in conjunction with standard radiation and chemotherapy. Though the study was halted in 2013, our patient received cilengitide until 2016 with no radiographic evidence of recurrence thus far. This is the oldest reported GBM patient with greater than 10-year survival. Her exceptional response may have been influenced by MGMT promoter methylation status and PTEN expression.
Collapse
Affiliation(s)
- Huda Alalami
- Neurology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Serguei Bannykh
- Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xuemo Fan
- Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jethro Hu
- Neurology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
148
|
Qi D, Li J, Quarles CC, Fonkem E, Wu E. Assessment and prediction of glioblastoma therapy response: challenges and opportunities. Brain 2023; 146:1281-1298. [PMID: 36445396 PMCID: PMC10319779 DOI: 10.1093/brain/awac450] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma is the most aggressive type of primary adult brain tumour. The median survival of patients with glioblastoma remains approximately 15 months, and the 5-year survival rate is <10%. Current treatment options are limited, and the standard of care has remained relatively constant since 2011. Over the last decade, a range of different treatment regimens have been investigated with very limited success. Tumour recurrence is almost inevitable with the current treatment strategies, as glioblastoma tumours are highly heterogeneous and invasive. Additionally, another challenging issue facing patients with glioblastoma is how to distinguish between tumour progression and treatment effects, especially when relying on routine diagnostic imaging techniques in the clinic. The specificity of routine imaging for identifying tumour progression early or in a timely manner is poor due to the appearance similarity of post-treatment effects. Here, we concisely describe the current status and challenges in the assessment and early prediction of therapy response and the early detection of tumour progression or recurrence. We also summarize and discuss studies of advanced approaches such as quantitative imaging, liquid biomarker discovery and machine intelligence that hold exceptional potential to aid in the therapy monitoring of this malignancy and early prediction of therapy response, which may decisively transform the conventional detection methods in the era of precision medicine.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
| | - Jing Li
- School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - C Chad Quarles
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ekokobe Fonkem
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Medical Education, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Medical Education, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX 77843, USA
- Department of Oncology and LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
149
|
Younes S, Mourad N, Salla M, Rahal M, Hammoudi Halat D. Potassium Ion Channels in Glioma: From Basic Knowledge into Therapeutic Applications. MEMBRANES 2023; 13:434. [PMID: 37103862 PMCID: PMC10144598 DOI: 10.3390/membranes13040434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Ion channels, specifically those controlling the flux of potassium across cell membranes, have recently been shown to exhibit an important role in the pathophysiology of glioma, the most common primary central nervous system tumor with a poor prognosis. Potassium channels are grouped into four subfamilies differing by their domain structure, gating mechanisms, and functions. Pertinent literature indicates the vital functions of potassium channels in many aspects of glioma carcinogenesis, including proliferation, migration, and apoptosis. The dysfunction of potassium channels can result in pro-proliferative signals that are highly related to calcium signaling as well. Moreover, this dysfunction can feed into migration and metastasis, most likely by increasing the osmotic pressure of cells allowing the cells to initiate the "escape" and "invasion" of capillaries. Reducing the expression or channel blockage has shown efficacy in reducing the proliferation and infiltration of glioma cells as well as inducing apoptosis, priming several approaches to target potassium channels in gliomas pharmacologically. This review summarizes the current knowledge on potassium channels, their contribution to oncogenic transformations in glioma, and the existing perspectives on utilizing them as potential targets for therapy.
Collapse
Affiliation(s)
- Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon
- Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut 1103, Lebanon;
| | - Nisreen Mourad
- Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut 1103, Lebanon;
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
| | - Mohamed Salla
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa 146404, Lebanon;
| | - Mohamad Rahal
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
- Academic Quality Department, QU Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
150
|
Feng W, Zuo M, Li W, Chen S, Wang Z, Yuan Y, Yang Y, Liu Y. A novel score system based on arginine metabolism-related genes to predict prognosis, characterize immune microenvironment, and forecast response to immunotherapy in IDH-wildtype glioblastoma. Front Pharmacol 2023; 14:1145828. [PMID: 37214463 PMCID: PMC10196947 DOI: 10.3389/fphar.2023.1145828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Glioblastoma is one of the most lethal cancers and leads to more than 200,000 deaths annually. However, despite lots of researchers devoted to exploring novel treatment regime, most of these attempts eventually failed to improve the overall survival of glioblastoma patients in near 20 years. Immunotherapy is an emerging therapy for cancers and have succeeded in many cancers. But most of its application in glioblastoma have been proved with no improvement in overall survival, which may result from the unique immune microenvironment of glioblastoma. Arginine is amino acid and is involved in many physiological processes. Many studies have suggested that arginine and its metabolism can regulate malignancy of multiple cancers and influence the formation of tumor immune microenvironment. However, there is hardly study focusing on the role of arginine metabolism in glioblastoma. Methods: In this research, based on mRNA sequencing data of 560 IDH-wildtype glioblastoma patients from three public cohorts and one our own cohort, we aimed to construct an arginine metabolism-related genes signature (ArMRS) based on four essential arginine metabolism-related genes (ArMGs) that we filtered from all genes with potential relation with arginine metabolism. Subsequently, the glioblastoma patients were classified into ArMRS high-risk and low-risk groups according to calculated optimal cut-off values of ArMRS in these four cohorts. Results: Further validation demonstrated that the ArMRS was an independent prognostic factor and displayed fine efficacy in prediction of glioblastoma patients' prognosis. Moreover, analyses of tumor immune microenvironment revealed that higher ArMRS was correlated with more immune infiltration and relatively "hot" immunological phenotype. We also demonstrated that ArMRS was positively correlated with the expression of multiple immunotherapy targets, including PD1 and B7-H3. Additionally, the glioblastomas in the ArMRS high-risk group would present with more cytotoxic T cells (CTLs) infiltration and better predicted response to immune checkpoint inhibitors (ICIs). Discussion: In conclusion, our study constructed a novel score system based on arginine metabolism, ArMRS, which presented with good efficacy in prognosis prediction and strong potential to predict unique immunological features, resistance to immunotherapy, and guide the application of immunotherapy in IDH-wild type glioblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuan Yang
- *Correspondence: Yuan Yang, ; Yanhui Liu,
| | - Yanhui Liu
- *Correspondence: Yuan Yang, ; Yanhui Liu,
| |
Collapse
|